EP0718693B1 - Compositions pour photoréserve et ingrédients - Google Patents
Compositions pour photoréserve et ingrédients Download PDFInfo
- Publication number
- EP0718693B1 EP0718693B1 EP96102977A EP96102977A EP0718693B1 EP 0718693 B1 EP0718693 B1 EP 0718693B1 EP 96102977 A EP96102977 A EP 96102977A EP 96102977 A EP96102977 A EP 96102977A EP 0718693 B1 EP0718693 B1 EP 0718693B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- solvent
- photoresist
- composition
- compositions
- percent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Revoked
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03C—PHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
- G03C1/00—Photosensitive materials
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/022—Quinonediazides
- G03F7/0226—Quinonediazides characterised by the non-macromolecular additives
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/0048—Photosensitive materials characterised by the solvents or agents facilitating spreading, e.g. tensio-active agents
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/16—Coating processes; Apparatus therefor
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/022—Quinonediazides
Definitions
- This invention relates to photoresist compositions comprising a soluble resin, a photosensitizer and a solvent. Particularly, this invention relates to a photoresist process having advantages including high resolution capability.
- Examples of the light sensitive materials are diazoquinones (DAQs) such as the sulfonate and carboxylate esters and the sulfon- and carbonamides obtained by reacting, respectively, oxo-diazonaphthalene sulfonyl and carbonyl halides with hydroxy, polyhydroxy, amino and polyamino ballast compounds (See U.S.Patent Application 174,556 filed on July 18, 1950 by Maximillian Paul Schmidt and now abandoned, and U.S. Patents 3,046,110, 3,046,122 and 3.046,123).
- the resins and sensitizers are dissolved in an organic casting solvent or mixture of casting solvents and are applied as a dried thin film or coating to a substrate suitable for the particular application desired.
- the resin component of these photoresist formulations is soluble in aqueous alkaline solutions, but the admixed naphthoquinone sensitizer acts as a dissolution inhibitor with respect to the resin.
- the sensitizer Upon exposure of selected areas of a coated substrate to actinic radiation, the sensitizer undergoes a radiation induced chemical transformation, and the exposed areas of the coating are rendered more soluble than the unexposed area. This difference in solubility rates causes the exposed areas of the photoresist coating to be dissolved when the substrate is immersed in alkaline developing solution, while the unexposed areas are largely unaffected. This produces a positive relief resist pattern on the substrate.
- the imagewise-exposed and developed resist pattern resulting on the substrate will be subjected to treatment by a substrate-etchant process.
- the photoresist pattern on the substrate protects the resist coated areas of the substrate from the etchant, and thus the etchant is only able to etch the remaining uncoated areas of the substrate which. in the case of a positive photoresist, correspond to the areas previously exposed to actinic radiation.
- an etched pattern can be created on the substrate which corresponds to the pattern of the mask, stencil, template, etc., that was used to create the latent images in the resist prior to development.
- the relief pattern of photoresist on the substrate produced by the method just described is useful for various applications, including the manufacture of miniaturized integrated electronic circuit components.
- PAC refers to the photoactive component of the resist composition.
- the PAC generally is sensitive to energetic forms of radiation such as ultraviolet (UV) light, undergoing radiation-induced chemcial transformations upon exposure to such radiation.
- UV ultraviolet
- the properties of a photoresist composition which are important in commercial practice include the photospeed of the resist, development contrast and resist resolution capability and resist sidewall angle or wall profile, and resist adhesion. Increased photospeed is important for a photoresist, particu larly in applications where light of reduced intensity is employed such as in projection exposure techniques where the light is passed through a series of lenses and monochromatic filters.
- Development contrast is a measure of the photoresist's ability to faithfully transfer the mask dimensions through the entire thickness of the photoresist. Ideally the opening at the top of the photoresist film should have the same dimensions as at the bottom of the film.
- a resist with enhanced contrast generally has improved edge acuity and enhanced resolution capability.
- Resist resolution refers to the capability of a resist system to reproduce with a given phototool the smallest multiple equal line/space features of a mask which is utilized during exposure with a high degree of image edge acuity in the developed spaces.
- a photoresist is required to provide a high degree of resolution for very narrow lines and spaces.
- the ability of a resist to reproduce very small dimensions, on the order of a micron or less, is extremely important in the production of very large scale integrated (VLSI) electronic circuits on silicon chips. Circuit density on such a chip can only be increased, assuming lithographic techniques are utilized, by increasing the resolution capabilities of the resist.
- VLSI very large scale integrated
- U.S. Patent 4,688,670 describes a triester-DAQ (tri-DAQ) PAC which achieves a moderate contrast.
- the composition described contains a PAC and a resin of different chemical structures than those of the present invention, resulting in inferior performance properties.
- European Patent Application 85300184.0 describes several photoresist compositions containing polyester DAQ (poly-DAQ) PACs. Many of the PACs claimed in said patent application have only minimal solubility and aging stability in useful photoresist solvents. An overwhelming majority of the PACs in said patent application are esters of highly absorbant hydroxy-functional ballast molecules which have the property of a high absorbance and high non-bleachable absorbance. The absorbance properties of such compositions degrade resolution capabilities. Many of the PACs claimed In said patent application absorb in the visible spectrum, degrading mask alignment techniques.
- an overwhelming majority of said photoresist compositions in said patent application have the property of poor yield of unexposed (or slightly exposed) film thickness remaining after development: i.e., in the range of 87-93 percent.
- the compositions taught in said patent application are different from those of the present invention with respect to PAC structure, PAC performance, resin composition and solvent composition.
- the photoresist compositions of the present invention have markedly better performance with respect to resolution capability, unexposed film thickness remaining after development, absorbance properties and visible transparency.
- Japanese Patent 61/45420 A2 describes a photoresist composition containing a poly-DAQ PAC.
- the PAC, resin and solvent are different from those of the present invention.
- the performance properties of said composition, especially with respect to unexposed film thickness remaining after development, are inferior to that of this present invention.
- Japanese Patent Application 8525660 (850213) describes a photoresist composition containing a PAC with a poly-DAQ PAC.
