EP0502963B1 - Bootskörper - Google Patents

Bootskörper Download PDF

Info

Publication number
EP0502963B1
EP0502963B1 EP91900753A EP91900753A EP0502963B1 EP 0502963 B1 EP0502963 B1 EP 0502963B1 EP 91900753 A EP91900753 A EP 91900753A EP 91900753 A EP91900753 A EP 91900753A EP 0502963 B1 EP0502963 B1 EP 0502963B1
Authority
EP
European Patent Office
Prior art keywords
profile
chord
boat hull
longitudinal sectional
sectional profile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91900753A
Other languages
English (en)
French (fr)
Other versions
EP0502963A1 (de
Inventor
Manfred Raab
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ADVANCES MACHINES Corp AG
Original Assignee
ADVANCES MACHINES Corp AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ADVANCES MACHINES Corp AG filed Critical ADVANCES MACHINES Corp AG
Publication of EP0502963A1 publication Critical patent/EP0502963A1/de
Application granted granted Critical
Publication of EP0502963B1 publication Critical patent/EP0502963B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/16Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving additional lift from hydrodynamic forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/16Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving additional lift from hydrodynamic forces
    • B63B1/18Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving additional lift from hydrodynamic forces of hydroplane type
    • B63B1/20Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving additional lift from hydrodynamic forces of hydroplane type having more than one planing surface

Definitions

  • the invention relates to a hull according to the preamble of claim 1.
  • Hulls are e.g. known from DE-PS 30 22 966 and FR-PS 515 361; however, these known hulls have a number of disadvantages. Due to the relatively strong profile curvature in the hull according to DE-PS in the front profile area, the flow around the hull is accelerated at this point, which creates a vacuum zone and the hull is "sucked" by the water in this area. One speaks of the "inverted wing effect" which also occurs when it is the underside of an aircraft wing. By reducing the profile curvature in the rear profile area, the flow velocity in this area is reduced compared to the front profile area, which creates an overpressure zone that pushes the rear end of the profile upwards, i.e. out of the water.
  • This DE-PS 30 22 966 describes a hull, in which it is provided that the stern of the unloaded boat does not reach below the horizontal plane of the water level or the underside of the hull tapers tangentially to the horizontal plane of the water level to the rear (i.e., flows tangentially into this) , or that the tendon its position parallel to the water level in the horizontal plane, ie in the plane of the Water level, maintains or does not need a larger angle of attack, since larger angles of attack would lead to greater resistance.
  • the stern of the unloaded boat should not extend significantly below the horizontal level of the water level and means that an existing but not desired insignificant sinking in of the stern of the unloaded boat may be possible due to its weight or any trimming inaccuracies.
  • the indication that the tendon runs essentially parallel to the horizontal plane or the water level means that it is mandatory in the hull according to DE-PS 30 22 966 that the tendon thus has no angle of attack to the water surface.
  • the present invention relates to a boat hull, the stern end point of which in the trimmed state is necessarily below the water surface, depending on the selected angle between the chord and the water level; the extent of immersion is easily calculated from the length of the boat and the tangent of the angle between the tendon and the water level.
  • the boat achieves a sliding state, which, however, is characterized by a higher resistance due to a higher wetted surface and a larger form resistance due to the curvature of the profile in comparison to conventional forms of sliding boat.
  • the suction component caused by the profile curvature in the front profile area is so strong as a result of the horizontal profile flow that a transition to the sliding phase is possible, but significantly more energy is absorbed than if, for example, by reducing the profile curvature and simultaneous employment of the profile, the downward tendencies in The foreship area can be reduced to a level that appears necessary to avoid an excessive inclination or inclination of the hull or boat body at the time when the ship or boat hits its own bow wave, as is the case with the known hull .
  • a boat hull known from DE-C 687 340 has a profile in longitudinal section which is similar to an aircraft wing surface.
  • the longitudinal lines in the side rear areas are straight; the profile line of the middle section runs essentially in the level of the water level, so that one cannot speak of an inclined tendon if one looks at the figures 1, 2 and 3 of this patent specification.
  • Figures 6, 7 and 8 of this patent have sliding steps and are therefore different in terms of type, since profiles according to an aircraft wing surface have no sliding steps.
  • the profile longitudinal cut and in particular also the central cut run straight over large areas and thus at best represent the approximation to an aircraft wing surface having curvatures.
