EP1017944B1 - Compoundpumpe - Google Patents

Compoundpumpe Download PDF

Info

Publication number
EP1017944B1
EP1017944B1 EP98954252A EP98954252A EP1017944B1 EP 1017944 B1 EP1017944 B1 EP 1017944B1 EP 98954252 A EP98954252 A EP 98954252A EP 98954252 A EP98954252 A EP 98954252A EP 1017944 B1 EP1017944 B1 EP 1017944B1
Authority
EP
European Patent Office
Prior art keywords
stage
pump
vacuum pump
friction vacuum
webs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98954252A
Other languages
English (en)
French (fr)
Other versions
EP1017944A1 (de
Inventor
Günter Schütz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leybold GmbH
Original Assignee
Leybold Vakuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leybold Vakuum GmbH filed Critical Leybold Vakuum GmbH
Publication of EP1017944A1 publication Critical patent/EP1017944A1/de
Application granted granted Critical
Publication of EP1017944B1 publication Critical patent/EP1017944B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/16Centrifugal pumps for displacing without appreciable compression
    • F04D17/168Pumps specially adapted to produce a vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/046Combinations of two or more different types of pumps

Definitions

  • the invention relates to a friction vacuum pump with at least one turbomolecular pump stage, one adjoining the pressure pump stage on the pressure side and one between the turbomolecular pump stage and the filling pump stage.
  • turbomolecular pumps with downstream thread stages also called compound pumps
  • Delivery space delivery gap
  • thread is located.
  • Known Designs of this transition area have the Disadvantage that flow stalls occur. These affect to a considerable extent the pumping speed of the Pump.
  • the present invention is based on the object to significantly simplify the design of the filling level, without an effective loading of the thread pump stage to have to do without.
  • the filling stage is designed as a centrifugal stage. ingredients the centrifugal stage are rotating bars, which is at the level of the suction-side area of the thread pump stage are located.
  • the centrifugal pump has the effect that exiting from the turbomolecular pump stage Gases redirected, compressed and the delivery room be fed to the thread pump. The gas flow is largely continuously, so that it is no longer one of the disruptive stalls.
  • stator of the turbomolecular pump in a manner known per se from spacer rings and bucket half rings there is the possibility that Stator of both pump stages without dismantling the rotor to assemble or disassemble the turbomolecular pump stage.
  • FIG. 1 In the embodiment of Figure 1 are the pump itself with 1, its inlet with 2 and its outlet with 3.
  • the housing of the pump 1 comprises the two sections 4 and 5.
  • the housing section 4 surrounds the stator 6 and the rotor 7 of the turbomolecular pump stage.
  • the stator 6 comprises the only schematically indicated bucket half rings 8 and the spacer rings 9, which together a form a self-centering stator package.
  • the rotor 7 is equipped with the rotor blades 10.
  • the housing section 4 also surrounds the stator 11 and the rotor 12 of the thread pump stage, the delivery chamber or conveyor gap is designated 13.
  • the thread 14 of this stage can be arranged on the stator or rotor side his. In the illustrated embodiment is it arranged on the stator side and part of an independent stator sleeve mountable from the housing section 15.
  • the rotor 7 of the turbomolecular pump stage 7, 8 and the rotor 12 of the thread pump stage 11, 12 are components of a jointly rotating system 7, 12.
  • the rotor 12 of the threaded pump stage 11, 12 forms the pressure side End of this system and can be as a disc or bell-shaped (as shown in Figure 1) his.
  • the housing section 5 surrounds the drive motor 16, the stator with 17 and the rotor with 18 are.
  • the housing section 5 is part of a Chassis 19 with an interior in which the drive motor 16 and other components are located.
  • the chassis 19 In the chassis 19 is also the rotors 7 and 12 of the compound pump supporting shaft 21 mounted. Only the upper camp 22 is visible. Otherwise, the chassis is 19 carriers all other components of pump 1.
  • the stator sleeve 15 is based on the chassis 19.
  • the inside diameter is slightly larger than the outer diameter of the rotor 7 the turbomolecular pump stage so that the stator sleeve 15 - With the housing section 4 removed and demounted Stator 6 of the turbomolecular pump stage 6.7 - removable is. This gives everyone the opportunity Stator components 8,9,15 only after assembly and also after balancing the rotating system 7, 12.
  • the suction end of the stator sleeve 15 is located a ring 23, the inner edge of the inner diameter corresponds to the spacer rings 2. In the complained state of Pump, the stator 6 is supported on the ring 23.
  • a filling level that is designed as a centrifugal stage 24. It includes extending substantially radially outward Crosspieces 25 facing the last row of rotor blades Form pockets 26. Different embodiments of the Centrifugal stage 24 are shown in Figures 2 to 5. The pockets are located between the webs 25 26, which are open upwards and outwards. The Arrow 27 indicates the direction of rotation.
  • the centrifugal stage 24 part of the rotor 12 of the thread pump stage. It is on the blades 10 of the turbomolecular pump stage 7,10 facing side of the disc or Bell-shaped rotor 12 is formed.
  • the depth of the pockets 26 can increase radially outwards (Fig.1). Their location is chosen so that the peripheral Openings of the pockets 26 at the entrance the thread pump stage 11,12.
  • the bridges at the embodiment of Figure 2 extend radially.
  • the webs 25 in the embodiments according to the Firgures 3 and 4 are 27 with respect to the direction of rotation inclined to the rear, in the embodiment according to FIG. 5 Forward.
  • the exit angle of the webs determines the static and dynamic Proportion of the pressure level. Is the jetty backwards curved, there is a high static component. Moreover is the degree of deflection in the circumferential direction a backward curvature is enhanced. If the bridge is curved forward there is a high dynamic share.
  • Figure 1 shows that the radial dimensions of pockets 26 is essentially the active pumping length of the blades 10 of the last located on the pressure side Rotor blade row corresponds.
  • the centrifugal stage 24 will be those leaving the turbomolecular pump stage Gases due to the action of the webs 26 and pockets 27 deflected, specifically in the direction of the conveyor gap 13 the thread pump stage 11.12.
  • Compression instead, so that stalls largely are avoided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Positive Displacement Air Blowers (AREA)
  • Steroid Compounds (AREA)