- the PAC, resin and solvent are quite different from those of the present invention.
- Japanese Patent Application 84239330 (841115) describes a photoresist composition containing PACs, some of which contain a poly-DAQ PAC.
- the PAC, resin and solvent are of quite different composition from those of the present invention.
- the degree of PAC esteritication claimed is less than the range of the present invention.
- U.S. Patent 4,555,469 describes a photoresist composition containing PACs, some of which may contain a poly-DAQ PAC.
- PACs are esters of a novolac resin and are of a polymeric nature with structures different from those of the present invention.
- the lack of fully esterified PACs lessens the resolution capability of photoresists based on such PACs.
- the resin structure and solvent composition of said patent are different from those of the present invention.
- an acceptable solvent must be capable of dissolving the required amounts of photosensitizer or PAC.
- a photoresist formulation must contain between 2.5 and 5 percent by weight PAC in order to render the dried unexposed photoresist film sufficiently Insoluble in an aqueous alkaline developing solution.
- a widely used casting solvent composition for positive photoresists consists of a mixture of ethylene glycol monoethyl ether acetate, n-butyl acetate, and xylene in the ratio of 80:10:10, as taught in U.S. Patent 4,550,069.
- U.S. Patent 4,266,001 discloses certain organic esters of diazonaphthoquinone sulfonyl chloride (i.e. oxo-diazonaphthalene sulfonyl chloride) that are distinguished as having a high solubility in traditional photoresist solvents.
- solvents used in the prior art include: ethyl cellosolve or ethylene glycol monoethyl ether, ethyl cellosolve acetate or ethylene glycol monoethyl ether acetate, methyl cellosolve or ethylene glycol monomethyl ether, methyl cellosolve acetate or ethylene glycol monomethyl ether acetate.
- N,N-dimethyl formamide, dioxane, and cyclohexanone as shown in Japanese Patents 8286548 and 81202455.
- up to 20 percent by weight of other solvents such as xylene, n-butyl acetate, and cyclohexane are included.
- Propylene glycol monoalkyl ethers are perceived by some people to be biologically safer solvents than the traditional ethylene glycol analogs (European Patent Application 85106774). Propylene glycol monoalkyl ether acetates are attributed to impart a photoresist photospeed advantage (U.S. Patent 4,550,069). Also, solvent combinations, such as solvents with 60 to 170°C boiling points admixed with solvents with 180 to 350°C boiling points, are claimed to eliminate coating striations as described in Japanese Patent Application J60024545-A.
- the photoresist composition In order to provide an optimal margin of safety against fires and explosions, it is desirable for the photoresist composition to have as high a flash point as possible. This substantially restricts the use of highly volatile solvents such as acetone, cyclopentanone, and 1,4-dioxane, since these solvents have unacceptably low flash points. Since flash point generally correlates well with boiling point, the need for safety against fire and explosions places substantial restrictions on using solvents with boiling points below 110°C in photoresist compositions.
- EP-A-0,211,667 published as an intermediate document on 25.02.1987, discloses in its Example 1 a composition responsive to activating radiation to form a latent image developable with an aqueous alkali solution comprising at least one alkali-soluble resin and at least one photoactive compound that is a polyester derived from the reaction of an oxo-diazonaphthalene sulfonyl halide with a polyhydroxy ballast compound dissolved in a sole solvent, wherein said solvent is ethyl 2-oxypropionate.
- This composition is used for coating a solid support such as a silicon-based wafer and is said to have an excellent storage stability.
- An object of this invention is to provide:
- a photoresist composition having the advantages of high resolution capability having the advantages of high resolution capability.
- the present invention provides an improved photoresist composition which can yield Increased contrast and resolution capability, plus yield improved unexposed film thickness remaining after development, reduced non-bleachable absorption in the near-UV actinic region, practical visible transparency and improved photoresist safety and stability.
- the compositions of the present invention utilize improved resins and PACs combined with specific solvents to provide requisite solvency power and safety characteristics.
- the present invention provides a novel photoresist composition responsive to activating radiation to form a latent image developable with an aqueous alkali solution comprising at least one alkali-soluble resin and at least one photoactive compound that is an ester or polyester derived from the reaction of an oxo-diazonaphthalene sulfonyl or carboxylic acid halide with a hydroxy or polyhydroxy ballast compound dissolved in a solvent, wherein said solvent is ethyl lactate having a purity of greater than 99 percent.
- the solvent is present in an amount sufficient to dissolve said resin and said photoactive compound in order to form a single liquid phase.
- said solvent further contains at least one compound selected from the group consisting of: chlorobenzene, xylene, 4-hydroxy-4-methyl-2-pentanone, methoxy-2-propanol, 1-ethoxy-2-propanol, and 3-ethoxy-propanol.
- composition of the present invention further comprises one or more additives selected from the group consisting of colorants, dyes, anti-striation agents, plasticizers, speed-enhancers, contrast-enhancers, and surfactants.
- the present invention provides the use of a photoresist composition as claimed in any one of claims 1 to 4 for coating a solid support.
- said solid support is selected from the group consisting of semiconductor materials, metals, planarizing, barrier or etch-resistant types of organic or inorganic layers, underlying films and coatings, other types of resist films, antireflective coatings, plastic films, wood, paper, ceramics, glass, laminates and textiles.
- said support is selected from the group consisting of a silicon-based or gallium arsenide-based wafer, aluminum and silicon dioxide.
- said photoresist composition is used in the manufacture of integrated electronic circuits and integrated circuit boards.
- the compositions of the present invention have the advantages of high contrast and resolution capability, high unexposed film thickness remaining after development, low percent non-bleachable absorption, minimal visible absorption and increased photoresist stability and safety.
- the present Invention relates generally to photoresist compositions with PACs which are sensitive to energetic radiation.
- the energetic radiation typically consists of ultraviolet light, although other forms of radiolysis, including x-rays, gamma-rays, synchrotron radiation, electron beams and particle beams also may be used.
- the photoresist compositions of the present invention are commonly used in a positive printing mode.
