EP0626463A1 - Acier résistant aux températures élévées et au fluage, présentant une structure martensitique obtenue par un traitement thermique - Google Patents

Acier résistant aux températures élévées et au fluage, présentant une structure martensitique obtenue par un traitement thermique Download PDF

Info

Publication number
EP0626463A1
EP0626463A1 EP94107344A EP94107344A EP0626463A1 EP 0626463 A1 EP0626463 A1 EP 0626463A1 EP 94107344 A EP94107344 A EP 94107344A EP 94107344 A EP94107344 A EP 94107344A EP 0626463 A1 EP0626463 A1 EP 0626463A1
Authority
EP
European Patent Office
Prior art keywords
percent
weight
steel
tungsten
vanadium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP94107344A
Other languages
German (de)
English (en)
Other versions
EP0626463B1 (fr
Inventor
Brendon Dr. Scarlin
Markus Prof. Dr. Speidel
Peter Dr. Uggowitzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Schweiz AG
Original Assignee
ABB Management AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Management AG filed Critical ABB Management AG
Publication of EP0626463A1 publication Critical patent/EP0626463A1/fr
Application granted granted Critical
Publication of EP0626463B1 publication Critical patent/EP0626463B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt

Definitions

  • the invention is based on a heat and creep-resistant steel with a martensitic structure produced by a tempering process, which contains at least silicon, manganese, nickel, molybdenum, vanadium, niobium and tungsten in addition to iron and approx.
  • a steel can be produced by forging or casting or by powder metallurgy and, because of its properties, can be used with particular advantage for the production of heat and creep-resistant parts of gas and steam power plants, such as in particular thermal turbo machines, for example gas or steam turbines or compressors, or steam generators and other high temperature equipment and machines.
  • a martensitic steel known from this prior art contains iron in percent by weight 0.05-0.25 carbon, 0.2-1.0 silicon, up to 1 manganese, 0.3-2.0 nickel, 8.0- 13 chromium, 0.5 - 2.0 molybdenum, 0.1 to 0.3 vanadium, 0.03 - 0.3 niobium, 0.01 - 0.2 nitrogen, 1.1 - 2.0 tungsten.
  • This steel has an elongation at break of at least 18% at room temperature and is characterized by a high creep resistance at temperatures of up to 600 ° C. At temperatures of 600 ° C and higher, the steel used, in addition to high creep resistance, also requires high structural stability, low embrittlement tendencies and, in particular, high oxidation resistance.
  • the invention has for its object to provide a heat and creep-resistant steel with a martensitic structure produced by a tempering process, which is characterized by properties that its use in thermal turbomachines, such as steam and Make gas turbines appear extremely promising at temperatures of 600 ° C and more.
  • the steel according to the invention has a thermally extremely stable and homogeneous structure. It is therefore characterized by a significantly improved creep resistance compared to comparable alloys according to the prior art and a particularly good resistance to oxidation.
  • the steel according to the invention has an unusually high strength and toughness at room temperature. In the temperature range between room temperature and A c1 temperature, it also has an unexpectedly high hot stretch.
  • carbon is the most important alloying element for hardenability. Carbon forms the carbides normally required for creep resistance during the tempering process, e.g. M23C6. In contrast, in the steel according to the invention, carbon is replaced by nitrogen. Instead of carbides, thermally stable nitrides are formed in the steel according to the invention. In order to avoid the precipitation of carbon-dominated phases, the carbon content should be low, at most 0.05, preferably 0.001 to 0.03 percent by weight.
  • Silicon promotes the formation of ⁇ -ferrite and the Laves phase.
  • silicon preferentially segregates at the grain boundary and reduces toughness.
  • the silicon content should therefore be less than 0.5, preferably less than 0.2, percent by weight.
  • Manganese suppresses the formation of ⁇ -ferrite and should therefore be kept at a value greater than 0.05 percent by weight. However, manganese also promotes the formation of the Laves phase and worsens the oxidation behavior. For this reason, the manganese content should not exceed 2 percent by weight. The manganese content should preferably be between 0.05 and 1 percent by weight.
  • Nickel suppresses the formation of ⁇ -ferrite and should therefore be kept above 0.05 percent by weight. High nickel contents lead to an inadmissible lowering of the A c1 temperature, so that tempering treatment at high temperatures is no longer possible. For this reason, the nickel content should be between 0.05 and 2, preferably between 0.3 and 1, percent by weight.
  • Chromium is the decisive alloying element for increasing the oxidation resistance, i.e. to form a heat-resistant steel.
  • the chromium content should be at least 8 percent by weight. Too high a chromium content leads to the formation of ⁇ -ferrite.
  • the chromium content should therefore be between 8 and 13, preferably between 8.5 and 11, percent by weight.
  • Molybdenum promotes the formation of stable nitrides of the M6X type and thus contributes to increasing the creep resistance. To ensure this, the molybdenum content should be greater than 0.05 percent by weight. However, high molybdenum contents promote the formation of ⁇ -ferrite and Laves phase. Accordingly, the molybdenum content should be between 0.05 and 1, preferably between 0.05 and 0.5, percent by weight.
  • Tungsten contributes significantly to the formation of stable nitrides.
  • tungsten makes a contribution to the solid solution hardening of the matrix.
  • tungsten increases the nitrogen solubility and thus enables the steel according to the invention to be produced economically.
