EP0786535B2 - Procede de production d'une plaque d'alliage d'aluminium destinee au formage - Google Patents

Procede de production d'une plaque d'alliage d'aluminium destinee au formage Download PDF

Info

Publication number
EP0786535B2
EP0786535B2 EP95908373A EP95908373A EP0786535B2 EP 0786535 B2 EP0786535 B2 EP 0786535B2 EP 95908373 A EP95908373 A EP 95908373A EP 95908373 A EP95908373 A EP 95908373A EP 0786535 B2 EP0786535 B2 EP 0786535B2
Authority
EP
European Patent Office
Prior art keywords
less
aluminum alloy
temperature
forming
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95908373A
Other languages
German (de)
English (en)
Other versions
EP0786535A1 (fr
EP0786535B1 (fr
EP0786535A4 (fr
Inventor
Hidetoshi Sumitomo Light Metal Ind. Ltd. UCHIDA
Hideo Sumitomo Light Metal Ind. Ltd. YOSHIDA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Reynolds Metals Co
Original Assignee
Sumitomo Light Metal Industries Ltd
Reynolds Metals Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12619735&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0786535(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sumitomo Light Metal Industries Ltd, Reynolds Metals Co filed Critical Sumitomo Light Metal Industries Ltd
Publication of EP0786535A1 publication Critical patent/EP0786535A1/fr
Publication of EP0786535A4 publication Critical patent/EP0786535A4/xx
Publication of EP0786535B1 publication Critical patent/EP0786535B1/fr
Application granted granted Critical
Publication of EP0786535B2 publication Critical patent/EP0786535B2/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions

Definitions

  • the present invention relates to a method for manufacturing aluminum alloy plate for forming, specifically to a method for manufacturing aluminum alloy plate for forming with favorable press-forming properties, giving excellent appearance after forming, and being suitable for vehicle materials such as automobile external body panels.
  • the 6000-Series AI-Mg-Si alloys such as 6009, 6111, and 6016 alloys were produced.
  • the 8000-Series aluminum alloys are somewhat inferior to the 5000-Series aluminum alloys in their forming properties, they have sufficient forming characteristics to permit them to be used as automobile external body panels, and they feature high strength due to the application of heat treatment during the coating and baking stage. Accordingly, the 6000-Series aluminum alloys are expected to further reduce plate thickness and applied weight over the 5000-Series.
  • the 6000-Series aluminum alloys have, however, the disadvantage of poor appearance after forming compared with the 5000, Series aluminum alloys.
  • JP,A,5-43974 describes a method for manufacturing a sheet of a 6000-Series aluminium alloy.
  • an ingot is subjected to a homogenizing treatment at 520°C, cooled to room temperature, hot rolled starting at 460°C and enoling at 280°C cold rolled with a draft of 75% solution heat treated at 550°C, for 60 sec with a heating rate of 10°C/sec and a cooling rate of 20°C/sec.
  • SS marks stretcher strain marks
  • coarse peel range peel
  • ridging marks are surface irregularities which appear even when the crystal grains are sufficiently fine not to induce a rough surface, but only under conditions where crystal grains with nearly equal crystalline plane orientation to each other are grouped, inducing a significant difference in deformation behavior at the boundary of the group.
  • the present invention was completed by focusing on the 6000-Series aluminum alloys which are expected to further reduce plate thickness and weight as the materials of vehicles such as external automobile body panels compared with the 5000-Series alloys, and by performing detailed study on the relations among the chemical ingredients, the manufacturing conditions, and the post-forming surface defects (particularly ridging marks) to solve the above-described problems experienced in the 5000-Series alloys.
  • the object of the present invention is to provide a method for manufacturing aluminum alloy plate for forming with high strength and favorable forming properties, and futher providing excellent appearance after forming.
  • the method for manufacturing aluminum alloy plate for forming to achieve the above-described object embodies the first aspect of the present invention which comprises: applying solid solution treatment to an aluminum alloy ingot consisting of between 0,4% and 1.7% of Si, between 0.2 % and 1.2% of Mg, by weight, the remaining Al and inevitable impurities and heating from a temperature range of 500°C to below the melting point of the aluminum alloy; cooling the aluminum alloy ingot from a temperature of 500°C or above to a cooling temperature range between 350 and 400°C; starting hot-rolling the aluminum alloy at the cooling temperature and ending the hot-rolling at a temperature range between 200 and 250°C; applying cold-rolling to the hot-rolled aluminum alloy to 50% or more of draft immediately before applying solid-solution treatment; heating the cold-rolled aluminum alloy to a temperature range between 500 and 580°C at a rate of 2°C/s or more, followed by holding the heated aluminum alloy for 10 minutes or less to conduct solid-solution treatment; then cooling the aluminum alloy to a temperature of 100°C or below at a rate of
  • the second aspect of the present invention comprises: aluminum alloy consisting of between 0.4% and 1.7% of Si, between 0.2% and 1.2% of Mg, and at least one element selected from the group of 1.0% or less of Cu, 1.0% or less of Zn, 0.5% or less of Mn, 0.2% or less of Cr, 0.2% or less of Zr, and 0.2% or less of V, by weight, and the remaining Al and inevitable impurities.
  • the third and fourth aspects of the present invention comprise: soaking an aluminum alloy ingot consisting of 0.8 to 1.3% of Si, 0.3 to 0.8% of Mg, by weight, and the remaining Al and inevitable impurities, or consisting of 0.8 to 1.3% of Si, and 0.3 to 0.8% of Mg, and at least one element selected from the group of 1.0% or less of Cu, 1.0% or less of Zn, 0.5% or less of Mn, 0.2% or less of Cr, 0.2% or less of Zr, and 0.2% or less of V, by weight, and the balance of Al and inevitable impurities, at a temperature range of 500°C to below the melting point of the aluminum alloy; cooling the soaked aluminum alloy ingot from a temperature of 500°C or above to a cooling temperature range of between 350 and 400°C; starting hot-rolling the aluminum alloy at the cooling temperature and ending the hot-rolling at a temperature range between 200 and 250°C; applying cold-rolling to the hot-rolled aluminum alloy to 80% or more of draft immediately before applying solid-solution treatment; heating the
  • the present invention was derived on the basis of findings that the suppression of ridging mark generation in the 6000-Series aluminum alloys without degrading the forming property needs to specify the alloy composition and requires strict control of soaking conditions, hot-rolling conditions, cold-rolling conditions, and final solid solution treatment conditions.