- Techniques for using the compositions of the present invention in the negative mode are also well known to those skilled in the art, examples of which are described by E. Ailing and C. Stauffer, Proc. SPIE , Vol. 539, pp 194-218 (1985) and F. Coopmans and B. Roland, Proc. SPIE , Vol. 631, pp 34-39 (1986).
- Photoresist compositions of the present invention are also useful in a multilayer printing process.
- these compositions can be used as an imaging layer coated on top of a planarizing layer, for example, as described by A.W. McCullough et al., Proc. SPIE , Vol. 631, pp 316-320(1986).
- These compositions can also be useful as a planarizing layer in a multilayer process, for example, as described by S.A. McDonald et al., Proc. SPIE . Vol. 631, pp 28-33 (1986).
- cresol novolac resins of the present invention are produced by condensing with formaldehyde a mixture of cresol isomers with the various cresol isomers present in proportions such that the cresol mixture consists essentially of less than 30 percent ortho -cresol, 25 to 46 percent meta -cresol and 24 to 75 percent para -cersol.
- cresol novolac resins of the present invention are produced by condensing formaldehyde with a mixture of cresol isomers, wherein the percentage values of the cresol isomers in the cresol mixture are given by the following two compositions: 1) less than 10 percent ortho -cresol, 40 to 46 percent meta -cresol and 44 to 60 percent para -cresol; and 2) 43 to 46 percent meta -cresol and 54 to 57 percent para -cresol.
- cresol-formaldehyde novolac resins useful in the present invention all have a glass transition temperature of 100 to 105°C and weight-average molecular weight of 4,000 to 35,000 Daltons.
- a bishydroxymethylated phenolic compound such as 2,6-bis(hydroxymethyl)- p -cresol may be produced by reacting para -cresol with formaldehyde in the presence of a base.
- the bishydroxymethyl group of the compound is reactive and may in the presence of heat, acid or base react with Itself or with other reactive compounds.
- the other reactive compound is a phenolic material, such as phenol, cresol, dimethylphenol, trimethylphenol, naphthol, biphenol, phenylphenol, bis(hydroxyphenyl)methane, isopropylidenebiphenol, catechol, resorcinol, thiobiphenol and the like, which contain at least two sites in the aromatic ring(s) of sufficient reactivity to undergo facile Friedel-Crafts reactions, then the condensation reaction of the said reactive compound with a bishydroxymethylated phenolic compound can sustain polymerization and result in the formation of polymers. If the reactants are of good purity, then high-molecular-weight polymers can be made.
- phenolic material such as phenol, cresol, dimethylphenol, trimethylphenol, naphthol, biphenol, phenylphenol, bis(hydroxyphenyl)methane, isopropylidenebiphenol, catechol, resorcinol, thiobiphenol and the like, which contain at least two sites in the
- the bishydroxymethylated phenolic compound and the reactive phenolic compound are dissolved in an appropriate non-reactive or non-interfering solvent and an acid catalyst is added.
- an acid catalyst When a volatile reactive phenolic compound is used in excess, it may also serve as a solvent or co-solvent.
- the condensation reaction leading to polymer formation can be carried out below ambient, at ambient or above ambient temperature. It is generally more practical to conduct the reaction at elevated temperature.
- a suitable acid catalyst may be a mineral acid such as hydrochloric acid, sulfuric acid, phosphoric acid, or an organic acid such as oxalic acid. maleic acid, formic acid, toluenesulfonic acid and the like.
- inorganic catalysts may also be used. These may include compounds of Zn, Mn. Mg. Al, Ti, Cu, Ni and Co.
- solvent and unreacted reactive phenolic compound may be removed via volatilization under reduced pressure and elevated temperatures.
- Another method by which the polymer may be recovered from the reaction mixture is by precipitation of the polymer into a liquid which is a non-solvent for the polymer but a solvent for the reaction solvent, catalyst and unreacted reactants. If the precipitation approach is used, the polymer is dried at elevated temperatures under reduced pressure. The polymer produced in this manner has substantially an alternating copolymer structure.
- the bishydroxymethylated phenolic compounds that are particularly useful in this invention are the reaction products of ortho -cresol, meta -cresol, para -cresol, 2-, 3- or 4-phenylphenol, 2,3-dimethylphenol, 3,4-dimethylphenol, 3,4,5-trimethylphenol, para -ethylphenol, para -propylphenol, para -butylphenol, para -nonylphenol, bromophenols, fluorophenols, chlorophenols, trimethylsilylphenol, chloromethylphenols, acylphenols, para -hydroxybenzoic acid, para -nitrophenol and the like with formaldehyde in the presence of base.
- a suitable base which will promote the reaction is sodium or potassium hydroxide.
- the substantially alternating copolymer produced by the acid catalysed condensation reaction of a bishydroxymethylated phenolic compound and a reactive phenolic compound can be further reacted in the presence of acid with formaldehyde and the same or different reactive phenolic compound.
- the resin that results is substantially a block copolymer.
- Aromatic aldehydes compared to formaldehydes, are less reactive toward condensation reactions leading to polymerization. However, under more vigorous reaction conditions, aromatic aldehydes such as benzaldehyde, substituted benzaldehydes, naphthaldehyde and substituted naphthaldehydes can condense with a reactive phenolic compound such as meta-cresol in the presence of a strong acid catalyst such as sulfuric acid and toluenesulfonic acid to produce polymers. Generally the polymers that are produced, however, have low molecular weights, poor physical, mechanical and lithographic properties.
- aromatic-aldehyde-based resins are very useful as resist resins since many of them provide resist formulations that have high photospeed and thermal stability. Furthermore, the properties of these resins may be further modified by including in the condensation a bishydroxymethylated phenolic compound.
- Two or more resins of similar or different compositions can be blended or combined together to give additional control of lithographic properties of photoresist compositions.
- blends of resins can be used to adjust photospeed and thermal properties and to control dissolution behavior in developer.
- Higher resolution patterning capability is required as the density of circuits in electronic devices increases: e.g., as the industry progresses from VLSI to ultra large scale integration (ULSI) of circuit devices.
