EP0649150A1 - Verbundwerkstoff - Google Patents

Verbundwerkstoff Download PDF

Info

Publication number
EP0649150A1
EP0649150A1 EP94115003A EP94115003A EP0649150A1 EP 0649150 A1 EP0649150 A1 EP 0649150A1 EP 94115003 A EP94115003 A EP 94115003A EP 94115003 A EP94115003 A EP 94115003A EP 0649150 A1 EP0649150 A1 EP 0649150A1
Authority
EP
European Patent Office
Prior art keywords
composite material
particles
filler
material according
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP94115003A
Other languages
English (en)
French (fr)
Other versions
EP0649150B1 (de
Inventor
Felix Dr. Greuter
Ralf Dr. Strümpler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Original Assignee
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Research Ltd Switzerland, ABB Research Ltd Sweden filed Critical ABB Research Ltd Switzerland
Publication of EP0649150A1 publication Critical patent/EP0649150A1/de
Application granted granted Critical
Publication of EP0649150B1 publication Critical patent/EP0649150B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/12Overvoltage protection resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • H01C7/027Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient consisting of conducting or semi-conducting material dispersed in a non-conductive organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/901Printed circuit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/913Material designed to be responsive to temperature, light, moisture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/252Glass or ceramic [i.e., fired or glazed clay, cement, etc.] [porcelain, quartz, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/256Heavy metal or aluminum or compound thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/259Silicic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2993Silicic or refractory material containing [e.g., tungsten oxide, glass, cement, etc.]

Definitions

  • the invention is based on a composite material with a filler and a matrix embedding the filler, in which at least one physical variable by acting on the filler and / or the matrix has at least two nonlinear changes in a material property or at least one nonlinear change in each case one of at least two Material properties.
  • An electrical resistance is known from EP 0 548 606 A2.
  • This resistor contains a resistance body made of a composite material with a polymer as a matrix.
  • An electrically conductive powder such as carbon black, and a powdery varistor material, for example based on a spray granulate, are embedded in the polymer matrix as fillers.
  • the electrically conductive powder forms current paths through the resistor body in normal operation.
  • the resistance body heats up intensely above a certain value of the current.
  • the polymer matrix expands greatly and thus separates the particles of the electrically conductive filler that form the current path.
  • the electricity is interrupted.
  • the particles of the varistor material form locally or through the entire resistance body above a predetermined limit value of the voltage percolating paths that derive the undesirably high voltage.
  • two different fillers are required for the functions of current interruption and voltage limitation described above and caused by a non-linear behavior of the composite material with regard to the current or the applied voltage. This is undesirable for some applications and may lead to difficulties in the manufacture of the composite.
  • the invention is based on the object of specifying a composite material of the type mentioned at the outset, which is simple to manufacture and can be easily adapted to a given requirement profile with regard to its material properties by suitable selection of the filler and the matrix.
  • the composite material according to the invention is characterized in that it can be easily adapted to a requirement profile which comprises at least two material properties with non-linear behavior by suitable selection of filler and matrix.
  • the filler and / or the matrix can react to an external physical variable by means of a structural change, for example a phase transition from solid to liquid, which causes a nonlinear change in a material property, for example the electrical conductivity.
  • a nonlinear change in a material property can, however, also be brought about by the action of the external physical quantities, for example an electrical field, without changing the structure.
  • a matrix is referred to as active if it undergoes a structural change when one or more physical variables act, which leads to a non-linear change in a material property of the composite material.
  • a matrix is said to be passive if it does not undergo any structural change when one or more physical variables are involved and thus does not cause a non-linear change in a material property of the composite material.
  • a polymer for example a thermoplastic and / or thermoset and / or an elastomer
  • an inorganic material for example glass, ceramic, for example based on ZrO 2, quartz, geopolymer and / or metal, can also be provided as the matrix.
  • the matrix is predominantly made up of solids, but may also be liquid if necessary.
  • the matrix can be passive, but is generally selected to actively respond to temperature changes (polyethylene), pressure (elastomers or filled with deformable particles such as hollow spheres, thermoplastics), or electric fields (piezoelectric polymers such as polyvinylidene fluoride) Structural changes responded.
  • the filler should contain particles of a core-shell structure or of a granular structure with average particle sizes of typically up to a few 100 ⁇ . However, if the filler has a component with particles of granular structure, the composite should not contain a filler component with electrically conductive particles whose electrical conductivity is higher than the electrical conductivity of the particles of granular structure upon exposure to a non-linear change in the electrical conductivity of the Composite material leading electrical field.
  • the shells of the particles of core-shell structure are advantageously made of insulating material, whereas the cores of these particles preferably consist of electrically conductive and / or electrically semiconducting material.
  • the shells of these particles consist of a chalcogenide, such as, in particular, an oxide or sulfide, a nitride, phosphide and / or sulfate, they should be dimensioned such that the electrical conductivity of the composite material is non-linear for a given value of an electrical field acting in the composite material changes. If the particles are then in a passive matrix formed by a thermoplastic or thermosetting polymer, the electrical conductivity of this composite material can change twice nonlinearly when an appropriate electric field is selected when the material of the cores is selected. A first of these nonlinear changes causes a voltage limitation, a second a current, power or energy limitation.
  • a chalcogenide such as, in particular, an oxide or sulfide, a nitride, phosphide and / or sulfate
  • the particles are in an active matrix formed by a thermoplastic or thermoset or elastomeric polymer
  • a third non-linear change in the conductivity of the composite material can also be achieved, which serves the additional self-protection of the composite material against excessive power consumption and thus against overheating .
  • the cores can advantageously contain doped V2O3 or doped BaTiO3 and the insulating shells VO2, V2O5, TiO2, BaO, BaS or BaSO4.
  • the aforementioned advantageous effects can also be achieved with cores made of doped or undoped semiconducting material, such as in particular ZnO, SiC, Si, TiO2 or SnO2.
  • Have cores of the particles of electrically conductive material, such as in particular TiC, TiB2, BaTi, SrTi, V2O3, Al, Cu, Sn, Ti or Zn and the shells of the particles are formed by a material with a high dielectric constant, which is non-linear from an external physical Size depends, preferably one Ferroelectric or an antiferroelectric, there is a composite material which can be used as a dielectric.
  • the matrix of such a filler is formed by an elastomeric and therefore pressure-active polymer
  • the shells contain a bismuthate such as, in particular, BaW 1/3 Bi23O3, a niobate such as, in particular, PbFe 0.5 Nb 0.5 03, and a scandate such as, in particular, PbW 1 / 3 Sc 2/3 O3, a stannate such as in particular SrSnO3, a tantalate such as in particular PbFe 0.5 Ta 0.5 O3, a titanate such as in particular BaTiO3 or SrTiO3, a zirconate such as in particular PbZrO3, a manganite such as in particular PbW 1/3 Mn 2/3 O3, a rhenite such as in particular BaMn 0.5 Re 0.5 O3, a tellurite such as in particular BaMn 0.5 Te 0.5 03, a tungsten (VI) oxide such as in particular PbMg 0.5 W 0.5 03 or a gall
  • the matrix in such a filler is formed by a piezoelectric polymer, in particular polyvinylidene fluoride, and the shells contain bismuth, niobate, scandate, stannate, tantalate, titanate, zirconate, manganite, rhenite, tellurite, tungsten (VI) oxide or gallium (VI ) oxide, alone or in a mixture, two nonlinear changes in the dielectric constant are produced in such a composite material when the electric field strength and the temperature change.
  • This composite material can therefore be used as a dielectric of a voltage and temperature-dependent capacitance.
  • a composite material with a corresponding filler but with a matrix formed by an active thermoplastic or thermosetting polymer.
  • the composite contains a filler in which both the cores and the shells of the particles of core-shell structure are formed from electrically conductive material, the cores and / or the shells undergoing a structural change when exposed to temperature
  • such composite material can be used as a PTC resistor. It is preferable to provide cores made of V2O3 and / or BaTiO3, each in doped form, and shells made of electrically highly conductive material, such as TiB2 or TiC, in such a composite material.
  • the shells should have a thickness such that the reduced electrical conductivity of the cores when there is a change in structure causes an increase in the electrical resistance of the composite material, for example a doubling.
  • a reduction in a current conducted through the PTC resistor for example a halving, can be achieved very quickly when a limit temperature is reached.
  • an active matrix for example a thermoplastic or thermosetting polymer, is additionally provided, then the slower heating of the polymer then further limits the already reduced current.
  • the particles of granular structure provided in the filler as an alternative or optionally together with the particles of core-shell structure are formed either by crushing a sintered ceramic or a polycrystalline semiconductor or by spray drying a suspension or solution and calcining or sintering the spray-dried particles.
  • These particles can be ferroelectric or antiferroelectric and are primarily bismuth, niobate, scandate, stannate, tantalate, titanate, zirconate, manganite, rhenite, tellurite, tungsten (VI) oxide or gallium (VI) oxide, alone or in a mixture and also doped or undoped.
  • the particles can also consist of doped metal oxide or carbide, such as SiC, TiO2 or ZnO, and / or BaTiO3, SrTiO3, InSb, GaAs or Si.
  • doped metal oxide or carbide such as SiC, TiO2 or ZnO, and / or BaTiO3, SrTiO3, InSb, GaAs or Si.
  • Such composites exhibit two non-linear oppositely directed changes in temperature changes electrical conductivity and can be used as a combined NTC and PTC resistance element. If the particles with a granular structure are embedded in an active matrix, two non-linear changes in the electrical conductivity occur, one of which has a voltage-limiting effect and the other has a current-, power- or energy-limiting effect.
  • a first embodiment of the composite material according to the invention - as is known from the manufacture of the varistor - was first made from a suspension or a solution of zinc oxide and dopants based on several elements, such as Bi, Sb, Mn, Co, Al, ... , produced by spray drying a granulate with particle diameters between 3 and 300 microns.
  • the granulate was sintered into a powder at temperatures of approx. 1200 ° C.
  • the powder particles are essentially spherical and each consist of a large number of grains which adjoin one another in the manner of the casing sections of a football casing.
  • Each of the grains of a powder particle consists of ZnO, which is known in a known manner with Bi, Sb, Mn, and / or other elements is doped and conducts electrical current well. There are electrically insulating grain boundaries between adjacent grains, which become electrically conductive when a voltage of about 3 volts is applied. Depending on the selection of the dopants and the type of manufacturing process, powder particles can be produced which are electrically conductive when voltages between 3 and 200 volts are applied and are electrically non-conductive below this voltage. The powder particles therefore have a non-linear behavior with respect to an external electrical field, primarily determined by the grain boundaries. Instead of being spherical, the powder particles can also have a needle or plate shape and, depending on the production conditions, can be compact or hollow.
  • a varistor containing 25 parts by volume of doped ZnO has the current-voltage characteristic I shown in FIG. 1.
  • the varistor behaves essentially like a conventional varistor based on a sintered ceramic and has a highly non-linear dependence of the current I it carries on the applied voltage E.
  • the current is conducted in percolating paths formed by powder particles.
  • the critical current I c the polymer matrix is heated to temperatures higher than the melting temperature of polyethylene. The polymer matrix expands and breaks the current-carrying paths.
  • the varistor now goes back to a high-resistance state and blocks the current.
  • a varistor with the composite material described above can also be used as an NTC or PTC element.
  • the specific resistance R of the composite material When heated, the specific resistance R of the composite material non-linearly decreases at temperatures T between 20 and 80 ° C. in order to increase non-linearly again at temperatures between 110 and 130 ° C.
  • the first change in resistance is caused by the semiconducting zinc oxide of the filler and the second change in resistance by the polymer matrix active at approx. 110 to 130 ° C.
  • the composite material provided in the varistor can also be used as the dielectric of a capacitor.
  • the sizes of the dielectric constants and the loss factor tan ⁇ of the composite material as a function of the filler fraction ff [volume percent] can be seen from FIGS. 4 and 5. It can be seen from these figures that with filler contents between 25 and 50 percent by volume, good dielectric properties are achieved for many capacitor applications.
  • the dielectric constant and the loss factor are increased non-linearly. From FIG. 6, this is based on the temperature response of the dielectric constant ⁇ of a composite material with a filler component of 25 percent by volume. The same applies to the loss factor of this composite material.
  • a ferro- or antiferroelectric material for example barium titanate
  • a duromer based on epoxy is provided as the polymer matrix.
  • the matrix behaves passively when heated.
  • the dielectric constant ⁇ of the composite material rises non-linearly above a temperature of approximately 60 ° C. This leads to a non-linear change in capacitance of a capacitor provided with such a composite material as a dielectric.
  • an additional non-linear change in the dielectric constant occurs when high voltage is applied.
  • particles of shell-core structure are used as fillers.
  • One of these fillers contains cores made of conductive material, such as in particular V2O3, and shells made of an oxide, such as in particular VO2 or V2O5.
  • cores made of conductive material such as in particular V2O3
  • shells made of an oxide such as in particular VO2 or V2O5.
  • a passive matrix for example a thermoset based on epoxy
  • such a composite material can advantageously be used as a resistance body of a varistor.
  • the current-voltage characteristic of a varistor with a resistance body based on an epoxy matrix and a core made of V2O3 and shells made of VO2-containing filler is shown in Fig. 1 and identified by the reference symbol II.
  • the filler contains cores made of doped BaTiO3 instead of the cores made of V2O3.
  • the shells are advantageously formed from BaO, BaS, BaSO4, V2O3, VO2 or TiO2. Since BaTiO3 causes a much stronger PTC effect than V2O3 at a given limit temperature due to a structural change, such a varistor limits the power considerably more than the previously described varistor. This can be seen from its characteristic curve from FIG. 1, designated by reference number III.
  • the composite material according to the invention contains particles of a core-shell structure embedded in a polymer matrix with cores made of electrically highly conductive material, for example of a barium-titanium, Strontium titanium or titanium base alloy, and shells made of insulating material with a high dielectric constant, such as undoped barium titanate or strontium titanate.
  • a composite material with particles of solid material and with a high dielectric constant this composite material concentrates the electrical field extremely strongly into the shells when an external voltage is applied. If the temperature changes, this leads to a particularly strong non-linear change in the dielectric constant. Due to a structural change in the shells of the filler, a further non-linear change in the dielectric constant of the composite material also occurs when a high voltage is applied.
  • the composite material according to the invention is used as a resistance body of a PTC resistor.
  • the composite material contains an active polymer, such as preferably polyethylene, and a filler with a core-shell structure. Both the cores and the shells are made of electrically conductive material. The material is selected in such a way that the cores and / or the shells undergo a structural change when one or more physical variables are involved.
  • the shells are preferably made of a highly conductive material, such as TiB2, TiC or a metal.
  • the cores preferably contain V2O3 or BaTiO3, each in doped form.

