EP0612375A1 - Ventilnadel für ein elektromagnetisch betätigbares ventil und verfahren zur herstellung. - Google Patents

Ventilnadel für ein elektromagnetisch betätigbares ventil und verfahren zur herstellung.

Info

Publication number
EP0612375A1
EP0612375A1 EP93918902A EP93918902A EP0612375A1 EP 0612375 A1 EP0612375 A1 EP 0612375A1 EP 93918902 A EP93918902 A EP 93918902A EP 93918902 A EP93918902 A EP 93918902A EP 0612375 A1 EP0612375 A1 EP 0612375A1
Authority
EP
European Patent Office
Prior art keywords
valve
section
closing member
armature
needle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP93918902A
Other languages
English (en)
French (fr)
Other versions
EP0612375B1 (de
Inventor
Peter Romann
Ferdinand Reiter
Martin Maier
Thomas Naeger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0612375A1 publication Critical patent/EP0612375A1/de
Application granted granted Critical
Publication of EP0612375B1 publication Critical patent/EP0612375B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/168Assembling; Disassembling; Manufacturing; Adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0671Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto
    • F02M51/0682Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto the body being hollow and its interior communicating with the fuel flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/80Fuel injection apparatus manufacture, repair or assembly
    • F02M2200/8046Fuel injection apparatus manufacture, repair or assembly the manufacture involving injection moulding, e.g. of plastic or metal

