EP0697069B1 - Reibungsvakuumpumpe mit unterschiedlich gestalteten pumpenabschnitten - Google Patents

Reibungsvakuumpumpe mit unterschiedlich gestalteten pumpenabschnitten Download PDF

Info

Publication number
EP0697069B1
EP0697069B1 EP94913098A EP94913098A EP0697069B1 EP 0697069 B1 EP0697069 B1 EP 0697069B1 EP 94913098 A EP94913098 A EP 94913098A EP 94913098 A EP94913098 A EP 94913098A EP 0697069 B1 EP0697069 B1 EP 0697069B1
Authority
EP
European Patent Office
Prior art keywords
pump
annular
rotor
stages
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94913098A
Other languages
English (en)
French (fr)
Other versions
EP0697069A1 (de
Inventor
Günter Schütz
Heinrich Engländer
Friedrich Karl Von Schulz-Hausmann
Hinrich Henning
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leybold GmbH
Original Assignee
Leybold Vakuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leybold Vakuum GmbH filed Critical Leybold Vakuum GmbH
Priority to EP98110191A priority Critical patent/EP0874159A3/de
Publication of EP0697069A1 publication Critical patent/EP0697069A1/de
Application granted granted Critical
Publication of EP0697069B1 publication Critical patent/EP0697069B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/16Centrifugal pumps for displacing without appreciable compression
    • F04D17/168Pumps specially adapted to produce a vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/046Combinations of two or more different types of pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D23/00Other rotary non-positive-displacement pumps
    • F04D23/008Regenerative pumps

Definitions

  • the invention relates to a friction vacuum pump with the features of the preamble of the independent claims 1 and 2.
  • Frictional vacuum pumps include Gaede pumps (in one Housing rotating cylinder with pump gap and between Inlet and outlet located barrier gap), Holweck pumps (rotating cylinder in a housing with arranged helically, stator or rotor side Grooves), Siegbahn pumps (rotating and standing Washers with spiral grooves) and Turbomolecular pumps with rotor and guide vanes are equipped. It is known to use different friction pumps designed pump sections.
  • the present invention is based on the object as smooth a flow as possible between the different pump sections.
  • the pump section with the Siegbahn stages at least one further pump stage any Type - preferably a friction pump - that in the intermediate range between molecular flow and viscous flow has good pumping properties.
  • a vacuum pump designed in this way a relatively high backing pressure (greater than 10 mbar) is generated so that pumps of this type with small and inexpensive backing pumps can be operated.
  • the embodiment according to FIG. 1 is a Friction vacuum pump 1, the housing of which is designated 2.
  • The includes upper, cylindrical housing section 3 and centers the stator 4, which has a plurality of stator rings 5, 6 and 7.
  • the rotor 8 is supported on the bearings 9 and Pump shaft 10 in the pump housing 2.
  • the drive motor is with Designated 11.
  • the Inlet flange 12 a recipient to be evacuated connected.
  • the gases become the outlet 13 promoted to which a backing pump is connected.
  • the embodiment according to FIG. 1 is 3 in total Pump sections equipped.
  • the high vacuum pump section consists of turbomolecular pump stages.
  • the stator rings 5 each carry the inward stator blades 14, which are associated with rotor blades 15 attached to the rotor 8.
  • the second pump section has Siegbahn pump stages. This comprise rotating ring disks 16 fastened to the rotor 8, whose surfaces are flat. Between the rotor ring disks 16 are the stator ring washers 17.
  • the stator rings 6 wear the stator washers 17; they are preferably in one piece educated.
  • the stator washers 17 are on the end face with spiral projections 18 and corresponding grooves 19 equipped (see FIG. 2).
  • the spiral shape is each chosen so that a continuous gas flow from Inlet 12 to outlet 13 is secured, i.e. that at embodiment shown the above a stator washer 6 pump active areas of the Siegbahnhaven the gases from the outside in and those below one Stator ring 6 located pump active areas of the Siegbahnhaven convey the gases from the inside out.
  • There are three spiral grooves or projections are provided, which each extend over approximately 360 °.
  • the number, depth, The width and slope of the spirals determine the pump properties of the pump section consisting of Siegbahn stages.
  • the first Siegbahn stage following the turbomolecular pump stages the gases from the outside in.
  • the stator washer 17 rotor ring disk 16 upstream of the first Siegbahn stage has one smaller diameter than the other rotor ring disks 16 and bears on its circumference in relation to the other rotor blades 15 Shortened blades 27. This is as trouble-free as possible Transition between the different pump sections guaranteed.
  • the first Siegbahnlope If gases are to be conveyed from the inside out, one can do this accordingly designed first stator washer 17 with compared to the rest Disks with an enlarged inner diameter may be provided the inside carries shortened stator blades.
  • high vacuum or initially a turbomolecular pump section on the inlet side followed by a Siegbahn pump section.
  • the pre-vacuum side that follows the Siegbahn pump section Pump stage is like a side channel pump educated. To do this, they face each other radially extending surfaces of the last rotor ring disk 28 (Fig. 5) and the last stator washer 29 (Fig. 6) in cross section essentially semicircular, facing each other circular grooves 31, 32 are provided.
  • the arranged on the suction side rotating groove 31 is with a plurality of crosspieces 33 equipped.
  • the fixed groove 32 arranged on the pressure side has an inlet 34 and an inlet with respect to the extracted gases Outlet 35.
  • Its inlet 34 is a radially outwardly extending one Groove section that through the peripheral pumping gap gases flowing between the annular disc 27 and the stator 4 records.
  • the outlet 35 is substantially axial extending bore, which the groove 32 with the fore-vacuum space connects. Inlet 34 and outlet 35 are immediately adjacent and are separated from each other by a web (36), to avoid backflow. A division of the groove 32 in two or more groove sections, each with an inlet 34 and an outlet 35 is possible.
  • the exemplary embodiment according to FIGS. 7 and 8 is based the shaft 10 via its bearings 9 initially on the inside a sleeve-shaped carrier 41.
  • the top end of the carrier 41 is equipped with a collar 42.
  • the lower end of the The carrier projects into a recess 43 in a housing component 44 into it, which has only a slightly larger diameter than the outer diameter of the carrier 41.
  • An O-ring 45 between the carrier 41 and the inside of the recess 43 secures the central position of the carrier 41.
  • To support the carrier 41 in the housing 2 are three substantially axially extending Bars 46 are provided on the collar 42 and on the housing component 44 are attached.
  • the O-ring 45 acts Vibrations of this type as a damping element. This allows the pumping gaps between the active pumping surfaces, in particular between the stator and rotor ring disks of the Siegbahn stages, very small design and therefore a very good pump effect be achieved.
  • Fig. 9 shows an embodiment for a pump according to the Invention in which the rotor is on a fixed Pins 51 of the housing 2 supports and the drive motor 11 as External rotor motor is formed.
  • the bars 46 is the pin 51 at its upper end with a collar 52 equipped.
  • the sleeve-shaped carrier 41 has on its lower end an inward edge 53. Between Collar 52 and edge 53 extend the rods 46.
  • the Siegbahn pump section follows on the pressure side to a Holweck pump section that comes from the stator ring 55 with the helically shaped projections 56 and Outside of the cylindrical rotor section 57. This carries the motor rotor on the inside.
  • Gaeda pump section there is also a Gaeda pump section on.
  • This includes the stator ring 60 on the stator side with two circumferential webs 61, 62 which form the groove 63, and the correspondingly elongated rotor section on the rotor side 57.
  • the inlet to the Gaedepumpgen form an or several openings 64 (see also FIG. 10) in the upper web 61. These are located directly next to one or more fixed, in the groove 63 protruding projections 65 which with the Rotor 57 form the blocking gap 66.
  • the outlet opening (s) 67 are located in the lower web 62 and open into the fore-vacuum space the pump 1.
  • the groove 63 divided into two sections. There are two in parallel mutually arranged gate pump stages are provided. You point in each case the inlet opening 64 and the outlet openings 67 and each extend over approximately 180 °.
  • the arrow 68 indicates the direction of rotation of the rotor 57.
  • the groove is 63 no longer designed in a ring shape.
  • Groove depth or groove width
  • Fig. 11 decreasing
  • Fig. 12 constantly changing
  • the desired pressure build-up is thereby achieved.
  • several chambers 69 are present, in which a relatively slow pressure build-up in succession and relatively rapid expansion is taking place. The pressure increases from chamber to chamber.
  • Figures 13 to 18 show embodiments for Siegbahnhaven, which are combined with gaed stages.
  • the outside diameter of the rotating ring disks 17 are selected in such a way that between its periphery and that surrounding it Stator 4 each have an outer annular space 71, 72.
  • the inner diameter of the stator washers 15 chosen such that an inner annular space 73, 74 is present is.
  • Figure 13 which is a plan view of a Stator ring disk with two spiral grooves 19 shows is can be seen that stationary in the annular spaces 71, 72 Projections 75, 76 and 77, 78 are located together with the Outer circumference of the rotor ring disks 16 or the rotating one Central part (e.g. rotor 8 or shaft 10) locking gaps 79, 80 form.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Description