  • the tungsten content should be more than 1% by weight.
  • excessively high tungsten contents promote the formation of ⁇ -ferrite and Laves phase. Accordingly, the tungsten content should be between 1 and 4, preferably between 1.5 and 3, percent by weight.
  • Vanadium is an important element in the formation of stable vanadium nitrides in the steel according to the invention.
  • the vanadium content must be greater than 0.05 percent by weight in order to achieve a sufficient hardening effect. With a high vanadium content, the tendency to form ⁇ -ferrite increases.
  • the vanadium content should therefore expediently range from 0.05 to 0.5, preferably 0.15 to 0.35, percent by weight.
  • Niobium combines with nitrogen to form niobium nitride and thus helps to form a fine structure.
  • a small proportion of niobium dissolves in the hardening annealing and is eliminated as niobium nitride in the tempering treatment. This phase significantly improves creep resistance.
  • the niobium content should be more than 0.01 percent by weight.
  • the niobium content is above 0.2% by weight, niobium binds too much nitrogen, so that the precipitation of other nitrides is prevented too much.
  • the niobium content should accordingly be between 0.01 and 0.2, preferably between 0.04 and 0.1, percent by weight.
  • Cobalt increases the creep resistance of the steel according to the invention by preventing the formation of dislocation substructures favorably influenced and by preventing or at least significantly delaying the formation of ⁇ -ferrite and Laves phase.
  • the cobalt content should be more than 2 percent by weight. Excessive cobalt contents lower the A c1 temperature too much and make the steel considerably more expensive. Accordingly, the cobalt content should be between 2.0 and 6.5, preferably between 3.0 and 5.0, percent by weight.
  • Nitrogen forms nitrides with the elements V, Nb, Cr, W and Mo, which are thermally extremely stable as a hardening phase.
  • nitrogen stabilizes the austenite present in the steel according to the invention and thus prevents the formation of ⁇ -ferrite.
  • the beneficial effect of nitrogen is guaranteed with a nitrogen content of at least 0.1 percent by weight. Nitrogen contents of more than 0.3 percent by weight cannot be introduced into the steel in a cost-effective manner. The nitrogen content should therefore be between 0.1 and 0.3, preferably between 0.1 and 0.15, percent by weight.
  • a steel A according to the invention weighing about 10 kg, was melted in a vacuum melting furnace under 1 bar of nitrogen, homogenized and forged into bars. After solution annealing at 1150 ° C, the steel was cooled in moving air and then tempered at 780 ° C for about 4 hours. Appropriately dimensioned bars were forged from commercially available, tempered comparison steels B (steel according to the German standard designation X20CrMoV 12 1) and C (steel according to the name of a Japanese manufacturer). The chemical compositions of steels A, B and C are given in the table below.
  • the mechanical properties of these steels and the results from creep and oxidation tests can be found in the table below.
  • the creep resistance was determined on prestressed test specimens. The pretension just absorbed by the test specimens at 600 ° C after 1000 h served as a measure of the creep resistance.
  • the oxidation resistance of the individual alloys was determined from the change in weight of plate-shaped test specimens which were exposed to air at 650 ° C. for 1000 hours. stolen A B C.
  • a proportion of 0.001 to 2 percent by weight of copper in the steel according to the invention also has a favorable effect, since copper suppresses the formation of ⁇ -ferrite without greatly reducing the A c1 temperature.
  • copper improves the mechanical properties in the heat-affected zone of weld seams. With copper contents of more than 2 percent by weight, elemental copper is excreted at the grain boundaries. Therefore, the copper content should not exceed 2 percent by weight.
  • the steel according to the invention has an essentially ⁇ -ferrite-free structure made from a martensite tempered in a tempering process.
  • This structure and the result Properties such as creep resistance and oxidation resistance at temperatures of 600 ° C and strength and toughness at room temperature are guaranteed with certainty if the elements contained therein chromium (Cr), molybdenum (Mo), tungsten (W), vanadium (V ), Niobium (Nb), silicon (Si), nickel (Ni), cobalt (Co), manganese (Mn), nitrogen (N), carbon (C) and possibly provided copper (Cu) meet the following inequality (element content in weight percent): (Cr + 1.5 Mo + 1.5 W + 2.3 V + 1.75 Nb + 0.48 Si - Ni - Co - 0.3 Cu -0.1 Mn - 18 N - 30 C) ⁇ 10 It is therefore advisable to limit the components of the steel according to the invention accordingly.
  • a change in the structure combined with reduced creep resistance and embrittlement due to the formation of a Laves phase can be avoided in the steel according to the invention if the elements iron (Fe), chromium (Cr), molybdenum (Mo), tungsten (W ), Cobalt (Co), nickel (Ni), vanadium (V) and possibly provided copper (Cu) the following inequality (element content in atomic percent): (0.858 Fe + 1.142 Cr + 1.55 Mo + 1.655 W + 0.777 Co + 0.717 Ni + O, 615 Cu + 1.543 V) ⁇ 89.5 or in a particularly advantageous manner the inequality: (0.858 Fe + 1.142 Cr + 1.55 Mo + 1.655 W + 0.777 Co + 0.717 Ni + 0.615 Cu + 1.543 V) ⁇ 89.0 fulfill.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Heat Treatment Of Articles (AREA)
EP94107344A 1993-05-28 1994-05-11 Acier résistant aux températures élévées et au fluage, présentant une structure martensitique obtenue par un traitement thermique Expired - Lifetime EP0626463B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH160693 1993-05-28
CH1606/93 1993-05-28
CH160693 1993-05-28