  • a boat hull known from GB-PS 1 025 has a longitudinal hull with two sliding surfaces to which the water is directed from the middle hull.
  • the center line of the fuselage has a completely straight course over a long distance, so that again it cannot be said, or only as a borderline case, of a wing-wing-like profile that has curvatures;
  • this profile does not have a turning point in the longitudinal section, which causes the foredeck to be submerged slightly when sliding or causes the curvature in the stern to slow the flow and causes an increase in pressure in the stern, which lifts the rear of the hull out of the water; this lifting results in a lower driving resistance or lower immersion depth; this reduction in form resistance or frictional resistance makes the boat faster.
  • the sliding surfaces have long straight lines or surfaces; in both types of boat, the principle of the flowed flat plate is the basis for gliding, which principle was dealt with in the introduction to the description; on the other hand, the invention is based on the principle of propelling a boat hull with an underside, which is designed entirely as a sliding surface, faster with less driving force.
  • the basic problem of all gliding vehicles is to be able to lift the stern out of the water while driving; this is either due to shape-related, dynamic buoyancy or through buoyancy aids such as Trim tabs, side wedges etc., possible.
  • the boat hull known from DE-PS is intended in particular for sailing dinghies or yachts, i.e. watercraft without mechanical main drive, and is intended to compensate for customary, tail-heavy trim positions in the area of fast displacement by a bow-heavy trim torque and thus the proportion of shape resistance between displacers in this phase - and gliding is naturally very large, reduce.
  • increases in form resistance should be reduced by a mirror that is immersed too deeply. From this point of view, namely the lowest possible resistance in the border area between displacement and gliding, this known form of boat makes technical sense.
  • the aim of the invention is to increase the buoyancy component in the stern of the hull, in particular the dynamic buoyancy in faster Gliding.
  • the energy requirement for fast gliding should be reduced.
  • the invention has set itself the goal of creating a relatively uncompromising sliding hull with which the transition between displacement and sliding travel can be made as short as possible in terms of time and as little effort as possible in terms of performance.
  • the hull according to the invention has a profile similar to the profile of an aircraft wing, which consists of a clear line with no kinks and discontinuities, such that at each Point of the profile only a clear tangent to the profile curve is possible.
  • the apex of the profile longitudinal cut is located in the front half of the total length of the chord in relation to the end point of the chord of the profile longitudinal cut and the chord forms the angle ⁇ with the horizontal plane defined by the water level when the hull is unloaded or loaded.
  • the stern is free of gliding surfaces; own or flat sliding surfaces are not provided on the hull; Air sliding surfaces under the hull are avoided. The sliding properties are supported if the bow is U-shaped or rounded, or if the bow is designed with frames drawn inwards and upwards.
  • the angle of the chord with the water level can be adjusted either by trimming the unloaded boat (trim weights, chains, feet ballast) or by loading the ship accordingly. If the desired angle is set by trimming the unloaded ship, it should not be changed by the loading or only within the specified limits.
  • the kink-free aircraft profile is largely free of cross-flow and the transverse displacement flow caused by the foredeck leaves the hull laterally free and hydrodynamically unused.
  • This design prevents the flow generated by the fore-ship from adversely affecting the behavior of the fore-aisle and the sliding properties of the fore-aft are optimally usable, since the lift in the aft-ship can thus be at least largely caused by the flow running parallel to the ship's longitudinal axis.
  • the longitudinal profile cut has a turning point located at a distance from the bow end profile point of at least 30%, preferably at least 50%, in particular at least 60% of the total chord length.
  • the longitudinal profile cut cuts the chord at least once in the area of the rear half of the chord.
  • buoyant forces of the "obliquely flowed body" as the ship's hull moves aft due to the unloaded or fully loaded state of the watercraft at standstill, i.e. inclined tendon at least of the central longitudinal section profile.
  • These buoyancy forces not only neutralize the bow-heavy trim moment during gliding, but also create an additional, dynamic lift in the bow, so that the wetted surface of the watercraft is reduced to a minimum due to the dynamic, stern-heavy trim that occurs; at the same time, the tail-resisting trim reduces the form resistance during gliding.
  • the profile according to the invention which has a turning point, ends in a rear end point which is located below the water surface.