Description

Die Erfindung bezieht sich auf eine Reibungsvakuumpumpe mit mindestens einer Turbomolekularpumpenstufe, einer sich daran druckseitig anschließenden Gewindepumpenstufe sowie einer zwischen der Turbomolekularpumpenstufe und der Gewindepumpenstufe befindlichen Füllstufe.
Bei Turbomolekularpumpen mit nachgeschalteten Gewindestufen, auch Compoundpumpen genannt, muß das geförderte Gas aus einem Förderraum mit relativ großem Volumen, in dem sich die Axialverdichterstufen befinden, in einen Förderraum (Förderspalt) mit relativ kleinem Volumen, in dem sich das Gewinde befindet, überführt werden. Bekannte Gestaltungen dieses Übergangsbereichs haben den Nachteil, daß es zu Strömungsabrissen kommt. Diese beeinträchtigen in erheblichem Maße das Saugvermögen der Pumpe.
Aus der DE-A-196 32 874 ist bekannt, zwischen der Turbomolekularpumpenstufe und der sich daran anschließenden Gewindepumpenstufe eine Füllstufe vorzusehen, die mit Flügeln ausgerüstet ist. Die Herstellung einer Zwischenstufe dieser Art ist aufwendig. Außerdem erschweren die Flügel der Zwischenstufe die Montage.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, die Ausbildung der Füllstufe wesentlich zu vereinfachen, ohne auf eine effekive Beschickung der Gewindepumpenstufe verzichten zu müssen.
Erfindungsgemäß wird diese Ausgabe dadurch gelöst, daß die Füllstufe als Zentrifugalstufe ausgebildet ist. Bestandteile der Zentrifugalstufe sind rotierende Stege, die sich in Höhe des saugseitigen Bereichs der Gewindepumpenstufe befinden. Die Zentrifugalpumpe hat die Wirkung, daß die aus der Turbomolekularpumpenstufe austretenden Gase umgelenkt, verdichtet und dem Förderraum der Gewindepumpe zugeführt werden. Der Gasstrom ist weitgehend kontinuierlich, so daß es nicht mehr zu den störenden Strömungsabrissen kommt.
Dadurch, daß die Zentrifugalstufe eine Umlenkung der Gasströmung nach außen bewirkt, besteht die Möglichkeit, für den Förderspalt der Gewindepumpenstufe einen relativ großen Durchmesser zu wählen, so daß die rotierende Pumpfläche der Gewindepumpenstufe eine hohe Umfangsgeschwindigkeit hat.
Ist der Innendurchmesser des außenliegenden Stators der Gewindepumpenstufe größer als der Außendurchmesser des Rotors der Turbomolekularpumpenstufe, dann besteht unter der Voraussetzung, daß der Stator der Turbomolekularpumpe in an sich bekannter Weise aus Distanzringen und Schaufelhalbringen besteht, die Möglichkeit, den Stator beider Pumpenstufen ohne Demontage des Rotors der Turbomolekularpumpenstufe zu montieren bzw. demontieren. Diese Abmessungen erlauben es, das rotierende System der erfindungsgemäßen Compoundpumpe zu wuchten und dann erst die Statorbauteile zu montieren.
Weitere Vorteile und Einzelheiten der Erfindung sollen anhand von in den Figuren 1 bis 6 dargestellten Ausführungsbeispielen erläutert werden. Es zeigen
Figur 1
einen Teillängsschnitt durch ein Ausführungs beispiel für eine Reibungsvakuumpumpe nach der Erfindung und
Figuren 2 bis 5
Draufsichten auf verschiedene Varianten für die Zentrifugalstufe.
Beim Ausführungsbeispiel nach Figur 1 sind die Pumpe selbst mit 1, ihr Einlaß mit 2 und ihr Auslaß mit 3 bezeichnet. Das Gehäuse der Pumpe 1 umfaßt die beiden Abschnitte 4 und 5.
Der Gehäuseabschnitt 4 umgibt den Stator 6 und den Rotor 7 der Turbomolekularpumpenstufe. Der Stator 6 umfaßt die nur schematisch angedeuteten Schaufelhalbringe 8 sowie die Distanzringe 9, die zusammen ein sich selbst zentrierendes Statorpaket bilden. Der Rotor 7 ist mit den Rotorschaufeln 10 ausgerüstet.