Abstract

Der Verbundwerkstoff weist einen Füllstoff und eine den Füllstoff einbettende Matrix auf. Mindestens eine physikalische Grösse ruft bei diesem Verbundwerkstoff durch Einwirkung auf den Füllstoff und/oder die Matrix mindestens zwei nichtlineare Änderungen einer Werkstoffeigenschaft oder mindestens eine nichtlineare Änderung jeweils einer von mindestens zwei Werkstoffeigenschaften hervor. Der Füllstoff enthält überwiegend eine Komponente mit Teilchen von Kern-Schale-Struktur und/oder von körniger Gefügestruktur. Füllstoff mit Teilchen von körniger Gefügestruktur enthält jedoch keine weitere Füllstoffkomponente mit elektrisch leitfähigen Teilchen, deren elektrische Leitfähigkeit höher ist als die elektrische Leitfähigkeit der Teilchen von körniger Gefügestruktur bei der Einwirkung eines zu einer nichtlinearen Änderung der elektrischen Leitfähigkeit des Verbundwerkstoffes führenden elektrischen Feldes. Der Verbundwerkstoff ist einfach herstellbar und kann durch geeignete Auswahl des Füllstoffs und der Matrix hinsichtlich seiner Werkstoffeigenschaften leicht an ein vorgegebenes Anforderungsprofil angepasst werden. <IMAGE>