Die Erfindung bezieht sich auf eine Reibungsvakuumpumpe mit den Merkmalen des Oberbegriffs der unabhängigen Patentansprüche 1 und 2.
Zu den Reibungsvakuumpumpen gehören Gaede-Pumpen (in einem Gehäuse rotierender Zylinder mit Pumpspalt und zwischen Einlass und Auslass gelegenem Sperrspalt), Holweck-Pumpen (in einem Gehäuse rotierender Zylinder mit wendelförmigen, Stator- oder rotorseitig angeordneten Nuten), Siegbahn-Pumpen (rotierende und stehende Ringscheiben mit spiralförmig gestalteten Nuten) und Turbomolekular-Pumpen, die mit Lauf- und Leitschaufeln ausgerüstet sind. Es ist bekannt, Reibungspumpen mit unterschiedlich gestalteten Pumpenabschnitten auszurüsten.
Aus der DE-A 39 22 782 und der FR-A-22 80 809 sind Reibungspumpen der eingangs erwähnten Art bekannt. Pumpen dieser Art sollen nicht nur im Molekularströmungsbereich sondern auch bei viskoser Strömung gute Fördereigenschaften haben. Als besonderes Problem haben sich die Übergangsbereiche zwischen den unterschiedlich gestalteten Pumpenabschnitten erwiesen. Störungen der Strömung oder gar Strömungsabrisse finden in diesen Bereichen statt.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, einen möglichst störungsfreien Übergang der Strömung zwischen den verschiedenen Pumpenabschnitten sicherzustellen.
Erfindungsgemäß wird diese Aufgabe durch die kennzeichnenden Merkmale der Patentansprüche 1 und 2 gelost. Die Besonderheit der erfindungsgemäß vorgeschlagenen Rotor- bzw. Statorringscheibe liegt darin, dass sie einerseits bereits Bestandteil einer Siegbahnstufe ist, andererseits aber noch verkürzte Rotorschaufeln trägt. Störungen der Strömung sind minimiert, Strömungsabrisse finden nicht mehr statt.
Eine weitere vorteilhafte Maßnahme besteht darin, die Statorringscheiben der Siegbahnstufen mit den spiralförmigen Nuten auszurüsten. Durch diese Maßnahme wir zum einen erreicht, dass es nicht mehr erforderlich ist, den Rotor aus einer Vielzahl von Einzelteilen herzustellen. Der Rotor kann einteilig ausgebildet und z.B. aus dem Vollen gedreht sein. Weiterhin ist die Anpassung einer Reibungspumpe der hier betroffenen Art an unterschiedliche Einsatzfälle einfacher. Bei Vakuumpumpen dieser Art bestimmen nämlich die Eigenschaften der spiralförmigen Nuten (Tiefe, Breite, Steigung) die Pumpeigenschaften. Bei einer Änderung der Pumpeigenschaften müssen deshalb bei einer Reibungsvakuumpumpe nach dem Stand der Technik nacheinander Stator und Rotor demontiert, die Rotorscheiben mit den spiralförmigen Nuten ausgetauscht und dann wieder Rotor und Stator montiert werden. Bei einer Reibungsvakuumpumpe nach der Erfindung muss nur der Stator demontiert und mit Austausch-Scheiben wieder montiert werden.
Eine weitere vorteilhafte Maßnahme nach der Erfindung besteht darin, dass sich an den Pumpenabschnitt mit den Siegbahn-Stufen mindestens eine weitere Pumpstufe beliebiger Art - vorzugsweise auf eine Reibungspumpe - anschließt, die im Zwischenbereich zwischen Molekularströmung und viskoser Strömung gute Fördereigenschaften hat. Mit einer in dieser Weise ausgebildeten Vakuumpumpe kann ein relativ hoher Vorvakuumdruck (größer 10 mbar) erzeugt werden, so dass Pumpen dieser Art mit kleinen und preiswerten Vorvakuumpumpen betrieben werden können.
Weitere Vorteile und Einzelheiten der Erfindung sollen anhand von in den Figuren 1 bis 18 erläutert werden. Es zeigen
  • Figur 1 eine Reibungsvakuumpumpe nach der Erfindung,
  • Figur 2 einen Schnitt durch die Pumpe nach Figur 1 in Höhe der Statorscheibe einer Siegbahn-Stufe
  • Figur 3 einen Schnitt durch die Pumpe nach Figur 1 in Höhe einer sich in Förderrichtung an den Siegbahn-Pumpenabschnitt anschließenden weiteren Pumpstufe,
  • Figuren 4, 5 und 6 ein weiteres Ausführungsbeispiel für eine Pumpe nach der Erfindung,
  • Figuren 7, 8 ein Ausführungsbeispiel für eine Pumpe nach der Erfindung mit einer besonderen Rotoraufhängung,
  • Figuren 9 bis 12 Schnitte durch weitere Lösungen für druckseitig angeordnete Pumpstufen und
  • Figuren 13 bis 18 Schnitte durch Pumpstufen, die als kombinierte Siegbahn/Gaede-Stufen ausgebildet sind.
Beim Ausführungsbeispiel nach Figur 1 handelt es sich um eine Reibungsvakuumpumpe 1, deren Gehäuse mit 2 bezeichnet ist. Der obere, zylindrisch gestaltete Gehäuseabschnitt 3 umfaßt und zentriert den Stator 4, der eine Mehrzahl von Statorringen 5,6 und 7 umfaßt. Der Rotor 8 stützt sich über die Lager 9 und die Pumpenwelle 10 im Pumpengehäuse 2 ab. Der Antriebsmotor ist mit 11 bezeichnet. Während des Betriebs der Pumpe ist an den Einlaßflansch 12 ein zu evakuierender Rezipient angeschlossen. Infolge der Drehung des Rotors 8 werden die Gase zum Auslaß 13 gefördert, an den eine Vorvakuumpumpe angeschlossen ist.