  • the alloy composition contains essential elements of Si in a range of between 0.4% and 1.7% and of Mg in a range between 0.2% and 1.2%. Silicon and Mg coexist to form Mg 2 Si, increasing the strength of the alloy. If the Si content is below 0.4%, sufficient strength cannot be obtained. If the Si content is 1.7% or more, the proof stress during the press-forming of the alloy becomes too high and degrades the forming properties, and the corrosion resistance also degrades.
  • the Mg content is less than 0.2%, satisfactory strength cannot be attained. If the Mg content is 1.2% or more, the proof stress rises, and the forming properties and the characteristic of precisely producing the press-mold shape during press-forming, or what is called the shape-freezing property, is degraded. To confer further improved anti-denting properties and shape-freezing property after forming to the aluminum alloy plate of the present invention, it is preferable to limit the content of the essential elements to between 0.8 and 1.3% for Si and between 0.3 and 0.8% for Mg.
  • addition of Cu as a selective component to a content of 1.0% or less further increases the strength of the alloy. If the Cu content exceeds 1.0%, corrosion resistance degrades and anti-filiform corrosion properties also degrade. Addition of Zn also improves the strength of alloy. If the Zn content exceeds 1.0%, however, corrosion resistance degrades, and the aging properties at room temperature increase. Therefore, the addition of Zn is limited to 1.0% or less.
  • the addition of 0.5% or less of Mn, 0.2% or less of Cr, 0.2% or less of Zr, and 0.2% or less of V further increases the strength of the alloy and decreases the crystal grain size, inducing favorable effects by preventing rough surface occurrence during the forming process. If these additives are added at above their respective upper limits, generation of coarse intermetallic compounds increases, degrading the forming properties.
  • 0.05% or less of Ti, or 0.05% or less of Ti and 100 ppm or less of B may be added other than the above-specified elements. If the added amount of Ti and B exceeds the respective upper limit, generation of coarse intermetallic compounds increases, degrading the forming properties. The inclusion of Fe as an inevitable impurity is allowed up to 0.3%. If the Fe content exceeds 0.3%, the forming properties, particularly bend-forming property, tend to degrade.
  • an ingot of aluminum alloy having the composition described above is prepared using a semi-continuous casting process, and the ingot is soaked in a temperature range between 500°C and the melting point of the alloy.
  • the soaking temperature is below 500°C, the removal of ingot segregation and the homogenizing of alloy structure cannot be fully achieved, and the formation of solid solution of Mg 2 Si which contributes to the strength of alloy becomes insufficient, which may result in poor forming properties.
  • the alloy is not cooled to room temperature but is instead subjected to hot-rolling at a starting temperature range between 350 and 400°C.
  • the ingot If the soaked ingot is cooled to room temperature followed by heating to the temperature of hot-rolling, coarse Mg 2 Si deposits appear during the heating process, making the formation of solid solution difficult during the solid solution treatment process, which results in degraded forming properties. If the ingot is cooled to room temperature after being soaked, the ingot needs to be heated to 500°C or above again, then to be cooled to a temperature range between 350 and 400°C, before beginning hot-rolling.
  • Hot-rolling begins at a temperature ranging between 350 and 400°C, and ends at a temperature ranging between 200 and 250°C.
  • the starting temperature of hot-rolling is below 350°C
  • the deformation resistance of the material rises.
  • the starting temperature exceeds 450°C
  • the structure grows excessively during the hot-rolling process with a high probability of forming groups of grains having similar crystalline plane orientation in the alloy plate after cold-rolling and after solid solution treatment, and ridging marks are likely appear on the plate surface after press-forming.
  • the hot-rolling is concluded at a temperature of 300°C or above, secondary recrystallization tends to occur after the rolling, and the structure becomes coarse, resulting in the generation of ridging marks.
  • the ending temperature of hot-rolling is below 200°C, water-soluble rolling oil stains are likely to remain on the surface of the alloy plate, degrading the surface quality.
  • the plate After the completion of hot-rolling, intermediate annealing and cold-rolling are carried out, when necessary, to prepare a plate having a specified thickness.
  • the plate Immediately before the solid solution treatment, the plate is cold-rolled to 50% or more of draft, preferably to 80% or more of draft, then the plate is subjected to solid solution treatment. If the draft of the cold-rolling immediately before the solid solution treatment is less than 50%, the crystal grains tend to become coarse after the solid solution treatment, and may result in a rough surface. Furthermore, the decomposition of the hot-rolled structure cannot be fully achieved, easily generating ridging marks, and the forming property degrades.