Description

    TECHNISCHES GEBIET
  • Bei der Erfindung wird ausgegangen von einem Verbundwerkstoff mit einem Füllstoff und einer den Füllstoff einbettenden Matrix, bei dem mindestens eine physikalische Grösse durch Einwirkung auf den Füllstoff und/oder die Matrix mindestens zwei nichtlineare Änderungen einer Werkstoffeigenschaft oder mindestens eine nichtlineare Änderung jeweils einer von mindestens zwei Werkstoffeigenschaften hervorruft.
  • STAND DER TECHNIK
  • Aus EP 0 548 606 A2 ist ein elektrischer Widerstand bekannt. Dieser Widerstand enthält einen Widerstandskörper aus einem Verbundwerkstoff mit einem Polymer als Matrix. In die polymere Matrix sind als Füllstoffe ein elektrisch leitfähiges Pulver, etwa Russ, und ein pulverförmiges Varistormaterial, etwa auf der Basis eines Sprühgranulates, eingebettet. Bei diesem Widerstand bildet das elektrisch leitfähige Pulver im Normalbetrieb durch den Widerstandskörper hindurchgehende Strompfade aus. Oberhalb eines bestimmten Wertes des Stromes erwärmt sich der Widerstandskörper intensiv. Die Polymermatrix dehnt sich stark aus und trennt so die den Strompfad bildenden Teilchen des elektrisch leitfähigen Füllstoffes. Der Strom wird unterbrochen. Steigt hierbei die Spannung am oder lokal im Widerstandskörper zu stark an, so bilden die Teilchen des Varistormaterials oberhalb eines vorgebenen Grenzwertes der Spannung lokal oder durch den ganzen Widerstandskörper hindurch perkolierende Pfade aus, welche die unerwünscht hohe Spannung ableiten. Für die zuvor beschriebenen und durch ein nichtlineares Verhalten des Verbundwerkstoffs hinsichtlich des geführten Stromes bzw. der anliegenden Spannung hervorgerufenen Funktionen der Stromunterbrechung und der Spannungsbegrenzung werden jedoch zwei verschiedene Füllstoffe benötigt. Dies ist für manche Anwendungen unerwünscht und kann gegebenenfalls zu Schwierigkeiten, bei der Herstellung des Verbundwerkstoffs führen.
  • KURZE DARSTELLUNG DER ERFINDUNG
  • Der Erfindung, wie sie in Patentanspruch 1 angegeben ist, liegt die Aufgabe zugrunde, einen Verbundwerkstoff der eingangs genannten Art anzugeben, welcher einfach herstellbar ist und durch geeignete Auswahl des Füllstoffs und der Matrix hinsichtlich seiner Werkstoffeigenschaften leicht an ein vorgegebenes Anforderungsprofil angepasst werden kann.
  • Der Verbundwerkstoff nach der Erfindung zeichnet sich dadurch aus, dass er durch geeignete Auswahl von Füllstoff und Matrix leicht an ein Anforderungsprofil angepasst werden kann, welches mindestens zwei Werkstoffeigenschaften mit nichtlinearem Verhalten umfasst.
  • Der Füllstoff und/oder die Matrix können gegenüber einer äusseren physikalischen Grösse durch eine Strukturänderung, beispielsweise einen Phasenübergang von fest nach flüssig, reagieren, durch die eine nichtlineare Änderung einer Werkstoffeigenschaft, beispielsweise der elektrischen Leitfähigkeit, hervorgerufen wird. Eine nichtlineare Änderung einer Werkstoffeigenschaft kann aber auch durch das Einwirken der äussere physikalische Grössen, beispielsweise eines elektrischen Feldes, ohne Strukturänderung hervorgerufen werden.
  • Nachfolgend wird eine Matrix als aktiv bezeichnet, wenn sie beim Einwirken einer oder mehrerer physikalischer Grössen eine Strukturänderung erfährt, welche zu einer nichtlinearen Änderung einer Werkstoffeigenschaft des Verbundwerkstoffes führt. Eine Matrix wird als passiv bezeichnet, wenn sie beim Einwirken einer oder mehrerer physikalischer Grössen keine Strukturänderung erfährt und somit auch keine nichtlineare Änderung einer Werkstoffeigenschaft des Verbundwerkstoffes hervorruft.
  • Als Matrix ist im allgemeinen ein Polymer, beispielsweise ein Thermo- und/oder Duroplast und/oder ein Elastomer, vorgesehen. Als Matrix kann gegebenenfalls aber auch ein anorganisches Material, beispielsweise Glas, Keramik, etwa auf der Basis von ZrO₂, Quarz, Geopolymer und/oder Metall, vorgesehen sein. Die Matrix ist überwiegend aus Feststoffen aufgebaut, kann gegebenenfalls aber auch flüssig sein. Die Matrix kann passiv sein, ist jedoch im allgemeinen so ausgewählt, dass sie in aktiver Weise auf Temperaturänderungen (Polyäthylen), Druck (Elastomere oder mit deformierbaren Teilchen, wie Hohlkugeln, gefüllte Thermoplaste), oder elektrische Felder (piezoelektrische Polymere, wie Polyvinylidenfluord) mit Strukturänderungen reagiert.
  • Der Füllstoff sollte Teilchen von Kern-Schale-Struktur oder von körniger Gefügestruktur mit mittleren Teilchengrössen von typischerweise bis zu einigen 100 µ enthalten. Wenn der Füllstoff eine Komponente mit Teilchen von körniger Gefügestruktur aufweist, sollte der Verbundwerkstoff jedoch keine Füllstoffkomponente mit elektrisch leitfähigen Teilchen enthalten, deren elektrische Leitfähigkeit höher ist als die elektrische Leitfähigkeit der Teilchen von körniger Gefügestruktur bei der Einwirkung eines zu einer nichtlinearen Änderung der elektrischen Leitfähigkeit des Verbundwerkstoffes führenden elektrischen Feldes.
  • Die Schalen der Teilchen von Kern-Schale-Struktur sind mit Vorteil aus Isoliermaterial, wohingegen die Kerne dieser Teilchen vorzugsweise aus elektrisch leitendem und/oder elektrisch halbleitendem Material bestehen.
  • Bestehen die Schalen dieser Teilchen aus einem Chalkogenid, wie insbesondere einem Oxid oder Sulfid, einem Nitrid, Phosphid und/oder Sulfat, so sollten sie derart bemessen sein, dass sich bei einem vorgegebenen Wert eines im Verbundwerkstoff wirkenden elektrischen Feldes die elektrische Leitfähigkeit des Verbundwerkstoffes nichtlinear ändert. Befinden sich die Teilchen dann in einer vom einem thermo- oder duroplastischem Polymer gebildeten passiven Matrix, so kann sich bei geeigneter Auswahl des Materials der Kerne bei der Einwirkung eines elektrischen Feldes die elektrische Leitfähigkeit dieses Verbundstoffes zweimal nichtlinear ändern. Eine erste dieser nichtlinearen Änderungen bewirkt eine Spannungsbegrenzung, eine zweite eine Strom- bzw. Leistungs- bzw Energiebegrenzung. Befinden sich hingegen die Teilchen in einer von einem thermo- oder duroplastischen oder elastomeren Polymer gebildeten aktiven Matrix, dann kann zusätzlich noch eine dritte nichtlineare Änderung der Leitfähigkeit des Verbundwerkstoffs erreicht werden, welche dem zusätzlichen Selbstschutz des Verbundwerkstoff vor zu grosser Leistungsaufnahme und damit vor Überhitzung dient. Mit Vorteil können die Kerne dotiertes V₂O₃ oder dotiertes BaTiO₃ und die isolierenden Schalen VO₂, V₂O₅, TiO₂, BaO, BaS oder BaSO₄ enthalten. Auch mit Kernen aus dotiertem oder undotiertem halbleitendem Material, wie insbesondere ZnO, SiC, Si, TiO₂ oder SnO₂, lassen sich die vorgenannten vorteilhaften Wirkungen erreichen.
  • Weisen Kerne der Teilchen elektrisch leitendes Material, wie insbesondere TiC, TiB₂, BaTi, SrTi, V₂O₃, Al, Cu, Sn, Ti oder Zn auf und sind die Schalen der Teilchen von einem Material mit hoher Dielektrizitätskonstante gebildet, welche nichtlinear von einer äusseren physikalischen Grösse abhängt, vorzugsweise ein Ferroelektrikum oder ein Antiferroelektrikum, so liegt ein Verbundwerkstoff vor, welcher als Dielektrikum verwendet werden kann.
  • Ist die Matrix bei einem derartigen Füllstoff von einem elastomeren und daher druckaktiven Polymer gebildet, und enthalten die Schalen ein Bismutat wie insbesondere BaW1/3Bi₂₃O₃, ein Niobat wie insbesondere PbFe0,5Nb0,50₃, ein Scandat wie insbesondere PbW1/3Sc2/3O₃, ein Stannat wie insbesondere SrSnO₃, ein Tantalat wie insbesondere PbFe0,5Ta0,5O₃, ein Titanat wie insbesondere BaTiO₃ oer SrTiO₃, ein Zirkonat wie insbesondere PbZrO₃, ein Manganit wie insbesondere PbW1/3Mn2/3O₃, ein Rhenit wie insbesondere BaMn0,5Re0,5O₃, ein Tellurit wie insbesondere BaMn0,5Te0,50₃, ein Wolfram(VI)oxid wie insbesondere PbMg0,5W0,50₃ oder ein Gallium(VI)oxid wie insbesondere PbW1/3Ga2/3O₃, allein oder in Mischung, so werden bei einem derartigen Verbundstoff bei Druck- und Temperaturänderungen zwei nichtlineare Änderung der Dielektrizitätskonstante und damit auch des Verlustfaktors erreicht. Diese beiden Änderungen begünstigen die Verwendung eines solchen Verbundwerkstoffes als Dielektrikum einer druckund temperaturabhängigen Kapazität.