Das Ausführungsbeispiel nach Figur 1 ist mit insgesamt 3 Pumpenabschnitten ausgerüstet. Der hochvakuumseitige Pumpenabschnitt besteht aus Turbomolekularpumpenstufen. Die Statorringe 5 tragen jeweils die nach innen gerichteten Statorschaufeln 14, denen am Rotor 8 befestigte Rotorschaufeln 15 zugeordnet sind. Der zweite Pumpabschnitt weist Siegbahnpumpenstufen auf. Diese umfassen rotierende, am Rotor 8 befestigte Ringscheiben 16, deren Oberflächen eben sind. Zwischen den Rotorringscheiben 16 befinden sich die Statorringscheiben 17. Die Statorringe 6 tragen die Statorringscheiben 17; vorzugsweise sind sie einstückig ausgebildet. Die Statorringscheiben 17 sind stirnseitig mit spiralförmigen Vorsprüngen 18 und entsprechenden Nuten 19 ausgerüstet (vgl. Figur 2). Die spiralförmige Gestaltung ist jeweils so gewählt, daß eine kontinuierliche Gasströmung vom Einlaß 12 zum Auslaß 13 sichergestellt ist, d.h. daß beim dargestellten Ausführungsbeispiel die oberhalb einer Statorringscheibe 6 befindlichen pumpaktiven Flächen der Siegbahnstufen die Gase von außen nach innen und die unterhalb einer Statorringscheibe 6 befindlichen pumpaktiven Flächen der Siegbahnstufen die Gase von innen nach außen fördern. Es sind jeweils drei spiralförmige Nuten bzw. Vorsprünge vorgesehen, die sich jeweils über etwa 360° erstrecken. Die Anzahl, Tiefe, Breite und Steigung der Spiralen bestimmt die Pumpeigenschaften des aus Siegbahnstufen bestehenden Pumpenabschnittes. Durch Austauschen von Statorringscheiben 17 mit geeignet gestalteten Spiralen können die Pumpeigenschaften unterschiedlichen Einsatzbedingungen angepaßt werden.
Beim Ausführungsbeispiel nach Figur 1 fördert die letzte druckseitige Siegbahn-Stufe die Gase von außen nach innen. Von dort aus gelangen sie in eine für den Zwischenbereich zwischen Molekularströmung und viskoser Strömung besonders geeignete Pumpenstufe, die nach Art einer Kreiselrad-Arbeitsmaschine ausgebildet ist. Diese umfaßt am Rotor 8 befestigte, in Bezug auf die Drehrichtung (Pfeil 21 in Figur 3) nach hinten gekrümmte, sich im wesentlichen axial erstreckende Laufschaufeln 22. Diesen sind Kreiselrad-Arbeitsmaschine Leitschaufeln 23 zugeordnet, die vom Statorring 7 getragen werden. Die Leitschaufeln 23 bilden Strömungskanäle 24, die etwa senkrecht zu den äußeren Bereichen der Laufschaufeln angeordnet sind und vom Gas in etwa radialer Richtung nach außen durchströmt werden. Im äußeren Bereich sind die Strömungskanäle 24 mit Öffnungen 25 versehen, durch die die Gase zur Vorvakuumseite der Pumpe gelangen. In Figur 1 ist der Strömungsweg der Gase durch den Pfeil 26 gekennzeichnet.
Beim in Figur 1 dargestellten Ausführungsbeispiel fördert die erste auf die Turbomolekularpumpenstufen folgende Siegbahnstufe die Gase von außen nach innen. Die der Statorringscheibe 17 der ersten Siegbahnstufe vorgelagerte Rotorringscheibe 16 hat einen kleineren Durchmesser als die übrigen Rotorringscheiben 16 und trägt an ihrem Umfang gegenüber den übrigen Rotorschaufeln 15 verkürzte Schaufeln 27. Dadurch ist ein möglichst störungsfreier Übergang zwischen den verschiedenen Pumpenabschntten gewährleistet. Für den Fall, daß die erste Siegbahnstufe die Gase von innen nach außen fördern soll, kann eine entsprechend gestaltete erste Statorringscheibe 17 mit gegenüber den übrigen Scheiben vergrößertem Innendurchmesser vorgesehen sein, die an ihrer Innenseite verkürzte Statorschaufeln trägt.
Auch beim Ausführungsbeispiel nach Figur 4 sind hochvakuum- bzw. einlaßseitig zunächst ein Turbomolekularpumpenabschnitt und daran anschließend ein Siegbahn-Pumpenabschnitt vorgesehen. Die sich an den Siegbahn-Pumpenabschnitt anschließende, vorvakuumseitige Pumpstufe ist nach Art einer Seitenkanalpumpe ausgebildet. Dazu sind in den einander zugewandten, sich radial erstreckenden Oberflächen der letzten Rotorringscheibe 28 (Fig. 5) und der letzten Statorringscheibe 29 (Fig. 6) im Querschnitt etwa halbrund gestaltete, einander zugewandte, im wesentliche kreisförmige Nuten 31, 32 vorgesehen. Die saugseitig angeordnete rotierende Nut 31 ist mit einer Vielzahl von Querstegen 33 ausgerüstet. Die druckseitig angeordnete, feststehende Nut 32 hat in Bezug auf die geförderten Gase einen Einlaß 34 und einen Auslaß 35. Ihr Einlaß 34 ist ein sich radial nach außen erstreckender Nutabschnitt, der die durch den peripheren Pumpspalt zwischen Ringscheibe 27 und Stator 4 strömenden Gase aufnimmt. Der Auslaß 35 ist eine sich im wesentlichen axial erstreckende Bohrung, welche die Nut 32 mit dem Vorvakuumraum verbindet. Einlaß 34 und Auslaß 35 liegen unmittelbar nebeneinander und sind durch einen Steg (36) voneinander getrennt, um Rückströmungen zu vermeiden. Eine Aufteilung der Nut 32 in zwei oder mehr Nutabschnitte, jeweils mit einem Einlaß 34 und einem Auslaß 35, ist möglich.
Beim Ausführungsbeispiel nach den Figuren 7 und 8 stützt sich die Welle 10 über ihre Lager 9 zunächst auf der Innenseite eines hülsenförmigen Trägers 41 ab. Das obere Ende des Trägers 41 ist mit einem Kragen 42 ausgerüstet. Das untere Ende des Trägers ragt in eine Ausnehmung 43 eines Gehäusebauteiles 44 hinein, welche nur einen geringfügig größeren Durchmesser hat als der Außendurchmesser des Trägers 41. Ein O-Ring 45 zwischen dem Träger 41 und der Innenseite der Ausnehmung 43 sichert die zentrische Position des Trägers 41. Zur Abstützung des Trägers 41 im Gehäuse 2 sind drei sich im wesentlichen axial erstreckende Stäbe 46 vorgesehen, die am Kragen 42 und am Gehäusebauteil 44 befestigt sind. Führt ein in dieser Weise aufgehängter Rotor 8 infolge von Stößen oder beim Durchfahren von Resonanzen Schwingungen aus, dann sind die Amplituden sehr klein und ausschließlich radial gerichtet. Der O-Ring 45 wirkt bei Schwingungen dieser Art als Dämpfungselement. Dadurch können die Pumpspalte zwischen den pumpaktiven Flächen, insbesondere zwischen den Stator- und Rotorringscheiben der Siegbahnstufen, sehr klein ausgebildet und damit eine sehr gute Pumpenwirkung erzielt werden.