  • the static trim provided according to the invention (loaded or unloaded at a standstill), that is to say the inclination of the chord of the boat hull, which has a longitudinal section in the shape of an aircraft wing surface, with respect to the water level, which produces a rear load on the hull when the watercraft is unloaded or loaded, which angle in particular is approximately 1.8 ° to 2.2 ° is a very important angle in shipbuilding.
  • the trim position of a fast watercraft is measured to the nearest 100th of a degree and deviations from tenths of a degree are determined and compensated for with the aid of complicated trimming measures and measuring devices.
  • the hull according to the invention has a lower mirror edge which is considerably below the water due to the tendon inclination when the boat is unloaded and / or under load, the immersion depth corresponding to the tangent of the angle of inclination multiplied by the length of the tendon. which for a 5 m long ship is already about 15 cm.
  • Known hulls of aircraft hydrofoil form have trim values which differ considerably from these values according to the invention.
  • the buoyancy component in the stern area is considerable, since the longitudinal profile cut has a turning point in this area and the profile longitudinal cut can even cut the chord and runs above the chord, as a result of which the tunneling effect becomes much stronger and more effective for the desired buoyancy in the stern.
  • the chord of the profile longitudinal section is considerably increased, which results in extremely favorable properties with regard to the gliding properties and energy requirements.
  • FIGS. 1, 2 and 3 show different embodiments of hulls according to the invention
  • FIGS. 4 to 6 show different sectional views
  • the hull 2 has an underwater profile in the central section shown, which is formed by a curved profile section, which is generally designated 8. From the rear profile end point 4 leads up to the water level 3, a section 5 'of the mirror 5.
  • the profile line 8 is extended in the bow area from the front end point 4' of the underwater profile 8, if necessary, handled via the water level 3 in the bow part 2 'advantageously in a steady , continuous profile line; in the stern, the underwater section 5 'extends into the stern line 5 located above the water level 3, advantageously in the form of a straight transition.
  • the chord 1 of the profile 8 runs from the bow end point 4 ', ie the front intersection of the profile 8 with the water level 3, to the rear end point 4 of the chord 1, which is located below the water level 3 and from which at an angle ⁇ - ( Fig.1,7) inclined or perpendicular to Water level trending mirror line 5.5 'is cut.
  • the chord 1 forms an angle ⁇ with the horizontal plane formed by the water level 3, which is between 1 ° and 3 °, preferably about 2 °.
  • the profile 8 shown in Figure 1 runs from the bow end point 4 'curved to the apex 9 with the greatest chord spacing Y max, then decreases to an inflection point 6, which is located just below the chord 1, cuts the chord 1 in one Scnnitt Vietnamese 7, then runs with a section 8 'above the tendon 1 and then runs cutting, ie not tangent, into the tendon 1 at the end point 4.
  • the desired dynamic lift values are achieved in the stern area of the hull 2, in particular by the curvature of the profile section 8 '.
  • FIG. 3 A similar profile is shown in Figure 3, in which the profile line 8 has another intersection 7 'with the chord 1. In the case of two intersection points 7, 7 ', the rear end region of the profile line 8 runs from below into the end point 4, cutting into the chord 1.
  • Fig.2 shows a profile course, in which the profile 8, starting from the front, in the height of the water level 3 end point 4 'initially thickens to the apex 9, then decreases and has an inflection point 6, from which with simultaneous, further decrease in profile cutting the profile, not tangent in the rear end point 4 of the tendon 1, in which the profile section 5 'joins.
  • the lower edge of the mirror which, insofar as it runs horizontally, coincides with the end point 4 in the drawing, lies when the hull 2 is unloaded with its entire length running transversely to the central section below the water level.
  • the apex 9 of the profile longitudinal section 8 is based on the bow end point 4 'of the chord 1 in a distance range of 20% to 40%, in particular 25% to 35%, of the entire chord length. This measure keeps the so-called “suction" of the bow area of the hull within limits and achieves a balanced driving behavior at the start of the journey. It is expedient if the height Y max of the profile longitudinal section 8 at the apex 9 is less than 20%, preferably less than 15%, of the chord length.
  • Particularly expedient values for the tunneling exist when the height of the section 8 'of the longitudinal section profile 8 above the chord 1 is up to 20%, preferably up to 15%, of the chord length.