Definitions

  • the invention is based on a valve needle for an electromagnetically actuated valve or on a method for producing a valve needle according to the preamble of claim 1 or claim 8.
  • DE-OS 40 08 675 describes a valve needle for a Electromagnetically actuated valve is known, which consists of an armature section, a valve closing member section and a valve sleeve section connecting the armature section to the valve closing glow section.
  • the armature section is connected to one end of the valve sleeve section by means of a first welded connection and the valve closing member section is connected to the other end of the valve sleeve section by means of a second welded connection. Two welding operations are therefore required to produce the valve needle, which lead to a relatively complex and expensive manufacture of the valve needle.
  • valve needle according to the invention with the characterizing features of claim 1 and the method according to the invention with the characterizing features of claim 8, on the other hand, have the advantage that such a valve needle can be manufactured in a simple and inexpensive manner.
  • the composition of the metal powder used can easily be matched to optimal magnetic properties of the armature section.
  • the presence of sulfur and carbon, which can adversely affect the quality of a weld between the valve closing member section and the valve sleeve section, can easily be avoided.
  • the longitudinal opening of the valve sleeve section has a bottom near its end facing the valve closing member section.
  • a cavity is formed between the base and the valve closing member section, in which welding spatter, which is produced between the valve closing member section and the valve sleeve section during the production of the white weld connection, is enclosed and cannot impair the function of the valve.
  • valve sleeve section tapers from the armature section in the direction of the valve closing member section.
  • recesses are formed in the wall of the longitudinal opening of the valve sleeve section, which extend in the direction of the valve longitudinal axis, so that the flow through the longitudinal opening of the valve sleeve section is not impeded.
  • the direct formation of a base at the end of the valve sleeve section facing the valve closing member section also offers the advantage of keeping welding spatter away from the interior of the valve sleeve section.
  • valve needle is obtained when it is manufactured with the armature section, the valve sleeve section and the valve closing member section as a molded part according to the metal injection molding process.
  • the molded part is hot isostatically pressed after sintering, so that there is a particularly dense structure of the valve needle or of the actuating part consisting of the armature section and valve sleeve section.
  • FIG. 1 shows a fuel injection valve with an invented valve needle according to a first embodiment
  • FIG. 2 shows the valve needle according to the first embodiment
  • FIG. 3 shows a valve needle according to a second embodiment according to the invention
  • FIG. 4 shows a third embodiment of a valve needle according to the invention
  • FIG. 5 shows a fourth embodiment of a valve needle according to the invention
  • FIG. 6 an inventive manufacturing method of a valve needle.
  • the electromagnetically operable valve shown in FIG. 1, for example, in the form of an injection valve for fuel injection systems of mixed-compression spark-ignition internal combustion engines has a core 2 surrounded by a magnet coil 1 and serving as a fuel inlet connector.
  • the magnet coil 1 with a coil body 3 is for example see ver ⁇ with a plastic coating 5, at the same time an electrical connector 6 is injected mitange ⁇ .
  • a pipe-shaped, metallic intermediate part 12 is connected, for example by welding, concentrically to a longitudinal valve axis 11 and thereby overlaps the core end 10 partially axially with an upper cylinder section 14.
  • the coil former 3 partially overlaps the core 2 and the upper cylinder section 14 of the intermediate part 12.
  • the intermediate part 12 is provided at its end facing away from the core 2 with a lower cylinder section 18 which overlaps a tubular nozzle carrier 19 and passes through it, for example Welding is tightly connected.
  • a cylindrical valve seat body 21 is tightly mounted by welding in a through bore 20 which runs concentrically to the longitudinal axis 11 of the valve.
  • the valve seat body 21 has a fixed valve seat 22 facing the magnetic coil 1, downstream of the valve seat 22.
  • two spray openings 23 are formed in the valve seat body 21. Downstream of the spray openings 23, the valve seat body 21 has a treatment bore 24 which widens in the shape of a truncated cone in the direction of flow.
  • a tubular adjusting bushing 27 is pressed into a stepped flow bore 25 of the core 2 that runs concentrically to the valve longitudinal axis 11.
  • the return spring 26 rests with its one end against a lower end face 28 of the adjusting bushing 27 facing the valve seat body 21.
  • the press-in depth of the adjusting bush 27 into the flow bore 25 of the core 2 determines the spring force of the return spring 26 and thus also influences the dynamic fuel quantity emitted during the opening and closing stroke of the valve.
  • the return spring 26 With its end facing away from the adjusting bush 27, the return spring 26 is supported on a holding shoulder 30 of a tubular, e.g. Actuating part 32 arranged concentrically to the longitudinal valve axis 11.
  • the actuating part 32 has a longitudinal opening 34 which, facing the core 2, merges into the holding shoulder 30.
  • a valve needle 58 according to the first exemplary embodiment shown in FIG. 1 is also shown in FIG. 2.
  • the tubular actuating part 32 consists of a tubular armature section 36, which faces the core 2 and cooperates with the core 2 and the magnetic coil 1, and a tubular valve sleeve section 38 which faces the valve seat body 21. Near its end 39, which faces away from the armature section 35 a bottom 40 is formed in the longitudinal opening 34 of the actuating part 32.
  • the bottom 40 divides the longitudinal opening 34 of the actuating part 32 into a blind-shaped flow section 42 facing the core 2, which forms an extension of the flow bore 25 of the core 2, and one in comparison to the flow section 42 has only a slight axial extension of the blind hole section 44.
  • valve sleeve section 38 At the end 39 of the valve sleeve section 38, the actuating part 32 is connected to a, for example, spherical valve closing member section 46 by means of a welded connection 48.
  • the valve sleeve section 38 of the actuating part 32 has at its end 39 facing away from the holding shoulder 30 an end-side, for example dome-shaped contact surface 49.
  • Valve sleeve section 38 and valve closing member section 46 generally have a smaller diameter than the armature section 36.
  • The, for example, spherical valve closing member section 46 has, for example, four flats 50 on its circumference, which facilitate the flow of fuel in the direction of the valve seat 22 of the valve seat body 21.
  • a cavity 52 is formed, in which the welding spatter formed during the production of the weld connection 48, for example by means of laser welding, accumulates. These weld spatter cannot escape from the cavity 52 and reach the valve seat 22, for example, so that the function of the valve is not disturbed.
  • a plurality of through openings 56 are provided which pass through the wall of the valve sleeve section 38. These through openings 56 allow the fuel to flow through the flow bore 25 of the core 2 and the longitudinal opening 34 of the actuating part 32 in the direction of the valve seat 22 of the valve seat body 21.
  • the actuating part 32 consisting of the armature section 36 and the valve sleeve section 38, and possibly also the valve closing member section 46 of the valve needle 58 are made by injection molding and closing sintering.
  • FIG. 6 shows the method according to the invention for producing a valve needle in a simplified manner.
  • the process also known as metal injection molding (MIM), comprises the production of molded parts from a metal powder with a binder, for example a plastic binder, for example on conventional plastic injection molding machines, and the subsequent removal of the binder and sintering of the remaining metal powder structure.
  • MIM metal injection molding
  • the composition of the metal powder can be matched in a simple manner to optimal magnetic properties of the actuating part 32 consisting of the armature section 36 and the valve sleeve section 38 or the valve closing member section 46. Sulfur and / or carbon in the metal powder, which have a negative effect on a possible welded connection 48 between valve closing member section 46 and valve sleeve section 38, can be avoided.
  • the metal powder 61 is mixed with the plastic used as the binder 62 in a mixing device 63 and homogenized. This mixture is then processed into granules in a granulating device 64 and further processed in a manner known per se into a molded part 66 by means of a plastic injection molding machine 65.
  • the components of the plastic binder 62 are then removed from the injection-molded part 66 by thermal processes, for example under the influence of protective gas.
  • the remaining material structure of the molded part 66 now consists of approximately 60 percent by volume of metal.
  • the molded part is sintered, for example, under the influence of protective gas in a sintering device 68.
  • the sintering process can also be carried out under the influence of hydrogen or in a vacuum.
  • the molded part 66 can then be densified by hot isostatic pressing in order to reduce the proportion of pores in the structure of the actuating part 32 or the valve needle 58 to approximately 1%.
  • the actuating part 32 thus obtained, consisting of the armature section 36 and the valve sleeve section 38, is firmly connected to the valve closing member section 46, for example by a welded connection 48.
  • the magnetic coil 1 is at least partially surrounded by at least one guide element 81, for example in the form of a bracket, which serves as a ferromagnetic element and which bears at one end on the core 2 and at the other end on the nozzle carrier 19 and with these e.g. is connected by welding or soldering.
  • a part of the valve is enclosed by a plastic sheath 83, which extends from the core 2 in the axial direction over the magnet coil 1 with connector 6 and the at least one guide element 81.
  • FIG. 3 shows a second exemplary embodiment of a valve needle 58 according to the invention.
  • the valve needle 58 consists of the actuating part 32 and the valve closing member section 46 connected to this actuating part by a welded connection 48 on the contact surface 49 of the end 39 of the actuating part.
  • the actuating part 32 facing away from the valve closing member section 46, the armature section 36 and the valve sleeve section 38 extending between the armature section 36 and the valve closing member section 46.
  • the actuating part 32 is designed such that the valve sleeve section 38 tapers in the shape of a truncated cone in the direction of the valve closing member section 46 in the direction of the valve closing member section 46 .
  • This conical shape of the valve sleeve section 38 facilitates the demolding of the actuating part 32 from the tools used for its manufacture, for example from a form of the plastic injection molding machine 65 or the sintering device 68.
  • the longitudinal opening 34 of the actuating part 32 there are, for example, four in the direction of the valve longitudinal axis 11 extending recesses 85 are formed. which allow the weight of the valve needle 58 to be reduced without compromising its mechanical strength.
  • recesses 85 are formed on the wall of the longitudinal opening 34 of the actuating part 32 in the radial direction inwardly pointing webs 87, which together with their end facing away from the valve closing member section 46 together form the retaining shoulder 30 for the return spring 26.
  • valve needle 58 according to the second exemplary embodiment shown in FIG. 3 does not differ significantly from the first exemplary embodiment shown in FIG.
  • FIG. 58 differs from FIG. 4 only from the first exemplary embodiment according to FIGS. 1 and 2 in that the bottom 40 directly forms the end 39 of the actuating part 32 opposite the anchor section 36 and concavely corresponds approximately to the contour of the spherically shaped valve closing member section 46 is trained.
  • the valve closing member section 46 lies against the bottom 40 and is connected to it by means of the welded connection 48.
  • the cavity 52 of the previous exemplary embodiments is eliminated in the third exemplary embodiment.
  • valve needle 58 In the fourth exemplary embodiment of a valve needle 58 according to the invention according to FIG. 5, armature section 36, valve sleeve section 38 and valve closing member section 46 are produced as one part according to the MIM method described above.
  • the longitudinal opening 34 advantageously extends into the valve closing member section 46. Welded connections are not present in the fourth embodiment according to FIG. 5.
  • the new valve needle with an injection molded section and subsequent sintering, consisting of armature section 36 and valve sleeve Section 38 existing actuating part 32 or with the valve closing member section 46, which is also manufactured at the same time, has the advantage of very simple and inexpensive production, in which the welding operation between the armature section 36 and the valve sleeve section 38 and possibly also between the valve sleeve section 38 and the valve closing member section 46 is eliminated.
  • the cavity 52 formed by the blind hole section 44 of the longitudinal opening 34 of the actuating part 32 and the valve closing member section 46 leads to the fact that, in the exemplary embodiments according to FIGS. 1 to 4, the welded connection 48 is formed between the valve closing member section 46 and the end 39 of the actuating part 32 resulting welding spatter remain in the cavity 52 and cannot interfere with the function of the valve.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Magnetically Actuated Valves (AREA)