  • Ist die Matrix bei einem derartigen Füllstoff hingegen von einem piezoelektrischen Polymer, insbesondere Polyvinylidenfluorid gebildet, und enthalten die Schalen Bismutat, Niobat, Scandat, Stannat, Tantalat, Titanat, Zirkonat, Manganit, Rhenit, Tellurit, Wolfram(VI)oxid oder Gallium(VI)oxid, allein oder in Mischung, so werden bei einem solchen Verbundwerkstoff bei Änderungen der elektrischen Feldstärke und der Temperatur zwei nichtlineare Änderungen der Dielektrizitätskonstanten hervorgerufen. Dieser Verbundwerkstoff kann daher als Dielektrikum einer spannungs- und temperaturabhängigen Kapazität verwendet werden. Entsprechendes gilt auch für einen Verbundwerkstoff mit einem entsprechendem Füllstoff, aber mit einer von einem aktiven thermo- oder duroplastischem Polymer gebildeten Matrix.
  • Enthält der Verbundwerkstoff einen Füllstoff, bei dem sowohl die Kerne als auch die Schalen der Teilchen von Kern-Schale-Struktur aus elektrisch leitendem Material gebildet sind, wobei die Kerne und/oder die Schalen bei der Einwirkung von Temperatur eine Strukturänderung erfahren, so kann ein solcher Verbundwerkstoff als PTC-Widerstand Verwendung finden. Zu bevorzugen ist es, bei einem solchen Verbundwerkstoff Kerne aus V₂O₃ und/oder BaTiO₃, jeweils in dotierter Form, und Schalen aus elektrisch gut leitendem Material, wie TiB₂ oder TiC, vorzusehen. Die Schalen sollten hierbei eine solche Dicke aufweisen, dass die bei einer Strukturänderung verringerte elektrische Leitfähig-keit der Kerne eine Erhöhung des elektrischen Widerstandes des Verbundwerkstoffes, beispielsweise eine Verdoppelung, bewirkt. Hierdurch kann bei Erreichen einer Grenztemperatur sehr rasch eine Reduzierung eines durch den PTC-Widerstand geführten Stromes, beispielsweise eine Halbierung, erreicht werden. Ist zusätzlich eine aktive Matrix, beispielsweise ein thermo- oder duroplastisches Polymer, vorgesehen, so wird anschliessend durch das langsamer erhitzte Polymer der bereits reduzierte Strom weiter begrenzt.
  • Die im Füllstoff alternativ oder gegebenenfalls zusammen mit den Teilchen von Kern-Schale-Struktur vorgesehenen Teilchen von körniger Gefügestruktur sind entweder durch Zerkleinern einer Sinterkeramik oder eines polykristallinen Halbleiters oder durch Sprühtrocknen einer Suspension oder Lösung und Calcinieren oder Sintern der sprühgetrockneten Teilchen gebildet. Diese Teilchen können ferroelektrisch oder antiferroelektrisch sein und sind vor allem Bismutat, Niobat, Scandat, Stannat, Tantalat, Titanat, Zirkonat, Manganit, Rhenit, Tellurit, Wolfram(VI)oxid oder Gallium(VI)oxid, allein oder in Mischung sowie dotiert oder undotiert. Die Teilchen können auch aus dotiertem Metalloxid oder -carbid, wie SiC, TiO₂ oder ZnO, und/oder aus BaTiO₃, SrTiO₃, InSb, GaAs oder Si bestehen. Derartige Verbundstoffe weisen bei Temperaturänderungen zwei nichtlineare entgegengesetzt gerichtete Änderungen der elektrischen Leitfähigkeit auf und können als kombiniertes NTC- und PTC-Widerstandselement eingesetzt werden. Sind die Teilchen mit körniger Struktur in eine aktive Matrix eingebettet, so treten zwei nichtlineare Änderungen der elektrischen Leitfähigkeit auf, von denen die eine spannungsbegrenzend und die andere strom-, bzw. leistungs- bzw. energiebegrenzend wirkt.
  • BESCHREIBUNG DER ZEICHNUNGEN
  • Bevorzugte Ausführungsbeispiele der Erfindung und die damit erzielbaren weiteren Vorteile werden nachfolgend anhand von Zeichnungen näher erläutert. Hierbei zeigt:
  • Fig. 1
    die Strom-Spannungs-Kennlinien von vier Varistoren, in denen als Widerstandskörper gemäss vier Ausführungsbeispielen der Erfindung ausgebildete Verbundwerkstoffe vorgesehen sind,
    Fig. 2
    einen Teilabschnitt der Strom-Spannungs-Kennlinie eines ersten der in Fig.1 angegebenen vier Varistoren sowie Teilabschnitte der Strom-Spannungs-Kennlinien weiterer Varistoren, welche sich vom ersten Varistor lediglich durch die Höhe des Füllstoffanteils unterscheiden,
    Fig. 3
    eine Temperatur-Widerstands-Kennlinie des ersten Varistors,
    Fig. 4
    ein Diagramm, in dem die Dielektrizitätskonstante des Verbundwerkstoffs des ersten Varistors in Abhängigkeit vom Füllstoffanteil des Verbundwerkstoffs angegeben ist,
    Fig. 5
    ein Diagramm, in dem der Verlustfaktor des Verbundwerkstoffs des ersten Varistors in Abhängigkeit vom Füllstoffanteil des Verbundwerkstoffs angegeben ist,
    Fig. 6
    ein Diagramm, in dem die Dielektrizitätskonstante eines Kondensators in Funktion der Temperatur angegeben ist, wobei das Dielektrikum des Kondensators von dem im ersten Varistor vorgesehenen Verbundwerkstoff gebildet ist,
    Fig. 7
    ein Diagramm, in dem die Dielektrizitätskonstante eines Kondensators in Funktion der Temperatur angegeben ist, wobei der Kondensator als Dielektrikum einen gemäss einer weiteren Ausführungsform der Erfindung ausgebildeten Verbundwerkstoff enthält, und
    Fig.8
    eine Temperatur-Widerstands-Kennlinie eines PTC-Widerstandes, dessen Widerstandskörper aus einem gemäss einer weiteren Ausführungsform der Erfindung gebildeten Verbundwerkstoff besteht.
    WEGE ZUR AUSFÜHRUNG DER ERFINDUNG
  • In einer ersten Ausführungsform des Verbundwerkstoffs nach der Erfindung wurde - wie von der Varistorherstellung her bekannt ist - zunächst aus einer Suspension oder einer Lösung von Zinkoxid und Dotierstoffen auf der Basis mehrerer Elemente, wie Bi, Sb, Mn, Co, Al,..., durch Sprühtrocknen ein Granulat mit Teilchendurchmessern zwischen 3 und 300 µm erzeugt. Das Granulat wurde bei Temperaturen von ca. 1200°C zu einem Pulver gesintert. Die Pulverpartikel sind im wesentlichen kugelförmig ausgebildet und bestehen jeweils aus einer Vielzahl von Körnern, welche nach Art der Hüllenabschnitte einer Fussballhülle aneinandergrenzen. Jedes der Körner eines Pulverpartikels besteht aus ZnO, welches in bekannter Weise mit Bi, Sb, Mn, und/oder weiteren Elementen dotiert ist und elektrischen Strom gut leitet. Zwischen aneinandergrenzenden Körnern befinden sich elektrisch isolierende Korngrenzen, welche beim Anliegen einer Spannung von etwa 3 Volt elektrisch leitend werden. Je nach Auswahl der Dotierstoffe und Art des Herstellverfahrens lassen sich so Pulverpartikel herstellen, welche beim Anliegen von Spannungen zwischen 3 und 200 Volt elektrisch leitend und unterhalb dieser Spannung elektrisch nichtleitend sind. Die Pulverpartikel weisen also hinsichtlich eines äusseren elektrischen Feldes nichtlineares, in erster Linie durch die Korngrenzen bestimmtes Verhalten auf. Anstelle Kugelform können die Pulverpartikel auch Nadel- oder Plattenform aufweisen und können je nach Herstellbedingungen kompakt oder hohl ausgebildet sein.
  • 25, 30, 35, 40 und 45 Teile des vorgenannten Pulvers wurde jeweils intensiv mit Polyäthylen vermischt und durch Heisspressen Verbundwerkstoffe mit einer Polyäthylenmatrix und mit Füllstoffanteilen von 25, 30, 35, 40 und 45 Volumenprozent hergestellt.
  • Ein 25 Volumenanteile dotiertes ZnO enthaltender Varistor weist die in Fig. 1 angegebene Strom-Spannungs-Kennlinie I auf. Unterhalb einer kritischen Stromstärke Ic verhält sich der Varistor im wesentlichen wie ein herkömmlicher Varistor auf der Basis einer Sinterkeramik und weist eine stark nichtlineare Abhängigkeit des von ihm geführten Stromes I von der anliegenden Spannung E ab. Der Strom wird hierbei in perkolierenden, von Pulverpartikeln gebildeten Pfaden geführt. Oberhalb der kritischen Stromstärke Ic wird die Polymermatrix auf Temperaturen höher als die Schmelztemperatur von Polyäthlen erhitzt. Die Polymermatrix dehnt sich aus und unterbricht die stromführenden Pfade. Der Varistor geht nun wieder in einen hochohmigen Zustand über und sperrt den Strom. Durch die Aktivierung der Matrix oberhalb der kritischen Stromstärke Ic wird also erreicht, dass eine unzulässige Erwärmung des Varistors vermieden wird.