  • the longitudinal section profile of the underside of the hull 2 is advantageously continued up to a point 24 via the horizontal plane 3 (water level) with unchanged or only slightly changed curvature.
  • the further course depends on the shape of the bow, for which different shapes are possible.
  • FIGS. 4 and 5 show a predetermined angle, which is shown in FIGS. 4 and 5.
  • the left half of FIG. 4 shows a vertical cross section through a boat hull, in which the profile or chord course of the boat hull 2 according to the invention is restricted to a narrow zone 40 which receives the vertical longitudinal center plane 38. It is therefore only for this zone 40 that the front end point 4 'of the chord 1 is in the horizontal plane 3; the chord 1 is advantageously still inclined at an angle ⁇ to the horizontal plane.
  • the longitudinal profiles of the underside of the hull extending at a greater distance from the longitudinal median plane 38 have the same shape as the longitudinal profile in zone 40, but they have different heights.
  • Your tendons are namely in the surfaces 42, which rise towards the hull sides 44, 46.
  • the surfaces 42 represent planes.
  • the hull sides can have straight frames 44, as shown in FIG. 4 on the left, or curved frames 46, as shown in FIG. 4 on the right.
  • the kink lines 48 form straight lines that run parallel to the vertical longitudinal center plane 38 of the hull.
  • Fig. 6 Further entangled, multiple kinked surface arrangements are shown in Fig. 6.
  • the characteristic curves shown there represent the areas 42 in which the respective tendons 1 of the vertical longitudinal section profiles of the underside of the hull lie.
  • Line A is kinked twice, namely at 48 and 50.
  • Line B is also kinked twice and runs from the vertical longitudinal median plane 38 first weakly and then more upwards and outside of the kink line 50 either upwards or downwards.
  • Line C shows a surface 42 which initially runs slightly downwards from the vertical longitudinal center plane 38 and upwards outside the bend line 48.
  • Line D is similar to line C, but has a second fold line 50 and can take three different directions beyond this fold line.
  • FIG. 6 On the right side of FIG. 6, embodiments are shown in which the surfaces 42, in which the tendons 1 of the profiles of the underside of the boat are located, are curved. These curved surfaces 42 have straight (advantageously inclined) surface lines which run parallel to the vertical longitudinal central plane 38 of the hull. For the sake of simplicity, the curved surfaces 42 are shown without reference to the horizontal plane of the water level 3.
  • FIG. 7 shows a bottom view of the hull 2 illustrated in FIG. 2, the supporting surfaces of which are swept to the rear.
  • the vertical longitudinal median plane 38 of the hull coincides with the horizontal plane 3 and is drawn in FIG. 7 as a straight line, under which the associated profile longitudinal section 8 is dash-dotted and the chord 1, which is set at an angle, is shown in broken lines.
  • the apex 9 is located in the perpendicular transverse plane 52 at a distance Y max from the chord 1.
  • the underside of the hull lying below the water level has a shorter profile longitudinal section 8 with a shorter chord 1 than the profile longitudinal section in the center plane 38; also the Vertex 9 'has a smaller maximum value Y max, which is located in the transverse plane 60, which is located further to the stern than the transverse plane 52.
  • the reason for this is that the bow end points 4', 4 'of the profile lines 8 or tendons 1st lie on a degree (curve) inclined at an angle of 90 ° ⁇ v to the central plane 38 or alternatively in a plane (curved surface) 74, so that external profiles are reduced in a similar scale.
  • the underside of the hull 2 below the water level has an even shorter profile 8 with the apex 9 ⁇ , whose Y max is smaller than that of the apex 9 ' .
  • the apex 9 ⁇ lies in a transverse plane 66, which is closer to the rear than the transverse plane 60.
  • the three apexes 9, 9 ', 9 ⁇ thus lie in a vertical plane (curved surface) 51 which, with the transverse plane 52, forms the angle ⁇ includes.
  • the following profile longitudinal sections 8 or chords 1 and / or the angle ⁇ with the horizontal plane 3 from the outside to the following profile lines are shortened, taking into account the laws of similarity, or are reduced. Even if the angle of the tendon 1 can decrease towards the outside, it does not reach the value 0 °.
  • An important value for the sweep of the profile or for the similarity are the angles ⁇ and ⁇ v , which the surfaces 51 and 74 enclose with transverse planes to the longitudinal direction of the boat.