Fig. 9 zeigt ein Ausführungsbeispiel für eine Pumpe nach der Erfindung, bei der sich der Rotor auf einem feststehenden Zapfen 51 des Gehäuses 2 abstützt und der Antriebsmotor 11 als Außenläufermotor ausgebildet ist. Zur Befestigung der Stäbe 46 ist der Zapfen 51 an seinem oberen Ende mit einem Kragen 52 ausgerüstet. Der hülsenförmige Träger 41 weist an seinem unteren Ende einen nach innen gerichteten Rand 53 auf. Zwischen Kragen 52 und Rand 53 erstrecken sich die Stäbe 46.
Im übrigen schließt sich an den Siegbahn-Pumpenabschnitt druckseitig ein Holweckpumpenabschnitt an, der aus dem Statorring 55 mit den wendelförmig gestalteten Vorsprüngen 56 und der Außenseite des zylindrischen Rotorabschnittes 57 besteht. Dieser trägt auf seiner Innenseite den Motorrotor.
An den Holweckpumpenabschnitt schließt sich noch ein Gaedepumpenabschnitt an. Dieser umfaßt statorseitig den Statorring 60 mit zwei umlaufenden Stegen 61, 62, welche die Nut 63 bilden, und rotorseitig den entsprechend verlängerten Rotorabschnitt 57. Den Einlaß in die Gaedepumpenstufen bilden eine oder mehrere Öffnungen 64 (vgl. auch Fig. 10) im oberen Steg 61. Diese liegen unmittelbar neben einem oder mehreren feststehenden, in die Nut 63 hineinragenden Vorsprüngen 65, die mit dem Rotor 57 den Sperrspalt 66 bilden. Die Auslaßöffnung(en) 67 befinden sich im unteren Steg 62 und münden in den Vorvakuumraum der Pumpe 1. Beim Ausführungsbeispiel nach Figur 10 ist die Nut 63 in zwei Abschnitte aufgeteilt. Es sind zwei parallel zueinander angeordnete Gaedepumpenstufen vorgesehen. Sie weisen jeweils die Einlaßöffnung 64 sowie die Auslaßöffnungen 67 auf und erstrecken sich jeweils über etwa 180°. Der Pfeil 68 kennzeichnet die Drehrichtung des Rotors 57.
Bei den Ausführungen nach den Figuren 11 und 12 ist die Nut 63 nicht mehr ringförmig gestaltet. Durch entsprechende Wahl der Nut-Tiefe (oder auch Nut-Breite) haben die sich zwischen Einlaß 64 und Auslaß 67 erstreckenden Abschnitte der Nut 63 einen abnehmenden (Fig. 11) bzw. ständig wechselnden (Fig. 12) Querschnitt. Dadurch wird der gewünschte Druckaufbau erzielt. Bei der Ausführung nach Fig. 12 sind mehrere Kammern 69 vorhanden, in denen nacheinander ein relativ langsamer Druckaufbau und eine relativ schnelle Expansion stattfinden. Der Druck nimmt von Kammer zu Kammer zu.
Die Figuren 13 bis 18 zeigen Ausführungsformen für Siegbahnstufen, die mit Gaedestufen kombiniert sind. Die Außendurchmesser der rotierenden Ringscheiben 17 sind dazu derart gewählt, daß zwischen ihrer Peripherie und dem sie umgebenden Stator 4 jeweils ein äußerer Ringraum 71, 72 vorhanden ist. Weiterhin ist der Innendurchmesser der Statorringscheiben 15 derart gewählt, daß jeweils ein innerer Ringraum 73, 74 vorhanden ist. Aus Figur 13, welche eine Draufsicht auf eine Statorringscheibe mit zwei spiralförmigen Nuten 19 zeigt, ist ersichtlich, daß sich in den Ringräumen 71, 72 feststehende Vorsprünge 75, 76 bzw. 77, 78 befinden, die gemeinsam mit dem Außenumfang der Rotorringscheiben 16 bzw. dem rotierenden Zentralteil (z.B. Rotor 8 oder Welle 10) Sperrspalte 79, 80 bilden.
Während des Betriebs dreht sich der Rotor in Richtung des Pfeiles 81 (Fig. 13). Diese Drehung bewirkt ein Mitreißen der Gasmoleküle in den beiden Abschnitten des Ringraumes 71 in Richtung der Pfeile 82, 83 (Gaedepumpeffekt).
Infolge des Vorhandenseins der Vorsprünge 75, 76 werden die Gase in die spiralförmigen Nuten nach innen gefördert (Siegbahnpumpeffekt) und gelangen dort in die Abschnitte des Ringraumes 73. Dort werden sie in Richtung der Pfeile 84, 85 mitgerissen und gelangen auf der Unterseite der in Figur 13 in Draufsicht dargestellten Statorringscheibe 16 in die Nuten 19, welche derart ausgebildet sind, daß sie die Gase wieder nach außen fördern.
Beim Ausführungsbeispiel nach den Figuren 16 bis 18 sind die pumpaktiven Oberflächen dadurch vergrößert worden, daß die Höhe der äußeren Ringräume 71, 72 größer gewählt worden ist als die Dicke der rotierenden Scheiben 17 und daß die Scheiben 17 mit ihren äußeren Rändern in die Ringräume 71, 72 hineinragen. Die Vorsprünge 75, 76 müssen bei dieser Lösung U-förmig gestaltet sein (fig. 18). Auch innerhalb der inneren Ringräume kann die pumpwirksame Oberfläche vergrößert werden, wenn der rotierende Zentralteil mit Vorsprüngen ausgerüstet ist. Ein Beispiel für einen ringförmig gestalteten Vorsprung 86 ist in Figur 17 gestrichelt eingezeichnet.
Die beschriebenen und in den Figuren 13 bis 18 dargestellten Lösungen für kombinierte Gaede-/Siegbahnstufen können anstelle der in den Pumpen nach den Figuren 1, 4 und 7 wirksamen Siegbahnstufen vorhanden sein. Besonders geeignet sind die kombinierten Stufen jedoch für in der Nähe der Vorvakuumseite befindliche Pumpenabschnitte. Die Anzahl der in den jeweiligen Ringräumen 71 bis 74 vorhandener Sperrspalte ist beliebig. Sie ist der Anzahl und der Ausbildung der auf den Statorringscheiben befindlichen Nuten 19 anzupassen.