Der Gehäuseabschnitt 4 umgibt ebenfalls den Stator 11 und den Rotor 12 der Gewindepumpenstufe, deren Förderraum bzw. Förderspalt mit 13 bezeichnet ist. Das Gewinde 14 dieser Stufe kann stator- oder rotorseitig angeordnet sein. Beim dargestellten Ausführungsbeispiel ist es statorseitig angeordnet und Bestandteil einer unabhängig vom Gehäuseabschnitt montierbaren Statorhülse 15. Der Rotor 7 der Turbomolekularpumpenstufe 7,8 und der Rotor 12 der Gewindepumpenstufe 11,12 sind Bestandteile eines gemeinsam rotierenden Systems 7,12. Der Rotor 12 der Gewindepumpenstufe 11,12 bildet das druckseitige Ende dieses Systems und kann als Scheibe oder glockenförmig (wie in Figur 1 dargestellt) ausgebildet sein.
Der Gehäuseabschnitt 5 umgibt den Antriebsmotor 16, dessen Stator mit 17 und dessen Rotor mit 18 bezeichnet sind. Der Gehäuseabschnitt 5 ist Bestandteil eines Chassis 19 mit einem Innenraum, in dem sich der Antriebsmotor 16 und weitere Bauteile befinden. Im Chassis 19 ist auch die die Rotoren 7 und 12 der Compoundpumpe tragende Welle 21 gelagert. Nur das obere Lager 22 ist sichtbar. Im übrigen ist das Chassis 19 Träger aller weiteren Bauteile der Pumpe 1.
Im montierten Zustand der Pumpe 1 sind die Gehäuseabschnitte miteinander verbunden. Die Statorhülse 15 stützt sich auf dem Chassis 19 ab. Der Innendurchmesser ist etwas größer als der Außendurchmesser des Rotors 7 der Turbemolekularpumpenstufe, damit die Statorhülse 15 - bei entferntem Gehäuseabschnitt 4 und demoniertem Stator 6 der Turbomolekularpumpenstufe 6,7 - demontierbar ist. Dadurch besteht die Möglichkeit, sämtliche Statorbauteile 8,9,15 erst nach der Montage und auch nach dem Wuchten des rotierenden Systems 7,12 zu montieren.
Der saugseitigen Stirnseite der Statorhülse 15 liegt ein Ring 23 auf, dessen Innenrand dem Innendurchmesser der Distanzringe 2 entspricht. Im monierten Zustand der Pumpe stützt sich das Statorpaket 6 auf dem Ring 23 ab.
Zwischen der Turbomolekularpumpenstufe 6,7 und der Gewindepumpenstufe 11,12 befindet sich eine Füllstufe, die als Zentrifugalstufe 24 ausgebildet ist. Sie umfaßt sich im wesentlichen radial nach außen erstreckende Stege 25, die der letzten Rotorschaufelreihe zugewandte Taschen 26 bilden. Verschiedene Ausführungsformen der Zentrifugalstufe 24 sind in den Figuren 2 bis 5 dargestellt. Zwischen den Stegen 25 befinden sich die Taschen 26, die nach oben und nach außen offen sind. Der Pfeil 27 gibt jeweils die Drehrichtung an.
Beim dargestellten Ausführungsbeispiel ist die Zentrifugalstufe 24 Bestandteil des Rotors 12 der Gewindepumpenstufe. Sie ist auf der den Schaufeln 10 der Turbomolekularpumpenstufe 7,10 zugewandten Seite des scheibenoder glockenförmig ausgebildeten Rotors 12 ausgebildet.
Die Tiefe der Taschen 26 kann radial nach außen zunehmen (Fig.1). Ihre Lage ist so gewählt, daß sich die peripheren Öffnungen der Taschen 26 in Höhe des Eintritts der Gewindepumpenstufe 11,12 befinden. Die Stege bei der Ausführungsform nach Figur 2 erstrecken sich radial. Die Stege 25 bei den Ausführungsformen nach den Firguren 3 und 4 sind in Bezug auf die Drehrichtung 27 nach hinten geneigt, bei der Ausführung nach Figur 5 nach vorne. Der Austrittswinkel der Stege (Schaufel der Zentrifugalstufe) bestimmt den statischen und den dynamischen Anteil der Druckhöhe. Ist der Steg rückwärts gekrümmt, ergibt sich ein hoher statischer Anteil. Außerdem wird der Umlenkungsgrad in Umfangsrichtung durch eine Rückwärtskrümmung verstärkt. Ist der Steg vorwärtsgekrümmt, ergibt sich ein hoher dynamischer Anteil.
Figur 1 läßt noch erkennen, daß die radialen Abmessungen der Taschen 26 im wesentlichen der pumpaktiven Länge der Schaufeln 10 der letzten druckseitig gelegenen Rotorschaufelreihe entspricht. In der Zentrifugalstufe 24 werden die die Turbomolekularpumpenstufe verlassenden Gase infolge der Wirkung der Stege 26 und Taschen 27 umgelenkt, und zwar in Richtung des Förderspaltes 13 der Gewindepumpenstufe 11,12. Gleichzeitig findet eine Verdichtung statt, so daß Strömungsabrisse weitestgehend vermieden sind.