  • the hull 2 has a rear 70 at the stern, which can be inclined at an angle ⁇ H to the vertical longitudinal center plane 38, as indicated by the two angles ⁇ H in FIG.
  • While surface 51 is a plane in the embodiment of FIG. 7, there is also the possibility of making it run kinked or curved. This means that the end points 4 ', 4 ⁇ or the vertices 9,9', 9 ⁇ have a kinked or curved connecting line.
  • the profile lines in the longitudinal planes eg 38, 54, 62
  • the absolute values of the profile or chord length and the crown thickness Y max smaller towards the side of the boat.
  • the tendons 1 are in the same horizontal plane, the bottom of the boat can rise outwards. This effect can be increased by that the tendons are arranged in the planes 42 according to FIGS. 4 and 6 instead of at the same altitude.
  • chord lengths of the profile lines of the underside of the hull decrease from the inside to the outside to zero in point 4 '' '.
  • the front end points of the profiles lie on a vertical plane 74 which intersects the plane 51 (with the vertices) in the rear 70 at point 4 '' '.
  • an angle ⁇ of more than 1.3 ° there is only one upper limit for design reasons. Angles ⁇ of 1.7 ° to 3 ° are advantageous. Angles ⁇ of less than 1.3 ° were found to be of little advantage. Very good results were achieved with angles between 1.5 ° and 2.5 °.
  • the boat hulls according to the invention are advantageously used for motor-driven, fast gliding vehicles.
  • the boat hulls can be used for vehicles with one or more hulls (catamarans).
  • a general formula for the curve profile (f (x)) of a profile longitudinal section according to the invention is given below: where m should be an even number and indicates half the number of nodes.
  • Support points are understood to mean the respective abscissa values along the boat, the associated ordinate values of which are empirically determined or specified and thus determine the course of the curve.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Glass Compositions (AREA)
  • Earth Drilling (AREA)
  • Lubricants (AREA)
  • Graft Or Block Polymers (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Hydraulic Turbines (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Toys (AREA)

Description

  • Die Erfindung betrifft einen Bootskörper gemäß dem Oberbegriff des Patentanspruches 1.
  • Bootskörper sind z.B. aus der DE-PS 30 22 966 bzw. FR-PS 515 361 bekannt; diese bekannten Bootskörper besitzen jedoch eine Reihe von Nachteilen. Durch die relativ starke Profilkrümmung bei dem Bootskörper gemäß der DE-PS im vorderen Profilbereich wird an dieser Stelle die Strömung um den Bootskörper beschleunigt, wodurch eine Unterdruckzone entsteht und der Bootskörper in diesem Bereich vom Wasser "angesaugt" wird. Man spricht dabei vom "umgekehrten Tragflügeleffekt" der auch dann auftritt, wenn es sich um die Unterseite eines Flugzeugtragflügels handelt. Durch die Reduzierung der Profilkrümmung im hinteren Profilbereich wird die Strömungsgeschwindigkeit in diesem Bereich gegenüber dem vorderen Profilbereich reduziert, wodurch eine Überdruckzone erzeugt wird, die das hintere Ende des Profils nach oben, also aus dem Wasser, drückt. Durch diese beiden Kräfte, die nach abwärts gerichtete Saugkraft im Profilvorderteil, und die nach aufwärts gerichtete Druckkraft im hinteren Teil, entsteht ein buglastiges Trimmoment, d.h. ein Moment um einen Punkt an einer Stelle zwischen den Angriffspunkten der Auftriebs- und Abtriebskraft, das geeignet ist, den Bug des Bootes nach unten, also abwärts zu drücken, das Boot somit kopflastig zu trimmen. Dieser kopflastige Trimmeffekt ist generell eine Funktion der Profilform sowie der Anströmgeschwindigkeit und des Anstellwinkels des Profiles bzw. der Profilsehne. Im Falle des Bootskörpers gemäß der DE-PS 30 22 966 ist der Anstellwinkel des Profiles für den Fall des stillstehenden, unbelasteten Bootes weitestgehend 0, sodaß der bisher beschriebene Effekt im wesentlichen als Funktion von Profilform und Anströmgeschwindigkeit angesehen werden kann. Der eben beschriebene, durch die Profilform des Bootskörpers begründete Effekt wird schließlich überlagert durch den Effekt einer schräg angeströmten Platte, wobei der Ausdruck "schräg angeströmte Platte " als Terminus Technicus zu verstehen ist.