Claims (20)

  1. Reibungsvakuumpumpe (1) mit unterschiedlich gestalteten Pumpenabschnitten, von denen der einlaßseitige Pumpenabschnitt aus Turbomolekularpumpenstufen (14, 15) und ein weiterer Pumpenabschnitt aus Siegbahnstufen (16, 17) mit jeweils spiralförmig gestalteten Nuten (19) besteht, wobei die pumpaktiven Flächen der Siegbahnstufen jeweils von den einander zugewandten Flächen einer Rotor- und einer Statorringscheibe (16, 17) gebildet werden, dadurch gekennzeichnet, dass die erste der Ringscheiben (16, 17) der Siegbahnstufen eine Rotorringscheibe (16) ist, dass diese erste Rotorringscheibe einen kleineren Durchmesser hat als die weiteren Rotorringscheiben (16) und dass sie an ihrem Umfang gegenüber den übrigen Rotorschaufeln (15) der Turbomolekularpumpenstufen (14, 15) verkürzte Rotorschaufeln (27) trägt.
  2. Reibungsvakuumpumpe (1) mit unterschiedlich gestalteten Pumpenabschnitten, von denen der einlaßseitige Pumpenabschnitt aus Turbomolekularpumpenstufen (14, 15) und ein weiterer Pumpenabschnitt aus Siegbahnstufen (16, 17) mit jeweils spiralförmig gestalteten Nuten (19) besteht, wobei die pumpaktiven Flächen der Siegbahnstufen jeweils von den einander zugewandten Flächen einer Rotor- und einer Statorringscheibe (16, 17) gebildet werden, dadurch gekennzeichnet, dass die erste der Ringscheiben (16, 17) der Siegbahnstufen eine Statorringscheibe (17) ist, dass diese erste Statorringscheibe einen größeren Innendurchmesser hat als die weiteren Statorringscheiben (17) und dass sie an ihrer Innenseite gegenüber den übrigen Statorschaufeln (14) der Turbomolekularpumpenstufen (14, 15) verkürzte Statorschaufeln trägt.
  3. Pumpe nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass jeweils die Statorringscheiben (16) mit den spiralförmigen Nuten (19) ausgerüstet sind.
  4. Pumpe nach Anspruch 1, 2, oder 3, dadurch gekennzeichnet, dass sich an den aus den Siegbahnstufen (16, 17) bestehenden Pumpenabschnitt ein oder mehrere weitere Pumpenabschnitte anschließen, die für den Zwischenbereich zwischen Molekularströmung und viskoser Strömung geeignet sind.
  5. Pumpe nach Anspruch 4, dadurch gekennzeichnet, dass der oder die weiteren Pumpenabschnitte nach Art einer Kreiselrad-Arbeitsmaschine, Seitenkanalpumpe, Holweckpumpe, Gaedepumpe oder dergleichen ausgebildet ist.
  6. Pumpe nach Anspruch 5, dadurch gekennzeichnet, dass die letzte, vorvakuumseitige Pumpenstufe rotorseitige Laufschaufeln (22) und statorseitige Leitschaufeln (23) umfassen, wobei die Leitschaufeln (23) Strömungskanäle (24) bilden, die mit zur Vorvakuumseite gerichteten Öffnungen (25) ausgerüstet sind.
  7. Pumpe nach Anspruch 5, dadurch gekennzeichnet, dass die letzte, vorvakuumseitige Pumpenstufe nach Art einer Seitenkanalpumpe ausgebildet ist, dass eine Rotorringscheibe (28) und eine Statorringscheibe (29) vorgesehen sind, dass in die einander zugewandten Oberflächen der Rotorringscheibe (28) und der Statorringscheibe (29) einander zugewandte Nuten (31, 32) vorgesehen und als Bestandteile der Seitenkanalpumpe ausgebildet sind.
  8. Pumpe nach Anspruch 7, dadurch gekennzeichnet, dass die Nuten (31, 32) im wesentlichen kreisförmig gestaltet sind und dass ein oder mehrere Nutabschnitte jeweils eine Seitenkanalpumpenstufe bilden.
  9. Pumpe nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass zwei konzentrisch zueinander angeordnete Nutenpaare vorgesehen sind und Seitenkanalpumpenstufen bilden.
  10. Pumpe nach Anspruch 5, dadurch gekennzeichnet, dass der vorvakuumseitige Pumpenabschnitt aus einer oder mehreren Gaedepumpenstufen besteht.
  11. Pumpe nach Anspruch 10, dadurch gekennzeichnet, dass zwei parallel zueinander angeordnete, sich radial erstreckende Stege (61, 62) gemeinsam mit einem zylindrischen Rotorabschnitt (57) eine oder mehrere Gaedepumpenstufen bilden, indem die von den Stegen (61, 62) gebildete Nut (63) mit ein oder mehreren Einlass- bzw. Auslassöffnungen (64, 67) und einem oder mehreren Vorsprüngen (65) zur Bildung eines oder mehrere Sperrspalte (66) ausgerüstet sind.
  12. Pumpe nach Anspruch 11, dadurch gekennzeichnet, dass die Nut (63) oder ein sich von einem Einlass (64) zu einem Auslass (67) erstreckender Abschnitt der Nut (63) einen kontinuierlich abnehmenden Querschnitt hat.
  13. Pumpe nach Anspruch 11, dadurch gekennzeichnet, dass die Nut (63) oder ein sich vom Einlass (64) zum Auslass (67) erstreckender Abschnitt der Nut (63) einen ständig wechselnden Querschnitt hat.
  14. Pumpe nach Anspruch 13, dadurch gekennzeichnet, dass der Querschnitt der Nut (63) oder eines Abschnittes der Nut (63) derart gestaltet ist, dass nacheinander mehrfach ein relativ langsamer Druckaufbau und eine relativ schnelle Expansion stattfinden.
  15. Pumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mindestens eine der Siegbahnstufen (16, 17) mit einer Gaedestufe kombiniert ist.
  16. Pumpe nach Anspruch 15, dadurch gekennzeichnet, dass mindestens eine Rotorringscheibe (17) mit dem Stator (4) einen äußeren Ringraum (71, 72) bildet, der insgesamt oder abschnittsweise als Gaedepumpenstufe mit einem oder mehreren Vorsprüngen (75, 76) ausgebildet ist.
  17. Pumpe nach Anspruch 15 oder 16, dadurch gekennzeichnet, dass mindestens eine Statorringscheibe (16) mit dem Rotor (8) einen Ringraum (73, 74) bildet, der insgesamt oder abschnittsweise als Gaedepumpenstufe ausgebildet ist.
  18. Pumpe nach einem der Ansprüche 15, 16, 17, dadurch gekennzeichnet, dass die Höhe der äußeren Ringräume (71, 72) größer ist als die Dicke der Rotorringscheiben (17) und dass die Scheiben (17) mit ihren äußeren Rändern in die Ringräume (71, 72) hineinragen.
  19. Pumpe nach einem der Ansprüche 15 bis 18, dadurch gekennzeichnet, dass der Rotor (8) im Bereich der inneren Ringräume (73, 74) mit Mitteln (86) zur Vergrößerung der pumpaktiven Oberfläche ausgerüstet ist.
  20. Pumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sich der Rotor (8) über Lager (9) auf der Innenseite eines hülsenförmigen Trägers (41) abstützt und dass sich der Träger (41) seinerseits über mehrere, vorzugsweise drei sich im wesentlichen axial erstreckende Stäbe (46) im Gehäuse (2) abstützt.
EP94913098A 1993-05-03 1994-03-31 Reibungsvakuumpumpe mit unterschiedlich gestalteten pumpenabschnitten Expired - Lifetime EP0697069B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP98110191A EP0874159A3 (de) 1993-05-03 1994-03-31 Reibungsvakuumpumpe mit einer Gaedepumpenstufe