  • Aus Fig. 2 ist zu ersehen, dass mit zunehmendem Füllstoffanteil ff [Volumenprozent] das nichtlineare Verhalten des Varistors verbessert wird. Ausreichend gutes nichtlineares Verhalten hinsichtlich der äusseren Spannung E wird mit Füllstoffanteilen von ca. 30 bis 50 Volumenprozent erreicht. Bei diesen Füllstoffanteilen wird auch durch Aktivierung der Polymermatrix in sicherer Weise eine Überhitzung des Varistors vermieden.
  • Aus Fig. 3 ist zu ersehen, dass ein Varistor mit dem zuvor beschriebenen Verbundwerkstoff auch als NTC- oder PTC-Element eingesetzt werden kann. Beim Erwärmen verringert sich nämlich bei Temperaturen T zwischen 20 und 80°C der spezifische Widerstand R des Verbundwerkstoffs nichtlinear, um sich bei Temperaturen zwischen 110 und 130°C nichtlinear wieder zu erhöhen. Hierbei wird die erste Widerstandsänderung durch das halbleitende Zinkoxid des Füllstoffs und die zweite Widerstandsänderung durch die bei ca. 110 bis 130°C aktive Polymermatrix hervorgerufen.
  • Aufgrund der kapazitiven Wirkung, die durch die Korngrenzen der einzelnen Pulverteilchen hervorgerufen werden (Raumladungen), kann der im Varistor vorgesehene Verbundwerkstoff auch als Dielektrikum eines Kondensators eingesetzt werden. Die Grössen der Dielektrizitätskonstanten und des Verlustfaktors tan δ des Verbundwerkstoffes in Funktion des Füllstoffanteils ff [Volumenprozent] sind aus den Figuren 4 und 5 ersichtlich. Aus diesen Figuren ist zu entnehmen, dass mit Füllstoffanteilen zwischen 25 und 50 Volumenprozent für viele Kondensatoranwendungen ausreichend gute dielektrische Eigenschaften erreicht werden. Bei Temperaturerhöhung werden die Dielektrizitäts-konstante und der Verlustfaktor nichtlinear erhöht. Aus Fig. 6 ist dies anhand des Temperaturganges der Dielektrizitätskonstante ε eines Verbundwerkstoffes mit einem Füllstoffanteil von 25 Volumenprozent ersichtlich. Entsprechendes gilt für den Verlustfaktor dieses Verbundwerkstoffes.
  • In einer weiteren Ausführungsform des Verbundwerkstoffs nach der Erfindung ist als Füllstoff ein ferro- oder antiferroelektrisches Material, beispielsweise Bariumtitanat, und als Polymermatrix ein Duromer auf der Basis von Epoxid vorgesehen. Bei diesem Verbundwerkstoff verhält sich die Matrix beim Erwärmen passiv. Wie aus Fig. 7 ersichtlich ist, steigt oberhalb einer Temperatur von ca. 60°C die Dielektrizitätskonstante ε des Verbundwerkstoffs nichtlinear an. Dies führt zu einer nichtlinearen Kapazitätsänderung eines mit einem solchen Verbundwerkstoff als Dielektrikum versehenen Kondensators. Darüber hinaus tritt eine zusätzliche nichtlineare Änderung der Dielektrizitätskonstanten beim Anlegen von Hochspannung auf.
  • In einem anderen Ausführungsbeispiel werden als Füllstoffe Teilchen von Schale-Kern-Struktur verwendet. Einer dieser Füllstoffe enthält Kerne aus leitendem Material, wie insbesondere V₂O₃, und Schalen aus einem Oxid, wie insbesondere VO₂ oder V₂O₅. Werden solche Füllstoffe mit Volumenanteilen von typischerweise 20 bis 50 Volumenprozent in eine passive Matrix, beispielsweise ein Duroplast auf der Basis von Epoxid, eingebettet, so lässt sich ein solcher Verbundwerkstoff mit Vorteil als Widerstandskörper eines Varistors verwenden. Die Strom-Spannungs-Kennlinie eines Varistors mit einem Widerstandskörper auf der Basis einer Epoxidmatrix und eines Kerne aus V₂O₃ und Schalen aus VO₂ enthaltenden Füllstoffs ist in Fig. 1 dargestellt und mit dem Bezugszeichen II gekennzeichnet. Aus dieser Kennlinie ist zu ersehen, dass oberhalb einer vorgebenen Grenzspannung der vom Varistor geführte Strom nichtlinear anwächst und damit die anliegende Spannung begrenzt. Diese Begrenzung ist zwar wesentlich geringer als bei dem Varistor auf der Basis vom Polymer und ZnO (Kennlinie I), reicht jedoch für viele Anwendungen, inabesondere im Niederspannungsbereich, vollkommen aus. Sobald der Varistor eine vorgegebene Grenzleistung aufgenommen hat und auf eine einen PTC-Effekt bestimmende Grenztemperatur aufgeheizt ist, ändert das zuvor elektrisch leitende V₂O₃ seine Struktur und bildet eine nichtleitende Phase. Hierdurch wird die im Varistor umgesetzte Leistung nichtlinear begrenzt. Durch die zweite nichtlineare Änderung der Kennlinie wird entsprechend dem Varistor mit der Kennlinie I ein Selbstschutz vor zu grosser Leistungsaufnahme erreicht.
  • Der Selbstschutz kann verbessert werden, wenn der Füllstoff anstelle der Kerne aus V₂O₃ Kerne aus dotiertem BaTiO₃ enthält. Die Schalen werden hierbei mit Vorteil von BaO, BaS, BaSO₄, V₂O₃, VO₂ oder TiO₂ gebildet. Da BaTiO₃ bei einer vorgegebenen Grenztemperatur infolge einer Strukturänderung einen wesentlich stärkeren PTC-Effekt hervorruft als V₂O₃, begrenzt ein solcher Varistor die Leistung erheblich stärker als der zuvor beschriebene Varistor. Dies kann aus seiner mit dem Bezugszeichen III bezeichneten Kennlinie aus Fig. 1 entnommen werden.
  • Ein ähnlicher Selbstschutz bei ähnlichem Varistorverhalten lässt sich erreichen, wenn die von einer isolierenden Schale umgebenen Kerne halbleitendes Material, wie z.B. Si, SiC, SnO₂, TiO₂ oder ZnO, enthalten. Durch Verwendung einer Matrix aus einem aktivem Polymer, beispielsweise einem Thermoplast, wie Polyäthylen, kann bei einem solchen Varistor wie auch bei den zuvor beschriebenen beiden Varistoren mit Kernen aus V₂O₃ und BaTiO₃ der Selbstschutz durch einen entsprechend dem Varistor mit der Kennlinie I von der Polymermatrix bewirkten PTC-Übergang ganz erheblich verbessert werden. Dies kann aus seiner mit dem Bezugszeichen IV versehenen Kennlinie aus Fig. 1 entnommen werden.
  • In einem anderen Ausführungsbeispiel enthält der Verbundwerkstoff nach der Erfindung in eine Polymermatrix eingebettete Teilchen von Kern-Schale-Struktur mit Kernen aus elektrisch gut leitendem Material, beispielsweise aus einer Barium-Titan-, Strontium-Titan- oder Titanbasis-Legierung, und Schalen aus isolierendem Material mit hoher Dielektrizitätskonstante, wie beispielsweise undotiertes Bariumtitanat oder Strontiumtitanat. Bei diesem Verbundwerkstoff wird im Gegensatz zu einem Verbundwerkstoff mit Teilchen aus massivem Material und mit hoher Dielektrizitätskonstante bei Anlegen einer äusseren Spannung das elektrische Feld äusserst stark in die Schalen hinein konzentriert. Bei einer Temperaturänderung führt dies zu einer besonders starken nichtlinearen Änderung der Dielektrizitätskonstanten. Aufgrund einer Strukturänderung der Schalen des Füllstoffes tritt bei Anlegen einer Hochspannung zudem eine weitere nichtlineare Änderung der Dielektrizitätskonstanten des Verbundwerkstoffes auf.
  • In einem weiteren Ausführungsbeispiel wird der Verbundwerkstoff nach der Erfindung als Widerstandskörper eines PTC-Widerstandes verwendet. Der Verbundwerkstoff enthält ein aktives Polymer, wie vorzugsweise Polyäthylen, und einen Füllstoff von Kern-Schale-Struktur. Sowohl die Kerne als auch die Schalen bestehen aus elektrisch leitendem Material. Das Material ist so ausgewählt, dass bei Einwirkung einer oder mehrerer physikalischer Grössen die Kerne und/oder die Schalen eine Strukturänderung erfahren. Die Schalen sind vorzugsweise von einem gut stromleitenden Material, wie TiB₂, TiC oder einem Metall, gebildet. Die Kerne enthalten bevorzugt V₂O₃ oder BaTiO₃, jeweils in dotierter Form. Beim Aufheizen eines solchen PTC-Widerstandes durch einen Strom, werden zunächst die Kontaktstellen der einzelnen Füllstoffteilchen im Strompfad und damit zunächst auch die Füllstoffteilchen erwärmt. Oberhalb einer materialspezifischen Übergangstemperatur ändert sich die Struktur der Kerne und erhöht sich deren spezifischen Widerstand aufgrund eines PTC-Effektes in nichtlinearer Weise beträchtlich.
  • Aus Fig. 8 ist zu ersehen, dass dieser PTC-Effekt den spezifischen Widerstand des PTC-Elementes beträchtlich erhöht. Der vom Widerstand geführte Strom wird nun ganz erheblich begrenzt. Dies vollzieht sich wegen der raschen Erwärmung der stromleitenden Teilchen sehr rasch. Das sich langsamer erwärmende Polymer erreicht erst nach einer bestimmten Zeit seine Erweichungstemperatur, dehnt sich aus und unterbricht unter nichtlinearer Erhöhung des spezifischen Widerstandes des PTC-Elementes die Strompfade.