- Economical enhanced resolution patterning capability is offered by higher resolution photolithography. This generally requires higher resolution and higher contrast resist materials, which can tolerate a greater extent of degradation of the light aerial image caused by diffraction phenomena as feature size decreases. Increased resist contrast generally is a measure of increased resolution capabilities.
- Positive photoresists containing DAQ sulfonic and carboxylic acid esters as the PAC(s) in a novolac polymer matrix are high resolution materials which do not swell during development and possess good dry-etch resistance.
- a suitable hydroxy-functional ballast compound, molecule or group is esterified with the DAQ group to give a base-insoluble ester PAC which greatly reduces the dissolution rate of the admixed base-soluble resin in an aqueous alkaline developer.
- Other substituent groups can be bonded to the ballast molecule to modify the solubility properties of the PAC.
- Acidic hydrophilic substituent groups such as acid and hydroxyl, or other hydrophilic groups such as polyethylene oxide groups, enhance the solubility of the PAC molecule in aqueous solutions.
- Hydrophobic substituent groups such as hydrocarbons, aryl halide, alkyl esters and aryl halide groups diminish the solubility of the PAC molecule in aqueous solutions.
- the photochemistries of DAQ groups linked to the ballast molecule through carboxyl ester, sulphonate ester, carbonamide or sulfonamide linkages are essentially equivalent in terms of the photochemical and subsequent reactions which cause the PAC to become base-soluble.
- Normal conditions are normal ambient temperature and humidity such as about 16 to 25°C (61 to 77°F) and about 25 to 75 percent relative humidity.
- the DAQ groups undergo essentially independent sequential photolysis with increasing dose to ultimately form a multi-ICA product.
- Contrast is primarily controlled by the rate of change of photoresist dissolution rate (and hence ultimately film thickness) with dose.
- a method for producing at least one element of a threshhold-like response into the initial phase of the photoresist development process is to introduce surface inhibition to development by adding various strong surfactants into the aqueous alkaline developer solutions.
- the solvents of the present invention offer several new advantages, including: (1) better photosensitivity (2) lower toxicity, (3) an equivalent cast film thickness from lower percent solids formulations than with traditional solvents, and (4) better solvency and solution stability.
- toxicity is an important issue in the workplace, especially since the traditional photoresist solvent, ethylene glycol monoethyl ether acetate, and related compounds such as ethylene glycol monomethyl ether acetate, have been found to be teratogenic (NIOSH Current Intelligence Bulletin 39, May 1983).
- Photoresist compositions made with some of the solvents of this invention have the property that, for a fixed percent solids, they give thicker films than compositions based on the traditional solvents. This effect translates into an economic advantage in that less of the expensive solid materials are required to produce a given coating thickness than with compositions made with traditional solvents.
- solubility parameter concept is related closely to developments in the theory of dissolution of organic compounds and polymers, or more specifically non-electrolytes. (See H. Burrell, 'Solubility Parameter Values," in Polymer Handbook , 2nd Edn., J. Brandup and I.H.
- ⁇ G ⁇ H - T ⁇ S
- ⁇ G the Gibb's free energy change
- ⁇ H the heat of mixing
- T the absolute temperature
- ⁇ S the entropy of mixing
- the parameters themselves are computed by a number of methods, from equations of state, boiling points, densities, critical properties, etc. For purposes of this invention, it is appropriate to employ parameters determined after K.L Hoy. (See K.L Hoy, Tables of Solubility Parameters , Union Carbide Corporation Solvents and Coatings Materials Research and Development Department, Bound Brook, N.J., 1985.)
- the aggregate solubility parameter for a mixture often referred to as simply the solubility parameter of the mixture, is the volume-fraction weighted-average of that solubility parameter for the components of the mixture.
- these parameters are typically utilized in the form of a two dimensional plot of, for example, ⁇ p versus ⁇ h .
- This surface contains a locus of points which define a characteristic region of solubility for a specific organic compound or polymer.
- any solvent or solvent mixture with solubility parameters ⁇ p and ⁇ h that fall within this region, will solubilize that particular organic compound or polymer. (See. for example. A.F.M. Barton, CRC Handbook of Solubility Parameters and Other Cohesion Parameters , CRC Press, Boca Raton, Florida, 1983.)
- locus of points is empirically mapped out by conducting solubility tests of an organic compound with various solvents or solvent mixtures having known solubility parameters.
- the region of solubility for the PACs corresponds more closely to the volume of solubility space defined by: ⁇ d > 4.4, ⁇ p > 3.6, ⁇ n > 3.0 and ⁇ p / ⁇ h > 0.59, where ⁇ d , ⁇ p , and ⁇ h are in units of (cal/cm 3 ) 0.5 .
- a solvent or mixture of solvents with solubility parameters in the above indicated region would not be wholly adequate as a practical photoresist solvent if it also possessed one or more of the following detrimental characteristics: 1) toxicity, 2) low margin of safety due to too low flash point, 3) poor coating characteristics, 4) insufficient volatility and dryability; and 5) reactivity towards PACs.
- the solvents of this last class generally offer the combination of high solvency and lower biological activity.
- the dispersive, polar, and hydrogen bonding components of the solubility parameter of alkali-soluble phenolic resins are estimated to be 8.6, 5.7, and 3.7, respectively. (See K.L Hoy, Tables of Solubility Parameters , Union Carbide Corporation Solvents and Coatings Materials Research and Development Department, Bound Brook, N.J., 1985.) Since these solubility parameters are within the preferred region of PAC solvency, combinations of solvents with such resins, as in liquid photoresist compositions, generally will only change the overall solubility parameters towards improved solvency and solution stability.
- the solvent useful in this invention is ethyl lactate distilled to a purity of greater than 39 percent, possibly further containing at least are of the compounds claimed in claim 3.
- a 2-L four-neck resin kettle equipped with a stirrer, heating source, thermometer, variable reflux ratio distilling head and a nitrogen inlet tube was charged with 278.3g (99 percent pure) m -cresol, 335.5g (99 percent pure) p -cresol, 34,3g (99 percent pure) o -cresol, 68.3g of 36.9 percent formalin, 20 ml of deionized water and 12.0g of oxalic acid dihydrate.