  • the solid solution treatment is implemented by heating the material to a temperature ranging between 500 and 580°C at a rate of 2°C/s or more. If the temperature rise speed is less than 2°C/s, the crystal grains become coarse, tending to cause a rough surface during the press-forming process. If the heating temperature is lower than 500°C, the solid solution of deposit becomes insufficient, and the specified strength and forming properties cannot be attained. Even If the specified strength and forming properties are obtained, the heat treatment requires an extremely long period, which is unfavorable from the industrial point of view. If the material is heated to above 580°C, local eutectic fusing is likely to occur, degrading the forming properties. A preferable holding time is 10 minutes or less.
  • the material is cooled to 100°C or below at a rate of 5°C/s or more. When the cooling speed is less than 5°C/s, coarse compounds deposit at the grain boundary and degrade ductility, thus degrading strength and forming properties.
  • a material's composition is selected to provide optimal strength and forming properties, and a combination of ingot soaking, hot-rolling, cold-rolling, and solid solution treatment is applied under specified conditions.
  • a good surface condition after forming is provided by ensuring fine crystal grain size to prevent rough surface generation with random crystal plane orientation while preventing degradation of forming properties.
  • An aluminum alloy ingot comprising 1.2% of Si, 0.6% of Mg, 0.1% of Mn, 0.2% of Fe, by wt., and the remainder of Al was manufactured using a semi-continuous casting process.
  • the obtained ingot was surface machined, then treated under the conditions given in Table 1 to form a plate 1 mm thick.
  • the prepared plate was subjected to a tensile test.
  • a 200 mm square panel was cut from the plate for press-forming. The formed alloy was visually observed to check for the generation of ridging marks, rough surface, and SS marks, and was tested for intergrain corrosion.
  • Example 1 An aluminum alloy ingot having the same composition as that of Example 1 was manufactured using the semi-continuous casting process. The ingot was treated according to the conditions given in Table 3 to form a plate 1 mm thick. The plate was subjected to the test given in Example 1. The result is shown in Table 4. The values with underline are outside of the condition of the present invention. Condition No.
  • Condition No. 1 and No. 2 applied excessively high starting temperature for hot-rolling, and Condition No. 3 applied excessively high hot-rolling ending temperature, so the specimens thus prepared generated ridging marks after forming.
  • Condition No. 4 applied less cold-rolling draft and insufficient decomposition of the specimen's hot-rolled structure so that ridging marks appeared after forming, and a rough surface appeared owing to the formation of coarse crystal grains.
  • Condition No.5 provided
  • Condition No. 6 experienced cooling to room temperature after soaking followed by re-heating to the hot-rolling temperature so that the specimen had insufficient penetration of alloying elements during the solid solution treatment, and the elongation became low and the forming property degraded.
  • Condition No.7 applied excessively low solid solution treatment temperature so that the deposits were unable to undergo sufficient solid solution formation, so the strength and elongation were poor.
  • An aluminum alloy ingot having the composition given in Table 5 was manufactured by a semi-continuous casting process. After machining the surface, the ingot was treated by Condition No. 1 of Table 1 to form a plate 1 mm thick The plate was subjected to the test given in Example 1. The result is shown in Table 6. As seen in Table 6, all the specimens A through G, which were manufactured in accordance with the present invention, had a high strength of 100 MPa or more and high elongation of 28% or more, and showed excellent forming properties and appearance after forming. They also showed superior corrosion resistance in intergrain corrosion tests, giving a maximum of 0.1 mm of corrosion depth. Alloy No.
  • An aluminum alloy ingot having the composition given in Table 7 was manufactured using a semi-continuous casting process. After machining the surface, the ingot was treated according to Condition No. 1 of Table 1 to form a plate 1 mm thick. The plate was subjected to the test given in Example 1. The result is shown in Table 8. As seen in Table 8, the specimen of alloy H contained less Si and Mg so that the strength was low and crystal grains were coarse, generating a rough surface during the forming stage. Alloy I contained less Mg, so that the strength was insufficient, and the content of Cu was excessive so that the corrosion depth increased significantly during the intergrain corrosion test to degrade the corrosion resistance. The alloy J contained an excessive amount of Si so that the strength increased and the elongation decreased, causing unsatisfactory forming properties.
  • the alloy K was A5182 alloy, and it generated SS marks during the forming process, degrading its appearance.
  • Table 7 underlined values are outside of the conditions of the present invention.
  • the present invention provides a method for manufacturing aluminum alloy plate for forming with excellent strength and forming properties, particularly excellent press-forming properties, with a good appearance after forming, and suitable for vehicle materials such as automobile external body panels.