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4314418A DE4314418A1 (de) 1993-05-03 1993-05-03 Reibungsvakuumpumpe mit unterschiedlich gestalteten Pumpenabschnitten
DE4314418 1993-05-03
PCT/EP1994/001011 WO1994025760A1 (de) 1993-05-03 1994-03-31 Reibungsvakuumpumpe mit unterschiedlich gestalteten pumpenabschnitten

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP98110191A Division EP0874159A3 (de) 1993-05-03 1994-03-31 Reibungsvakuumpumpe mit einer Gaedepumpenstufe

Publications (2)

Publication Number Publication Date
EP0697069A1 EP0697069A1 (de) 1996-02-21
EP0697069B1 true EP0697069B1 (de) 2000-05-24

Family

ID=6486923

Family Applications (2)

Application Number Title Priority Date Filing Date
EP94913098A Expired - Lifetime EP0697069B1 (de) 1993-05-03 1994-03-31 Reibungsvakuumpumpe mit unterschiedlich gestalteten pumpenabschnitten
EP98110191A Withdrawn EP0874159A3 (de) 1993-05-03 1994-03-31 Reibungsvakuumpumpe mit einer Gaedepumpenstufe

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP98110191A Withdrawn EP0874159A3 (de) 1993-05-03 1994-03-31 Reibungsvakuumpumpe mit einer Gaedepumpenstufe

Country Status (5)

Country Link
US (1) US5695316A (de)
EP (2) EP0697069B1 (de)
JP (1) JPH08511071A (de)
DE (2) DE4314418A1 (de)
WO (1) WO1994025760A1 (de)