- the mixture was heated to about 60° C at which point an exothermic condensation reaction ensued. When the reaction mixture temperature reached about 100°C, 273.3g of 36.9 percent formalin was added in about 30 minutes. The reaction was then allowed to continue for about 4 hours at reflux temperature.
- the more volatile components in the reaction mixture were removed by distillation at ambient pressure under a constant flow of nitrogen.
- a partial vacuum pressure was applied and was gradually increased until a maximum vacuum of 7 mm Hg was achieved and the mixture was at about 228°C.
- the liquefied resin remaining in the kettle was poured into a tray under nitrogen and allowed to cool and solidify. About 516g of novolac resin having a glass transition temperature. Tg, of about 100°C was obtained.
- the reaction solution was filtered to remove the bulk of the NaCl, and the filtrate was added to 50 L of 1 percent HCl.
- the precipitated solid was stirred one hour, filtered and collected.
- the solid was slurried twice in 25 L of deionized water, filtered and vacuum dried to 0.1 mm Hg at ambient temperature. About 1100g (85 percent of the theory) of a yellow, free flowing product containing about 34 percent by weight triester was obtained.
- the percent by weight of triester in the PAC product By changing the ratio of the 1-oxo-2-diazonaphthalene-5-sulfonyl chloride to 2,3,4-trihydroxybenzophenone, the percent by weight of triester in the PAC product, and thus the percent by weight of PAC molecules without acidic hydrophilic groups, can be adjusted as desired.
- resist compositions A and B require lower percentage of solids to product a given film thickness of resist than the resist compositions C and D that are based on conventional solvents of prior art.
- the lower exposure dose required for resist compositions A and B allow higher wafer throughput per given time during the article manufacture and the higher contrast numbers of A and B are indicative of higher resolution capability.
- the following example demonstrates the Importance of an essentially pure ethyl lactate in resist compositions according to this invention.
- Two resist compositions were prepared essentially as described in Example 3 A.
- commercially available ethyl lactate (containing about 97 percent ethyl lactate, about 3 percent other impurities, as determined by standard gas chromatography method) was used.
- the other resist composition was prepared using a freshly distilled ethyl lactate that was determined by gas chromatography to be greater than about 99% pure. Both resist samples were filtered through a 0.2 ⁇ m filter before stored in a refrigerated environment for about four months.
- the samples were then spin coated onto clean silicon wafers and examined under monochromatic light
- the films spun from the resist sample containing the commercial ethyl lactate typically showed about 120 visible particles per wafer while the resist films spun from the purified ethyl lactate were of high quality with no particles present.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Materials For Photolithography (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Photosensitive Polymer And Photoresist Processing (AREA)
- Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Claims (8)
- Composition sensible à un rayonnement d'activation pour former une image latente pouvant être développée avec une solution alcaline aqueuse comprenant au moins une résine soluble dans les alcalis et au moins un composé photoactif qui est un ester ou un polyester provenant de la réaction d'un halogénure d'oxodiazonaphtalène sulfonyle ou d'acide carboxylique avec un composé ballast hydroxylé ou polyhydroxylé dissous dans un solvant, ledit solvant étant le lactate d'éthyle distillé à une pureté de plus de 99 pour cent.
- Composition selon la revendication 1, dans laquelle ledit solvant est présent dans une quantité suffisante pour dissoudre ladite résine et ledit composé photoactif de façon à former une seule phase liquide.
- Composition selon la revendication 1 ou la revendication 2, dans laquelle ledit solvant contient en outre au moins un composé choisi dans le groupe constitué par le chlorobenzène, le xylène, la 4-hydroxy-4-méthyl-2-pentanone, le méthoxy-2-propanol, le 1-éthoxy-2-propanol et le 3-éthoxy-propanol.
- Composition selon l'une quelconque des revendications 1 à 3, comprenant en outre un ou plusieurs additifs choisis dans le groupe constitué par les colorants, les peintures, les agents anti-stries, les plastifiants, les agents augmentant la vitesse, les agents augmentant le contraste et les agents tensio-actifs.
- Utilisation d'une composition de photoréserve telle que définie à l'une quelconque des revendications précédentes pour l'application en revêtement sur un support solide.
- Utilisation selon la revendication 5, dans laquelle ledit support solide est choisi dans le groupe constitué par les matériaux semi-conducteurs, les métaux, les types à effet de planarisation, de barrière ou résistant à l'attaque de couches organiques ou minérales, films sous-jacents et revêtements, d'autres types de films de réserve, les revêtements antiréfléchissants, les films plastiques, le bois, le papier, la céramique, le verre, les stratifiés et les textiles.
- Utilisation selon l'une des revendications 5 ou 6, dans laquelle ledit support est choisi dans le groupe constitué par les microplaquettes à base de silicium ou à base d' arséniure de gallium, l'aluminium et le dioxyde de silicium.