  • Diese DE-PS 30 22 966 beschreibt einen Bootskörper, bei dem vorgesehen ist, daß das Heck des unbelasteten Bootes nicht unter die Horizontalebene des Wasserspiegels reicht bzw. die Unterseite des Bootskörpers nach hinten tangential zur Horizontalebene des Wasserspiegels ausläuft (also in diesen tangential einmündet), bzw. daß die Sehne ihre Lage parallel zum Wasserspiegel in der Horizontalebene, d.h. in der Ebene des Wasserspiegels, beibehält bzw. keinen größeren Anstellwinkel braucht, da größere Anstellwinkel zu größeren Widerständen führen würden. Ferner soll bei diesem Boot das Heck des unbelasteten Bootes nicht wesentlich unter die Horizontalebene des Wasserspiegels reichen und bedeutet, daß ein allenfalls vorhandenes aber nicht erwünschtes unwesentliches Einsinken des Hecks des unbelasteten Bootes aufgrund seines Gewichtes bzw. allfälliger Trimmungenauigkeiten möglich sein kann. Die Angabe, daß die Sehne im wesentlichen parallel zur Horizontalebene bzw. dem Wasserspiegel verläuft, bedeutet aber, daß bei dem Bootskörper gemäß der DE-PS 30 22 966 zwingend vorgesehen ist, daß die Sehne somit keinen Anstellwinkel zur Wasseroberfläche besitzt. Die vorliegende Erfindung betrifft dagegen einen Bootskörper, dessen heckseitiger Profilendpunkt in ausgetrimmtem Zustand zwingend unterhalb der Wasseroberfläche gelegen ist, und zwar in Abhängigkeit von dem gewählten Winkel zwischen der Sehne und dem Wasserspiegel; das Ausmaß des Eintauchens ist durch die Länge des Bootes und den Tangens des Winkels zwischen der Sehne und dem Wasserspiegel einfach zu errechnen.
  • Erhöht ein Wasserfahrzeug seine Geschwindigkeit, vergrößert sich seine Bugwelle. Wird die Geschwindigkeit des Wasserfahrzeuges größer als die Wellenfortschrittgeschwindigkeit der Bugwelle des Wasserfahrzeuges, stellt sich der Bootskörper an, das heißt, er vertrimmt hecklastig; vereinfacht ausgedrückt, versucht das Schiff, auf seine eigene Bugwelle hinaufzufahren. Dadurch trimmt, wie bereits ausgeführt, der Bootskörper hecklastig, der Profilanstellwinkel ändert sich und dadurch ändert sich auch die Abtriebskraft des Profiles. Große Teile des Bootskörpers werden nicht mehr als "Profil", sondern als "ebene Platte" schräg angeströmt, wodurch sich im Vorschiff eine Auftriebskomponente ergibt, die dem buglastigen Trimmoment entgegenwirkt. Unter der Annahme, daß das Boot genügend Leistung aufbringen kann, erreicht das Boot einen Gleitzustand, der jedoch, im Vergleich zu konventionellen Gleitbootformen, infolge der Profilkrümmung im Vorschiff durch einen höheren Widerstand aufgrund einer höheren benetzten Oberfläche sowie eines größeren Formwiderstandes charakterisiert ist.
  • Des weiteren ist bei diesem bekannten Bootskörper die durch die Profilwölbung im vorderen Profilbereich hervorgerufene Saugkomponente infolge der horizontalen Profilanströmung so stark, daß ein Übergang in die Gleitphase wohl möglich ist, dabei jedoch deutlich mehr Energie absorbiert wird, als wenn, z.B. durch eine Reduktion der Profilwölbung und gleichzeitige Anstellung des Profiles, die Abtriebstendenzen im Vorschiffsbereich auf ein Maß reduziert werden, das erforderlich erscheint, eine zu starke Schräglage bzw. Neigung des Schiffs- bzw. Bootskörpers zu dem Zeitpunkt zu vermeiden, wo das Schiff oder Boot auf seine eigene Bugwelle auffährt, wie dies bei dem bekannten Rumpf der Fall ist.