Claims (4)

  1. Procédé pour fabriquer une feuille d'alliage d'aluminium pour le formage, comprenant: le réchauffage à coeur d'un lingot d'alliage d'aluminium comprenant entre 0,4% et 1,7% de Si, entre 0,2% et 1,2% de Mg, en poids, et facultativement au moins un élément sélectionné parmi le group comprenant 1,0% ou moins de Cu, 1,0% ou moins de Zn, 0,5% ou moins de Mn, 0,2% ou moins de Cr, 0,2 % ou moins de Zr, et 0,2% ou moins de V, en poids, et le reste étant de l'Al et des impuretés inévitables, à une plage de température comprise entre 500° C et le point de fusion de l'alliage d'aluminium ; le refroidissement du lingot d'alliage d'aluminium réchauffé à coeur d'une température de réchauffage à coeur de 500° C ou plus à une plage de température de refroidissement comprise entre 350 et 400° C ; le démarrage du laminage à chaud du lingot d'alliage d'aluminium à la température de refroidissement et l'achèvement du laminage à chaud dans une plage de température comprise entre 200 et 250° C ; l'application d'un laminage à froid du lingot d'alliage d'aluminium laminé à chaud avec 50% d'étirage ou plus avant l'application d'un recuit d'homogénéisation au stade solidus; le chauffage du lingot d'alliage d'aluminium laminé à froid à une plage de température comprise entre 500 et 580° C à une vitesse de 2° C/s ou plus, suivi par le maintien du lingot d'alliage d'aluminium chauffé pendant 10 minutes ou moins pour effectuer un recuit d'homogénéisation au stade solidus ; puis le refroidissement du lingot d'alliage d'aluminium à une température de 100° C ou moins à une vitesse de 5° C/s pour effectuer une trempe.
  2. Procédé pour fabriquer une feuille d'alliage d'aluminium pour le formage selon la revendication 1, dans lequel le lingot d'alliage d'aluminium comprend entre 0,4% et 1,7% de Si, entre 0,2% et 1,2% de Mg, et au moins un élément sélectionné parmi le groupe comprenant 1,0% ou moins de Cu, 1,0% ou moins de Zn, 0,5% ou moins de Mn, 0,2% ou moins de Cr, 0,2% ou moins de Zr, et 0,2% ou moins de V, en poids, et le reste étant de l'Al et des impuretés inévitables.
  3. Procédé pour fabriquer une feuille d'alliage d'aluminium pour le formage selon la revendication 1, comprenant : l'application d'un laminage à froid avec 80% d'étirage ou plus; et le maintien du lingot d'alliage d'aluminium chauffé pendant 1 minute ou moins à une plage de température comprise entre 500 et 580°C pour effectuer un recuit d'homogénéisation au stade solidus.
  4. Procédé pour fabriquer une feuille d'alliage d'aluminium pour le formage selon la revendication 3, dans lequel l'alliage d'aluminium comprend entre 0,8 et 1,3% de Si, entre 0,3 et 0,8% de Mg, et au moins un élément sélectionné parmi le groupe comprenant 1,0% ou moins de Cu, 1,0% ou moins de Zn, 0,5% ou moins de Mn, 0,2% ou moins de Cr, 0,2% ou moins de Zr, et 0,2% ou moins de V, en poids, et le reste étant de l'Al et des impuretés inévitables.
EP95908373A 1994-02-16 1995-02-14 Procede de production d'une plaque d'alliage d'aluminium destinee au formage Expired - Lifetime EP0786535B2 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP6041850A JP2823797B2 (ja) 1994-02-16 1994-02-16 成形加工用アルミニウム合金板の製造方法
JP4185094 1994-02-16
JP41850/94 1994-02-16
PCT/JP1995/000200 WO1995022634A1 (fr) 1994-02-16 1995-02-14 Procede de production d'une plaque d'alliage d'aluminium destinee au moulage