- Utilisation d' une composition de photoréserve telle que définie à l'une quelconque des revendications 1 à 4, dans la fabrication de circuits électroniques intégrés et de plaquettes à circuits intégrés.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US236486A | 1986-12-23 | 1986-12-23 | |
US10819287A | 1987-10-13 | 1987-10-13 | |
US108192 | 1987-10-13 | ||
EP87870199A EP0273026B2 (fr) | 1986-12-23 | 1987-12-22 | Solvants pour compositions de photoréserve |
US2364 | 1998-01-02 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP87870199A Division EP0273026B2 (fr) | 1986-12-23 | 1987-12-22 | Solvants pour compositions de photoréserve |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0718693A2 EP0718693A2 (fr) | 1996-06-26 |
EP0718693A3 EP0718693A3 (fr) | 1998-03-11 |
EP0718693B1 true EP0718693B1 (fr) | 2003-07-02 |
Family
ID=26670286
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP87870199A Expired - Lifetime EP0273026B2 (fr) | 1986-12-23 | 1987-12-22 | Solvants pour compositions de photoréserve |
EP96102977A Revoked EP0718693B1 (fr) | 1986-12-23 | 1987-12-22 | Compositions pour photoréserve et ingrédients |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP87870199A Expired - Lifetime EP0273026B2 (fr) | 1986-12-23 | 1987-12-22 | Solvants pour compositions de photoréserve |
Country Status (5)
Country | Link |
---|---|
EP (2) | EP0273026B2 (fr) |
JP (1) | JP2729284B2 (fr) |
KR (3) | KR920001450B1 (fr) |
DE (2) | DE3752371T2 (fr) |
ES (1) | ES2202389T3 (fr) |
Families Citing this family (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62123444A (ja) | 1985-08-07 | 1987-06-04 | Japan Synthetic Rubber Co Ltd | ポジ型感放射線性樹脂組成物 |
US5130410A (en) * | 1986-12-23 | 1992-07-14 | Shipley Company Inc. | Alternating and block copolymer resins |
US5238776A (en) * | 1986-12-23 | 1993-08-24 | Shipley Company Inc. | Photoresist composition containing block copolymer resin and positive-working o-quinone diazide or negative-working azide sensitizer compound |
JPS63178228A (ja) * | 1987-01-20 | 1988-07-22 | Fuji Photo Film Co Ltd | ポジ型フオトレジスト組成物 |
US5419995A (en) * | 1987-10-13 | 1995-05-30 | Shipley Company Inc. | Photoresist composition with alternating or block copolymer resins and positive-working o-quinone diazide or negative-working azide sensitizer compound |
US4886728A (en) * | 1988-01-06 | 1989-12-12 | Olin Hunt Specialty Products Inc. | Use of particular mixtures of ethyl lactate and methyl ethyl ketone to remove undesirable peripheral material (e.g. edge beads) from photoresist-coated substrates |
US5177172A (en) * | 1988-05-31 | 1993-01-05 | Ocg Microelectronic Materials, Inc. | Selected methylol-substituted trihydroxybenzophenones and their use in phenolic resin compositions |
US5239122A (en) * | 1988-05-31 | 1993-08-24 | Ocg Microelectronic Materials, Inc. | Selected methylol-substituted trihydroxybenzophenones and their use in phenolic resin compositions |
US5254440A (en) * | 1988-05-31 | 1993-10-19 | Ocg Microelectronic Materials, Inc. | Selected methylol-substituted trihydroxybenzophenones and their use in phenolic resin compositions and processes of forming resist images |
US5002851A (en) * | 1988-05-31 | 1991-03-26 | Olin Hunt Specialty Products, Inc. | Light sensitive composition with o-quinone diazide and phenolic novolak resin made using methylol substituted trihydroxybenzophenone as reactant |
US4983492A (en) * | 1988-06-06 | 1991-01-08 | Shipley Company Inc. | Positive dye photoresist compositions with 2,4-bis(phenylazo)resorcinol |
DE68928823T2 (de) * | 1988-07-07 | 1999-02-25 | Sumitomo Chemical Co., Ltd., Osaka | Strahlungsempfindliche, positiv arbeitende Resistzusammensetzung |
US5001040A (en) * | 1988-07-11 | 1991-03-19 | Olin Hunt Specialty Products Inc. | Process of forming resist image in positive photoresist with thermally stable phenolic resin |
US4965167A (en) * | 1988-11-10 | 1990-10-23 | Olin Hunt Specialty Products, Inc. | Positive-working photoresist employing a selected mixture of ethyl lactate and ethyl 3-ethoxy propionate as casting solvent |
US5063138A (en) * | 1988-11-10 | 1991-11-05 | Ocg Microelectronic Materials, Inc. | Positive-working photoresist process employing a selected mixture of ethyl lactate and ethyl 3-ethoxy propionate as casting solvent during photoresist coating |
US4992356A (en) * | 1988-12-27 | 1991-02-12 | Olin Hunt Specialty Products Inc. | Process of developing a radiation imaged product with trinuclear novolak oligomer having o-naphthoquinone diazide sulfonyl group |
JP2846892B2 (ja) * | 1989-07-19 | 1999-01-13 | 三菱化学株式会社 | 平版印刷版の製造法 |
JPH0350547A (ja) * | 1989-07-19 | 1991-03-05 | Mitsubishi Kasei Corp | 平版印刷版の製造法 |
CA2023791A1 (fr) * | 1989-08-24 | 1991-02-25 | Ayako Ida | Composition de reserve positive radiosensible |
US5235022A (en) * | 1989-09-07 | 1993-08-10 | Ocg Microelectronic Materials, Inc. | Selected block copolymer novolak binder resins |
US5188921A (en) * | 1989-09-07 | 1993-02-23 | Ocg Microelectronic Materials, Inc. | Selected block copolymer novolak binder resins in radiation-sensitive resist compositions |
US5232819A (en) * | 1989-09-07 | 1993-08-03 | Ocg Microelectronic Materials, Inc. | Selected block phenolic oligomers and their use in phenolic resin compositions and in radiation-sensitive resist compositions |
AU6353390A (en) * | 1989-09-07 | 1991-04-18 | Ocg Microelectronic Materials, Inc. | Selected block copolymer novolak binder resins and their use in radiation-sensitive compositions |
US5196289A (en) * | 1989-09-07 | 1993-03-23 | Ocg Microelectronic Materials, Inc. | Selected block phenolic oligomers and their use in radiation-sensitive resist compositions |