Publications (2)

Publication Number Publication Date
EP0626463A1 true EP0626463A1 (fr) 1994-11-30
EP0626463B1 EP0626463B1 (fr) 2000-07-12

Family

ID=4214359

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94107344A Expired - Lifetime EP0626463B1 (fr) 1993-05-28 1994-05-11 Acier résistant aux températures élévées et au fluage, présentant une structure martensitique obtenue par un traitement thermique

Country Status (5)

Country Link
US (1) US5415706A (fr)
EP (1) EP0626463B1 (fr)
JP (1) JP3422561B2 (fr)
CN (1) CN1037361C (fr)
DE (1) DE59409428D1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0688883A1 (fr) * 1993-12-28 1995-12-27 Nippon Steel Corporation Acier thermo-resistant martensitique dote d'une excellente resistance a l'adoucissement des zones affectees thermiquement et procede de production correspondant
EP0770696A1 (fr) * 1995-04-12 1997-05-02 Mitsubishi Jukogyo Kabushiki Kaisha Acier a haute resistance/tenacite resistant a la chaleur
CN107447088A (zh) * 2017-07-31 2017-12-08 青岛大学 一种改善马氏体型耐热钢10Cr11Co3W3NiMoVNbNB铸锭高温成形性技术

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH083697A (ja) * 1994-06-13 1996-01-09 Japan Steel Works Ltd:The 耐熱鋼
US6245289B1 (en) 1996-04-24 2001-06-12 J & L Fiber Services, Inc. Stainless steel alloy for pulp refiner plate
JPH10245658A (ja) * 1997-03-05 1998-09-14 Mitsubishi Heavy Ind Ltd 高Cr精密鋳造材及びタービン翼
DE19712020A1 (de) * 1997-03-21 1998-09-24 Abb Research Ltd Vollmartensitische Stahllegierung
JP3492969B2 (ja) * 2000-03-07 2004-02-03 株式会社日立製作所 蒸気タービン用ロータシャフト
DE10025808A1 (de) * 2000-05-24 2001-11-29 Alstom Power Nv Martensitisch-härtbarer Vergütungsstahl mit verbesserter Warmfestigkeit und Duktilität
US6793744B1 (en) * 2000-11-15 2004-09-21 Research Institute Of Industrial Science & Technology Martenstic stainless steel having high mechanical strength and corrosion
DE10063117A1 (de) * 2000-12-18 2003-06-18 Alstom Switzerland Ltd Umwandlungskontrollierter Nitrid-ausscheidungshärtender Vergütungsstahl
JP4836063B2 (ja) * 2001-04-19 2011-12-14 独立行政法人物質・材料研究機構 フェライト系耐熱鋼とその製造方法
TWI258547B (en) * 2002-08-27 2006-07-21 Riken Co Ltd Side rails for combined oil control ring and their nitriding method
JP4188124B2 (ja) * 2003-03-31 2008-11-26 独立行政法人物質・材料研究機構 焼き戻しマルテンサイト系耐熱鋼の溶接継手
US7553383B2 (en) * 2003-04-25 2009-06-30 General Electric Company Method for fabricating a martensitic steel without any melting
SE528991C2 (sv) * 2005-08-24 2007-04-03 Uddeholm Tooling Ab Ställegering och verktyg eller komponenter tillverkat av stållegeringen
CN102159744B (zh) * 2009-06-24 2013-05-29 日立金属株式会社 高温强度优异的发动机阀用耐热钢
EP2653587A1 (fr) * 2012-04-16 2013-10-23 Siemens Aktiengesellschaft Composants de turbomachine avec un revêtement de fonction
CN102818418B (zh) * 2012-07-30 2014-10-01 合肥美的电冰箱有限公司 一种冰箱制冷系统及冰箱
CN113278890A (zh) * 2013-06-25 2021-08-20 特纳瑞斯连接有限公司 高铬耐热钢
CN103695802A (zh) * 2013-12-23 2014-04-02 钢铁研究总院 一种高钼高强度二次硬化超高强度钢及其制备方法
CN111139409A (zh) * 2020-01-21 2020-05-12 上海电气电站设备有限公司 一种耐热铸钢及其制备方法和用途