Claims (10)

  1. Reibungsvakuumpumpe (1) mit mindestens einer Turbomolekularpumpenstufe (6,7), mit einer sich daran druckseitig anschließenden Gewindepumpenstufe (11,12) und mit einer zwischen Turbomolekularpumpenstufe (6,7) und Gewindepumpenstufe (11,12) angeordneten Füllstufe 24), dadurch gekennzeichnet, daß die Füllstufe 24) als Zentrifugalstufe ausgebildet ist.
  2. Reibungsvakuumpumpe (1) nach Anspruch 1, dadurch gekennzeichnet, daß die Zentrifugalstufe (24) sich im wesentlichen radial erstreckende Stege (25) umfaßt, die peripher offene Taschen (26) bilden und die sich in Höhe des saugseitigen Bereichs der Gewindepumpenstufe (11,12) befinden.
  3. Reibungsvakuumpumpe (1) nach Anspruch 2 dadurch gekennzeichnet, daß sich die Stege (25) der Füllstufe an die druckseitig letzte Rotorschaufelreihe anschließen und daß die radiale Erstreckung der Stege (25)der aktiven Länge der Schaufeln dieser letzten Rotorschaufelreihe entsprechen.
  4. Reibungspumpe (1) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Tiefe der sich zwischen den Stegen (25) befindlichen Taschen (26) mit steigendem Radius zunimmt.
  5. Reibungspumpe (1) nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, daß die sich im wesentichen radial erstreckenden Stege (25) in Bezug auf die Drehrichtung des rotierenden Systems (7,12) nach hinten geneigt sind.
  6. Reibungspumpe (1) nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, daß die sich im wesentlichen radial erstreckenden Stege (25) in Bezug auf die Drehrichtung des rotierenden Systems (7,12) nach vorne geneigt sind.
  7. Reibungspumpe (1) nach einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, daß der Rotor (12) der Gewindepumpenstufe (11,12) scheiben- oder glockenförmig ausgebildet ist und daß die Füllstufe (24) Bestandteil des Rotors (12) ist.
  8. Reibungspumpe (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Statoren (6,11) unabhängig von ihren Rotoren (7,12) demontierbar sind.
  9. Reibungspumpe (1) nach Anspruch 8, dadurch gekennzeichnet, daß die Statoren (6,11) aus von einem Gehäuse (6) umfaßten Bauteilen (8,9,15) bestehen.
  10. Reibungspumpe (1) nach Anspruch 8 oder 9, dadurch gekennzeichnet, daß der Stator (11) der Gewindepumpenstufe (11,12) als separate Hülse (15) ausgebildet ist.
EP98954252A 1997-09-24 1998-09-04 Compoundpumpe Expired - Lifetime EP1017944B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE29717079U DE29717079U1 (de) 1997-09-24 1997-09-24 Compoundpumpe
DE29717079U 1997-09-24
PCT/EP1998/005611 WO1999015793A1 (de) 1997-09-24 1998-09-04 Compoundpumpe

Publications (2)

Publication Number Publication Date
EP1017944A1 EP1017944A1 (de) 2000-07-12
EP1017944B1 true EP1017944B1 (de) 2003-06-25

Family

ID=8046394

