EP0626463B1 - Acier résistant aux températures élévées et au fluage, présentant une structure martensitique obtenue par un traitement thermique - Google Patents

Acier résistant aux températures élévées et au fluage, présentant une structure martensitique obtenue par un traitement thermique Download PDF

Info

Publication number
EP0626463B1
EP0626463B1 EP94107344A EP94107344A EP0626463B1 EP 0626463 B1 EP0626463 B1 EP 0626463B1 EP 94107344 A EP94107344 A EP 94107344A EP 94107344 A EP94107344 A EP 94107344A EP 0626463 B1 EP0626463 B1 EP 0626463B1
Authority
EP
European Patent Office
Prior art keywords
weight
steel
percent
vanadium
tungsten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94107344A
Other languages
German (de)
English (en)
Other versions
EP0626463A1 (fr
Inventor
Brendon Dr. Scarlin
Markus Prof. Dr. Speidel
Peter Dr. Uggowitzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Schweiz AG
Original Assignee
ABB Asea Brown Boveri Ltd
Asea Brown Boveri AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Asea Brown Boveri Ltd, Asea Brown Boveri AB filed Critical ABB Asea Brown Boveri Ltd
Publication of EP0626463A1 publication Critical patent/EP0626463A1/fr
Application granted granted Critical
Publication of EP0626463B1 publication Critical patent/EP0626463B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt

Definitions

  • the invention is based on a heat and creep resistant Steel with a through a tempering process produced martensitic structure, which in addition to iron and approx. 8 - 13 percent by weight chromium at least silicon, manganese, nickel, Contains molybdenum, vanadium, niobium and tungsten.
  • Such one Steel can be made by forging or casting or on powder metallurgical Ways can be established and because of its Properties with particular advantage for manufacturing heat and creep resistant parts of gas and steam power plants, such as in particular thermal flow machines, for example gas or Steam turbines or compressors, or steam generators and other high temperature systems and machines can be used.
  • EP-A-384 433 is a ferritic heat-resistant steel described with the following composition in percent by weight: 0.05 to 0.20% C, 0.05 to 1.5% Mn, 0.05 to 1.0% Ni, 9.0 to 13.0% Cr, 0.05 to less than 0.50% Mo, 2.0 to 3.5% W, 0.05 up to 0.30% V, 0.01 to 0.20% Nb, 2.1 to 10.0% Co, 0.01 to 0.1% N, remainder iron and unavoidable impurities.
  • This steel has a comparatively large carbon content and carbides formed by precipitation hardening, which are intended to ensure high creep resistance at high temperatures (p.3, lines 42 and 43). Twelve samples of this steel, each with a different composition, given in Table 1 of EP-A-384 433, were precipitation hardened for 1 hour at a temperature of 750 ° C. and then tested for creep rupture strength at 650 ° C. and 700 ° C.
  • samples with a carbon content greater than 0.11 percent by weight could generally be subjected to a constant force at 700 ° C longer than samples with a lower carbon content (sample 5 with 0.06% C, 0.01% Si, 0.49% Mn, 0.50% Ni, 11.15% Cr, 0.17% Mo, 2.70% W, 0.20% V, 0.09% Nb, 5.14% Co, 0.089% N, 0.015% B, balance iron in percent by weight, and samples 9 and 10).
  • Table 1 also shows a creep resistance of sample 2 with a carbon content of 0.11 percent by weight and a cobalt content of 2.15 percent by weight after 10 4 hours at 650 ° C.
  • this prior art recommends a comparatively large proportion of carbon, preferably between 0.09 and 0.13 percent by weight, most preferably between 0.10 and 0.12 percent by weight and cobalt, preferably with a proportion between 2.1 and 4.0 percent by weight.
  • the steel described in JP-A-3053047 also stands out with good creep strength. He points out the following Composition in percent by weight: 0.03 to 0.20% C, 0.05 to 1% Si, 0.1 to 1.5% Mn, 8.0 to 13.0% Cr, 0.01 to 1.0% Ni, 0.5 to 1.5% Mo, 0.05 to 0.50% V, 0.01 to 0.15% Nb, 0.002 to 0.1% N, more than 1% W, more than 1.5% Co, balance iron and unavoidable impurities. All listed in this prior art Steel compositions have significantly higher carbon, as nitrogen components.
  • a martensitic steel is known from DE-A-35 22 115, which in addition to iron in percent by weight 0.05 - 0.25 carbon, 0.2-1.0 silicon, up to 1 manganese, 0.3-2.0 nickel, 8.0-13 Chromium, 0.5 - 2.0 molybdenum, 0.1 to 0.3 vanadium, 0.03 - 0.3 Niobium, 0.01 - 0.2 nitrogen, 1.1 - 2.0 tungsten contains.
  • This Steel has an elongation at break of at least at room temperature 18% and records at temperatures of up to 600 ° C with a high creep resistance. At temperatures of 600 ° C and more of the steel used, however, in addition to one high creep resistance also high structural stability, a low embrittlement tendency and in particular also a high one Oxidation resistance required.
  • the invention as defined in claim 1 lies the task, a heat and creep-resistant steel with a martensitic generated by a remuneration process Specify structure that is characterized by properties, its use in thermal fluid machines, such as steam and gas turbines in particular, at temperatures of Make 600 ° C and more appear very promising.
  • the steel according to the invention has a thermally extremely stable and homogeneous structure. It is therefore characterized by a significantly improved creep resistance compared to comparable alloys according to the prior art and a particularly good resistance to oxidation.
  • the steel according to the invention has an unusually high strength and toughness at room temperature. In the temperature range between room temperature and A c1 temperature, it also has an unexpectedly high hot stretch.
  • carbon is the most important alloying element for hardenability.
  • carbon forms the carbides normally required for creep resistance, such as M 23 C 6 .
  • carbon is replaced by nitrogen.
  • thermally stable nitrides are formed in the steel according to the invention.
  • the carbon content should be low, at most 0.05, preferably 0.001 to 0.03 percent by weight.
  • Silicon promotes the formation of ⁇ -ferrite and the Laves phase.
  • silicon preferentially segregates at the grain boundary and reduces toughness.
  • the silicon content should therefore less than 0.5, preferably less than 0.2, percent by weight.
  • Manganese suppresses the formation of ⁇ -ferrite and should therefore be maintained at a value greater than 0.05 percent by weight. However, manganese also promotes the formation of Laves phase and deteriorates the oxidation behavior. For this reason the manganese content does not exceed 2 percent by weight.
  • the manganese content should preferably be between 0.05 and 1 Percent by weight.
  • Nickel suppresses the formation of ⁇ -ferrite and should therefore be kept above 0.05 percent by weight. High nickel contents lead to an inadmissible lowering of the A c1 temperature, so that tempering treatment at high temperatures is no longer possible. For this reason, the nickel content should be between 0.05 and 2, preferably between 0.3 and 1, percent by weight.
  • Chromium is the decisive alloying element for increasing the Oxidation resistance, i.e. to form a heat resistant Stole it. To get enough effect, the chromium content should be at least 8 percent by weight. Too high Chromium content leads to the formation of ⁇ -ferrite. The chromium content should therefore be between 8 and 13, preferably between 8.5 and 11, weight percent.