Description

Ventilnadel für ein elektromagnetisch betätigbares Ventil und Verfahren zur Herstellung
Stand der Technik
Die Erfindung geht aus von einer Ventilnadel für ein elektromagne¬ tisch betätigbares Ventil bzw. von einem Verfahren zur Herstellung einer Ventilnadel nach der Gattung des Anspruches 1 bzw. des An¬ spruches 8. Aus der DE-OS 40 08 675 ist eine Ventilnadel für ein elektromagnetisch betätigbares Ventil bekannt, die aus einem Anker¬ abschnitt, einem Ventilschließgliedabschnitt und einem den Anker¬ abschnitt mit dem Ventilschließgliödabschnitt verbindenden Ventil¬ hülsenabschnitt besteht. Der Ankerabschnitt ist mit einem Ende des Ventilhülsenabschnittes mittels einer ersten Schweißverbindung und der Ventilschließgliedabschnitt mit dem anderen Ende des Ventilhül¬ senabschnittes mittels einer zweiten Schweißverbindung verbunden. Zur Herstellung der Ventilnadel sind also zwei Schweißarbeitsgänge erforderlich, die zu einer relativ aufwendigen und teuren Fertigung der Ventilnadel führen. Zudem besteht die Gefahr, daß beim Herstel¬ len der zweiten Schweißverbindung zwischen dem Ventilschließglied¬ abschnitt und dem rohrförmigen Ventilhülsenabschnitt Schweißspritzer entstehen, die sich an der inneren Wandung des rohrförmigen Ventil¬ hülsenabschnittes ablagern und die Funktion des Ventils beeinträch¬ tigen. Vorteile der Erfindung
Die erfindungsgemäße Ventilnadel mit den kennzeichnenden Merkmalen des Anspruches 1 bzw. das erfindungsgemäße Verfahren mit den kenn¬ zeichnenden Merkmalen des Anspruches 8 haben demgegenüber den Vor¬ teil, daß eine solche Ventilnadel auf einfache und kostengünstige Art und Weise herstellbar ist. Die Zusammensetzung des verwendeten Metallpulvers kann dabei einfach auf optimale magnetische Eigen¬ schaften des Ankerabschnittes abgestimmt werden. Das Vorhandensein von Schwefel und Kohlenstoff, die sich nachteilig auf die Qualität einer Schweißung zwischen Ventilschließgliedabschnitt und Ventilhülsenabschnitt auswirken können, läßt sich einfach vermeiden.
Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vor¬ teilhafte Weiterbildungen und Verbesserungen der im Anspruch 1 ange¬ gebenen Ventilnadel und des im Anspruch 8 angegebenen Verfahrens möglich.
Besonders vorteilhaft ist es, wenn die Längsöffnung des Ventilhül¬ senabschnittes nahe ihrem dem Ventilschließgliedabschnitt zugewand¬ ten Ende einen Boden hat. Zwischen dem Boden und dem Ventilschlie߬ gliedabschnitt wird auf diese Weise ein Hohlraum gebildet, in dem Schweißspritzer, die beim Herstellen der Sehweißverbindung zwischen Ventilschließgliedabschnitt und Ventilhülsenabschnitt entstehen, eingeschlossen werden und die Funktion des Ventils nicht beeinträch¬ tigen können.
Für eine gute Entformung aus den bei der Herstellung verwendeten Formwerkzeugen ist es vorteilhaft, wenn sich der Ventilhülsen¬ abschnitt ausgehend von dem Ankerabschnitt in Richtung des Ventil¬ schließgliedabschnittes verjüngt. Zur Reduzierung des Gewichtes der Ventilnadel ist es vorteilhaft, wenn in der Wandung der Längsöffnung des Ventilhülsenabschnittes Ausnehmungen ausgebildet sind, die sich in Richtung zu der Ventil¬ längsachse erstrecken, so daß die Strömung durch die Längsöffnung des Ventilhülsenabschnittes nicht behindert wird.
Die direkte Ausbildung eines Bodens am dem Ventilschließglied¬ abschnitt zugewandten Ende des Ventilhülsenabschnittes bietet eben¬ falls den Vorteil des Fernhaltens von Schweißspritzern aus dem Inne¬ ren des Ventilhülsenabschnittes.
Eine besonders vorteilhafte Ausgestaltung der Ventilnadel ergibt sich dann, wenn sie mit dem Ankerabschnitt, dem Ventilhülsen- abschnitt und dem Ventilschließgliedabschnitt als ein Formteil nach dem Metal-Injection-Molding-Verfahren hergestellt ist.
Von Vorteil ist es, wenn als Bindemittel ein Kunststoffbindemittel verwendet wird und, wenn dieses Bindemittel durch eine thermische Behandlung des Formteils aus diesem Formteil entfernt wird. Auf diese Weise wird eine besonders einfache Herstellung eines die Ven¬ tilnadel bzw. das Betätigungsteil bildenden Formteiles ermöglicht, das bereits eine hohe Gefügedichte aufweist.
Besonders vorteilhaft ist es, wenn das Formteil nach dem Sintern heißisostatisch gepreßt wird, so daß sich ein besonders dichtes Ge¬ füge der Ventilnadel bzw. des aus Ankerabschnitt und Ventilhülsen¬ abschnitt bestehenden Betätigungsteiles ergibt.
Zeichnung
Ausführungsbeispiele der Erfindung sind in der Zeichnung vereinfacht dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen Figur 1 ein Brennstoffeinspritzventil mit einer erfin- dungsgemäßen Ventilnadel gemäß eines ersten Ausführungsbeispiels, Figur 2 die Ventilnadel gemäß des ersten Ausführungsbeispiels, Figur 3 eine Ventilnadel gemäß eines zweiten erfindungsgemäßen Ausfüh¬ rungsbeispiels, Figur 4 ein drittes Ausführungsbeispiel einer erfin¬ dungsgemäßen Ventilnadel, Figur 5 ein viertes Ausführungsbeispiel einer erfindungsgemäßen Ventilnadel, Figur 6 ein erfindungsgemäßes Herstellungsverfahren einer Ventilnadel.
Beschreibung der Ausführungsbeispiele
Das in der Figur 1 beispielsweise dargestellte elektromagnetisch be¬ tätigbare Ventil in der Form eines Einspritzventils für Brennstoff¬ einspritzanlagen von gemischverdichtenden fremdgezündeten Brenn- kraftmaschinen hat einen von einer Magnetspule 1 umgebenen, als Brennstoffeinlaßstutzen dienenden Kern 2. Die Magnetspule 1 mit ei¬ nem Spulenkörper 3 ist z.B. mit einer Kunststoffumspritzung 5 ver¬ sehen, wobei zugleich ein elektrischer Anschlußstecker 6 mitange¬ spritzt ist.
Mit einem unteren Kernende 10 des Kerns 2 ist konzentrisch zu einer Ventillängsachse 11 dicht ein rohrför iges, metallenes Zwischenteil 12 beispielsweise durch Schweißen verbunden und übergreift dabei mit einem oberen Zylinderabschnitt 14 das Kernende 10 teilweise axial. Der Spulenkörper 3 übergreift teilweise den Kern 2 und den oberen Zylinderabschnitt 14 des Zwischenteils 12. Das Zwischenteil 12 ist an seinem dem Kern 2 abgewandten Ende mit einem unteren Zylinder¬ abschnitt 18 versehen, der einen rohrförmigen Düsenträger 19 über¬ greift und mit diesem beispielsweise durch Schweißen dicht verbunden ist. In das stromabwärts liegende Ende des Düsenträgers 19 ist in einer konzentrisch zu der Ventillängsachse 11 verlaufenden Durch¬ gangsbohrung 20 ein zylinderförmiger Ventilsitzkörper 21 durch Schweißen dicht montiert. Der Ventilsitzkörper 21 weist der Magnet¬ spule 1 zugewandt einen festen Ventilsitz 22 auf, stromabwärts des- sen im Ventilsitzkörper 21 z.B. zwei Abspritzöffnungen 23 ausgebil¬ det sind. Stromabwärts der Abspritzöffnungen 23 hat der Ventilsitz¬ körper 21 eine sich in Strömungsrichtung kegelstumpfförmig erwei¬ ternde Aufbereitungsbohrung 24.
In eine konzentrisch zu der Ventillängsachse 11 verlaufende abge¬ stufte Strömungsbohrung 25 des Kerns 2 ist zur Einstellung der Fe¬ derkraft einer Rückstellfeder 26 eine rohrförmige Einstellbuchse 27 eingepreßt. Die Rückstellfeder 26 liegt mit ihrem einen Ende an ei¬ ner dem Ventilsitzkörper 21 zugewandten unteren Stirnseite 28 der Einstellbuchse 27 an. Die Einpreßtiefe der Einstellbuchse 27 in die Strömungsbohrung 25 des Kerns 2 bestimmt die Federkraft der Rück¬ stellfeder 26 und beeinflußt damit auch die dynamische, während des Öffnungs- und des Schließhubes des Ventils abgegebene Brennstoff¬ menge. Mit ihrem der Einstellbuchse 27 abgewandten Ende stützt sich die Rückstellfeder 26 an einem Halteabsatz 30 eines rohrförmigen, z.B. konzentrisch zu der Ventillängsachse 11 angeordneten Betäti¬ gungsteiles 32 ab. Das Betätigungsteil 32 weist eine Längsöffnung 34 auf, die dem Kern 2 zugewandt in den Halteabsatz 30 übergeht.
Eine Ventilnadel 58 gemäß dem in der Figur 1 dargeteilten ersten Ausführungsbeispiel ist ebenfalls in Figur 2 gezeigt.
Das rohrförmige Betätigungsteil 32 besteht aus einem rohrförmig aus¬ gebildeten, dem Kern 2 zugewandten und mit dem Kern 2 sowie der Magnetspule 1 zusammenwirkenden Ankerabschnitt 36 und einem sich dem Ventilsitzkörper 21 zugewandt erstreckenden rohrförmigen Ventilhül¬ senabschnitt 38. Nahe ihres dem Ankerabschnitt 35 abgewandten Endes 39 ist in der Längsöffnung 34 des Betätigungsteils 32 ein Boden 40 ausgebildet. Der Boden 40 unterteilt die Längsöffnung 34 des Betäti¬ gungsteils 32 in einen dem Kern 2 zugewandten, eine Verlängerung der Strömungsbohrung 25 des Kerns 2 bildenden sacklochförmigen Strö¬ mungsabschnitt 42 sowie einen im Vergleich zu dem Strömungsabschnitt 42 nur eine geringe axiale Erstreckung aufweisenden Sacklochab¬ schnitt 44. An dem Ende 39 des Ventilhülsenabschnittes 38 ist das Betätigungsteil 32 mit einem z.B. kugelförmigen Ventilschlie߬ gliedabschnitt 46 mittels einer Schweißverbindung 48 verbunden. Um eine möglichst gute Verbindung und eine exakte Zentrierung des kugelförmigen Ventilschließgliedabschnittes 46 gegenüber dem Be¬ tätigungsteil 32 zu erzielen, hat der Ventilhülsenabschnitt 38 des Betätigungsteiles 32 an seinem Ende 39 dem Halteabsatz 30 abgewandt eine stirnseitige, z.B. kalottenförmig ausgebildete Anlagefläche 49. Ventilhülsenabschnitt 38 und Ventilschließgliedabschnitt 46 haben in der Regel einen geringeren Durchmesser als der Ankerabschnitt 36. Der beispielsweise kugelförmige Ventilschließgliedabschnitt 46 weist an seinem Umfang z.B. vier Abflachungen 50 auf, die das Strömen des Brennstoffs in Richtung des Ventilsitzes 22 des Ventilsitzkörpers 21 erleichtern. Zwischen dem Boden 40 des Sacklochabschnittes 44 und dem Ventilschließgliedabschnitt 46 ist ein Hohlraum 52 gebildet, in dem sich die bei der Herstellung der Schweißverbindung 48 z.B. mittels Laserschweißen entstehenden Schweißspritzer ansammeln. Diese Schweißspritzer können aus dem Hohlraum 52 nicht austreten und z.B. zu dem Ventilsitz 22 gelangen, so daß die Funktion des Ventils nicht gestört wird.
In Richtung der Ventillängsachse 11 zwischen dem Ankerabschnitt 36 und dem Boden 40 des Betätigungsteils 32 ist eine Mehrzahl von durch die Wandung des Ventilhülsenabschnittes 38 hindurchgehenden Durch¬ gangsöffnungen 56 vorgesehen. Diese Durchgangsöffnungen 56 ermög¬ lichen ein Strömen des Brennstoffs durch die Strömungsbohrung 25 des Kerns 2 und die Längsöffnung 34 des Betätigungsteils 32 in Richtung des Ventilsitzes 22 des Ventilsitzkörpers 21.
Das aus dem Ankerabschnitt 36 und dem Ventilhülsenabschnitt 38 be¬ stehende Betätigungsteil 32 und ggf. auch der Ventilschließglied¬ abschnitt 46 der Ventilnadel 58 sind durch Spritzgießen und an- schließendes Sintern hergestellt. Die Figur 6 zeigt in vereinfachter Art und Weise das erfindungsgemäße Verfahren zur Herstellung einer Ventilnadel. Das auch als Metal-Injection-Molding (MIM) bezeichnete Verfahren umfaßt die Herstellung von Formteilen aus einem Metall¬ pulver mit einem Bindemittel, z.B. einem Kunststoffbindemittel bei¬ spielsweise auf konventionellen Kunststoffspritzgießmaschinen und das nachfolgende Entfernen des Bindemittels und Sintern des ver¬ bleibenden Metallpulvergerüstes. Die Zusammensetzung des Metall¬ pulvers kann dabei auf einfache Weise auf optimale magnetische Eigenschaften des aus Ankerabschnitt 36 und Ventilhülsenabschnitt 38 bestehenden Betätigungsteils 32 oder des Ventilschließgliedab¬ schnittes 46 abgestimmt werden. Schwefel und/oder Kohlenstoff in dem Metallpulver, die sich negativ auf eine eventuelle Schweißverbindung 48 zwischen Ventilschließgliedabschnitt 46 und Ventilhülsenabschnitt 38 auswirken, können vermieden werden. Zunächst wird das Metall¬ pulver 61 mit dem als Bindemittel 62 verwendeten Kunststoff in einer Mischvorrichtung 63 gemischt und homogenisiert. Dieses Gemisch wird nun in einer Granuliervorrichtung 64 zu einem Granulat aufbereitet und in an sich bekannter Art und Weise mittels einer Kunststoff¬ spritzgießmaschine 65 zu einem Formteil 66 weiterverarbeitet. Aus dem spritzgegossenen Formteil 66 werden anschließend die Bestand¬ teile des Kunststoffbindemittels 62 durch thermische Verfahren bei¬ spielsweise unter Schutzgaseinfluß entfernt. Das verbleibende Materialgerüst des Formteils 66 besteht nun zu ca. 60 Volumenprozent aus Metall. Um die Dichte des Formteils 66 zu erhöhen, wird das Formteil beispielsweise unter Schutzgaseinfluß in einer Sintervor¬ richtung 68 gesintert. Der Sintervorgang kann aber auch unter Wasserstoffeinfluß oder in einem Vakuum vorgenommen werden. Bei Bedarf kann das Formteil 66 dann durch heißisostatisches Pressen nachverdichtet werden, um den Anteil der Poren im Gefüge des Betätigungsteils 32 bzw. der Ventilnadel 58 auf etwa 1 % zu reduzieren. Abschließend wird bei den Ausführungsbeispielen der Ventilnadeln nach den Figuren 1 bis 4 das so erhaltene, aus Ankerabschnitt 36 und Ventilhülsenabschnitt 38 bestehende Betätigungsteil 32 mit dem Ven¬ tilschließgliedabschnitt 46 beispielsweise durch eine Schweißverbin¬ dung 48 fest verbunden.
Die Magnetspule 1 ist von wenigstens einem, beispielsweise als Bügel ausgebildeten, als ferromagnetisches Element dienenden Leitelement 81 wenigstens teilweise umgeben, das mit seinem einen Ende an dem Kern 2 und mit seinem anderen Ende an dem Düsenträger 19 anliegt und mit diesen z.B. durch Schweißen oder Löten verbunden ist. Ein Teil des Ventils ist von einer Kunststoffummantelung 83 umschlossen, die sich vom Kern 2 ausgehend in axialer Richtung über die Magnetspule 1 mit Anschlußstecker 6 und das wenigstens eine Leitelement 81 er¬ streckt.
Die Figur 3 zeigt ein zweites erfindungsgemäßes Ausführungsbeispiel einer Ventilnadel 58. Die Ventilnadel 58 besteht aus dem Betäti¬ gungsteil 32 sowie dem mit diesem Betätigungsteil durch eine Schweißverbindung 48 an der Anlagefläche 49 des Endes 39 des Betäti¬ gungsteils verbundenen Ventilschließgliedabschnitt 46. Das Betäti¬ gungsteil 32 hat dem Ventilschließgliedabschnitt 46 abgewandt den Ankerabschnitt 36 sowie den sich zwischen Ankerabschnitt 36 und Ven¬ tilschließgliedabschnitt 46 erstreckende Ventilhülsenabschnitt 38. Das Betätigungsteil 32 ist derart ausgebildet, daß sich der Ventil¬ hülsenabschnitt 38 ausgehend von dem Ankerabschnitt 36 in Richtung des Ventilschließgliedabschnittes 46 kegelstumpfförmig verjüngt. Diese konische Form des Ventilhülsenabschnittes 38 erleichtert die Entformung des Betätigungsteiles 32 aus den zu seiner Herstellung verwendeten Werkzeugen, z.B. aus einer Form der Kunststoffspritz- gießmaschine 65 oder der Sintervorrichtung 68. In der Längsöffnung 34 des Betätigungsteils 32 sind beispielsweise vier sich in Richtung der Ventillängsachse 11 erstreckende Ausnehmungen 85 ausgebildet. die eine Verringerung des Gewichts der Ventilnadel 58 ermöglichen, ohne ihre mechanische Festigkeit zu gefährden. Zwischen jeweils zwei Ausnehmungen 85 werden auf diese Weise an der Wandung der Längsöff¬ nung 34 des Betätigungsteils 32 in radialer Richtung nach innen weisende Stege 87 ausgeformt, die mit ihren dem Ventilschließglied¬ abschnitt 46 abgewandten Ende gemeinsam den Halteabsatz 30 für die Rückstellfeder 26 bilden.
Ansonsten unterscheidet sich die Ventilnadel 58 gemäß des zweiten, in der Figur 3 dargestellten Ausführungsbeispiels nicht wesentlich von dem in der Figur 2 dargestellten ersten Ausführungsbeispiel.
Das dritte Ausführungsbeispiel einer erfindungsgemäßen Ventilnadel
58 nach Figur 4 unterscheidet sich von dem ersten Ausführungsbei- spiel nach den Figuren 1 und 2 lediglich dadurch, daß der Boden 40 unmittelbar das dem Ankerabschnitt 36 gegenüberliegende Ende 39 des Betätigungsteils 32 bildet und konkav etwa der Kontur des kugel¬ förmig gestalteten Ventilschließgliedabschnittet 46 entsprechend ausgebildet ist. Der Ventilschließgliedabschnitt 46 liegt an dem Boden 40 an und ist mittels der Schweißverbindung 48 damit ver¬ bunden. Der Hohlraum 52 der vorherigen Ausführungsbeispiele entfällt bei dem dritten Ausführungsbeispiel.
Bei dem vierten Ausführungsbeispiel einer erfindungsgemäßen Ventil¬ nadel 58 nach Figur 5 sind Ankerabschnitt 36, Ventilhülsenabschnitt 38 und Ventilschließgliedabschnitt 46 als ein Teil nach dem oben beschriebenen MIM-Verfahren hergestellt. Dabei erstreckt sich vor¬ teilhafterweise die Längsöffnung 34 bis in den Ventilschließglied¬ abschnitt 46. Schweißverbindungen sind bei dem vierten Ausführungs¬ beispiel nach Figur 5 nicht vorhanden.
Die neue Ventilnadel mit einem durch Spritzgießen und anschließendes Sintern hergestellten, aus Ankerabschnitt 36 und Ventilhülsen- abschnitt 38 bestehenden Betätigungsteil 32 bzw. mit dem ebenfalls zugleich gefertigten Ventilschließgliedabschnitt 46 hat den Vorteil einer sehr einfachen und kostengünstigen Herstellung, bei der der Schweißarbeitsgang zwischen Ankerabschnitt 36 und Ventilhülsenab¬ schnitt 38 und ggf. auch zwischen Ventilhülsenabschnitt 38 und Ventilschließgliedabschnitt 46 entfällt. Der durch den Sacklochab¬ schnitt 44 der Längsöffnung 34 des Betätigungsteils 32 und dem Ventilschließgliedabschnitt 46 gebildete Hohlraum 52 führt dazu, daß bei der in den Ausführungsbeispielen nach den Figuren 1 bis 4 vorge¬ sehenen Ausbildung der Schweißverbindung 48 zwischen Ventilschlie߬ gliedabschnitt 46 und dem Ende 39 des Betätigungsteils 32 ent¬ stehende Schweißspritzer in dem Hohlraum 52 verbleiben und nicht die Funktion des Ventils stören können.

Claims

Ansprüche
1. Ventilnadel für ein elektromagnetisch betätigbares Ventil, insbe¬ sondere für ein Einspritzventil für Brennstoffeinspritzanlagen von Brennkraftmaschinen, das einen Kern, eine Magnetspule und einen festen Ventilsitz hat, mit dem die aus einem Ankerabschnitt, einem Ventilhülsenabschnitt .und einem Ventilschließgliedabschnitt be¬ stehende Ventilnadel zusammenwirkt, wobei der Ventilhülsenabschnitt den Ankerabschnitt mit dem Ventilschließgliedabschnitt verbindet und eine Längsöffnung sich durch den Ankerabschnitt und den Ventil¬ hülsenabschnitt erstreckt, dadurch gekennzeichnet, daß zumindest der Ankerabschnitt (36) und der Ventilhülsenabschnitt (38) der Ventil¬ nadel (58) als ein Teil durch Spritzgießen und anschließendes Sintern nach dem Metal-Injection-Molding-Verfahren hergestellt ist.
2. Ventilnadel nach Anspruch 1, dadurch gekennzeichnet, daß die Längsöffnung (34) nahe an einem dem Ventilschließgliedabschnitt (46) zugewandten Ende (39) des Ventilhülsenabschnittes (38) einen Boden (40) hat.
3. Ventilnadel nach Anspruch 1, dadurch gekennzeichnet, daß an einem dem Ventilschließgliedabschnitt (46) zugewandten Ende (39) des Ventilhülsenabschnittes (38) ein Boden (40) vorgesehen ist.
4. Ventilnadel nach einem der Ansprüche 1 bis 3, dadurch gekenn¬ zeichnet, daß der Ventilschließgliedabschnitt (46) mittels einer Schweißverbindung (48) mit dem dem Ankerabschnitt (36) abgewandten Ende (39) des Ventilhülsenabschnittes (38) verbunden ist.
5. Ventilnadel nach Anspruch 1, dadurch gekennzeichnet, daß Ankerab¬ schnitt (36), Ventilhülsenabschnitt (38) und Ventilschließgliedab¬ schnitt (46) der Ventilnadel (58) als ein Teil nach dem Metal-Injection-Molding-Verfahren hergestellt sind.
6. Ventilnadel nach einem der vorhergehenden Ansprüche, dadurch ge¬ kennzeichnet, daß sich der Ventilhülsenabschnitt (38) ausgehend von dem Ankerabschnitt (36) in Richtung des Ventilschließgliedab¬ schnittes (46) verjüngt.
7. Ventilnadel nach einem der vorhergehenden Ansprüche, dadurch ge¬ kennzeichnet, daß in der Wandung der Längsöffnung (34) des Ventil¬ hülsenabschnittes (38) sich in Richtung einer Ventillängsachse (11) erstreckende Ausnehmungen (85) ausgebildet sind.
8. Verfahren zur Herstellung einer Ventilnadel, insbesondere einer nach einem der Ansprüche 1 bis 7 ausgebildeten Ventilnadel, die aus einem Ankerabschnitt, einem Ventilschließgliedabschnitt und einem den Ankerabschnitt mit dem Ventilschließgliedabschnitt verbindenden Ventilhülsenabschnitt besteht, dadurch gekennzeichnet, daß ent¬ sprechend dem Metal-Injection-Molding-Verfahren in einem ersten Ver¬ fahrensschritt ein Metallpulver und ein Bindemittel miteinander ge¬ mischt und homogenisiert werden, in einem zweiten Verfahrensschritt durch Spritzgießen ein wenigstens aus dem Ankerabschnitt (36) und dem Ventilhülsenabschnitt (38) bestehendes Formteil (66) hergestellt wird, in einem dritten Verfahrensschritt das Bindemittel aus dem Formteil (66) entfernt wird und in einem vierten Verfahrensschritt das Formteil (66) gesintert wird.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß in einem fünften Verfahrensschritt der Ventilschließgliedabschnitt (46) mittels einer Schweißverbindung (48) mit dem Ventilhülsenabschnitt (38) verbunden wird.
10. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß Ankerab¬ schnitt (36), Ventilhülenabschnitt (38) und Ventilschließgliedab¬ schnitt (46) als ein Formteil (66) ausgebildet sind.
11. Verfahren nach Anspruch 8 oder 10, dadurch gekennzeichnet, daß als Bindemittel ein Kunststoff verwendet wird.
12. Verfahren nach Anspruch 8, 10 oder 11, dadurch gekennzeichnet, daß das Bindemittel durch eine thermische Behandlung des Formteils (66) aus diesem Formteil (66) entfernt wird.
13. Verfahren nach einem der Ansprüche 8 oder 10 bis 12, dadurch gekennzeichnet, daß das Formteil (66) nach dem Sintern heiß- isostatisch gepreßt wird.
EP93918902A 1992-09-11 1993-08-20 Ventilnadel für ein elektromagnetisch betätigbares ventil und verfahren zur herstellung Expired - Lifetime EP0612375B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4230376A DE4230376C1 (de) 1992-09-11 1992-09-11
DE4230376 1992-09-11
PCT/DE1993/000759 WO1994007024A1 (de) 1992-09-11 1993-08-20 Ventilnadel für ein elektromagnetisch betätigbares ventil und verfahren zur herstellung

Publications (2)

Publication Number Publication Date
EP0612375A1 true EP0612375A1 (de) 1994-08-31
EP0612375B1 EP0612375B1 (de) 1997-06-18

Family

ID=6467717

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93918902A Expired - Lifetime EP0612375B1 (de) 1992-09-11 1993-08-20 Ventilnadel für ein elektromagnetisch betätigbares ventil und verfahren zur herstellung

Country Status (7)

Country Link
US (1) US5566920A (de)
EP (1) EP0612375B1 (de)
JP (1) JPH07501377A (de)
KR (1) KR100292420B1 (de)
DE (2) DE4230376C1 (de)
ES (1) ES2103485T3 (de)
WO (1) WO1994007024A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1184564A2 (de) * 2000-09-05 2002-03-06 Siemens Automotive Corporation Gestaltung einer Schweissverbindung für eine Armature/Kugelventil Anordnung für ein Kraftstoffeinspritzventil

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4230376C1 (de) * 1992-09-11 1993-04-22 Robert Bosch Gmbh, 7000 Stuttgart, De
DE4408875A1 (de) * 1994-03-16 1995-09-21 Bosch Gmbh Robert Brennstoffeinspritzventil
DE4415850A1 (de) * 1994-05-05 1995-11-09 Bosch Gmbh Robert Ventilnadel für ein elektromagnetisch betätigbares Ventil
DE4420176A1 (de) * 1994-06-09 1995-12-14 Bosch Gmbh Robert Ventilnadel für ein elektromagnetisch betätigbares Ventil
DE4421429A1 (de) * 1994-06-18 1995-12-21 Bosch Gmbh Robert Elektromagnetisch betätigbares Brennstoffeinspritzventil
DE4426006A1 (de) * 1994-07-22 1996-01-25 Bosch Gmbh Robert Ventilnadel für ein elektromagnetisch betätigbares Ventil und Verfahren zur Herstellung
JPH08189439A (ja) * 1994-12-28 1996-07-23 Zexel Corp 電磁式燃料噴射弁およびそのノズルアッシィ組付け方法
DE19623581A1 (de) * 1995-07-21 1997-01-23 Bosch Gmbh Robert Kraftstoffeinspritzventil für Brennkraftmaschinen
US5704553A (en) * 1995-10-30 1998-01-06 Wieczorek; David P. Compact injector armature valve assembly
JP3933739B2 (ja) * 1997-01-30 2007-06-20 三菱電機株式会社 燃料噴射弁
US6257508B1 (en) * 1997-02-06 2001-07-10 Siemens Automotive Corporation Fuel injector having after-injection reduction arrangement
DE19712922B4 (de) * 1997-03-27 2005-08-11 Robert Bosch Gmbh Brennstoffeinspritzventil
DE19730202A1 (de) * 1997-07-15 1999-01-21 Bosch Gmbh Robert Elektromagnetisch betätigbares Ventil
NL1007304C2 (nl) * 1997-10-17 1999-04-20 Applied Power Inc Werkwijze voor het vervaardigen van een slangkoppeling.
US6047907A (en) 1997-12-23 2000-04-11 Siemens Automotive Corporation Ball valve fuel injector
WO1999061781A1 (en) * 1998-05-27 1999-12-02 Siemens Automotive Corporation Compressed natural gas injector having improved low noise valve needle
US6508418B1 (en) * 1998-05-27 2003-01-21 Siemens Automotive Corporation Contaminant tolerant compressed natural gas injector and method of directing gaseous fuel therethrough
US6328231B1 (en) * 1998-05-27 2001-12-11 Siemens Automotive Corporation Compressed natural gas injector having improved low noise valve needle
US20010002680A1 (en) 1999-01-19 2001-06-07 Philip A. Kummer Modular two part fuel injector
US6089467A (en) * 1999-05-26 2000-07-18 Siemens Automotive Corporation Compressed natural gas injector with gaseous damping for armature needle assembly during opening
US6334580B2 (en) * 1999-05-26 2002-01-01 Siemens Automotive Corporation Gaseous injector with columnated jet oriface flow directing device
US6431474B2 (en) 1999-05-26 2002-08-13 Siemens Automotive Corporation Compressed natural gas fuel injector having magnetic pole face flux director
US6405947B2 (en) 1999-08-10 2002-06-18 Siemens Automotive Corporation Gaseous fuel injector having low restriction seat for valve needle
US6422488B1 (en) 1999-08-10 2002-07-23 Siemens Automotive Corporation Compressed natural gas injector having gaseous dampening for armature needle assembly during closing
DE19963389A1 (de) * 1999-12-28 2001-07-05 Bosch Gmbh Robert Verfahren zur Herstellung eines Ventilstücks für eine Kraftstoff-Einspritzvorrichtung
US6676044B2 (en) 2000-04-07 2004-01-13 Siemens Automotive Corporation Modular fuel injector and method of assembling the modular fuel injector
US6799733B1 (en) 2000-06-28 2004-10-05 Siemens Automotive Corporation Fuel injector having a modified seat for enhanced compressed natural gas jet mixing
US6481646B1 (en) 2000-09-18 2002-11-19 Siemens Automotive Corporation Solenoid actuated fuel injector
US6523761B2 (en) 2000-12-29 2003-02-25 Siemens Automotive Corporation Modular fuel injector having an integral or interchangeable inlet tube and having a lift set sleeve
US6568609B2 (en) 2000-12-29 2003-05-27 Siemens Automotive Corporation Modular fuel injector having an integral or interchangeable inlet tube and having an integral filter and o-ring retainer assembly
US6520422B2 (en) 2000-12-29 2003-02-18 Siemens Automotive Corporation Modular fuel injector having a low mass, high efficiency electromagnetic actuator and having a terminal connector interconnecting an electromagnetic actuator with an electrical terminal
US6520421B2 (en) 2000-12-29 2003-02-18 Siemens Automotive Corporation Modular fuel injector having an integral filter and o-ring retainer
US6547154B2 (en) 2000-12-29 2003-04-15 Siemens Automotive Corporation Modular fuel injector having a terminal connector interconnecting an electromagnetic actuator with a pre-bent electrical terminal
US6708906B2 (en) 2000-12-29 2004-03-23 Siemens Automotive Corporation Modular fuel injector having a surface treatment on an impact surface of an electromagnetic actuator and having an integral filter and dynamic adjustment assembly
US6536681B2 (en) 2000-12-29 2003-03-25 Siemens Automotive Corporation Modular fuel injector having a surface treatment on an impact surface of an electromagnetic actuator and having an integral filter and O-ring retainer assembly
US6508417B2 (en) 2000-12-29 2003-01-21 Siemens Automotive Corporation Modular fuel injector having a snap-on orifice disk retainer and having a lift set sleeve
US6655609B2 (en) 2000-12-29 2003-12-02 Siemens Automotive Corporation Modular fuel injector having a low mass, high efficiency electromagnetic actuator and having an integral filter and o-ring retainer assembly
US6607143B2 (en) 2000-12-29 2003-08-19 Siemens Automotive Corporation Modular fuel injector having a surface treatment on an impact surface of an electromagnetic actuator and having a lift set sleeve
US6523756B2 (en) 2000-12-29 2003-02-25 Siemens Automotive Corporation Modular fuel injector having a low mass, high efficiency electromagnetic actuator and having a lift set sleeve
US6502770B2 (en) 2000-12-29 2003-01-07 Siemens Automotive Corporation Modular fuel injector having a snap-on orifice disk retainer and having a terminal connector interconnecting an electromagnetic actuator with an electrical terminal
US6695232B2 (en) 2000-12-29 2004-02-24 Siemens Automotive Corporation Modular fuel injector having interchangeable armature assemblies and having a lift set sleeve
US6550690B2 (en) 2000-12-29 2003-04-22 Siemens Automotive Corporation Modular fuel injector having interchangeable armature assemblies and having an integral filter and dynamic adjustment assembly
US6769636B2 (en) 2000-12-29 2004-08-03 Siemens Automotive Corporation Modular fuel injector having interchangeable armature assemblies and having an integral filter and O-ring retainer assembly
US6511003B2 (en) 2000-12-29 2003-01-28 Siemens Automotive Corporation Modular fuel injector having an integral or interchangeable inlet tube and having a terminal connector interconnecting an electromagnetic actuator with an electrical terminal
US6698664B2 (en) 2000-12-29 2004-03-02 Siemens Automotive Corporation Modular fuel injector having an integral or interchangeable inlet tube and having an integral filter and dynamic adjustment assembly
US6499668B2 (en) 2000-12-29 2002-12-31 Siemens Automotive Corporation Modular fuel injector having a surface treatment on an impact surface of an electromagnetic actuator and having a terminal connector interconnecting an electromagnetic actuator with an electrical terminal
US6565019B2 (en) 2000-12-29 2003-05-20 Seimens Automotive Corporation Modular fuel injector having a snap-on orifice disk retainer and having an integral filter and O-ring retainer assembly
US6811091B2 (en) 2000-12-29 2004-11-02 Siemens Automotive Corporation Modular fuel injector having an integral filter and dynamic adjustment assembly
US6523760B2 (en) 2000-12-29 2003-02-25 Siemens Automotive Corporation Modular fuel injector having interchangeable armature assemblies and having a terminal connector interconnecting an electromagnetic actuator with an electrical terminal
US6533188B1 (en) 2000-12-29 2003-03-18 Siemens Automotive Corporation Modular fuel injector having a snap-on orifice disk retainer and having an integral filter and dynamic adjustment assembly
US6904668B2 (en) 2001-03-30 2005-06-14 Siemens Vdo Automotive Corp. Method of manufacturing a modular fuel injector
US7093362B2 (en) 2001-03-30 2006-08-22 Siemens Vdo Automotive Corporation Method of connecting components of a modular fuel injector
US6687997B2 (en) 2001-03-30 2004-02-10 Siemens Automotive Corporation Method of fabricating and testing a modular fuel injector
US6676043B2 (en) 2001-03-30 2004-01-13 Siemens Automotive Corporation Methods of setting armature lift in a modular fuel injector
DE10218002B4 (de) * 2002-04-23 2006-09-07 Ims Connector Systems Gmbh Verfahren zur Herstellung eines Steckverbindergehäuse sowie Steckverbindergehäuse
DE10261610A1 (de) * 2002-12-27 2004-07-08 Robert Bosch Gmbh Ventil zum Steuern eines Fluids
DE10308613A1 (de) * 2003-02-27 2004-09-16 Siemens Ag Ventil mit einem Hebel, Hebel und Verfahren zur Herstellung eines Hebels
EP1617071B1 (de) 2003-03-24 2008-08-13 Keihin Corporation Elektromagnetisches kraftstoffeinspritzventil
DE102004041318A1 (de) * 2004-08-26 2006-04-27 Ina-Schaeffler Kg Als Kipp- oder Schwinghebel ausgebildeter Nockenfolger für einen Ventiltrieb einer Brennkraftmaschine
DE102004058803A1 (de) 2004-12-07 2006-06-08 Robert Bosch Gmbh Einspritzventil
DE102005036951A1 (de) * 2005-08-05 2007-02-08 Robert Bosch Gmbh Brennstoffeinspritzventil und Verfahren zur Ausformung von Abspritzöffnungen
US7673847B2 (en) * 2005-09-21 2010-03-09 Aisan Kogyo Kabushiki Kaisha Fluid control valve for supplying gas to a fuel cell in a vehicle
EP1845254A1 (de) * 2006-04-11 2007-10-17 Siemens Aktiengesellschaft Ventilanordnung
DE102009055133A1 (de) 2009-12-22 2011-06-30 Robert Bosch GmbH, 70469 Polkern für Magnetventile hergestellt mittels Mehrstoff-MIM
EP2466109A1 (de) * 2010-12-14 2012-06-20 Continental Automotive GmbH Ventilanordnung für ein Einspritzventil und Einspritzventil
JP5862941B2 (ja) * 2011-11-08 2016-02-16 株式会社デンソー 燃料噴射弁
DE102011089240A1 (de) 2011-12-20 2013-06-20 Robert Bosch Gmbh Brennstoffeinspritzventil und Verfahren zur Ausformung von Abspritzöffnungen

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4197996A (en) * 1978-12-07 1980-04-15 Ford Motor Company Constant pressure fuel injector assembly
US5002727A (en) * 1986-03-10 1991-03-26 Agency Of Industrial Science And Technology composite magnetic compacts and their forming methods
JPH01277677A (ja) * 1988-04-29 1989-11-08 Honda Motor Co Ltd 電磁式燃料噴射弁
US4946107A (en) * 1988-11-29 1990-08-07 Pacer Industries, Inc. Electromagnetic fuel injection valve
DE3927932A1 (de) * 1989-08-24 1991-02-28 Bosch Gmbh Robert Elektromagnetisch betaetigbares kraftstoffeinspritzventil
JPH03191002A (ja) * 1989-12-20 1991-08-21 Sumitomo Heavy Ind Ltd 金属射出成形品の脱バインダ及び焼結方法
DE4008675A1 (de) * 1990-03-17 1991-09-19 Bosch Gmbh Robert Elektromagnetisch betaetigbares ventil
DE4033952C1 (de) * 1990-10-25 1992-05-27 Robert Bosch Gmbh, 7000 Stuttgart, De
JPH04180504A (ja) * 1990-11-15 1992-06-26 Sumitomo Heavy Ind Ltd 高速度工具鋼の製造方法
DE4230376C1 (de) * 1992-09-11 1993-04-22 Robert Bosch Gmbh, 7000 Stuttgart, De

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9407024A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1184564A2 (de) * 2000-09-05 2002-03-06 Siemens Automotive Corporation Gestaltung einer Schweissverbindung für eine Armature/Kugelventil Anordnung für ein Kraftstoffeinspritzventil
EP1184564A3 (de) * 2000-09-05 2004-07-14 Siemens VDO Automotive Corporation Gestaltung einer Schweissverbindung für eine Armature/Kugelventil Anordnung für ein Kraftstoffeinspritzventil

Also Published As

Publication number Publication date
DE4230376C1 (de) 1993-04-22
JPH07501377A (ja) 1995-02-09
US5566920A (en) 1996-10-22
KR100292420B1 (ko) 2001-10-22
EP0612375B1 (de) 1997-06-18
DE59306788D1 (de) 1997-07-24
ES2103485T3 (es) 1997-09-16
WO1994007024A1 (de) 1994-03-31

Similar Documents

Publication Publication Date Title
DE4230376C1 (de)
EP0685643B1 (de) Ventilnadel für ein elektromagnetisch betätigbares Ventil
EP1208298B1 (de) Brennstoffeinspritzventil und verfahren zur herstellung von austrittsöffnungen an ventilen
DE19712589C1 (de) Brennstoffeinspritzventil und Verfahren zur Herstellung einer Ventilnadel eines Brennstoffeinspritzventils
EP0733162B1 (de) Verfahren zur herstellung eines magnetkreises für ein ventil
EP0718491B1 (de) Verfahren zur herstellung eines ventiles
EP1114249B1 (de) Brennstoffeinspritzventil
EP1030967A1 (de) Brennstoffeinspritzventil
EP0944769A1 (de) Brennstoffeinspritzventil
EP0789810A1 (de) Brennstoffeinspritzventil
EP0935707A1 (de) Brennstoffeinspritzventil
EP1062421A1 (de) Brennstoffeinspritzventil
EP1966479A1 (de) Elektromagnetisch betätigbares ventil
DE19855568A1 (de) Brennstoffeinspritzventil
DE10060290A1 (de) Brennstoffeinspritzventil
WO2002010585A1 (de) Brennstoffeinspritzventil und verfahren zu dessen einstellung
DE10063260A1 (de) Brennstoffeinspritzventil
DE19853102A1 (de) Brennstoffeinspritzventil
WO2002031352A2 (de) Brennstoffeinspritzventil
EP1346149A1 (de) Brennstoffeinspritzventil
WO2017016916A1 (de) Beschichtetes formteil und verfahren zur herstellung eines beschichteten formteils
WO1999027246A1 (de) Brennstoffeinspritzventil und verfahren zur herstellung einer ventilnadel eines brennstoffeinspritzventils
EP0890732A2 (de) Elektromagnetisch betätigbares Ventil
DE102018222702A1 (de) Brennstoffeinspritzventil
DE10050753A1 (de) Brennstoffeinspritzventil

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940423

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

17Q First examination report despatched

Effective date: 19950721

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59306788

Country of ref document: DE

Date of ref document: 19970724

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970820

ITF It: translation for a ep patent filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2103485

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030729

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030819

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20030826

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030925

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050301

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050429

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050820

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20040821