Publications (4)

Publication Number Publication Date
EP0786535A1 EP0786535A1 (fr) 1997-07-30
EP0786535A4 EP0786535A4 (fr) 1997-07-30
EP0786535B1 EP0786535B1 (fr) 2000-04-12
EP0786535B2 true EP0786535B2 (fr) 2002-11-06

Family

ID=12619735

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95908373A Expired - Lifetime EP0786535B2 (fr) 1994-02-16 1995-02-14 Procede de production d'une plaque d'alliage d'aluminium destinee au formage

Country Status (4)

Country Link
EP (1) EP0786535B2 (fr)
JP (1) JP2823797B2 (fr)
DE (1) DE69516297T3 (fr)
WO (1) WO1995022634A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10324452B4 (de) * 2002-07-01 2010-05-06 Aleris Aluminum Duffel Bvba AI-Mg-Si-Legierungsblech
US9903018B2 (en) 2013-03-21 2018-02-27 Kennametal Inc. Coated body wherein the coating scheme includes a coating layer of TiAl2O3 and method of making the same

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3590685B2 (ja) * 1994-12-27 2004-11-17 本田技研工業株式会社 自動車外板用アルミニウム合金板の製造方法
JP3454638B2 (ja) * 1996-05-28 2003-10-06 株式会社神戸製鋼所 バルジ成形用アルミニウム合金押出材及びその製造方法
JPH10102179A (ja) * 1996-10-01 1998-04-21 Nippon Steel Corp プレス成形性および塗装焼付硬化性に優れたアルミニウム合金板およびその製造方法
JP3729605B2 (ja) * 1997-06-19 2005-12-21 株式会社神戸製鋼所 焼付硬化性が優れ常温時効が抑制されたアルミニウム合金板材の製造方法
NL1006511C2 (nl) * 1997-07-09 1998-05-29 Hoogovens Aluminium Nv Werkwijze voor het vervaardigen van een goed felsbare aluminiumplaat.
JP4186240B2 (ja) * 1997-10-03 2008-11-26 株式会社神戸製鋼所 成形加工用Al−Mg−Si系アルミニウム合金板材
JP4063388B2 (ja) * 1998-02-20 2008-03-19 株式会社神戸製鋼所 表面性状に優れた成形加工用Al−Mg−Si系アルミニウム合金板及びその製造方法
JP4045326B2 (ja) * 1999-11-09 2008-02-13 株式会社神戸製鋼所 プレス成形性に優れたAl−Mg−Si系Al合金板
JP4274674B2 (ja) * 2000-04-12 2009-06-10 トヨタ自動車株式会社 圧壊性に優れたアルミニウム合金部材及びその製造方法
JP3563323B2 (ja) * 2000-04-13 2004-09-08 日産自動車株式会社 耐糸錆び性に優れたアルミニウム合金板およびその製造方法
EP1375691A4 (fr) 2001-03-28 2004-07-21 Sumitomo Light Metal Ind Feuille en alliage aluminium a aptitude au formage et durcissabilite excellentes au cours de la cuisson de revetement, et procede de production
JP4175818B2 (ja) * 2001-03-28 2008-11-05 住友軽金属工業株式会社 成形性および塗装焼付硬化性に優れたアルミニウム合金板およびその製造方法
JP4248796B2 (ja) * 2001-09-27 2009-04-02 住友軽金属工業株式会社 曲げ加工性および耐食性に優れたアルミニウム合金板およびその製造方法
JP4633994B2 (ja) * 2002-03-20 2011-02-16 住友軽金属工業株式会社 曲げ加工性および塗装焼付硬化性に優れたアルミニウム合金板および製造方法
JP4633993B2 (ja) * 2002-03-20 2011-02-16 住友軽金属工業株式会社 曲げ加工性および塗装焼付硬化性に優れたアルミニウム合金板および製造方法
ES2238584T3 (es) * 2001-07-09 2005-09-01 Corus Aluminium Walzprodukte Gmbh Aleacion de al-mg-si de alta resistencia.
WO2003010348A2 (fr) * 2001-07-23 2003-02-06 Corus Aluminium Walzprodukte Gmbh Alliage al-mg-si haute resistance soudable
JP4865174B2 (ja) * 2001-09-28 2012-02-01 古河スカイ株式会社 曲げ加工性と絞り成形性に優れたアルミニウム合金板の製造方法
JP3833574B2 (ja) * 2002-06-07 2006-10-11 株式会社神戸製鋼所 曲げ加工性とプレス成形性に優れたアルミニウム合金板
JP4499369B2 (ja) * 2003-03-27 2010-07-07 株式会社神戸製鋼所 リジングマークの発生が抑制されており表面性状に優れたAl−Mg−Si系合金板
JP5113318B2 (ja) * 2004-04-13 2013-01-09 古河スカイ株式会社 成形加工用アルミニウム合金板およびその製造方法
US20060070686A1 (en) * 2004-10-05 2006-04-06 Corus Aluminium Walzprodukte Gmbh High hardness moulding plate and method for producing said plate
JP4939088B2 (ja) * 2006-03-16 2012-05-23 株式会社神戸製鋼所 成形時のリジングマーク性に優れたアルミニウム合金板の製造方法
JP4939091B2 (ja) * 2006-03-23 2012-05-23 株式会社神戸製鋼所 曲げ加工性に優れたアルミニウム合金板の製造方法
JP4939093B2 (ja) * 2006-03-28 2012-05-23 株式会社神戸製鋼所 ヘム曲げ性およびベークハード性に優れる自動車パネル用6000系アルミニウム合金板の製造方法
JP5059423B2 (ja) 2007-01-18 2012-10-24 株式会社神戸製鋼所 アルミニウム合金板
JP5432439B2 (ja) * 2007-06-27 2014-03-05 株式会社神戸製鋼所 温間成形用アルミニウム合金板
US8366846B2 (en) 2008-03-31 2013-02-05 Kobe Steel, Ltd. Aluminum alloy sheet with excellent post-fabrication surface qualities and method of manufacturing same
JP5758676B2 (ja) * 2011-03-31 2015-08-05 株式会社神戸製鋼所 成形加工用アルミニウム合金板およびその製造方法
EP2570509B1 (fr) 2011-09-15 2014-02-19 Hydro Aluminium Rolled Products GmbH Procédé de fabrication pour une bande d'aluminium AlMgSi
CN102876939B (zh) * 2012-10-29 2013-12-25 东北轻合金有限责任公司 一种铝镁合金厚板的制造方法
CN102876940B (zh) * 2012-10-29 2013-12-25 东北轻合金有限责任公司 一种性能稳定铝合金薄板的制造方法
CN102994827B (zh) * 2012-11-07 2016-01-13 马鞍山市天睿实业有限公司 一种铝合金灭火器阀体及其制造方法
JP6752146B2 (ja) 2014-01-21 2020-09-09 アーコニック テクノロジーズ エルエルシーArconic Technologies Llc 6000系アルミニウム合金
WO2016115120A1 (fr) 2015-01-12 2016-07-21 Novelis Inc. Tôle d'aluminium hautement déformable pour l'industrie automobile à striage réduit ou nul et procédé de préparation
CN105127212A (zh) * 2015-09-29 2015-12-09 无锡贺邦金属制品有限公司 一种5083铝合金的加工方法
CN106086532A (zh) * 2016-06-20 2016-11-09 中铝瑞闽股份有限公司 一种电容器外壳用铝合金带材及其制备方法
EP3480326A4 (fr) * 2016-06-29 2019-11-20 UACJ Corporation Feuille en alliage d'aluminium présentant une excellente résistance à la formation de stries et une excellente aptitude au pliage de du bord rabattu et procédé pour sa production
JP6208389B1 (ja) 2016-07-14 2017-10-04 株式会社Uacj 曲げ加工性及び耐リジング性に優れたアルミニウム合金からなる成形加工用アルミニウム合金圧延材の製造方法
US10837086B2 (en) * 2017-05-26 2020-11-17 Novelis Inc. High-strength corrosion-resistant 6xxx series aluminum alloys and methods of making the same
FR3076837B1 (fr) * 2018-01-16 2020-01-03 Constellium Neuf-Brisach Procede de fabrication de toles minces en alliage d'aluminium 6xxx a haute qualite de surface
EP3666915A1 (fr) 2018-12-11 2020-06-17 Constellium Neuf Brisach Methode de fabrication de toles en alliages 6000 avec une qualite de surface elevee
US20230219125A1 (en) 2020-06-04 2023-07-13 Constellium Neuf-Brisach Method and equipment for cooling on a reversing hot rolling mill
FR3112297B1 (fr) 2020-07-07 2024-02-09 Constellium Neuf Brisach Procédé et équipement de refroidissement sur un Laminoir réversible à chaud
CN116065108B (zh) * 2023-04-06 2023-08-15 有研工程技术研究院有限公司 一种高Cu含量超高强耐蚀7xxx系铝合金的均匀化热处理方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4808247A (en) 1986-02-21 1989-02-28 Sky Aluminium Co., Ltd. Production process for aluminum-alloy rolled sheet