  • Molybdenum promotes the formation of stable M 6 X nitrides and thus contributes to increasing the creep resistance. To ensure this, the molybdenum content should be greater than 0.05 percent by weight. However, high molybdenum contents promote the formation of ⁇ -ferrite and Laves phase. Accordingly, the molybdenum content should be between 0.05 and 1, preferably between 0.05 and 0.5, percent by weight.
  • Tungsten contributes significantly to the formation of stable nitrides.
  • tungsten makes a contribution to mixed crystal hardening the matrix.
  • tungsten increases nitrogen solubility and thus allows an economical production of the steel according to the invention.
  • the tungsten content should amount to more than 1 percent by weight. Tungsten contents too high however promote the formation of ⁇ -ferrite and Laves phase. Accordingly, the tungsten content should be between 1 and 4, preferably between 1.5 and 3.% by weight.
  • Vanadium is an important one in the steel according to the invention Element for the formation of stable vanadium nitrides. To achieve the vanadium content must have a sufficient hardening effect be greater than 0.05 percent by weight. With high vanadium content the tendency to form ⁇ -ferrite increases. The vanadium content should therefore suitably from 0.05 to 0.5, preferably 0.15 to 0.35 percent by weight are sufficient.
  • Niobium combines with nitrogen to form niobium nitride and thus helps in the formation of a fine structure.
  • a small part Niobium dissolves during hardening annealing and separates during the tempering treatment as niobium nitride. This phase improved the creep resistance to a considerable extent. To do this ensure the niobium content is more than 0.01 percent by weight be.
  • the niobium content exceeds 0.2 % By weight, niobium binds too much nitrogen, so that the elimination of other nitrides is prevented too much.
  • niobium content should be between 0.01 and 0.2, preferably between 0.04 and 0.1 percent by weight.
  • Cobalt increases the creep resistance of the steel according to the invention by favorably influencing the formation of dislocation substructures and by preventing or at least considerably delaying the formation of ⁇ -ferrite and Laves phase.
  • the cobalt content should be more than 2 percent by weight. Excessive cobalt contents lower the A c1 temperature too much and make the steel considerably more expensive. Accordingly, the cobalt content should be between 2.0 and 6.5, preferably between 3.0 and 5.0, percent by weight.
  • Nitrogen forms nitrides with the elements V, Nb, Cr, W and Mo, which are extremely stable as a hardening phase.
  • nitrogen stabilizes in the inventive Austenite is present in steel and thus prevents the formation of ⁇ -ferrite.
  • the beneficial effect of nitrogen is with one Guaranteed nitrogen content of at least 0.1 percent by weight. Nitrogen contents of more than 0.3 percent by weight cannot be introduced into the steel in a cost-effective manner become. The nitrogen content should therefore be between 0.1 and 0.3, preferably between 0.1 and 0.15 percent by weight.
  • a steel A according to the invention weighing about 10 kg, was melted in a vacuum melting furnace under 1 bar of nitrogen, homogenized and forged into bars. After solution annealing at 1150 ° C, the steel was cooled in moving air and then tempered at 780 ° C for about 4 hours. Appropriately dimensioned bars were forged from commercially available, tempered comparison steels B (steel according to the German standard designation X20CrMoV 12 1) and C (steel according to the name of a Japanese manufacturer). The chemical compositions of steels A, B and C are given in the table below. steel A (according to the invention) B (X20CrMoV 12 1) C (TR 1200) Fe Base C.
  • the mechanical properties of these steels and the results from creep and oxidation tests can be found in the table below.
  • the creep resistance was determined on prestressed test specimens. The pretension just absorbed by the test specimens at 600 ° C after 1000 h served as a measure of the creep resistance.
  • the oxidation resistance of the individual alloys was determined from the change in weight of plate-shaped test specimens which were exposed to air at 650 ° C. for 1000 hours. steel A B C.
  • a proportion of 0.001 to 2 percent by weight of copper in the steel according to the invention also has a favorable effect, since copper suppresses the formation of ⁇ -ferrite without greatly reducing the A c1 temperature.
  • copper improves the mechanical properties in the heat-affected zone of weld seams. With copper contents of more than 2 percent by weight, elemental copper is excreted at the grain boundaries. Therefore, the copper content should not exceed 2 percent by weight.
  • the steel according to the invention has an essentially ⁇ -ferrite-free structure made from a martensite tempered in a tempering process.
  • This structure and the resulting properties are guaranteed with certainty if the elements contained therein chromium (Cr), molybdenum (Mo), tungsten (W.
  • a change in the structure combined with reduced creep resistance and embrittlement due to the formation of a Laves phase can be avoided in the steel according to the invention if the elements iron (Fe), chromium (Cr), molybdenum (Mo), tungsten (W ), Cobalt (Co), nickel (Ni), vanadium (V) and possibly provided copper (Cu) the following inequality (element content in atomic percent): (0.858 Fe + 1.142 Cr + 1.55 Mo + 1.655 W + 0.777 Co + 0.717 Ni + O, 615 Cu + 1.543 V) ⁇ 89.5 or in a particularly advantageous manner the inequality: (0.858 Fe + 1.142 Cr + 1.55 Mo + 1.655 W + 0.777 Co + 0.717 Ni + 0.615 Cu + 1.543 V) ⁇ 89.0 fulfill.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Heat Treatment Of Articles (AREA)

Claims (7)

  1. Acier résistant aux températures élevées et au fluage, présentant une structure martensitique obtenue par durcissement par précipitation au cours d'un traitement de trempe et revenu, dans lequel l'acier présente la composition suivante en pour cent en poids:
    0,001 - 0,03 carbone
    0,05 - 0,5 silicium
    0,05 - 2,0 manganèse
    0,05 - 2,0 nickel
    8,0 - 13,0 chrome
    0,05 - 1,0 molybdène
    1,00 - 4,0 tungstène
    0,05 - 0,5 vanadium
    0,01 - 0,2 niobium
    2,0 - 6,5 cobalt
    en option 0,001 - 2 cuivre
    en option 0,001 - 0,03 bore
    0,1 - 0,3 azote
    le reste étant du fer avec des impuretés inévitables, et la structure contient des nitrures de vanadium, niobium, chrome, tungstène et molybdène formés lors du durcissement par précipitation.
  2. Acier suivant la revendication 1, caractérisé en ce qu'il contient 0,1 - 0,15 pour cent en poids d'azote, le reste étant du fer et des impuretés inévitables.
  3. Acier suivant la revendication 2, caractérisé par les teneurs suivantes, en pour cent en poids:
    0,05 - 0,2 silicium
    0,05 - 1,0 manganèse
    0,3 - 1,0 nickel
    8,5 - 11,0 chrome
    0,05 - 0,5 molybdène
    1,5 - 3,0 tungstène
    0,15 - 0,35 vanadium
    0,04 - 0,1 niobium
    3,0 - 5,0 cobalt.
  4. Acier suivant l'une quelconque des revendications 1 à 3, caractérisé en ce qu'il présente une teneur en bore de 0,006 - 0,015 pour cent en poids.
  5. Acier suivant l'une quelconque des revendications 1 à 4, caractérisé en ce que les éléments qu'il contient, fer (Fe), chrome (Cr), molybdène (Mo), tungstène (W), cobalt (Co), nickel (Ni), vanadium (V) et cuivre (Cu) éventuellement prévu respectent l'inégalité indiquée ci-dessous (teneurs des éléments en pour cent atomiques): (0,858 Fe + 1,142 Cr + 1,55 Mo + 1,655 W + 0,777 Co + 0,717 Ni + 0,615 Cu + 1,543 V) < 89,5.
  6. Acier suivant l'une quelconque des revendications 3 à 5, caractérisé en ce que les éléments qu'il contient, fer (Fe), chrome (Cr), molybdène (Mo), tungstène (W), cobalt (Co), nickel (Ni), vanadium. (V) et cuivre (Cu) éventuellement prévu respectent l'inégalité indiquée ci-dessous (teneurs des éléments en pour cent atomiques): (0,858 Fe + 1,142 Cr + 1,55 Mo +,1,655 W + 0,777 Co + 0,717 Ni + 0,615 Cu + 1,543 V) < 89,0.
  7. Acier suivant l'une quelconque des revendications 1 à 5, caractérisé en ce que les éléments qu'il contient, chrome (Cr), molybdène (Mo), tungstène (W), vanadium (V), niobium (Nb), silicium (Si), nickel (Ni), cobalt (Co), manganèse (Mn), azote (N), carbone (C) et cuivre (Cu) éventuellement prévu, respectent l'inégalité indiquée ci-dessous (teneurs des éléments en pour cent en poids): (Cr + 1,5 Mo + 1,5 W + 2,3 V + 1,75 Nb + 0,48 Si - Ni - Co - 0,3 Cu - 0,1 Mn - 18 N - 30 C) < 10.
EP94107344A 1993-05-28 1994-05-11 Acier résistant aux températures élévées et au fluage, présentant une structure martensitique obtenue par un traitement thermique Expired - Lifetime EP0626463B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH1606/93 1993-05-28
CH160693 1993-05-28
CH160693 1993-05-28

Publications (2)

Publication Number Publication Date
EP0626463A1 EP0626463A1 (fr) 1994-11-30
EP0626463B1 true EP0626463B1 (fr) 2000-07-12

Family

ID=4214359

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94107344A Expired - Lifetime EP0626463B1 (fr) 1993-05-28 1994-05-11 Acier résistant aux températures élévées et au fluage, présentant une structure martensitique obtenue par un traitement thermique

Country Status (5)

Country Link
US (1) US5415706A (fr)
EP (1) EP0626463B1 (fr)
JP (1) JP3422561B2 (fr)
CN (1) CN1037361C (fr)
DE (1) DE59409428D1 (fr)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5650024A (en) * 1993-12-28 1997-07-22 Nippon Steel Corporation Martensitic heat-resisting steel excellent in HAZ-softening resistance and process for producing the same
JPH083697A (ja) * 1994-06-13 1996-01-09 Japan Steel Works Ltd:The 耐熱鋼
US5817192A (en) * 1995-04-12 1998-10-06 Mitsubishi Jukogyo Kabushiki Kaisha High-strength and high-toughness heat-resisting steel
US6245289B1 (en) 1996-04-24 2001-06-12 J & L Fiber Services, Inc. Stainless steel alloy for pulp refiner plate
JPH10245658A (ja) * 1997-03-05 1998-09-14 Mitsubishi Heavy Ind Ltd 高Cr精密鋳造材及びタービン翼
DE19712020A1 (de) * 1997-03-21 1998-09-24 Abb Research Ltd Vollmartensitische Stahllegierung
JP3492969B2 (ja) * 2000-03-07 2004-02-03 株式会社日立製作所 蒸気タービン用ロータシャフト
DE10025808A1 (de) * 2000-05-24 2001-11-29 Alstom Power Nv Martensitisch-härtbarer Vergütungsstahl mit verbesserter Warmfestigkeit und Duktilität
US6793744B1 (en) * 2000-11-15 2004-09-21 Research Institute Of Industrial Science & Technology Martenstic stainless steel having high mechanical strength and corrosion
DE10063117A1 (de) * 2000-12-18 2003-06-18 Alstom Switzerland Ltd Umwandlungskontrollierter Nitrid-ausscheidungshärtender Vergütungsstahl
JP4836063B2 (ja) * 2001-04-19 2011-12-14 独立行政法人物質・材料研究機構 フェライト系耐熱鋼とその製造方法
TWI258547B (en) * 2002-08-27 2006-07-21 Riken Co Ltd Side rails for combined oil control ring and their nitriding method
JP4188124B2 (ja) * 2003-03-31 2008-11-26 独立行政法人物質・材料研究機構 焼き戻しマルテンサイト系耐熱鋼の溶接継手
US7553383B2 (en) * 2003-04-25 2009-06-30 General Electric Company Method for fabricating a martensitic steel without any melting
SE528991C2 (sv) * 2005-08-24 2007-04-03 Uddeholm Tooling Ab Ställegering och verktyg eller komponenter tillverkat av stållegeringen
JP5272020B2 (ja) * 2009-06-24 2013-08-28 日立金属株式会社 高温強度に優れたエンジンバルブ用耐熱鋼
EP2653587A1 (fr) * 2012-04-16 2013-10-23 Siemens Aktiengesellschaft Composants de turbomachine avec un revêtement de fonction
CN102818418B (zh) * 2012-07-30 2014-10-01 合肥美的电冰箱有限公司 一种冰箱制冷系统及冰箱
KR102197204B1 (ko) * 2013-06-25 2021-01-04 테나리스 커넥션즈 비.브이. 고크롬 내열철강
CN103695802A (zh) * 2013-12-23 2014-04-02 钢铁研究总院 一种高钼高强度二次硬化超高强度钢及其制备方法
CN107447088B (zh) * 2017-07-31 2018-09-18 青岛大学 一种改善马氏体型耐热钢10Cr11Co3W3NiMoVNbNB铸锭高温成形性技术
CN111139409A (zh) * 2020-01-21 2020-05-12 上海电气电站设备有限公司 一种耐热铸钢及其制备方法和用途

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB658115A (en) * 1948-12-16 1951-10-03 Firth Vickers Stainless Steels Ltd Improvements relating to alloy steels
GB795471A (en) * 1955-02-28 1958-05-21 Birmingham Small Arms Co Ltd Improvements in or relating to alloy steels
GB796733A (en) * 1955-07-09 1958-06-18 Birmingham Small Arms Co Ltd Improvements in or relating to alloy steels
US2880085A (en) * 1956-03-29 1959-03-31 Firth Vickers Stainless Steels Ltd Ferritic alloy steels for use at elevated temperatures
GB802830A (en) * 1956-03-29 1958-10-15 Henry William Kirkby Improvements relating to ferritic alloy steels for use at elevated temperatures
FR1541672A (fr) * 1966-05-04 1968-10-11 Sandvikens Jernverks Ab Acier au chrome ferritique et martensitique à faible tendance à la fragilisation à 475 deg. c.
JPH0830251B2 (ja) * 1989-02-23 1996-03-27 日立金属株式会社 高温強度の優れたフェライト系耐熱鋼
JP2834196B2 (ja) * 1989-07-18 1998-12-09 新日本製鐵株式会社 高強度、高靭性フェライト系耐熱鋼

Also Published As

Publication number Publication date
CN1037361C (zh) 1998-02-11
EP0626463A1 (fr) 1994-11-30
JP3422561B2 (ja) 2003-06-30
JPH07138711A (ja) 1995-05-30
DE59409428D1 (de) 2000-08-17
CN1098444A (zh) 1995-02-08
US5415706A (en) 1995-05-16

Similar Documents

Publication Publication Date Title
EP0626463B1 (fr) Acier résistant aux températures élévées et au fluage, présentant une structure martensitique obtenue par un traitement thermique
DE60023699T2 (de) Warmfester rostfreier austenitischer stahl
DE60110861T2 (de) Wärmebeständiger Stahl
DE60201741T2 (de) Stahl und rohr zur verwendung bei erhöhten temperaturen
DE60010997T2 (de) Wärmebeständiges Chrom-Molybdän Stahl
US4799972A (en) Process for producing a high strength high-Cr ferritic heat-resistant steel
DE69824962T2 (de) Verwendung eines hitzebeständigen Gussstahls
DE19941411B4 (de) Turbinen- oder Kesselbauteil
DE3426882A1 (de) Hitzebestaendiger, martensitischer, rostfreier stahl mit 12% chrom
EP0411515A1 (fr) Aciers à haute résistance, réfractaires et à basse teneur en éléments d&#39;alliage
DE3041565C2 (fr)
EP0866145A2 (fr) Alliage d&#39;acier complètement martensitique
AT410447B (de) Warmarbeitsstahlgegenstand
DE1231018B (de) Verwendung einer warmfesten, rostfreien Stahllegierung
DE1558668B2 (de) Verwendung von kriechfesten, nichtrostenden austenitischen Stählen zur Herstellung von Blechen
DE3522115A1 (de) Hitzebestaendiger 12-cr-stahl und daraus gefertigte turbinenteile
DE10244972B4 (de) Wärmefester Stahl und Verfahren zur Herstellung desselben
DE1230232B (de) Verwendung einer korrosionsbestaendigen Stahllegierung als Werkstoff fuer gut schweissbare Gegenstaende
DE3113844A1 (de) &#34;ferritfreier, ausscheidungshaertbarer rostfreier stahl&#34;
DE10124393B4 (de) Hitzebeständiger Stahl, Verfahren zur thermischen Behandlung von hitzebeständigem Stahl, und Kompenten aus hitzebeständigem Stahl
EP0455625A1 (fr) Alliage à structure duplex, à haute résistance mécanique et résistant à la corrosion
AT405297B (de) Duplexlegierung für komplex beanspruchte bauteile
DE3522114A1 (de) Hitzbestaendiger 12-cr-stahl und daraus gefertigte turbinenteile
JP2000204434A (ja) 高温強度に優れたフェライト系耐熱鋼およびその製造方法
AT403058B (de) Eisenbasislegierung zur verwendung bei erhöhter temperatur und werkzeug aus dieser legierung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19950508

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ASEA BROWN BOVERI AG

17Q First examination report despatched

Effective date: 19981228

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 59409428

Country of ref document: DE

Date of ref document: 20000817

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000920

ET Fr: translation filed
RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ABB (SCHWEIZ) AG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010511

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080523

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091201