Claims (17)

  1. Verbundwerkstoff mit einem Füllstoff und mit einer den Füllstoff einbettenden Matrix, bei dem mindestens eine physikalische Grössen durch Einwirkung auf den Füllstoff und/oder die Matrix mindestens zwei nichtlineare Änderungen einer Werkstoffeigenschaft oder eine nichtlineare Änderung jeweils einer von zwei Werkstoffeigenschaften hervorruft, dadurch gekennzeichnet, dass der Füllstoff überwiegend eine Komponente mit Teilchen von Kern-Schale-Struktur und/oder von körniger Gefügestruktur enthält, jedoch ein Füllstoff mit Teilchen von körniger Gefügestruktur keine weitere Füllstoffkomponente mit elektrisch leitfähigen Teilchen, deren elektrische Leitfähigkeit höher ist als die elektrische Leitfähigkeit der Teilchen von körniger Gefügestruktur bei der Einwirkung eines zu einer nichtlinearen Änderung der elektrischen Leitfähigkeit des Verbundwerkstoffes führenden elektrischen Feldes.
  2. Verbundwerkstoff nach Anspruch 1, dadurch gekennzeichnet, dass die Schalen der Teilchen von Kern-Schale-Struktur aus Isoliermaterial und die Kerne der Teilchen aus elektrisch leitendem und/oder elektrisch halbleitendem Material bestehen.
  3. Verbundwerkstoff nach Anspruch 2, dadurch gekennzeichnet, dass die Schalen der Teilchen von einem Chalkogenid, wie insbesondere einem Oxid oder Sulfid, von einem Nitrid, Phosphid und/oder Sulfat gebildet sind.
  4. Verbundwerkstoff nach einem der Ansprüche 2 oder 3, dadurch gekennzeichnet, dass die isolierenden Schalen derart bemessen sind, dass sich bei einem vorgegebenen Wert eines im Verbundwerkstoff wirkenden elektrischen Feldes die elektrische Leitfähigkeit des Verbundwerkstoffes nichtlinear ändert.
  5. Verbundwerkstoff nach Anspruch 4, dadurch gekennzeichnet, dass die Kerne dotiertes V₂O₃ oder dotiertes BaTiO₃ und die isolierenden Schalen VO₂, V₂O₅, TiO₂, BaO, BaS oder BaSO₄ enthalten.
  6. Verbundwerkstoff nach Anspruch 4, dadurch gekennzeichnet, dass die Kerne des Füllstoffs dotiertes oder undotiertes halbleitendes Material, wie insbesondere ZnO, SiC, Si, TiO₂ oder SnO₂, enthalten.
  7. Verbundwerkstoff nach einem der Ansprüche 5 oder 6, dadurch gekennzeichnet, dass die Matrix von einem Polymer gebildet ist, welches beim Einwirken der mindestens einen physikalischen Grösse eine Strukturänderung erfährt.
  8. Verbundwerkstoff nach Anspruch 2, dadurch gekennzeichnet, dass die Kerne der Teilchen elektrisch leitendes Material, wie insbesondere TiC, TiB₂, BaTi, SrTi, V₂O₃, Al, Cu, Sn, Ti oder Zn, aufweisen, und dass die Schalen der Teilchen von einem Material mit hoher Dielektrizitätskonstante gebildet sind, welche nichtlinear von der mindestens einen physikalischen Grösse abhängt.
  9. Verbundwerkstoff nach Anspruch 8, dadurch gekennzeichnet, dass das Material mit hoher Dielektrizitätskonstante ferroelektrisch oder antiferroelektrisch ist, und dass die Matrix von einem Polymer gebildet ist, welches beim Einwirken der mindestens einen physikalischen Grösse eine Strukturänderung erfährt.
  10. Verbundwerkstoff nach Anspruch 9, dadurch gekennzeichnet, dass die Matrix von einem elastomeren Polymer gebildet ist, und dass die Schalen Bismutat, Niobat, Scandat, Stannat, Tantalat, Titanat, Zirkonat, Manganit, Rhenit, Tellurit, Wolfram(VI)oxid oder Gallium(VI)oxid allein oder in Mischung enthalten.
  11. Verbundwerkstoff nach Anspruch 9, dadurch gekennzeichnet, dass die Matrix von einem piezoelektrischen Polymer, insbesondere Polyvinylidenfluorid gebildet ist, und dass die Schalen Bismutat, Niobat, Scandat, Stannat, Tantalat, Titanat, Zirkonat, Manganit, Rhenit, Tellurit, Wolfram(VI)oxid oder Gallium(VI)oxid allein oder in Mischung enthalten.
  12. Verbundwerkstoff nach Anspruch 1, dadurch gekennzeichnet, dass sowohl die Kerne als auch die Schalen der Teilchen von Kern-Schale-Struktur aus elektrisch leitendem Material gebildet sind, wobei die Kerne und/oder die Schalen bei Einwirkung der mindestens einen physikalischen Grösse eine Strukturänderung erfahren.
  13. Verbundwerkstoff nach Anspruch 12, dadurch gekennzeichnet, dass die Matrix von einem Polymer gebildet ist, welches beim Einwirken der mindestens einen physikalischen Grösse eine Strukturänderung erfährt, und dass die Kerne V₂O₃ und/oder BaTiO₃, jeweils dotiert, enthalten.
  14. Verbundwerkstoff nach Anspruch 1, dadurch gekennzeichnet, dass die Teilchen von körniger Gefügestruktur entweder durch Zerkleinern einer Sinterkeramik oder eines polykristallinen Halbleiters oder durch Sprühtrocknen einer Suspension oder Lösung und Calcinieren oder Sintern der sprühgetrockneten Teilchen gebildet sind.
  15. Verbundwerkstoff nach Anspruch 14, dadurch gekennzeichnet, dass die Teilchen ferroelektrisch oder antiferroelektrisch sind und insbesondere dotiertes oder undotiertes Bismutat, Niobat, Scandat, Stannat, Tantalat, Titanat, Zirkonat, Manganit, Rhenit, Tellurit, Wolfram(VI)oxid oder Gallium(VI)oxid allein oder in Mischung enthalten.
  16. Verbundwerkstoff nach Anspruch 14, dadurch gekennzeichnet, dass die Teilchen aus dotiertem Metalloxid oder -carbid, wie SiC, TiO₂ oder ZnO, und/oder BaTiO₃, SrTiO₃, InSb, GaAs oder Si bestehen.
  17. Verbundwerkstoff nach einem der Ansprüche 14 bis 16, dadurch gekennzeichnet, dass die Matrix von einem Polymer gebildet ist, welches beim Einwirken der mindestens einen physikalischen Grössen eine Strukturänderung erfährt.
EP94115003A 1993-10-15 1994-09-23 Verbundwerkstoff Expired - Lifetime EP0649150B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH312493 1993-10-15
CH3124/93 1993-10-15