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6411937A (en) * 1987-07-02 1989-01-17 Sky Aluminium Aluminum alloy rolled plate for forming and its production
JPH0674480B2 (ja) * 1987-09-03 1994-09-21 本田技研工業株式会社 溶接性、耐糸錆性、成形性及び焼付硬化性に優れた成形用及び溶接用A▲l▼合金板及びその製造法
JPH0676637B2 (ja) * 1989-11-29 1994-09-28 スカイアルミニウム株式会社 耐糸錆性に優れた成形加工用アルミニウム合金
JPH0788558B2 (ja) * 1990-04-13 1995-09-27 株式会社神戸製鋼所 成形性及び焼付硬化性に優れたアルミニウム合金板の製造方法
EP0480402B1 (fr) * 1990-10-09 1995-02-15 Sumitomo Light Metal Industries Limited Procédé de fabrication de matériau en alliage d'aluminium présentant une aptitude excellente au formage et durcissable lors de la cuisson du vernis
JPH0543974A (ja) * 1991-08-16 1993-02-23 Nkk Corp 焼付硬化性及びプレス成形性に優れたアルミニウム合金板及びその製造方法
EP0531118A1 (fr) * 1991-09-05 1993-03-10 Sky Aluminium Co., Ltd. Tôle pour emboutissage en alliage d'aluminium laminée et son procédé de fabrication
JPH05112840A (ja) * 1991-10-18 1993-05-07 Nkk Corp プレス成形性に優れた焼付硬化性Al−Mg−Si系合金板及びその製造方法
JPH05125504A (ja) * 1991-10-31 1993-05-21 Furukawa Alum Co Ltd 焼付け硬化性成形用アルミニウム合金板の製造方法
JPH05271836A (ja) * 1992-03-30 1993-10-19 Furukawa Alum Co Ltd 強度と延性に優れたアルミニウム合金材とその製造方法
JPH05306440A (ja) * 1992-04-30 1993-11-19 Furukawa Alum Co Ltd 焼付硬化性に優れた成形用アルミニウム合金板の製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4808247A (en) 1986-02-21 1989-02-28 Sky Aluminium Co., Ltd. Production process for aluminum-alloy rolled sheet

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Aluminium Taschenbuch, 14. Auflage, page 254-255, 1983

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10324452B4 (de) * 2002-07-01 2010-05-06 Aleris Aluminum Duffel Bvba AI-Mg-Si-Legierungsblech
US9903018B2 (en) 2013-03-21 2018-02-27 Kennametal Inc. Coated body wherein the coating scheme includes a coating layer of TiAl2O3 and method of making the same

Also Published As

Publication number Publication date
EP0786535A1 (fr) 1997-07-30
JP2823797B2 (ja) 1998-11-11
EP0786535B1 (fr) 2000-04-12
WO1995022634A1 (fr) 1995-08-24
JPH07228956A (ja) 1995-08-29
EP0786535A4 (fr) 1997-07-30
DE69516297T3 (de) 2003-04-17
DE69516297D1 (de) 2000-05-18
DE69516297T2 (de) 2000-08-10