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB658115A (en) * 1948-12-16 1951-10-03 Firth Vickers Stainless Steels Ltd Improvements relating to alloy steels
GB795471A (en) * 1955-02-28 1958-05-21 Birmingham Small Arms Co Ltd Improvements in or relating to alloy steels
GB796733A (en) * 1955-07-09 1958-06-18 Birmingham Small Arms Co Ltd Improvements in or relating to alloy steels
GB802830A (en) * 1956-03-29 1958-10-15 Henry William Kirkby Improvements relating to ferritic alloy steels for use at elevated temperatures
US2880085A (en) * 1956-03-29 1959-03-31 Firth Vickers Stainless Steels Ltd Ferritic alloy steels for use at elevated temperatures
FR1541672A (fr) * 1966-05-04 1968-10-11 Sandvikens Jernverks Ab Acier au chrome ferritique et martensitique à faible tendance à la fragilisation à 475 deg. c.
EP0384433A1 (fr) * 1989-02-23 1990-08-29 Hitachi Metals, Ltd. Acier ferritique résistant à la chaleur et présentant une excellente résistance mécanique aux températures élevées
JPH0353047A (ja) * 1989-07-18 1991-03-07 Nippon Steel Corp 高強度、高靭性フェライト系耐熱鋼

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB658115A (en) * 1948-12-16 1951-10-03 Firth Vickers Stainless Steels Ltd Improvements relating to alloy steels
GB795471A (en) * 1955-02-28 1958-05-21 Birmingham Small Arms Co Ltd Improvements in or relating to alloy steels
GB796733A (en) * 1955-07-09 1958-06-18 Birmingham Small Arms Co Ltd Improvements in or relating to alloy steels
GB802830A (en) * 1956-03-29 1958-10-15 Henry William Kirkby Improvements relating to ferritic alloy steels for use at elevated temperatures
US2880085A (en) * 1956-03-29 1959-03-31 Firth Vickers Stainless Steels Ltd Ferritic alloy steels for use at elevated temperatures
FR1541672A (fr) * 1966-05-04 1968-10-11 Sandvikens Jernverks Ab Acier au chrome ferritique et martensitique à faible tendance à la fragilisation à 475 deg. c.
EP0384433A1 (fr) * 1989-02-23 1990-08-29 Hitachi Metals, Ltd. Acier ferritique résistant à la chaleur et présentant une excellente résistance mécanique aux températures élevées
JPH0353047A (ja) * 1989-07-18 1991-03-07 Nippon Steel Corp 高強度、高靭性フェライト系耐熱鋼