Publications (2)

Publication Number Publication Date
EP0649150A1 true EP0649150A1 (de) 1995-04-19
EP0649150B1 EP0649150B1 (de) 1998-06-24

Family

ID=4249125

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94115003A Expired - Lifetime EP0649150B1 (de) 1993-10-15 1994-09-23 Verbundwerkstoff

Country Status (4)

Country Link
US (1) US5858533A (de)
EP (1) EP0649150B1 (de)
JP (1) JP3628049B2 (de)
DE (1) DE59406312D1 (de)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0923086A1 (de) * 1997-12-11 1999-06-16 Abb Research Ltd. Schutzelement
EP0930623A1 (de) * 1998-01-16 1999-07-21 Littelfuse, Inc. Polymerverbundmaterial zum Schutz vor elektrostatischer Entladung
WO2000048206A1 (en) * 1999-02-09 2000-08-17 Do-Coop Technologies Ltd. Materials and composites activable into a state of enhanced conductivity
DE19945426C1 (de) * 1999-09-22 2001-01-18 Siemens Ag Steckverbinder eines elektrischen Geräts
DE19821239C2 (de) * 1998-05-12 2003-04-17 Epcos Ag Verbundwerkstoff zur Ableitung von Überspannungsimpulsen und Verfahren zu seiner Herstellung
US7258819B2 (en) 2001-10-11 2007-08-21 Littelfuse, Inc. Voltage variable substrate material
EP2330648A1 (de) * 2009-12-04 2011-06-08 Bayer MaterialScience AG Piezoelektrisches Polymerfilmelement, insbesondere Polymerfolie und Verfahren zu dessen Herstellung
DE102011050567A1 (de) 2011-05-23 2012-11-29 Kurt Stimpfl Steckverbinder und seine Verwendung zum Schutz eines elektrischen Systems gegen Überspannungsentladung sowie Verfahren zu seiner Herstellung
CN103325508A (zh) * 2013-05-21 2013-09-25 京东方科技集团股份有限公司 变阻器及其制作方法
EP2243013B1 (de) * 2008-02-19 2017-07-05 Epcos AG Verbundwerkstoff zur temperaturmessung, temperatursensor aufweisend den verbundwerkstoff und verfahren zur herstellung des verbundwerkstoffs und des temperatursensors

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6232866B1 (en) 1995-09-20 2001-05-15 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Composite material switches
JP2001167904A (ja) * 1999-12-09 2001-06-22 Murata Mfg Co Ltd 半導体磁器およびそれを用いた電子部品
EP1168378A1 (de) * 2000-06-19 2002-01-02 Abb Research Ltd. Verfahren zur Herstellung einer PTC-Vorrichtung
EP1382060A1 (de) * 2000-08-24 2004-01-21 Cova Technologies Incorporated Ferroelektrische nicht flüchtige seltene erden manganit einzeltransistorspeiche-speicherzelle
KR20020068198A (ko) * 2001-02-20 2002-08-27 엘지전선 주식회사 2중 전도성 복합체를 함유한 전기소자
WO2002071477A1 (en) * 2001-03-02 2002-09-12 Cova Technologies Incorporated Single transistor rare earth manganite ferroelectric nonvolatile memory cell
ATE499691T1 (de) * 2001-07-02 2011-03-15 Abb Schweiz Ag Polymercompound mit nichtlinearer strom-spannungs-kennlinie und verfahren zur herstellung eines polymercompounds
US7183891B2 (en) 2002-04-08 2007-02-27 Littelfuse, Inc. Direct application voltage variable material, devices employing same and methods of manufacturing such devices
US6825517B2 (en) 2002-08-28 2004-11-30 Cova Technologies, Inc. Ferroelectric transistor with enhanced data retention
US6888736B2 (en) 2002-09-19 2005-05-03 Cova Technologies, Inc. Ferroelectric transistor for storing two data bits
US6714435B1 (en) 2002-09-19 2004-03-30 Cova Technologies, Inc. Ferroelectric transistor for storing two data bits
DE10251583A1 (de) * 2002-11-06 2004-05-19 Philips Intellectual Property & Standards Gmbh Anzeigevorrichtung mit Varistorschicht
WO2004057676A2 (en) * 2002-12-19 2004-07-08 Koninklijke Philips Electronics N.V. Electric device with phase change material and parallel heater
US20060258327A1 (en) * 2005-05-11 2006-11-16 Baik-Woo Lee Organic based dielectric materials and methods for minaturized RF components, and low temperature coefficient of permittivity composite devices having tailored filler materials
US7271369B2 (en) * 2005-08-26 2007-09-18 Aem, Inc. Multilayer positive temperature coefficient device and method of making the same
US8574358B2 (en) 2005-12-06 2013-11-05 James Hardie Technology Limited Geopolymeric particles, fibers, shaped articles and methods of manufacture
EP2082405B1 (de) * 2006-11-20 2018-10-31 SABIC Global Technologies B.V. Wärmeregulierte elektrisch leitende zusammensetzungen
US20090050856A1 (en) * 2007-08-20 2009-02-26 Lex Kosowsky Voltage switchable dielectric material incorporating modified high aspect ratio particles
US9390857B2 (en) * 2008-09-30 2016-07-12 General Electric Company Film capacitor
CN101887960B (zh) * 2010-07-13 2015-07-29 清华大学 锂离子电池极耳及具有该极耳的锂离子电池
US20170176261A1 (en) * 2015-12-17 2017-06-22 Alexander Raymond KING Sensing element and sensing process