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98954252A Expired - Lifetime EP1017944B1 (de) 1997-09-24 1998-09-04 Compoundpumpe

Country Status (5)

Country Link
US (1) US6422829B1 (de)
EP (1) EP1017944B1 (de)
JP (1) JP2001517757A (de)
DE (2) DE29717079U1 (de)
WO (1) WO1999015793A1 (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9810872D0 (en) * 1998-05-20 1998-07-22 Boc Group Plc Improved vacuum pump
DE19915307A1 (de) * 1999-04-03 2000-10-05 Leybold Vakuum Gmbh Reibungsvakuumpumpe mit aus Welle und Rotor bestehender Rotoreinheit
DE10008691B4 (de) * 2000-02-24 2017-10-26 Pfeiffer Vacuum Gmbh Gasreibungspumpe
DE10046506A1 (de) * 2000-09-20 2002-03-28 Leybold Vakuum Gmbh Turbomolekularvakuumpumpe mit Rotorschaufelreihen und Statorschaufelreihen
DE10046766A1 (de) * 2000-09-21 2002-04-11 Leybold Vakuum Gmbh Compound-Reibungsvakuumpumpe
JP2002138987A (ja) * 2000-10-31 2002-05-17 Seiko Instruments Inc 真空ポンプ
US6503050B2 (en) * 2000-12-18 2003-01-07 Applied Materials Inc. Turbo-molecular pump having enhanced pumping capacity
GB0229355D0 (en) 2002-12-17 2003-01-22 Boc Group Plc Vacuum pumping arrangement
JP2005042709A (ja) * 2003-07-10 2005-02-17 Ebara Corp 真空ポンプ
US7021888B2 (en) * 2003-12-16 2006-04-04 Universities Research Association, Inc. Ultra-high speed vacuum pump system with first stage turbofan and second stage turbomolecular pump
ITTO20100070A1 (it) * 2010-02-01 2011-08-02 Varian Spa Pompa da vuoto, in particolare pompa da vuoto turbomolecolare.
DE202011002809U1 (de) * 2011-02-17 2012-06-12 Oerlikon Leybold Vacuum Gmbh Statorelement sowie Hochvakuumpumpe
EP2620649B1 (de) 2012-01-27 2019-03-13 Edwards Limited Gastransfervakuumpumpe
GB2498816A (en) 2012-01-27 2013-07-31 Edwards Ltd Vacuum pump
CN104791264A (zh) * 2015-04-20 2015-07-22 东北大学 一种带有过渡结构的复合分子泵
JP2022143507A (ja) * 2021-03-17 2022-10-03 エドワーズ株式会社 真空ポンプ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3969039A (en) 1974-08-01 1976-07-13 American Optical Corporation Vacuum pump
NL8303927A (nl) 1983-11-16 1985-06-17 Ultra Centrifuge Nederland Nv Hoog-vacuum moleculair pomp.
JPS60125795A (ja) * 1983-12-09 1985-07-05 Osaka Shinku Kiki Seisakusho:Kk 複合真空ポンプ
DE3791053T1 (de) * 1987-12-25 1989-12-21 Valerij Borisovic Solochov Vakuum-molekularpumpe
US5020969A (en) 1988-09-28 1991-06-04 Hitachi, Ltd. Turbo vacuum pump
JPH02102385A (ja) * 1988-10-08 1990-04-13 Toyo Eng Corp 排気装置
DE4216237A1 (de) 1992-05-16 1993-11-18 Leybold Ag Gasreibungsvakuumpumpe
US5513951A (en) * 1993-03-29 1996-05-07 Nippondenso Co., Ltd. Blower device
DE19632874A1 (de) 1996-08-16 1998-02-19 Leybold Vakuum Gmbh Reibungsvakuumpumpe
US5681146A (en) * 1996-10-04 1997-10-28 Future Sea Farms Inc. Low head pumping system for fish farms