US5234795A (en) * | 1989-09-07 | 1993-08-10 | Ocg Microelectronic Materials, Inc. | Process of developing an image-wise exposed resist-coated substrate |
WO1991003448A1 (fr) * | 1989-09-07 | 1991-03-21 | Ocg Microelectronic Materials, Inc. | Oligomeres phenoliques en blocs selectionnes et leur emploi dans des compositions de resine phenolique ainsi que dans des compositions de reserve sensibles aux rayonnements |
JPH03174538A (ja) * | 1989-12-04 | 1991-07-29 | Konica Corp | 湿し水不要感光性平版印刷版及び該印刷版の製造方法 |
JPH04328747A (ja) * | 1991-03-27 | 1992-11-17 | Internatl Business Mach Corp <Ibm> | 均一にコートされたフォトレジスト組成物 |
JP3064595B2 (ja) | 1991-04-26 | 2000-07-12 | 住友化学工業株式会社 | ポジ型レジスト組成物 |
JP3139088B2 (ja) * | 1991-04-26 | 2001-02-26 | 住友化学工業株式会社 | ポジ型レジスト組成物 |
DE69213996T2 (de) * | 1991-04-26 | 1997-05-22 | Sumitomo Chemical Co | Positivarbeitende Resistzusammensetzung |
EP0510671B1 (fr) * | 1991-04-26 | 1997-11-12 | Sumitomo Chemical Company, Limited | Composition pour photoréserve positive |
US5362599A (en) * | 1991-11-14 | 1994-11-08 | International Business Machines Corporations | Fast diazoquinone positive resists comprising mixed esters of 4-sulfonate and 5-sulfonate compounds |
US5296332A (en) * | 1991-11-22 | 1994-03-22 | International Business Machines Corporation | Crosslinkable aqueous developable photoresist compositions and method for use thereof |
KR100341563B1 (ko) * | 1992-03-23 | 2002-10-25 | 제이에스알 가부시끼가이샤 | 레지스트도포조성물 |
US5413894A (en) * | 1993-05-07 | 1995-05-09 | Ocg Microelectronic Materials, Inc. | High ortho-ortho bonded novolak binder resins and their use in radiation-sensitive compositions |
JP3503839B2 (ja) | 1994-05-25 | 2004-03-08 | 富士写真フイルム株式会社 | ポジ型感光性組成物 |
JP3278306B2 (ja) | 1994-10-31 | 2002-04-30 | 富士写真フイルム株式会社 | ポジ型フォトレジスト組成物 |
DE19530630A1 (de) * | 1995-08-21 | 1997-02-27 | Hoechst Ag | Verfahren zur Herstellung von methylsubstituierten Polyalkylidenpolyphenolen |
US6911293B2 (en) * | 2002-04-11 | 2005-06-28 | Clariant Finance (Bvi) Limited | Photoresist compositions comprising acetals and ketals as solvents |
US20050048401A1 (en) * | 2003-08-29 | 2005-03-03 | Chisholm Bret Ja | Methods of photoaddressing a polymer composition and the articles derived therefrom |
KR101357701B1 (ko) * | 2006-02-08 | 2014-02-05 | 주식회사 동진쎄미켐 | 패턴 형성용 네거티브 포토레지스트 조성물 및 이를 이용한 표시장치 패턴 형성 방법 |
KR101146622B1 (ko) * | 2009-08-31 | 2012-05-16 | 금호석유화학 주식회사 | 감광성 화합물 및 이를 포함하는 감광성 조성물 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3635709A (en) † | 1966-12-15 | 1972-01-18 | Polychrome Corp | Light-sensitive lithographic plate |
JPS54135004A (en) † | 1978-04-10 | 1979-10-19 | Fuji Photo Film Co Ltd | Photosensitive flat printing plate |
DE2818451A1 (de) † | 1978-04-27 | 1979-11-08 | Stoebe Hans Joachim | Haarwuchsmittel |
EP0070624B1 (fr) * | 1981-06-22 | 1986-11-20 | Philip A. Hunt Chemical Corporation | Résine novolaque et une composition phototrésist positive la contenant |
US4550069A (en) * | 1984-06-11 | 1985-10-29 | American Hoechst Corporation | Positive photoresist compositions with o-quinone diazide, novolak, and propylene glycol alkyl ether acetate |
US4596763A (en) * | 1984-10-01 | 1986-06-24 | American Hoechst Corporation | Positive photoresist processing with mid U-V range exposure |
US4623611A (en) * | 1985-01-16 | 1986-11-18 | General Electric Company | Photolithographic stripping method for removing contrast enhancement layer |
JPS61185741A (ja) * | 1985-02-13 | 1986-08-19 | Mitsubishi Chem Ind Ltd | ポジ型フオトレジスト組成物 |
US4626492A (en) * | 1985-06-04 | 1986-12-02 | Olin Hunt Specialty Products, Inc. | Positive-working o-quinone diazide photoresist composition containing a dye and a trihydroxybenzophenone compound |
JPS62123444A (ja) † | 1985-08-07 | 1987-06-04 | Japan Synthetic Rubber Co Ltd | ポジ型感放射線性樹脂組成物 |
JPH0616174B2 (ja) * | 1985-08-12 | 1994-03-02 | 三菱化成株式会社 | ナフトキノンジアジド系化合物及び該化合物を含有するポジ型フオトレジスト組成物 |
DE3686032T2 (de) † | 1985-12-27 | 1993-02-18 | Japan Synthetic Rubber Co Ltd | Strahlungsempfindliche positiv arbeitende kunststoffzusammensetzung. |
JPS62194249A (ja) * | 1986-02-20 | 1987-08-26 | Fuji Photo Film Co Ltd | ポジ型感光性組成物 |
EP0239423B1 (fr) † | 1986-03-28 | 1996-03-20 | Japan Synthetic Rubber Co., Ltd. | Composition résineuse positive photosensible |
US4721665A (en) * | 1986-09-29 | 1988-01-26 | Polychrome Corporation | Method for neutralizing acidic novolak resin in a lithographic coating composition |
US5128230A (en) † | 1986-12-23 | 1992-07-07 | Shipley Company Inc. | Quinone diazide containing photoresist composition utilizing mixed solvent of ethyl lactate, anisole and amyl acetate |
-
1987
- 1987-12-22 DE DE3752371T patent/DE3752371T2/de not_active Expired - Lifetime
- 1987-12-22 KR KR1019870014729A patent/KR920001450B1/ko not_active IP Right Cessation
- 1987-12-22 ES ES96102977T patent/ES2202389T3/es not_active Expired - Lifetime
- 1987-12-22 EP EP87870199A patent/EP0273026B2/fr not_active Expired - Lifetime
- 1987-12-22 EP EP96102977A patent/EP0718693B1/fr not_active Revoked
- 1987-12-22 JP JP62323030A patent/JP2729284B2/ja not_active Expired - Lifetime
- 1987-12-22 DE DE3751902T patent/DE3751902T3/de not_active Expired - Lifetime
-
1991
- 1991-08-09 KR KR1019910013755A patent/KR930010246B1/ko not_active IP Right Cessation
- 1991-08-09 KR KR1019910013756A patent/KR930010247B1/ko not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
KR930010247B1 (ko) | 1993-10-15 |
DE3751902T3 (de) | 2004-04-15 |
EP0718693A2 (fr) | 1996-06-26 |
DE3752371D1 (de) | 2003-08-07 |
KR920001450B1 (ko) | 1992-02-14 |
EP0273026B1 (fr) | 1996-09-11 |
EP0273026A3 (fr) | 1990-06-13 |