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0688883A1 (fr) * 1993-12-28 1995-12-27 Nippon Steel Corporation Acier thermo-resistant martensitique dote d'une excellente resistance a l'adoucissement des zones affectees thermiquement et procede de production correspondant
EP0688883A4 (fr) * 1993-12-28 1996-04-24 Nippon Steel Corp Acier thermo-resistant martensitique dote d'une excellente resistance a l'adoucissement des zones affectees thermiquement et procede de production correspondant
US5650024A (en) * 1993-12-28 1997-07-22 Nippon Steel Corporation Martensitic heat-resisting steel excellent in HAZ-softening resistance and process for producing the same
EP0770696A1 (fr) * 1995-04-12 1997-05-02 Mitsubishi Jukogyo Kabushiki Kaisha Acier a haute resistance/tenacite resistant a la chaleur
EP0770696A4 (fr) * 1995-04-12 1997-07-16 Mitsubishi Heavy Ind Ltd Acier a haute resistance/tenacite resistant a la chaleur
US5817192A (en) * 1995-04-12 1998-10-06 Mitsubishi Jukogyo Kabushiki Kaisha High-strength and high-toughness heat-resisting steel
CN107447088A (zh) * 2017-07-31 2017-12-08 青岛大学 一种改善马氏体型耐热钢10Cr11Co3W3NiMoVNbNB铸锭高温成形性技术
CN107447088B (zh) * 2017-07-31 2018-09-18 青岛大学 一种改善马氏体型耐热钢10Cr11Co3W3NiMoVNbNB铸锭高温成形性技术

Also Published As

Publication number Publication date
DE59409428D1 (de) 2000-08-17
CN1037361C (zh) 1998-02-11
US5415706A (en) 1995-05-16
JPH07138711A (ja) 1995-05-30
EP0626463B1 (fr) 2000-07-12
JP3422561B2 (ja) 2003-06-30
CN1098444A (zh) 1995-02-08

Similar Documents

Publication Publication Date Title
EP0626463B1 (fr) Acier résistant aux températures élévées et au fluage, présentant une structure martensitique obtenue par un traitement thermique
DE3650515T2 (de) Hochfester hitzebeständiger ferritischer Stahl mit hohem Chromgehalt
DE69010234T2 (de) Hochfester Stahl mit hohem Chromgehalt und mit sehr guten Zähigkeits- und Oxidationsbeständigkeitseigenschaften.
DE60023699T2 (de) Warmfester rostfreier austenitischer stahl
DE69208059T2 (de) Rostfreies Duplexstahl mit verbesserten Festigkeits- und Korrosionsbeständigkeitseigenschaften
DE69008575T2 (de) Hitzebeständiger ferritischer Stahl mit ausgezeichneter Festigkeit bei hohen Temperaturen.
DE69203906T2 (de) Niedrig legierter, hitzebeständiger Stahl mit verbesserter Dauerstandfestigkeit und Zähigkeit.
US4917738A (en) Steam turbine rotor for high temperature
DE69303518T2 (de) Hitzebeständiger, ferritischer Stahl mit niedrigem Chromgehalt und mit verbesserter Dauerstandfestigkeit und Zäheit
DE60010997T2 (de) Wärmebeständiges Chrom-Molybdän Stahl
EP0083254B1 (fr) Acier résistant aux températures élevées
DE2535516A1 (de) Austenitischer rostfreier stahl und dessen verwendung insbesondere zur herstellung von diesel- und benzinmotorventilen
DE69824962T2 (de) Verwendung eines hitzebeständigen Gussstahls
DE69003202T2 (de) Hochfeste, hitzebeständige, niedrig legierte Stähle.
DE3426882A1 (de) Hitzebestaendiger, martensitischer, rostfreier stahl mit 12% chrom
EP0806490A1 (fr) Acier résistant à la chaleur et rotor de turbine à vapeur
DE1558668C3 (de) Verwendung von kriechfesten, nichtrostenden austenitischen Stählen zur Herstellung von Blechen
DE69204123T2 (de) Hitzebeständiges ferritisches Stahl mit hohem Chromgehalt und mit höhere Beständigkeit gegen Versprödung durch intergranuläre Ausscheidung von Kupfer.
DE112021001054T5 (de) Hitzebeständiger Stahl für Stahlrohre und Gussteile
DE68905066T2 (de) Hochtemperaturfestes stahlrohr mit niedrigem siliziumgehalt und mit verbesserten duktilitaets- und faehigkeitseigenschaften.
DE10244972B4 (de) Wärmefester Stahl und Verfahren zur Herstellung desselben
DE3522115A1 (de) Hitzebestaendiger 12-cr-stahl und daraus gefertigte turbinenteile
DE10124393B4 (de) Hitzebeständiger Stahl, Verfahren zur thermischen Behandlung von hitzebeständigem Stahl, und Kompenten aus hitzebeständigem Stahl
EP0455625A1 (fr) Alliage à structure duplex, à haute résistance mécanique et résistant à la corrosion
AT405297B (de) Duplexlegierung für komplex beanspruchte bauteile

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19950508

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ASEA BROWN BOVERI AG

17Q First examination report despatched

Effective date: 19981228

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 59409428

Country of ref document: DE

Date of ref document: 20000817

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000920

ET Fr: translation filed
RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ABB (SCHWEIZ) AG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010511

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080523

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091201