Also Published As

Publication number Publication date
DE59808840D1 (en) 2003-07-31
WO1999015793A1 (de) 1999-04-01
US6422829B1 (en) 2002-07-23
JP2001517757A (ja) 2001-10-09
DE29717079U1 (de) 1997-11-06
EP1017944A1 (de) 2000-07-12

Similar Documents

Publication Publication Date Title
EP1017944B1 (de) Compoundpumpe
EP1252445B1 (de) Turbomolekularpumpe
WO1994025760A1 (de) Reibungsvakuumpumpe mit unterschiedlich gestalteten pumpenabschnitten
EP2826999B1 (de) Vakuumpumpe
WO1993023672A1 (de) Gasreibungsvakuumpumpe
EP1230487B1 (de) Schnelllaufende turbopumpe
EP0408792B1 (de) Gasreibungspumpe mit mindestens einer auslassseitigen Gewindestufe
EP1998049A2 (de) Strömungsarbeitsmaschinenschaufel mit Multi-Profil-Gestaltung
DE102012003680A1 (de) Vakuumpumpe
WO2018108617A1 (de) Kreiselpumpe mit radialem laufrad
DE69106179T2 (de) Diagonal-Verdichter.
EP3309359B1 (de) Laufschaufelbaugruppe für ein triebwerk
EP3608545A1 (de) Vakuumpumpe
EP0825346B1 (de) Eingangsstufe für eine zweiflutige Gasreibungspumpe
EP1319131B1 (de) Compound-reibungsvakuumpumpe
EP1200739A1 (de) Reibungsvakuumpumpe mit pumpaktiven elementen
EP3001039B1 (de) Vakuumpumpe
EP3872351A1 (de) Ventilatorrad eines axial- oder diagonalventilators mit wuchtring
EP3734078B1 (de) Turbomolekularpumpe und verfahren zur herstellung einer statorscheibe für eine solche
WO2003031823A1 (de) Axial fördernde reibungsvakuumpumpe
EP3088746B1 (de) Vakuumpumpe
EP2235377B1 (de) Turbomolekularpumpe
EP2420677A1 (de) Mehrstufige Kreiselpumpe
EP3623634B1 (de) Vakuumpumpe umfassend eine holweckpumpstufe und zwei seitenkanalpumpstufen
EP1541871B1 (de) Seitenkanalpumpstufe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000120

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20030625

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030625

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030625

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59808840

Country of ref document: DE

Date of ref document: 20030731

Kind code of ref document: P

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20030625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040401

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040326

EN Fr: translation not filed