DE3752371T2 (de) | 2004-04-15 |
EP0273026A2 (fr) | 1988-06-29 |
JPS63220139A (ja) | 1988-09-13 |
EP0273026B2 (fr) | 2003-08-20 |
ES2202389T3 (es) | 2004-04-01 |
JP2729284B2 (ja) | 1998-03-18 |
EP0718693A3 (fr) | 1998-03-11 |
KR930010246B1 (ko) | 1993-10-15 |
DE3751902D1 (de) | 1996-10-17 |
DE3751902T2 (de) | 1997-04-10 |
KR880008077A (ko) | 1988-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0718693B1 (fr) | Compositions pour photoréserve et ingrédients | |
US5128230A (en) | Quinone diazide containing photoresist composition utilizing mixed solvent of ethyl lactate, anisole and amyl acetate | |
US4529682A (en) | Positive photoresist composition with cresol-formaldehyde novolak resins | |
US4587196A (en) | Positive photoresist with cresol-formaldehyde novolak resin and photosensitive naphthoquinone diazide | |
US4983492A (en) | Positive dye photoresist compositions with 2,4-bis(phenylazo)resorcinol | |
JPH06345837A (ja) | 高度にオルソ−オルソ結合したノボラックバインダー樹脂および放射線感受性組成物中のその利用 | |
US5238776A (en) | Photoresist composition containing block copolymer resin and positive-working o-quinone diazide or negative-working azide sensitizer compound | |
EP0458988B1 (fr) | Composition de photoreserve positive | |
JPH03294861A (ja) | ポジ型フォトレジスト組成物 | |
JP2625882B2 (ja) | ポジ型レジスト用組成物 | |
JP2625883B2 (ja) | ポジ型レジスト組成物 | |
EP0070624B1 (fr) | Résine novolaque et une composition phototrésist positive la contenant | |
JP2814721B2 (ja) | ポジ型感放射線性レジスト組成物 | |
WO1992012205A1 (fr) | Composition pour reserve positive | |
JPH05249666A (ja) | ポジ型レジスト組成物 | |
JP2629271B2 (ja) | ポジ型レジスト用組成物 | |
JPH1045880A (ja) | サリチル酸系アラルキル樹脂、その製造方法、およびそれを用いたフォトレジスト用樹脂組成物 | |
US5719003A (en) | Method for increasing the differential solubility of an imaged photoresist through hydroxy group blocking via reaction with vinyl ethers | |
GB2360600A (en) | Positive resist composition | |
EP0528401A1 (fr) | Composition à reserve positive | |
US5164279A (en) | Positive dye photoresist compositions with 4,6-bis(azophenyl)resorcinol | |
US5419995A (en) | Photoresist composition with alternating or block copolymer resins and positive-working o-quinone diazide or negative-working azide sensitizer compound | |
US5338652A (en) | Selected structurally defined novolak binder resins and their use in photoresist pattern formation | |
US5235022A (en) | Selected block copolymer novolak binder resins | |
JPH06242599A (ja) | 感放射線性樹脂組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 273026 Country of ref document: EP |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE ES FR GB IT NL |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: ZAMPANI, ANTHONY Inventor name: WOODBREY, JAMES CALVIN Inventor name: TREFONAS III, PETER Inventor name: TEMPLETON, MICHAEL KARPOVICH Inventor name: MADOUX, DAVID CHARLES Inventor name: DANIELS, BRIAN KENNETH |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): DE ES FR GB IT NL |
|
17P | Request for examination filed |
Effective date: 19980817 |
|
17Q | First examination report despatched |
Effective date: 19991129 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 0273026 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Designated state(s): DE ES FR GB IT NL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 3752371 Country of ref document: DE Date of ref document: 20030807 Kind code of ref document: P |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2202389 Country of ref document: ES Kind code of ref document: T3 |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
ET | Fr: translation filed | ||
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
26 | Opposition filed |
Opponent name: TOKYO OHKA KOGYO CO., LTD. Effective date: 20040319 |
|
26 | Opposition filed |
Opponent name: JSR CORPORATION, INTELLECTUAL PROPERTY DEPARTMENTT Effective date: 20040402 Opponent name: TOKYO OHKA KOGYO CO., LTD. Effective date: 20040319 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: TOKYO OHKA KOGYO CO., LTD. |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: JSR CORPORATION, INTELLECTUAL PROPERTY DEPARTMENT Opponent name: TOKYO OHKA KOGYO CO., LTD. |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
PLBP | Opposition withdrawn |
Free format text: ORIGINAL CODE: 0009264 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20061220 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20061221 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20061222 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20061226 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20061231 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20070131 Year of fee payment: 20 |
|
RDAF | Communication despatched that patent is revoked |
Free format text: ORIGINAL CODE: EPIDOSNREV1 |
|
APBP | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2O |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
APBQ | Date of receipt of statement of grounds of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA3O |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20071222 |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
NLV7 | Nl: ceased due to reaching the maximum lifetime of a patent |
Effective date: 20071222 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20071224 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20071221 Ref country code: ES Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20071224 |
|
APBU | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9O |
|
RDAG | Patent revoked |
Free format text: ORIGINAL CODE: 0009271 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT REVOKED |
|
27W | Patent revoked |
Effective date: 20081111 |