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9318801D0 (en) * 1993-09-10 1993-10-27 Boc Group Plc Improved vacuum pumps
US5496149A (en) * 1995-03-10 1996-03-05 Basf Corporation Thin plate turbine
DE29516599U1 (de) * 1995-10-20 1995-12-07 Leybold Ag Reibungsvakuumpumpe mit Zwischeneinlaß
IT1281025B1 (it) * 1995-11-10 1998-02-11 Varian Spa Pompa turbomolecolare.
DE19632874A1 (de) * 1996-08-16 1998-02-19 Leybold Vakuum Gmbh Reibungsvakuumpumpe
DE59912626D1 (de) * 1998-05-26 2006-02-16 Leybold Vakuum Gmbh Reibungsvakuumpumpe mit chassis, rotor und gehäuse sowie einrichtung, ausgerüstet mit einer reibungsvakuumpumpe dieser art
TW504548B (en) * 1998-06-30 2002-10-01 Ebara Corp Turbo molecular pump
JP3788558B2 (ja) * 1999-03-23 2006-06-21 株式会社荏原製作所 ターボ分子ポンプ
US6179573B1 (en) * 1999-03-24 2001-01-30 Varian, Inc. Vacuum pump with inverted motor
JP4104098B2 (ja) * 1999-03-31 2008-06-18 エドワーズ株式会社 真空ポンプ
US6220824B1 (en) * 1999-06-21 2001-04-24 Varian, Inc. Self-propelled vacuum pump
ES2219956T3 (es) * 1999-07-19 2004-12-01 Sterling Fluid Systems (Germany) Gmbh Maquina volumetrica para medios comprimibles.
DE19942410A1 (de) * 1999-09-06 2001-03-08 Pfeiffer Vacuum Gmbh Vakuumpumpe
US6382249B1 (en) 1999-10-04 2002-05-07 Ebara Corporation Vacuum exhaust system
US6508631B1 (en) 1999-11-18 2003-01-21 Mks Instruments, Inc. Radial flow turbomolecular vacuum pump
US6394747B1 (en) 2000-06-21 2002-05-28 Varian, Inc. Molecular drag vacuum pumps
JP3777498B2 (ja) * 2000-06-23 2006-05-24 株式会社荏原製作所 ターボ分子ポンプ
DE10046766A1 (de) * 2000-09-21 2002-04-11 Leybold Vakuum Gmbh Compound-Reibungsvakuumpumpe
JP2002138987A (ja) 2000-10-31 2002-05-17 Seiko Instruments Inc 真空ポンプ
US6503050B2 (en) * 2000-12-18 2003-01-07 Applied Materials Inc. Turbo-molecular pump having enhanced pumping capacity
US6607351B1 (en) * 2002-03-12 2003-08-19 Varian, Inc. Vacuum pumps with improved impeller configurations
GB0409139D0 (en) 2003-09-30 2004-05-26 Boc Group Plc Vacuum pump
DE10353034A1 (de) * 2003-11-13 2005-06-09 Leybold Vakuum Gmbh Mehrstufige Reibungsvakuumpumpe
DE10357546A1 (de) * 2003-12-10 2005-07-07 Pfeiffer Vacuum Gmbh Seitenkanalpumpstufe
GB0614928D0 (en) * 2006-07-27 2006-09-06 Boc Group Plc Molecular Drag Pumping Mechanism
US7628577B2 (en) * 2006-08-31 2009-12-08 Varian, S.P.A. Vacuum pumps with improved pumping channel configurations
US20080056886A1 (en) * 2006-08-31 2008-03-06 Varian, S.P.A. Vacuum pumps with improved pumping channel cross sections
DE102006043327A1 (de) * 2006-09-15 2008-03-27 Oerlikon Leybold Vacuum Gmbh Vakuumpumpe
GB0618745D0 (en) 2006-09-22 2006-11-01 Boc Group Plc Molecular drag pumping mechanism
JP4885000B2 (ja) * 2007-02-13 2012-02-29 株式会社ニューフレアテクノロジー 気相成長装置および気相成長方法
JP5056152B2 (ja) * 2007-05-15 2012-10-24 株式会社島津製作所 ターボ分子ポンプ
DE102008004297A1 (de) * 2008-01-15 2009-07-16 Oerlikon Leybold Vacuum Gmbh Turbomolekularpumpe
US8087907B2 (en) * 2008-03-26 2012-01-03 Ebara Corporation Turbo vacuum pump
EP2108844A3 (de) * 2008-03-26 2013-09-18 Ebara Corporation Turbovakuumpumpe
US8070419B2 (en) * 2008-12-24 2011-12-06 Agilent Technologies, Inc. Spiral pumping stage and vacuum pump incorporating such pumping stage
US8152442B2 (en) * 2008-12-24 2012-04-10 Agilent Technologies, Inc. Centripetal pumping stage and vacuum pump incorporating such pumping stage
JP2010174779A (ja) * 2009-01-30 2010-08-12 Hitachi High-Technologies Corp 真空処理装置
JP5397138B2 (ja) * 2009-10-02 2014-01-22 株式会社島津製作所 ターボ分子ポンプ
GB2474507B (en) * 2009-10-19 2016-01-27 Edwards Ltd Vacuum pump
CN102667169B (zh) * 2009-12-11 2016-03-02 埃地沃兹日本有限公司 螺纹槽排气部的筒形固定部件以及使用该部件的真空泵
JP6133213B2 (ja) * 2011-10-31 2017-05-24 エドワーズ株式会社 固定部材及び真空ポンプ
GB2498816A (en) 2012-01-27 2013-07-31 Edwards Ltd Vacuum pump
JP6353195B2 (ja) * 2013-05-09 2018-07-04 エドワーズ株式会社 固定円板および真空ポンプ
DE102013213815A1 (de) * 2013-07-15 2015-01-15 Pfeiffer Vacuum Gmbh Vakuumpumpe
DE102013214662A1 (de) * 2013-07-26 2015-01-29 Pfeiffer Vacuum Gmbh Vakuumpumpe
JP6616560B2 (ja) * 2013-11-28 2019-12-04 エドワーズ株式会社 真空ポンプ用部品、および複合型真空ポンプ
JP6692635B2 (ja) * 2015-12-09 2020-05-13 エドワーズ株式会社 連結型ネジ溝スペーサ、および真空ポンプ
JP7108377B2 (ja) * 2017-02-08 2022-07-28 エドワーズ株式会社 真空ポンプ、真空ポンプに備わる回転部、およびアンバランス修正方法
IT201700075054A1 (it) * 2017-07-04 2017-10-04 Agilent Tech Inc A Delaware Corporation Stadio di pompaggio molecolare per pompa da vuoto e pompa da vuoto comprendente detto stadio di pompaggio molecolare
GB2569314A (en) * 2017-12-12 2019-06-19 Edwards Ltd A turbomolecular pump and method and apparatus for controlling the pressure in a process chamber
GB2575450B (en) * 2018-07-09 2022-01-26 Edwards Ltd A variable inlet conductance vacuum pump, vacuum pump arrangement and method
JP2020186687A (ja) * 2019-05-15 2020-11-19 エドワーズ株式会社 真空ポンプとそのネジ溝ポンプ部の固定部品
JP7348753B2 (ja) * 2019-05-31 2023-09-21 エドワーズ株式会社 真空ポンプ、および連結型ネジ溝スペーサ
GB2589151A (en) * 2019-11-25 2021-05-26 Edwards Ltd Molecular drag vacuum pump
JP2022143507A (ja) * 2021-03-17 2022-10-03 エドワーズ株式会社 真空ポンプ