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3707503A1 (de) * 1986-10-24 1988-04-28 Nippon Mektron Kk Ptc-zusammensetzung
US5068634A (en) * 1988-01-11 1991-11-26 Electromer Corporation Overvoltage protection device and material
EP0548606A2 (de) * 1991-12-21 1993-06-30 Asea Brown Boveri Ag Widerstand mit PTC - Verhalten

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS549294B2 (de) * 1972-02-16 1979-04-23
US3764529A (en) * 1972-02-17 1973-10-09 Matsushita Electric Ind Co Ltd Method of manufacturing fine grain ceramic barium titanate
US3805022A (en) * 1972-10-10 1974-04-16 Texas Instruments Inc Semiconducting threshold heaters
US4534889A (en) * 1976-10-15 1985-08-13 Raychem Corporation PTC Compositions and devices comprising them
US4271446A (en) * 1977-06-27 1981-06-02 Comstock Wilford K Transient voltage suppression system
US4152743A (en) * 1977-06-27 1979-05-01 Comstock Wilford K Transient voltage suppression system
JPS56169316A (en) * 1980-05-30 1981-12-26 Matsushita Electric Ind Co Ltd Composition functional element and method of producing same
US4347539A (en) * 1981-06-03 1982-08-31 Westinghouse Electric Corp. Electrical equipment protective apparatus with energy balancing among parallel varistors
US4780598A (en) * 1984-07-10 1988-10-25 Raychem Corporation Composite circuit protection devices
US5064997A (en) * 1984-07-10 1991-11-12 Raychem Corporation Composite circuit protection devices
US4583146A (en) * 1984-10-29 1986-04-15 General Electric Company Fault current interrupter
US4636378A (en) * 1985-06-11 1987-01-13 Hughes Aircraft Company Method of preparation of perovskite-type compounds
US4726991A (en) * 1986-07-10 1988-02-23 Eos Technologies Inc. Electrical overstress protection material and process
DE3823698A1 (de) * 1988-07-13 1990-01-18 Philips Patentverwaltung Nichtlinearer spannungsabhaengiger widerstand
US5128581A (en) * 1989-05-02 1992-07-07 Fujikura Ltd. Piezoelectric acceleration sensor and piezoelectric acceleration sensor device
US5294374A (en) * 1992-03-20 1994-03-15 Leviton Manufacturing Co., Inc. Electrical overstress materials and method of manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3707503A1 (de) * 1986-10-24 1988-04-28 Nippon Mektron Kk Ptc-zusammensetzung
US5068634A (en) * 1988-01-11 1991-11-26 Electromer Corporation Overvoltage protection device and material
EP0548606A2 (de) * 1991-12-21 1993-06-30 Asea Brown Boveri Ag Widerstand mit PTC - Verhalten

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0923086A1 (de) * 1997-12-11 1999-06-16 Abb Research Ltd. Schutzelement
EP0930623A1 (de) * 1998-01-16 1999-07-21 Littelfuse, Inc. Polymerverbundmaterial zum Schutz vor elektrostatischer Entladung
DE19821239C2 (de) * 1998-05-12 2003-04-17 Epcos Ag Verbundwerkstoff zur Ableitung von Überspannungsimpulsen und Verfahren zu seiner Herstellung
DE19821239C5 (de) * 1998-05-12 2006-01-05 Epcos Ag Verbundwerkstoff zur Ableitung von Überspannungsimpulsen und Verfahren zu seiner Herstellung
WO2000048206A1 (en) * 1999-02-09 2000-08-17 Do-Coop Technologies Ltd. Materials and composites activable into a state of enhanced conductivity
DE19945426C1 (de) * 1999-09-22 2001-01-18 Siemens Ag Steckverbinder eines elektrischen Geräts
US7258819B2 (en) 2001-10-11 2007-08-21 Littelfuse, Inc. Voltage variable substrate material
EP2243013B1 (de) * 2008-02-19 2017-07-05 Epcos AG Verbundwerkstoff zur temperaturmessung, temperatursensor aufweisend den verbundwerkstoff und verfahren zur herstellung des verbundwerkstoffs und des temperatursensors
EP2330648A1 (de) * 2009-12-04 2011-06-08 Bayer MaterialScience AG Piezoelektrisches Polymerfilmelement, insbesondere Polymerfolie und Verfahren zu dessen Herstellung
WO2011067194A1 (de) * 2009-12-04 2011-06-09 Bayer Materialscience Ag Piezoelektrisches polymerfilmelement, insbesondere polymerfolie, und verfahren zu dessen herstellung
DE102011050567A1 (de) 2011-05-23 2012-11-29 Kurt Stimpfl Steckverbinder und seine Verwendung zum Schutz eines elektrischen Systems gegen Überspannungsentladung sowie Verfahren zu seiner Herstellung
WO2012159626A1 (de) 2011-05-23 2012-11-29 Kurt Stimpfl Steckverbinder und seine verwendung zum schutz eines elektrischen systems gegen überspannungsentladung sowie verfahren zu seiner herstellung
CN103325508A (zh) * 2013-05-21 2013-09-25 京东方科技集团股份有限公司 变阻器及其制作方法
CN103325508B (zh) * 2013-05-21 2016-02-10 京东方科技集团股份有限公司 变阻器及其制作方法
US9728309B2 (en) 2013-05-21 2017-08-08 Boe Technology Group Co., Ltd. Variable resistance and manufacturing method thereof

Also Published As

Publication number Publication date
US5858533A (en) 1999-01-12
EP0649150B1 (de) 1998-06-24
JP3628049B2 (ja) 2005-03-09
DE59406312D1 (de) 1998-07-30
JPH07169607A (ja) 1995-07-04

Similar Documents

Publication Publication Date Title
EP0649150B1 (de) Verbundwerkstoff
EP1274102B1 (de) Polymercompound mit nichtlinearer Strom-Spannungs-Kennlinie und Verfahren zur Herstellung eines Polymercompounds
DE2235783C2 (de) Metalloxid-Varistorelement
DE19824104B4 (de) Nichtlinearer Widerstand mit Varistorverhalten
EP0640995B1 (de) Elektrisches Widerstandselement und Verwendung dieses Widerstandselementes in einem Strombegrenzer
DE1646988B2 (de) Verfahren zum herstellen polykristalliner scheiben-, stabrohr- oder folienfoermiger keramischer kaltleiter- bzw. dielektrikums- bzw. heissleiterkoerper
EP2488468B1 (de) Widerstandsbauelement umfassend ein keramikmaterial
DE2459664A1 (de) Kaltleiterbindungsvorrichtung
DE2247643C2 (de) Varistor mit mindestens drei Elektroden
EP0755058A2 (de) Elektrisch und thermisch leitfähiger Kunststoff und Verwendung dieses Kunststoffs
DE102011118291A1 (de) Halbleitervorrichtung und verfahren zur herstellung
DE2809449A1 (de) Heizelement
DE19818375A1 (de) PTCR-Widerstand
DE2941196C2 (de)
EP0040881B1 (de) Spannungsabhängiger Widerstand und Verfahren zu seiner Herstellung
DE3019098A1 (de) Herstellungsverfahren fuer keramischen kaltleiter mit niedrigem kalt-widerstand
EP0722174A2 (de) Elektrisches Bauteil
DE1646987A1 (de) Keramischer Koerper aus ferroelektrischem Material mit Perowskitstruktur,der teilweise p- und teilweise n-leitend ist
EP0065806B1 (de) Spannungsabhängiger Widerstand und Verfahren zu seiner Herstellung
DE2607454B2 (de) Selbst spannungsabhängiger Widerstand auf der Basis von Zinkoxid
EP3146536A1 (de) Elektronisches bauelement und verfahren zu dessen herstellung
DE2342172A1 (de) Widerstaende mit nichtlinearer stromspannungskennlinie
DE2532588A1 (de) Festkoerper-schaltvorrichtung
DE10315220A1 (de) Dickschichtpaste zur Herstellung von elektrischen Bauteilen
DE2326896B2 (de) Spannungsabhaengiges widerstandselement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR IT LI SE

17P Request for examination filed

Effective date: 19950916

17Q First examination report despatched

Effective date: 19961113

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR IT LI SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59406312

Country of ref document: DE

Date of ref document: 19980730

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20060914

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060930

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20060914

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070924

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070923

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120921

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20121010

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59406312

Country of ref document: DE

Effective date: 20140401

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130930

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140401