Similar Documents

Publication Publication Date Title
EP0786535B2 (fr) Procede de production d'une plaque d'alliage d'aluminium destinee au formage
JP2614686B2 (ja) 形状凍結性及び塗装焼付硬化性に優れた成形加工用アルミニウム合金の製造方法
EP0480402B1 (fr) Procédé de fabrication de matériau en alliage d'aluminium présentant une aptitude excellente au formage et durcissable lors de la cuisson du vernis
WO2020120267A1 (fr) Procédé de fabrication de tôles d'aluminium 6xxx présentant une haute qualité de surface
JP3590685B2 (ja) 自動車外板用アルミニウム合金板の製造方法
JP3681822B2 (ja) Al−Zn−Mg系合金押出材とその製造方法
JP4328242B2 (ja) リジングマーク特性に優れたアルミニウム合金板
JP2008190022A (ja) Al−Mg−Si系合金熱延上り板およびその製造法
EP0773303A1 (fr) TÔle d'alliage d'aluminium et procédé pour sa production
KR20010087232A (ko) 도어빔용 Aℓ-Mg-Si계 알루미늄합금압출재 및 도어빔
JP2004238657A (ja) アウタパネル用アルミニウム合金板の製造方法
US6110297A (en) Aluminum alloy sheet with excellent formability and method for manufacture thereof
JPH0547615B2 (fr)
JP6585436B2 (ja) 耐糸錆性、塗装焼付け硬化性及び加工性に優れた自動車ボディパネル用アルミニウム合金板及びその製造方法、ならびに、これを用いた自動車ボディパネル及びその製造方法
JPH11350058A (ja) 成形性及び焼き付け硬化性に優れるアルミニウム合金板及びその製造方法
EP0818553A1 (fr) Feuille d'aluminium du type AA5000 et procédé pour sa fabrication
JP2856936B2 (ja) 強度・延性バランス及び焼付硬化性に優れたプレス成形用アルミニウム合金板、並びにその製造方法
JPH10259464A (ja) 成形加工用アルミニウム合金板の製造方法
JPH09209039A (ja) 深絞り性に優れた高強度冷延鋼板の製造方法
JPH05306440A (ja) 焼付硬化性に優れた成形用アルミニウム合金板の製造方法
JP3066091B2 (ja) 穴拡げ加工用アルミニウム合金圧延板およびその製造方法
JPH06228696A (ja) Di缶胴用アルミニウム合金板
JP3043901B2 (ja) 深絞り性に優れた高強度冷延鋼板及び亜鉛めっき鋼板の製造方法
JP2698888B2 (ja) 耐応力腐食割れ性に優れるアルミニウム合金板の製造法
JPH02254143A (ja) 成形加工用アルミニウム合金硬質板の製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960916

A4 Supplementary search report drawn up and despatched
AK Designated contracting states

Kind code of ref document: A4

Designated state(s): CH DE FR GB IT LI SE

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI SE

17Q First examination report despatched

Effective date: 19980907

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RTI1 Title (correction)

Free format text: METHOD OF MANUFACTURING ALUMINUM ALLOY PLATE FOR FORMING

RTI1 Title (correction)

Free format text: METHOD OF MANUFACTURING ALUMINUM ALLOY PLATE FOR FORMING

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: RIEDERER HASLER & PARTNER PATENTANWAELTE AG

REF Corresponds to:

Ref document number: 69516297

Country of ref document: DE

Date of ref document: 20000518

ET Fr: translation filed
PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: ALUSUISSE TECHNOLOGY & MANAGEMENT AG

Effective date: 20010111

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

RTI2 Title (correction)

Free format text: METHOD OF MANUFACTURING ALUMINUM ALLOY PLATE FOR FORMING

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

RTI2 Title (correction)

Free format text: METHOD OF MANUFACTURING ALUMINUM ALLOY PLATE FOR FORMING

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20021106

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): CH DE FR GB IT LI SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

Free format text: AUFRECHTERHALTUNG DES PATENTES IN GEAENDERTER FORM

ET3 Fr: translation filed ** decision concerning opposition
REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: RIEDERER HASLER & PARTNER PATENTANWAELTE AG;ELESTASTRASSE 8;7310 BAD RAGAZ (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20110223

Year of fee payment: 17

Ref country code: SE

Payment date: 20110214

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110217

Year of fee payment: 17

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120214

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20140218

Year of fee payment: 20

Ref country code: DE

Payment date: 20140219

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140219

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69516297

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69516297

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL