EP0546476B1 - Verfahren zur Herstellung eines modifizierten Faser- materials und Verfahren zum Färben des modifizierten Fasermaterials mit anionischen Farbstoffen - Google Patents

Verfahren zur Herstellung eines modifizierten Faser- materials und Verfahren zum Färben des modifizierten Fasermaterials mit anionischen Farbstoffen Download PDF

Info

Publication number
EP0546476B1
EP0546476B1 EP92120726A EP92120726A EP0546476B1 EP 0546476 B1 EP0546476 B1 EP 0546476B1 EP 92120726 A EP92120726 A EP 92120726A EP 92120726 A EP92120726 A EP 92120726A EP 0546476 B1 EP0546476 B1 EP 0546476B1
Authority
EP
European Patent Office
Prior art keywords
group
sulfato
groups
amino
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92120726A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP0546476A1 (de
Inventor
Andreas Dr. Schrell
Hubert Werner Dr. Russ
Thomas Riehm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoechst AG
Original Assignee
Hoechst AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst AG filed Critical Hoechst AG
Publication of EP0546476A1 publication Critical patent/EP0546476A1/de
Application granted granted Critical
Publication of EP0546476B1 publication Critical patent/EP0546476B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • D06P1/64General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders using compositions containing low-molecular-weight organic compounds without sulfate or sulfonate groups
    • D06P1/642Compounds containing nitrogen
    • D06P1/645Aliphatic, araliphatic or cycloaliphatic compounds containing amino groups
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P3/00Special processes of dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form, classified according to the material treated
    • D06P3/82Textiles which contain different kinds of fibres
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/35Heterocyclic compounds
    • D06M13/352Heterocyclic compounds having five-membered heterocyclic rings
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/35Heterocyclic compounds
    • D06M13/355Heterocyclic compounds having six-membered heterocyclic rings
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/46Compounds containing quaternary nitrogen atoms
    • D06M13/463Compounds containing quaternary nitrogen atoms derived from monoamines
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/39General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using acid dyes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • D06P1/62General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders using compositions containing low-molecular-weight organic compounds with sulfate, sulfonate, sulfenic or sulfinic groups
    • D06P1/628Compounds containing nitrogen
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • D06P1/64General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders using compositions containing low-molecular-weight organic compounds without sulfate or sulfonate groups
    • D06P1/642Compounds containing nitrogen
    • D06P1/6426Heterocyclic compounds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P5/00Other features in dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form
    • D06P5/22Effecting variation of dye affinity on textile material by chemical means that react with the fibre
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S8/00Bleaching and dyeing; fluid treatment and chemical modification of textiles and fibers
    • Y10S8/916Natural fiber dyeing
    • Y10S8/918Cellulose textile
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S8/00Bleaching and dyeing; fluid treatment and chemical modification of textiles and fibers
    • Y10S8/92Synthetic fiber dyeing
    • Y10S8/924Polyamide fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S8/00Bleaching and dyeing; fluid treatment and chemical modification of textiles and fibers
    • Y10S8/93Pretreatment before dyeing

Definitions

  • the use of alkaline agents is particularly necessary to fix the technically important reactive dyes on the fiber.
  • a dyeing process which can be carried out with little or no salt and at the same time only with the use of small amounts of an alkaline agent or entirely without such an alkaline auxiliary is therefore particularly advantageous in the dyeing process using fiber-reactive dyes.
  • a fiber material is used as the textile material used which has been pretreated and modified by a compound which is a saturated aliphatic compound of 3 to 15 carbon atoms, preferably 3 to 12 carbon atoms, optionally substituted by 1 or 2 or more, such as 3 to 5, hydroxyl groups which contains at least one primary, secondary or tertiary amino group or quaternary ammonium group and at least one hydrolysable ester group, the aliphatic radical (s) being (s) being straight-chain, branched and / or cyclic and optionally by one or more , such as two or three, hetero groups, such as amino groups and d Oxygen atoms, which can be interrupted and the amino group (s) can also be part of a saturated heterocyclic radical,
  • the amino and ester group-containing compounds used according to the invention in particular those containing sulfuric acid ester groups, cannot form an ethyleneimine structure because of their constitution; they are able to react with the cellulose fiber according to a nucleophilic substitution.
  • the amount of alkali used can be reduced by 75%; the fixing times can also be drastically reduced. Since in the process according to the invention the application can be carried out analogously to conventional dyeing processes, the process according to the invention can be integrated into a continuous process for the general pretreatment of fiber materials where the alkali necessary for fixing is already present.
  • the process according to the invention for dyeing fiber materials modified according to the invention permits the one-off dyeing of polyester / cotton blended fabrics with reactive and disperse dyes without damage to the disperse dye, precisely because alkali is not present in this single-bath dyeing process.
  • the compounds which can be used according to the invention for modifying fiber materials contain as ester groups at least one hydrolyzable ester group, such as the esters of sulfuric acid, phosphoric acid, a lower alkane carboxylic acid (the term "lower” here and hereinafter means that the groups are alkyl radicals of 1 to 4 C) -Atoms contain or are), such as acetic acid, benzenesulfonic acid and their derivatives substituted on the benzene nucleus by substituents from the group of sulfo, carboxy, lower alkyl, lower alkoxy and nitro, such as p-toluenesulfonic acid and mesitylsulfonic acid (the acidic esters of sulfuric acid and phosphoric acid are also known as sulfato and phosphato groups, respectively, and correspond to general formula -OSO3M or -OPO3M2, in which M represents a hydrogen atom or an alkali metal, such as sodium, potassium or lithium
  • the fiber-modifying compounds preferably contain only one ester group. If the fiber-modifying compounds do not contain an azacyclic radical, they preferably have at least one hydroxyl group.
  • the compounds which cannot be used according to the invention have the general formula (A) (H2N) p - ALK - ER (A) in which p is the number 1 or 2, ER is an ester group and ALK is a straight-chain or branched alkylene radical of 2 to 6 carbon atoms which is optionally interrupted by 1 or more hetero groups and is not substituted by a hydroxyl group.
  • the present invention thus relates to a process for dyeing fiber materials with water-soluble, anionic dyes, preferably with fiber-reactive dyes, which is characterized in that the dyeing is carried out using low-electrolyte or completely electrolyte-free and / or low-alkali or completely alkali-free dye solutions (dye liquors, printing pastes) and using a fiber material pretreated and modified with the above-mentioned compounds containing ester and amino groups.
  • Such compounds containing ester and amino groups which can be used according to the invention are, for example, N- ( ⁇ -sulfatoethyl) piperazine, N- [ ⁇ - ( ⁇ '-sulfatoethoxy) ethyl] piperazine, N- ( ⁇ -sulfato- ⁇ -hydroxypropyl) -piperidine, N- ( ⁇ -sulfato- ⁇ -hydroxy-propyl) -pyrrolidine, N- ( ⁇ -sulfatoethyl) -piperidine, the salts of 3-sulfato-2-hydroxy-1- (trimethylammonium) propane, such as 3 -Sulfato-2-hydroxy-1- (trimethylammonium) propane sulfate, 2-sulfato-3-hydroxy-1-amino propane, 3-sulfato-2-hydroxy-1-amino propane, 1-sulfato-3 -hydroxy-2-amino-propane, 3-hydroxy-1-sulfato-2-amino-propane, 2,3
  • Esterification and acylating agents which can be used to prepare the compounds containing ester and amino groups that can be used according to the invention from starting compounds are, for example, sulfuric acid, phosphoric acid, polyphosphoric acid, alkane carboxylic acids of 2 to 5 carbon atoms and their chlorides or anhydrides, such as acetic acid (glacial acetic acid ) and acetic anhydride, benzenesulfonic acid and those substituted on the benzene nucleus by substituents from the group consisting of sulfo, carboxy, alkyl of 1 to 4 carbon atoms, alkoxy of 1 to 4 carbon atoms and nitro or benzenesulfonic acids or their sulfochlorides.
  • the sulfato compound can be prepared from the corresponding hydroxy compounds by adding the hydroxy compounds in the required amount, ie preferably an equimolar amount, of concentrated sulfuric acid and stirring them at a temperature between 5 and 30 ° C for some time until the solution is complete. They are isolated from the sulfuric acid solution by pouring the solution onto ice and neutralization, by precipitating the sulfate ions using calcium carbonate as calcium sulfate and then filtering and evaporating the aqueous solution.
  • the sulfato compounds can be obtained as crystalline or semi-crystalline substances which can be used directly in the process of modifying the fiber material.
  • Fiber materials are understood to mean natural and synthetic fiber materials which contain hydroxyl and / or carbonamide groups, such as silk, wool and other animal hair, as well as synthetic polyemide fiber materials and polyurethane fiber materials, for example polyamide-4, polyamide-6 and polyamide-11, and in particular fiber materials which Base bodies of ⁇ , ⁇ -glucose contain, such as cellulose fiber materials, for example cotton, hemp, jute and linen, and their regenerated derivatives, such as viscose silk and rayon, or mixtures of such fiber materials.
  • anionic dyes are meant those which are anionic, i.e. contain acidic groups, such as sulfo and carboxy groups, or their salts, such as alkali metal salts, and are accordingly water-soluble.
  • anionic dyes which have a fiber-reactive group, i.e. a group that is usually able to react with the carbonamide or hydroxy groups of the fiber material and to be able to form a connection with them.
  • the invention further relates to a process for modifying a fiber material, which is characterized in that a saturated aliphatic compound of 3 to 15 carbon atoms containing ester and amino groups and optionally substituted by 1 or 2 or more, such as 3 to 5, hydroxyl groups , preferably from 3 to 12 carbon atoms, with at least one primary, secondary, tertiary or quaternary amino group and at least one hydrolyzable ester group in which the aliphatic radical (s) is straight-chain, branched and / or cyclic ( are) and may optionally be interrupted by one or more, such as two or three, hetero groups, such as amino groups and oxygen atoms, and the amino group (s) can also be part of a saturated heterocyclic radical, with the exception of compounds of general formula (A), in aqueous, alkaline solution at a temperature between 60 and 230 ° C, preferably between n 90 and 190 ° C, can act on a fiber material.
  • the invention relates to the use of such ester and amino group-containing compounds as defined above for modifying fiber materials, in particular with the aim of being able to use them for dyeing with water-soluble, anionic dyes without or only with small amounts of electrolyte salts and alkaline agents.
  • the inventive method of modifying the fiber material can be carried out, for example, by contacting the fiber material with the aliphatic compound containing amino and ester groups in an alkaline aqueous solution.
  • concentration of this compound in the alkaline aqueous solution is generally between 1 and 20% by weight, preferably between 5 and 10% by weight.
  • the alkaline agent such as sodium hydroxide, sodium carbonate and potassium carbonate, can be present in a concentration between 1 and 20% by weight; the alkaline agent is preferably used in a concentration between 1.5 and 10% by weight, the amount depending both on the amount of use of the amino and ester group-containing aliphatic compound and on the material to be pretreated. This will avoid high alkali concentrations in polyester materials.
  • the alkaline, aqueous solution containing the amino and ester group-containing aliphatic compound has a pH between 10 and 14.
  • the fiber material which is both modified according to the invention and used in the modified form in the dyeing process according to the invention, can in all processing states, such as yarn, flake, sliver and piece goods (fabric), and also in a mixture with other fiber materials, such as in Form of cotton / polyester fiber materials and in the form of blended fabrics with other fiber materials.
  • New compounds which can be used according to the invention are, for example, N- ( ⁇ -sulfato- ⁇ -hydroxypropyl) piperidine, N- ( ⁇ -sulfatoethyl) piperidine, N- ( ⁇ -sulfato- ⁇ -hydroxypropyl) piperidine, N - ( ⁇ -sulfato- ⁇ -hydroxypropyl) pyrrolidine, 3-sulfato-2-hydroxy-1-aminopropane, 2-sulfato-3-hydroxy-1-aminopropane, the salts of 2-sulfato- 3-hydroxy and 3-sulfato-2-hydroxy-1- (trimethylammonium) propane and their derivatives with an ester group other than the sulfato group.
  • the aliphatic compounds containing ester and amino groups which can be used according to the invention can be brought into contact with the fiber material in a variety of ways in an alkaline aqueous solution, for example by treating the fiber material in an alkaline, aqueous solution of the compound containing ester and amino groups (analogous to a Dye-drawing process) at a temperature between 15 and 100 ° C, the modification of the fiber material already taking place, in particular at the higher temperatures, such as above 80 ° C.
  • Other possibilities are to pad the fiber material with the aqueous, alkaline solution, to splash or to spray the solution onto the fiber material.
  • the fiber material is impregnated with this alkaline, aqueous solution by introducing the fiber material into this solution or by padding (padding), the impregnated material is then squeezed off by excess liquor, so that the absorption of this aqueous, alkaline solution is between 50 and 120 % By weight, preferably between 70 and 100% by weight, based on the fiber material.
  • the impregnation (by padding, splashing or treatment in the solution itself) takes place at a temperature between 10 and 60 ° C., preferably at a temperature between 15 and 30 ° C.
  • a liquid absorption of preferably between 10 and 50% by weight is selected.
  • the fiber material is a mercerized cellulose fiber material
  • the compound containing amino and ester groups that can be used according to the invention can also advantageously be applied to the cellulose fiber material to be modified directly after the mercerization process, in which the mercerized material still contains the alkali, for example by using the one obtainable after the mercerization process.
  • material impregnated with the aqueous alkali if necessary, squeezed to a required liquid content and the alkaline impregnated material impregnated with the aqueous solution of the compound containing amino and ester groups which can be used according to the invention, the impregnation being carried out by padding, spraying and similar process steps which are customary and known in the art can be.
  • the impregnated material is dried; the drying of the fiber-modifying amino group-containing compound is carried out at the same time, a temperature between 100 and 230 ° C., preferably between 130 and 190 ° C., being chosen for the drying and fixing.
  • a temperature between 100 and 230 ° C., preferably between 130 and 190 ° C., being chosen for the drying and fixing.
  • drying and simultaneous fixing take place by treatment with hot air for 0.5 to 3 minutes.
  • the fiber-modifying compound containing amino groups can also be fixed on the fiber material by simple drying at higher temperatures; it can be hung up in drying cabinets to dry and fix the modifying compound on the fiber material and exposed to the required higher temperatures, such as 80 to 105 ° C.
  • the modified fiber material is aftertreated by rinsing with cold and hot water and optionally by treatment in an aqueous bath containing a small amount of an acid, such as acetic acid, to remove the alkali from the fiber material and then drying.
  • a neutral-reacting fiber material should be used in the dyeing process if possible.
  • the dyeing of fiber materials modified in this way is carried out analogously to known dyeing methods and printing processes for dyeing or printing fiber materials with water-soluble textile dyes, such as anionic dyes, in particular fiber-reactive dyes, and using the temperature ranges and customary amounts of dye known for this purpose, but with the exception according to the invention, that for the dyebaths, padding liquors and printing pastes of the dyeing process according to the invention, an addition of alkaline compounds, such as are usually used for fixing fiber-reactive dyes, such as sodium carbonate, potassium carbonate, sodium hydroxide solution and water glass, can be largely or completely excluded and that further the usual addition Electrolyte salts, which are intended in particular to increase the migration of the dye on the fiber, are not required or only to a small extent, for example up to a maximum of 10 g per liter of dye bath or dye liquor.
  • the dyeing process according to the invention is accordingly carried out within a pH range between 4 and 8, preferably between 4.5 and 7.
  • Dyeing processes which can be used according to the invention are, for example, the various extraction processes, such as dyeing on the jigger and on the reel runner or dyeing from a long or short liquor, dyeing in jet dyeing machines, dyeing using the pad-cold-dwell method or after a block-hot steam fixing process. With the pull-out process you can work in the usual liquor ratio of 1: 3 to 1:20.
  • the dyeing temperature can be between 30 and 90 ° C, preferably it is at a temperature below 60 ° C; As can be seen from the above-mentioned application of the block-cold retention process according to the invention, dyeing is also advantageously possible at room temperature (10 to 30 ° C.).
  • the use of the customary, often necessary dyeing aids such as surfactants (wetting agents), thiourea, thiodiethylene glycol, thickeners, leveling aids, auxiliaries which improve the solubility of dyes in the concentrated padding liquors, such as condensation products of formaldehyde and optionally alkyl-substituted Naphthalenesulfonic acids, and especially urea, can be omitted entirely or to a considerable extent.
  • surfactants wetting agents
  • thiourea thiodiethylene glycol
  • thickeners thickeners
  • leveling aids auxiliaries which improve the solubility of dyes in the concentrated padding liquors, such as condensation products of formaldehyde and optionally alkyl-substituted Naphthalenesulfonic acids, and especially urea
  • the modified fiber material according to the invention can be dyed using a purely aqueous dye solution, in which only extremely small amounts of electrolyte salts (such as sodium chloride and sodium sulfate), which are contained in the dye powders as adjusting agents, are additionally dissolved.
  • electrolyte salts such as sodium chloride and sodium sulfate
  • the present invention can also be used advantageously for single-bath dyeing processes for dyeing mixtures of cellulose and polyester fibers, if in addition a disperse dye used for dyeing Polyester fiber materials is suitable, is used with a reactive dye in the common dye bath. Since many disperse dyes are sensitive to alkali, especially when using higher temperatures, they cannot be used in single-bath dyeing of cellulose / polyester mixed fiber materials, since the use of high temperatures in the alkali-containing bath in the dyeing of the polyester fiber by the disperse dye leads to damage to the disperse dye.
  • the present invention makes it possible to dye free of alkali, so that in the aqueous, alkali-free dye liquor, the reactive dye can be fixed first at low temperature, for example at a dyeing temperature between 30 and 80 ° C., and then the polyester fiber with the disperse dye in the usual way at temperatures above 100 ° C, such as between 110 and 140 ° C, colored.
  • All water-soluble, preferably anionic dyes which preferably have one or more sulfo and / or carboxy groups and which can optionally contain fiber-reactive groups, are suitable for the dyeing methods according to the invention.
  • fiber-reactive dyes they can belong to the class of azo development dyes, direct dyes, vat dyes and acid dyes, which include, for example, azo dyes, copper complex, cobalt complex and chromium complex azo dyes, copper and nickel phthalocyanine dyes, anthraquinone and copper formazan - And triphendioxazine dyes.
  • azo development dyes direct dyes
  • vat dyes and acid dyes which include, for example, azo dyes, copper complex, cobalt complex and chromium complex azo dyes, copper and nickel phthalocyanine dyes, anthraquinone and copper formazan - And triphendioxazine dyes.
  • azo dyes copper complex, cobalt complex and
  • Fiber-reactive dyes are organic dyes which contain 1, 2, 3 or 4 fiber-reactive radicals from the aliphatic, aromatic or heterocyclic series. Such dyes have been extensively described in the literature.
  • the dyes can belong to a wide variety of dye classes, such as the class of monoazo, disazo, polyazo, metal complex azo, such as 1: 1 copper, 1: 2 chromium and 1: 2 cobalt complex monoazo and disazo dyes, also the range of anthraquinone dyes, copper and cobalt phthalocyanine dyes, copper formazan dyes, azomethine, nitroaryl, dioxazine , Triphendioxazin, phenazin and stilbene dyes.
  • Fiber-reactive dyes are understood to mean those which have a “fiber-reactive” group, ie a group which contains the hydroxyl groups of cellulose, the amino, carboxy, hydroxyl and thiol groups of wool and silk or the amino and possibly carboxy groups of synthetic polyamides are able to react to form covalent chemical bonds.
  • the fiber-reactive residue can be bound to the dye residue directly or via a bridge member; preferably it is directly or via an optionally monoalkylated amino group, such as a group represented by the formula -NH-, -N (CH3) -, -N (C2H5) - or -N (C3H7) -, or via an aliphatic radical, such as one Methylene, ethylene or propylene radical or an alkylene radical of 2 to 8 carbon atoms, which can be interrupted by one or two oxi and / or amino groups, or via a bridge member containing an amino group, such as a phenylamino group, to the Dye residue bound.
  • an optionally monoalkylated amino group such as a group represented by the formula -NH-, -N (CH3) -, -N (C2H5) - or -N (C3H7) -
  • an aliphatic radical such as one Methylene, ethylene or propylene radical or an alkylene radical of 2
  • Particularly interesting fiber-reactive radicals are fluorine and chloro-1,3,5-triazine radicals of the formula (2) in which Hal is chlorine or fluorine and Q is an amino, alkylamino, N, N-dialkylamino, cycloalkylamino, N, N-dicycloalkylamino, aralkylamino, arylamino, N-alkyl-N-cyclohexylamino, N- Alkyl-N-arylamino group or an amino group which contains a heterocyclic radical which may have a further fused-on carbocyclic ring, or amino groups in which the amino nitrogen atom is a member of an N-heterocyclic ring which optionally contains further heteroatoms, and hydrazino and semicarbazido groups , where the alkyl radicals mentioned can be straight-chain or branched and low molecular weight and higher molecular weight, preferably those having 1 to 6 carbon atoms.
  • Suitable cycloalkyl, aralkyl and aryl radicals are, in particular, cyclohexyl, benzyl, phenethyl, phenyl and naphthyl radicals; Heterocyclic residues are especially furan, thiophene, pyrazole, pyridine, pyrimidine, quinoline, benzimidazole, benzothiazole and benzoxazole residues.
  • the amino groups in which the amino nitrogen atom is a member of an N-heterocyclic ring are preferably residues of six-membered N-heterocyclic rings Compounds into consideration which may contain nitrogen, oxygen or sulfur as further heteroatoms.
  • alkyl, cycloalkyl, aralkyl and aryl radicals, the heterocyclic radicals and the N-heterocyclic rings can additionally be substituted, for example by halogen, such as fluorine, chlorine and bromine, nitro, cyano, trifluoromethyl, sulfamoyl, carbamoyl, C1 -C4-alkyl, C1-C4-alkoxy, acylamino groups such as acetylamino or benzoylamino, ureido, hydroxy, carboxy, sulfomethyl or sulfo.
  • halogen such as fluorine, chlorine and bromine
  • sulfamoyl carbamoyl, C1 -C4-alkyl, C1-C4-alkoxy
  • acylamino groups such as acetylamino or benzoylamino, ureido
  • amino groups are: - NH2, methylamino, ethylamino, propylamino, isopropylamino, butylamino, hexylamino, ⁇ -methoxyethylamino, ⁇ -methoxypropylamino, ⁇ -ethoxyethylamino, N, N-dimethylamino, N, N-diethylamino, ⁇ -chloroethylamino , ⁇ -cyanoethylamino, ⁇ -cyanopropylamino, ⁇ -carboxyethylamino, sulfomethylamino, ⁇ -sulfoethylamino, ⁇ -hydroxyethylamino, N, N-di- ⁇ -hydroxyethylamino, ⁇ -hydroxypropylamino, benzylamino, phenethylamino, cyclohexylamino, phenyl,
  • Q can be an amino radical of the general formula -NR10R11, in which R10 is hydrogen or alkyl of 1 to 4 carbon atoms, such as methyl or ethyl, and R11 is phenyl which is formed by a fiber-reactive radical of the vinylsulfone series directly or via a methylamino , Ethylamino, methylene, ethylene or propylene group is substituted and which can also be substituted by 1 or 2 substituents from the group methoxy, ethoxy, methyl, ethyl, chlorine, carboxy and sulfo, or R11 alkyl of 2 to 4 C- Atoms is, such as ethyl or n-propyl, which is substituted by a fiber-reactive group of the vinylsulfone series, or alkylenephenyl with an alkylene radical of 1 to 4 carbon atoms, the phenyl of which is substituted by a fiber-reactive radical of the vinylsulfone series
  • Fiber-reactive groups of the vinyl sulfone series are those of the general formula -SO2-Y, in which Y is vinyl or ethyl which is substituted in the ⁇ -position by an alkaline eliminable substituent, such as, for example, chlorine, sulfato, phosphato, thiosulfato, acetyloxy, sulfobenzoyloxy and dimethylamino.
  • an alkaline eliminable substituent such as, for example, chlorine, sulfato, phosphato, thiosulfato, acetyloxy, sulfobenzoyloxy and dimethylamino.
  • the dyeings of the modified cellulose fiber materials obtainable in accordance with the invention require no further aftertreatment after removal from the dyebath or after completion of the fixation of the dye on the substrate, in particular no complex posttreatment process including washing.
  • a fiber-reactive aftertreatment agent is advisable if the fiber material modified according to the invention has been dyed only in slight depths of shade or if a dye has been used which does not have satisfactory fiber reactivity. In these cases, there are still sufficient dye-reactive spots on the modified fiber, which, for example, can react with other dyes in rinsing baths contaminated with these dyes.
  • This aftertreatment deactivates the still active areas of the fiber modified according to the invention, and one also obtains one contaminated with dyes in a technical process Rinse water the originally desired clear color.
  • a final boiling treatment of the colored substrate with a washing solution to improve the fastness properties is not necessary.
  • N- ( ⁇ -sulfato- ⁇ -hydroxy-propyl) piperidine 100 parts of N- ( ⁇ , ⁇ -dihydroxy-propyl) piperidine are slowly added to 67 parts of 100% sulfuric acid with stirring at 20 ° C. . The mixture is stirred for a further hour and the piperidine compound according to the invention is isolated in the manner described in Example A. It is initially obtained as an oily product which crystallizes after some time. It melts at 170 to 175 ° C with decomposition.
  • N- ( ⁇ -sulfato- ⁇ -hydroxy-propyl) pyrrolidine 50 parts of N- ( ⁇ , ⁇ -dihydroxy-propyl) pyrrolidine in 98 parts of 100% sulfuric acid are slowly added with stirring at 20 ° C. . The batch is stirred for a further hour and the compound formed is then isolated as an oily product in the manner given in Example A.
  • 1 H-NMR analysis in D6-dimethyl sulfoxide): 4.0 ppm (m, 1H); 3.76 / 3.68 ppm (2dd, 2H); 3.0 ppm (m, 2H); 1.95 ppm (s, br, 4H); 3.1 ppm (s, br, 4H).
  • a strong, uniformly colored orange coloration is obtained which has good general fastness properties, in particular good fastness to rubbing and light.
  • a strong, uniformly colored orange coloration is obtained which has good general fastness properties, in particular good fastness to rubbing and light.
  • a mercerized and bleached cotton fabric is impregnated with an aqueous solution of 50 parts of sodium hydroxide and 100 parts of the monosulfate of 2,3-dihydroxy-1-aminopropane in 1000 parts of water at a temperature between 25 and 30 ° C with a liquor absorption of 85% and then treated to fix the aminopropane compound on the fiber material for about 3 minutes with hot air at 150 ° C., the impregnated fabric drying at the same time.
  • the modified material is then freed from excess alkali by treatment with cold water at 60 ° C.
  • the modified, dried material is dyed in a conventional exhaust process.
  • 10 parts of this material in 200 parts by volume of an aqueous dye solution the 0.2 parts of a 50% electrolyte-containing dye powder of the dye of the formula known from German Offenlegungsschrift No. 24 12 964 contains dissolved.
  • the dyeing takes place at 60 ° C. for 60 minutes.
  • the dyed fabric is then rinsed with cold and warm water at 30 to 35 ° C, which may optionally contain a commercially available nonionic surfactant, then washed again with cold water and dried if necessary.
  • a strong blue dyeing is obtained which, in terms of fastness properties and its other qualities, is similar to dyeings which are obtained using the customary dyeing methods of the prior art.
  • a cotton fabric modified according to the information in Example 3a) is dyed in accordance with a pad-cold-dyed dyeing process.
  • an aqueous dye solution containing 20 parts of 1000 parts by volume of a 50% electrolyte-containing dye powder of, for example, copper phthalocyanine dye of the formula known from German Patent No. 1,179,317 and contains 3 parts of a commercially available nonionic wetting agent dissolved, by means of a padder with a liquor absorption of 80%, based on the weight of the fabric, applied to the fabric at 25 ° C.
  • the fabric padded with the dye solution is wound onto a dock, wrapped in a plastic film and left at 20 to 25 ° C for 16 hours and then with cold and hot water, which may or may not contain a commercially available wetting agent, and then again if necessary cold water rinsed and dried.
  • a strong, uniformly colored turquoise coloration is obtained which has good general fastness properties, in particular good fastness to rubbing and light.
  • a cotton fabric modified as described in Example 1 a) is printed with an aqueous printing paste containing 20 parts of the dye of the formula in 1000 parts (known from Example 258 of German Offenlegungsschrift No. 1 644 204) and contains 400 parts of an approximately 4% aqueous sodium alginate thickener.
  • the printed cotton fabric is first dried at 60 to 80 ° C and then steamed for 5 minutes with superheated steam from 101 to 103 ° C, then treated by rinsing with cold and hot water, by boiling treatment in a bath containing a neutral, nonionic detergent, again rinsed with cold and hot water and dried.
  • a uniform, scarlet-colored print is obtained which has good fastness properties.
  • a cotton fabric modified as described in Example 1 a) is printed with an aqueous printing paste containing 20 parts of the dye of the formula in 1000 parts (known from Example 3 of German Offenlegungsschrift No. 2 557 141) and contains 400 parts of an aqueous, 4% strength sodium alginate thickener.
  • the printed fabric is first dried at about 60 to 80 ° C and then steamed for 5 minutes with superheated steam at 101 to 103 ° C.
  • 10 parts of a cotton fabric modified according to the information in Example 1 a) is represented by 200 parts of an aqueous solution of 0.2 part of the dye (known from Color Index under CI No. 51320).
  • the cotton fabric is dyed in this dye solution for 60 minutes at 60 ° C.
  • the aftertreatment of the dyeing obtained is carried out in a customary manner, for example analogously to the instructions in Example 6.
  • a strong blue dyeing is obtained which has very good fastness to use, in particular good fastness to washing.
  • Example 1a 10 parts of a cotton fabric modified as described in Example 1a is dissolved in 200 parts of an aqueous solution of 0.2 part of the copper phthalocyanine dye of the formula known, for example, from British Patent No. 1,046,520 given and dyed for 60 minutes at a dyeing temperature of 80 ° C.
  • the dyeing obtained is then rinsed with cold and warm water at 30 to 35 ° C., which may contain a commercially available nonionic surfactant, and then rinsed again with cold water and dried. You get a high quality turquoise color with good fastness properties.
  • a strong, uniformly colored orange coloration is obtained which has good general fastness properties, in particular good fastness to rubbing and light.
  • a strong, uniformly colored orange coloration is obtained which has good general fastness properties, in particular good fastness to rubbing and light.
  • a strongly colored red dyeing is obtained which, in terms of fastness properties and its qualities, is similar to dyeings which are obtained using the customary dyeing methods of the prior art.
  • a fabric made of cotton tricot is treated with a solution of 50 parts of N- ( ⁇ -sulfatoethyl) piperidine and 50 parts of sodium hydroxide in 1000 parts of water for 30 minutes at 130 ° C. in a liquor ratio of 1:20. Then the modified material with cold and 60 ° C washed with hot water to remove excess alkali and dried.
  • the modified cotton fabric obtained is dyed analogously to a conventional pull-out dyeing process: 100 parts of the fabric are placed in 2000 parts by volume of an aqueous dye solution which contains 2 parts of the 50% electrolyte-containing dye powder described in Example 1 dissolved. The fabric is moved therein and the dyebath is heated to 60 ° C. within 30 minutes and the dyeing is then continued at 60 ° C. for 60 minutes. The dyed material is removed from the bath and rinsed with cold and hot water, if appropriate with the addition of a commercially available wetting agent, if necessary then rinsed again with cold water and dried.
  • a strong, uniformly colored orange coloration is obtained which has good general fastness properties, in particular good fastness to rubbing and light.
  • 10 parts of a cotton jersey are treated in 200 parts of an aqueous solution of 10 parts of 3-sulfato-2-hydroxy-1- (trimethylammonium) propane sulfate and 5 parts of sodium hydroxide in a pressure vessel at 130 ° C. for 30 minutes.
  • the modified material is then washed intensively and dried.
  • 10 parts of this modified cotton fabric are in 200 parts of an aqueous solution of 0.2 parts of the dye of the formula known, for example, from German Offenlegungsschrift No. 19 43 904 dyed at 60 ° C for 60 minutes.
  • the dyeing obtained is then rinsed with cold and warm water at 30 to 35 ° C., which may contain a commercially available nonionic surfactant, and then rinsed again with cold water and dried.
  • a high-quality red coloring with good fastness properties is obtained.
  • the modified cotton fabric obtained is dyed analogously to a conventional pull-out process:
  • a strong, level, level red dyeing is obtained, the fastness properties of which are equivalent to the fastness of the dyeings obtainable by the methods of the prior art.
  • a polyester / cotton blend fabric modified according to Example 19a) is treated in an HT dyeing machine with an aqueous dye liquor which, based on the weight of the dry fabric, contains 1.5% of the disperse dye known, for example, from German Laid-Open Specification No. 1 131 639 of the formula and contains 1.5% of the fiber-reactive azo dye described in Example 1.
  • First dye at 60 ° C for 30 minutes and then after increasing to 130 ° C for a further 30 minutes at this temperature. The dyeing obtained is then completed in the manner given in Example 19b). A vivid orange color is obtained on both fiber parts.
  • Example 20 The procedure of Example 20 is followed to produce a dyeing of a polyester / cotton blend, but using the disperse dye of the formula known, for example, from Japanese Patent Application Publication Sho-54-069139 and using the fiber-reactive copper phthalocyanine dye of the formula known, for example, from German Patent Application No. 1,283,997 and after the usual completion receives a lively blue-colored blended fabric with high level of coloration and with high fastness to use.
  • 100 parts of a bleached cotton fabric are impregnated in a jigger with 1000 parts of an aqueous solution of 50 parts of N- ( ⁇ -sulfatoethyl) piperazine and 25 parts of sodium hydroxide at 95 ° C. for 30 minutes.
  • the liquor is then drained off and the textile material in the same apparatus first in a conventional washing process, then in a dyeing process using 1500 parts of an aqueous solution with 2 parts of an approximately 50% electrolyte-containing dye powder, for example from example 106 of the European patent application.
  • Publication No. 0 457 715 known fiber-reactive azo dye of the formula Subjected at 60 ° C for 30 minutes.
  • the dyeing obtained is aftertreated and finished in the usual way. A strong red color with good general fastness properties is obtained.
  • a cellulose fiber material modified according to the invention such as, for example, from a cellulose fiber material modified according to the above exemplary embodiments, and this using one of the customary dyeing methods, such as printing processes, exhausting methods or padding methods, for example analogously to one of the dyeing methods described in the above exemplary embodiments, subject to a dyeing process using one of the dyes specified in the following table examples, for example known from German specification No. 2,835,035 in the manner according to the invention, ie without the use of an alkali and without or only with very little use of an electrolyte, the dyeing process used Material can also be a modified cellulose fiber material in a mixture with a polyester fiber material. Based on the cellulose fiber material, strong, clear dyeings and prints are obtained with the hue given in the respective table example and the fastness properties good for the respective dye.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Coloring (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
EP92120726A 1991-12-07 1992-12-04 Verfahren zur Herstellung eines modifizierten Faser- materials und Verfahren zum Färben des modifizierten Fasermaterials mit anionischen Farbstoffen Expired - Lifetime EP0546476B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE4140410 1991-12-07
DE4140410 1991-12-07
DE4224283 1992-07-23
DE4224283 1992-07-23

Publications (2)

Publication Number Publication Date
EP0546476A1 EP0546476A1 (de) 1993-06-16
EP0546476B1 true EP0546476B1 (de) 1995-08-09

Family

ID=25909872

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92120726A Expired - Lifetime EP0546476B1 (de) 1991-12-07 1992-12-04 Verfahren zur Herstellung eines modifizierten Faser- materials und Verfahren zum Färben des modifizierten Fasermaterials mit anionischen Farbstoffen

Country Status (21)

Country Link
US (2) US5507840A (US20030199744A1-20031023-C00003.png)
EP (1) EP0546476B1 (US20030199744A1-20031023-C00003.png)
JP (1) JPH05295672A (US20030199744A1-20031023-C00003.png)
KR (2) KR100240355B1 (US20030199744A1-20031023-C00003.png)
CN (1) CN1046330C (US20030199744A1-20031023-C00003.png)
AT (1) ATE126290T1 (US20030199744A1-20031023-C00003.png)
AU (1) AU652870B2 (US20030199744A1-20031023-C00003.png)
BR (1) BR9204849A (US20030199744A1-20031023-C00003.png)
CA (1) CA2084585A1 (US20030199744A1-20031023-C00003.png)
CZ (1) CZ357492A3 (US20030199744A1-20031023-C00003.png)
DE (1) DE59203225D1 (US20030199744A1-20031023-C00003.png)
DK (1) DK0546476T3 (US20030199744A1-20031023-C00003.png)
EG (1) EG20215A (US20030199744A1-20031023-C00003.png)
ES (1) ES2076657T3 (US20030199744A1-20031023-C00003.png)
FI (1) FI925498A (US20030199744A1-20031023-C00003.png)
GR (1) GR3017393T3 (US20030199744A1-20031023-C00003.png)
IL (1) IL103989A (US20030199744A1-20031023-C00003.png)
MX (1) MX9207035A (US20030199744A1-20031023-C00003.png)
PL (1) PL170575B1 (US20030199744A1-20031023-C00003.png)
TR (1) TR26594A (US20030199744A1-20031023-C00003.png)
TW (1) TW211595B (US20030199744A1-20031023-C00003.png)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW223669B (US20030199744A1-20031023-C00003.png) * 1992-07-24 1994-05-11 Hoechst Ag
TW228543B (US20030199744A1-20031023-C00003.png) * 1992-09-26 1994-08-21 Hoechst Ag
TW360645B (en) * 1992-11-21 1999-06-11 Hoechst Ag N-(2-sulfatoethyl) piperazine sulfate and it preparation
DE4306432A1 (de) * 1993-03-02 1994-09-08 Hoechst Ag Verfahren zum Bedrucken und Färben von Textilien (Inverser Reservedruck)
DE4327301A1 (de) * 1993-08-13 1995-02-16 Hoechst Ag Verfahren und Verwendung reaktiver Dispersionsfarbstoffe zum Färben oder Bedrucken aminierter, textiler Baumwoll- und Baumwoll-/Polyester-Mischgewebe
DE4402210A1 (de) * 1994-01-26 1995-07-27 Hoechst Ag Verfahren zur Herstellung aminierter Baumwollfasern
ATE174388T1 (de) * 1994-01-29 1998-12-15 Dystar Textilfarben Gmbh & Co Aminierte cellulosische synthesefasern
DE4417211A1 (de) * 1994-05-17 1995-11-23 Hoechst Ag Aminierung von Regeneratcellulose
ATE168143T1 (de) * 1994-05-17 1998-07-15 Dystar Textilfarben Gmbh & Co Aminierung von cellulosischen synthesefasern
DE4422707A1 (de) 1994-06-29 1996-01-04 Hoechst Ag Verfahren zum Färben aminierter Cellulose-/Polyester-Mischgewebe mit faserreaktiven Dispersionsfarbstoffen
DE4422864A1 (de) 1994-06-30 1996-01-04 Hoechst Ag Mit polymeren Aminverbindungen modifizierte synthetische cellulosische Fasern
DE4422865A1 (de) 1994-06-30 1996-01-04 Hoechst Ag Verfahren zur Herstellung von aminierten Fasern aus Regeneratcellulose
DE4427377A1 (de) * 1994-08-03 1996-02-08 Hoechst Ag Orientierte Folie aus thermoplastischem Polymer mit partikelförmigen Hohlkörpern, Verfahren zu ihrer Herstellung und ihre Verwendung
DE4444245C1 (de) * 1994-12-13 1996-07-04 Hoechst Ag Verfahren zum Recycling von gefärbten, cellulosischen Abfallprodukten zu Fasern
DE4446540A1 (de) * 1994-12-24 1996-06-27 Hoechst Ag Verfahren zur Herstellung von wasserlöslichen Aminoalkylderivaten von Polysacchariden
DE19547649C2 (de) * 1995-12-20 1999-05-06 Dystar Textilfarben Gmbh & Co Wäßrige Lösung von N-(2-Sulfatoethyl)piperazin-sulfat, Verfahren zu deren Herstellung und deren Verwendung zum Modifizieren von cellulosehaltigen Fasermaterialien
DE19605578C2 (de) 1996-02-15 2001-03-29 Dystar Textilfarben Gmbh & Co Verfahren zur Herstellung eines anionischen Textilfarbstoffen bedruckten textilen Materials
US5984979A (en) * 1997-10-08 1999-11-16 Sybron Chemicals Inc. Method of reactive dyeing of textile materials using carboxylate salt
DE19859385A1 (de) 1998-12-22 2000-06-29 Basf Ag Verfahren zur Herstellung von enzymhaltigen Granulaten
WO2001023350A1 (en) * 1999-09-28 2001-04-05 Nihon Nohyaku Co., Ltd. Thioalkylamine derivatives and process for the preparation thereof
CN100475789C (zh) * 2002-05-24 2009-04-08 拜尔农作物科学股份公司 制备烷硫基胺衍生物的方法
GB2433264A (en) * 2005-12-16 2007-06-20 Sun Chemical Ltd Process for preparing ammonium, phosphonium & sulphonium salts of anionic dyes from aqueous solution of a salt of dye & non-aqueous solution of an onium salt
JP5639347B2 (ja) * 2009-06-18 2014-12-10 旭化成せんい株式会社 ポリアミド繊維とセルロース繊維とポリウレタン繊維との混用糸状又は布帛染色品
JP5639348B2 (ja) * 2009-06-18 2014-12-10 旭化成せんい株式会社 ポリアミド繊維とポリウレタン繊維との混用糸条又は布帛の染色品
GB2526044A (en) * 2014-01-10 2015-11-18 Perachem Ltd Methods relating to wool treatment
CN104404761B (zh) * 2014-11-13 2016-10-19 广东溢达纺织有限公司 一种防沾色纤维素纤维纱线、面料、成衣及其制备方法
CN104358154A (zh) * 2014-11-26 2015-02-18 四川省宜宾惠美线业有限责任公司 纤维素纤维的无盐低碱染色工艺
CN104480751A (zh) * 2014-11-26 2015-04-01 四川省宜宾惠美线业有限责任公司 纤维素纤维的无盐低碱染色方法
CN104452355A (zh) * 2014-11-26 2015-03-25 四川省宜宾惠美线业有限责任公司 纤维素纤维的阳离子化改性染色工艺
CN104452358A (zh) * 2014-11-26 2015-03-25 四川省宜宾惠美线业有限责任公司 一种纤维素纤维的无盐低碱染色方法
CN109736106A (zh) * 2019-01-22 2019-05-10 乐清市雅格狮丹服饰有限公司 一种耐干洗大衣
CN114457596B (zh) * 2022-03-22 2023-09-05 杭州卓达染整有限公司 一种针织醋酸面料的数码印花工艺

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE635252A (US20030199744A1-20031023-C00003.png) *
BE638513A (US20030199744A1-20031023-C00003.png) *
US1622122A (en) * 1923-05-02 1927-03-22 Grasselli Dyestuff Corp Process of dyeing
GB465166A (en) * 1935-10-31 1937-04-30 Ig Farbenindustrie Ag Improvements in dressing textiles
GB479341A (en) * 1936-06-03 1938-02-03 British Celanese Improvements in the treatment of filaments, threads, fabrics, films, and like materials
US3647352A (en) * 1971-02-17 1972-03-07 Us Agriculture Chemical modification of fibrous cellulose with sodium n-methylbis(2-sulfatoethyl)amine and with n-methylbis(2-chloroethyl)amine to impart crease resistance in fabrics
DE2257642A1 (de) * 1972-11-24 1974-06-20 Basf Ag Biologisch abbaubare wasch- und reinigungsmittel
DE2448532A1 (de) * 1973-10-15 1975-04-24 Procter & Gamble Zusammensetzungen zur oelentfernung
PH14838A (en) * 1974-03-21 1981-12-16 Procter & Gamble Detergent composition
US4069159A (en) * 1976-02-02 1978-01-17 E. I. Du Pont De Nemours And Company Antistat and softener for textiles
CA1080576A (en) * 1976-02-02 1980-07-01 Charles H. Nicol Nonionic surfactant-containing detergent composition with cellulose ether
FR2345513A1 (fr) * 1976-03-24 1977-10-21 Rhone Poulenc Ind Composition tensio-active a base de surfactifs non ioniques
GB2011944B (en) * 1978-01-09 1982-06-09 Unilever Ltd Liquid detergent composition
JPS58186682A (ja) * 1982-04-27 1983-10-31 日本化薬株式会社 セルロ−ス又はセルロ−ス含有繊維材料の染色法
GB8313348D0 (en) * 1983-05-14 1983-06-22 Procter & Gamble Ltd Liquid detergent compositions
GB2145726A (en) * 1983-08-26 1985-04-03 Diversey Corp Surface active agents
DE3530623A1 (de) * 1985-08-28 1987-03-12 Henkel Kgaa Demulgierendes reinigungsmittel mit flaechenfeuchthalteeffekt
US4721512A (en) * 1985-11-25 1988-01-26 Ciba-Geigy Corporation Process for aftertreating dyed cellulosic material
GB8609806D0 (en) * 1986-04-22 1986-05-29 Unilever Plc Cleaning composition
US4721412A (en) * 1986-07-01 1988-01-26 Robert D. King Offshore safety escape platform
US4772415A (en) * 1986-12-22 1988-09-20 Adone Donald J Heavy duty degreaser composition and method of use
DE3831464A1 (de) * 1988-09-16 1990-03-29 Hoechst Ag Verfahren zum alkali-freien faerben und bedrucken von cellulosefasern
DE3943070A1 (de) * 1989-12-27 1991-07-04 Henkel Kgaa Fluessiges reinigungsmittel fuer harte oberflaechen
DE4025065A1 (de) * 1990-08-08 1992-02-13 Henkel Kgaa Fluessiges, giess- und pumpfaehiges tensidkonzentrat
ES2108040T3 (es) * 1991-01-22 1997-12-16 Procter & Gamble Composicion para eliminar costras de carbonato de calcio.
WO1993015172A1 (en) * 1992-02-04 1993-08-05 Henkel Corporation Surfactant blends for detergent compositions

Also Published As

Publication number Publication date
CA2084585A1 (en) 1993-06-08
FI925498A (fi) 1993-06-08
TW211595B (US20030199744A1-20031023-C00003.png) 1993-08-21
ATE126290T1 (de) 1995-08-15
IL103989A (en) 1995-03-30
PL170575B1 (pl) 1997-01-31
EP0546476A1 (de) 1993-06-16
PL296847A1 (en) 1993-08-23
DE59203225D1 (de) 1995-09-14
KR930013360A (ko) 1993-07-21
AU2991992A (en) 1993-06-10
FI925498A0 (fi) 1992-12-03
US5507840A (en) 1996-04-16
AU652870B2 (en) 1994-09-08
CZ357492A3 (en) 1993-06-16
BR9204849A (pt) 1993-06-08
TR26594A (tr) 1995-03-15
KR100241651B1 (ko) 2000-03-15
ES2076657T3 (es) 1995-11-01
KR100240355B1 (ko) 2000-01-15
JPH05295672A (ja) 1993-11-09
DK0546476T3 (da) 1995-12-27
CN1073943A (zh) 1993-07-07
US5575821A (en) 1996-11-19
CN1046330C (zh) 1999-11-10
MX9207035A (es) 1993-06-01
GR3017393T3 (en) 1995-12-31
EG20215A (en) 1997-11-30
IL103989A0 (en) 1993-05-13

Similar Documents

Publication Publication Date Title
EP0546476B1 (de) Verfahren zur Herstellung eines modifizierten Faser- materials und Verfahren zum Färben des modifizierten Fasermaterials mit anionischen Farbstoffen
EP0040790B2 (de) Verfahren zum Färben und Bedrucken von Hydroxy- und/oder Carbonamidgruppen enthaltenden Fasermaterialien
EP0513656A1 (de) Verfahren zum Färben von mit Silanen modifizierten Fasermaterialien, die Modifizierung von Fasermaterialien mit Silanen
EP0590397B1 (de) Verfahren zur Herstellung von Färbungen gemäss der "Ink-Jet"-Drucktechnik auf modifizierten Fasermaterialien mit anionischen Textilfarbstoffen
EP0144093B1 (de) Lagerstabile Druckpasten und deren Verwendung
EP0628606B1 (de) Triphendioxazinverbindungen, Verfahren zu ihrer Herstellung und ihre Verwendung als Farbstoffe
DE3426727A1 (de) Wasserloesliche triphendioxazin-verbindungen, verfahren zu ihrer herstellung und ihre verwendung als farbstoffe
EP0199950A1 (de) Verfahren zum Färben oder Bedrucken von Hydroxygruppen enthaltenden Fasermaterialien mit neuen faserreaktiven Farbstoffen
EP0742270B1 (de) Phthalocyaninreaktivfarbstoffmischung
EP0352222B1 (de) Faserreaktive Formazanfarbstoffe, Verfahren zu deren Herstellung und deren Verwendung
DE4327301A1 (de) Verfahren und Verwendung reaktiver Dispersionsfarbstoffe zum Färben oder Bedrucken aminierter, textiler Baumwoll- und Baumwoll-/Polyester-Mischgewebe
EP0209494B1 (de) Verfahren zum Nuancenstabilen Färben oder Bedrucken
EP0580091B1 (de) Verfahren zur Herstellung eines modifizierten Fasermaterials und Verfahren zum Färben des modifizierten Fasermaterials mit anionischen Textilfarbstoffen
EP0242324A1 (de) Verfahren zum endengleichen Färben von Cellulosefasern
EP0889098A2 (de) Azofarbstoffe, Verfahren zu deren Herstellung und deren Verwendung
DE3530830A1 (de) Wasserloesliche triphendioxazin-verbindungen, verfahren zu ihrer herstellung und ihre verwendung als farbstoffe
EP0278903B1 (de) Reaktivfarbstoffe, deren Herstellung und Verwendung
DE4210270A1 (de) Aminogruppenhaltige Silanverbindungen, Verfahren zu ihrer Herstellung und ihre Verwendung zur Veredlung von Fasermaterial
CH423708A (de) Verfahren zum Färben und Bedrucken von Textilmaterialien
AT236902B (de) Verfahren zum Färben und Drucken mit Reaktivfarbstoffen
AT219553B (de) Verfahren zum Färben und Bedrucken Hydroxylgruppen bzw. Amidgruppen enthaltender Materialien
EP0575744A1 (de) Silangruppenhaltige Farbstoffe, Verfahren zu deren Hertstellung und deren Verwendung
EP0570333A1 (de) Faserreaktive Anthrachinonfarbstoffe, Verfahren zu deren Herstellung und deren Verwendung
DE19842580A1 (de) Farbstoffmischungen von wasserlöslichen faserreaktiven Azofarbstoffen, Verfahren zu ihrer Herstellung und ihre Verwendung
DE1213820B (de) Verfahren zum Faerben und Drucken mit Reaktiv-farbstoffen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI NL PT SE

17P Request for examination filed

Effective date: 19930819

17Q First examination report despatched

Effective date: 19950130

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI NL PT SE

REF Corresponds to:

Ref document number: 126290

Country of ref document: AT

Date of ref document: 19950815

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59203225

Country of ref document: DE

Date of ref document: 19950914

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2076657

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19951014

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3017393

ET Fr: translation filed
REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

SC4A Pt: translation is available

Free format text: 951030 AVAILABILITY OF NATIONAL TRANSLATION

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19971130

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 19971208

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19971210

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19971211

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 19971219

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19971230

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981204

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981231

BERE Be: lapsed

Owner name: HOECHST A.G.

Effective date: 19981231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990701

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19990701

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20001109

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20001114

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20001123

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20001124

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20001127

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20001212

Year of fee payment: 9

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011231

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020702

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20011204

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020830

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20020630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021205

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051204