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3104802A (en) * 1963-09-24 Unified system vacuum pump
DE239213C (de) *
GB336001A (en) * 1929-07-09 1930-10-09 Edwin Rodolph Grote Improvements in pumps for obtaining high vacua
US1942139A (en) * 1930-12-26 1934-01-02 Central Scientific Co Molecular vacuum pump
US1975568A (en) * 1932-03-18 1934-10-02 Central Scientific Co Molecular vacuum pump
FR1443239A (fr) * 1965-05-05 1966-06-24 Pompe à vide mécanique rotative
SU528388A1 (ru) * 1965-06-25 1976-09-15 Институт Металлургии Имени А.А.Байкова Ан Ссср Молекул рный вакуумный насос
FR2161179A5 (de) * 1971-11-16 1973-07-06 Cit Alcatel
US3969039A (en) * 1974-08-01 1976-07-13 American Optical Corporation Vacuum pump
JPS5267810A (en) * 1975-12-03 1977-06-04 Aisin Seiki Co Ltd High vacuum pump
DE3239328C2 (de) * 1982-10-23 1993-12-23 Pfeiffer Vakuumtechnik Magnetisch gelagerte Turbomolekularpumpe mit Schwingungsdämpfung
JPS60116896A (ja) * 1983-11-30 1985-06-24 Hitachi Ltd 真空ポンプ
JPS60116895A (ja) * 1983-11-30 1985-06-24 Hitachi Ltd 真空ポンプ
JPS60125795A (ja) * 1983-12-09 1985-07-05 Osaka Shinku Kiki Seisakusho:Kk 複合真空ポンプ
JPS60139098U (ja) * 1984-02-24 1985-09-13 セイコ−精機株式会社 組合せ型軸流分子ポンプ
US4732529A (en) * 1984-02-29 1988-03-22 Shimadzu Corporation Turbomolecular pump
SU1285198A1 (ru) * 1985-01-04 1987-01-23 Предприятие П/Я А-1614 Двухступенчатый турбомолекул рный вакуумный насос
JPS61226596A (ja) * 1985-03-29 1986-10-08 Hitachi Ltd タ−ボ分子ポンプ
JPS6385291A (ja) * 1986-09-29 1988-04-15 Hitachi Ltd 真空ポンプ
DE3922782A1 (de) * 1988-07-12 1990-02-08 Beijing Lab Of Vacuum Physics Molekularpumpe in kombinierter bauart
US5219269A (en) * 1988-07-13 1993-06-15 Osaka Vacuum, Ltd. Vacuum pump
DE3919529C2 (de) * 1988-07-13 1994-09-29 Osaka Vacuum Ltd Vakuumpumpe
IT1241431B (it) * 1990-03-09 1994-01-17 Varian Spa Pompa turbomolecolare perfezionata.
US5358373A (en) * 1992-04-29 1994-10-25 Varian Associates, Inc. High performance turbomolecular vacuum pumps

Also Published As

Publication number Publication date
DE59409375D1 (de) 2000-06-29
EP0697069A1 (de) 1996-02-21
EP0874159A3 (de) 1998-11-18
JPH08511071A (ja) 1996-11-19
EP0874159A2 (de) 1998-10-28
WO1994025760A1 (de) 1994-11-10
DE4314418A1 (de) 1994-11-10
US5695316A (en) 1997-12-09

Similar Documents

Publication Publication Date Title
EP0697069B1 (de) Reibungsvakuumpumpe mit unterschiedlich gestalteten pumpenabschnitten
EP0414127B1 (de) Magnetgelagerte Vakuumpumpe
EP0856108B1 (de) Reibungsvakuumpumpe mit zwischeneinlass
DE69734028T3 (de) Vakuumpumpe
DE102009035332A1 (de) Vakuumpumpe
DE19709205A1 (de) Vakuumpumpe mit Wellenlagerung
DE4216237A1 (de) Gasreibungsvakuumpumpe
EP0697068B1 (de) Reibungsvakuumpumpe mit lagerabstützung
EP2631488A2 (de) Vakuumpumpe
EP1017944B1 (de) Compoundpumpe
DE19680800B4 (de) Axialwälzlager
EP2253851B1 (de) Vakuumpumpe
EP0825346B1 (de) Eingangsstufe für eine zweiflutige Gasreibungspumpe
EP0567874A1 (de) Strömungsmaschine zur Gasverdichtung
EP2863063A2 (de) Vakuumpumpe
EP1319131A1 (de) Compound-reibungsvakuumpumpe
EP0386193A1 (de) Dichtungseinrichtung zwischen welle und gehäuse einer strömungsmaschine mit mindestens einem laufrad.
WO2001011240A1 (de) Reibungsvakuumpumpe mit pumpaktiven elementen
WO2003031823A1 (de) Axial fördernde reibungsvakuumpumpe
EP3088746A1 (de) Vakuumpumpe
EP2902637B1 (de) Vakuumpumpe
EP3767109B1 (de) Vakuumsystem
DE2046692A1 (de) Schaufelrad fur eine Turbomole kularpumpe
EP1541871B1 (de) Seitenkanalpumpstufe
CH315988A (de) Mehrstufiger Zentrifugalverdichter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19950930

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI

17Q First examination report despatched

Effective date: 19960528

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LEYBOLD VAKUUM GMBH

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59409375

Country of ref document: DE

Date of ref document: 20000629

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER & PEDRAZZINI AG

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000717

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010208

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20010216

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010219

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010222

Year of fee payment: 8

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021001

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021129

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050331