  • Ähnliche Probleme ergeben sich bei dem Bootskörper gemäß der FR-PS 515 361, der im Verlauf des Längsschnittprofiles einen beträchtlichen, die Strömung längs des Bootskörpers nachteilig beeinflussenden Knick aufweist und als Knickspanter ausgebildet ist. Darüber hinaus ist der Winkel, den die Sehne mit der Wasseroberfläche einschließt zu gering, um ein optimales Angleiten und ein energiesparendes Gleiten zu ermöglichen.
  • Ein aus der DE-C 687 340 bekannter Bootskörper besitzt im Längsschnitt ein Profil, das einer Flugzeugtragflügelfläche ähnlich ist. Die Längsschnittlinien in den seitlichen Heckbereichen sind jedoch gerade; die Profillinie des Mittelschnittes läuft im wesentlichen in der Ebene des Wasserspiegels aus, sodaß von einer geneigten Sehne nicht gesprochen werden kann, sofern man die Abbildungen 1, 2 und 3 dieser Patentschrift betrachtet. Die Abbildungen 6, 7 und 8 dieser Patentschrift besitzen jedoch Gleitstufen und sind somit gattungsgemäß unterschiedlich, da Profile gemäß einer Flugzeugtragflügelfläche keine Gleitstufen besitzen. Darüber hinaus ist zu bemerken, daß der Profillängsschnitt und insbesondere auch der Mittelschnitt über weite Bereiche gerade verlaufen und somit bestenfalls die Annäherung an eine Krümmungen besitzende Flugzeugtragflügelfläche darstellen.
  • Ein aus der GB-PS 1 025 bekannter Bootskörper besitzt einen Längskörper mit zwei Gleitflächen , zu denen das Wasser von dem mittleren Rumpf hingeleitet wird. Die Mittellinie des Rumpfes besitzt über eine weite Strecke einen völlig geraden Verlauf, sodaß wieder nicht bzw. nur als Grenzfall von einem Krümmungen besitzenden, flugzeugtragflügelähnlichen Profil gesprochen werden kann; dieses Profil besitzt jedoch keinesfalls im Längsschnitt einen Wendepunkt, welcher bewirkt, daß das Vorschiff in Gleitfahrt leicht eingetaucht wird bzw. bewirkt, daß die Krümmung im Hinterschiff die Strömung verlangsamt und einen Druckanstieg im Hinterschiff bewirkt, welcher den Hinterteil des Rumpfes aus dem Wasser hebt; durch dieses Heben ergibt sich ein geringerer Fahrtwiderstand bzw. geringere Eintauchtiefe; durch diese Verringerung des Formwiderstandes bzw. Reibungswiderstandes wird das Boot schneller.
  • Bei keiner der beiden zuvor erwähnten bekannten Ausführungsformen verläßt die vom Vorschiff bewirkte querablaufende Verdrängungsströmung den Gleitrumpf seitlich frei und hydrodynamisch ungenutzt; bei beiden bekannten Ausführungsformen bewirkt die vom Vorschiff querablaufende Verdrängungsströmung ein Anströmen der Gleitflächen und beeinflußt die Fahrt des Bootes.
  • Bei beiden bekannten Bootstypen fällt auf, daß die Gleitflächen lange gerade Strecken bzw. Flächen besitzen; bei beiden Bootstypen liegt beim Gleiten das Prinzip der angeströmten flachen Platte zugrunde, welches Prinzip in der Beschreibungseinleitung abgehandelt wurde; dagegen liegt der Erfindung das Prinzip zugrunde, einen Bootskörper mit einer Unterseite, die zur Gänze als Gleitfläche ausgebildet ist, mit weniger Antriebskraft schneller voranzutreiben.
  • Schließlich ist aus "Navel Architecture of Planing Hulls" by Lindsay Lord, 1946, die Möglichkeit bekannt, den Widerstand eines Gleitbootes bzw. einer ebenen Gleitplatte zu errechnen, wobei speziell auf den Gleitwinkel eingegangen wird. In dieser Veröffentlichung wird der Gleitwinkel mit 2° als optimal dargestellt, über einem Winkel von 2° könnte der Wellenwiderstand ansteigen unter einem Winkel von 2° könnte die benetzte Oberfläche ansteigen. Dies ist aber allgemein gültig für alle Formen von Gleitbooten mit ebenen Gleitflächen, nicht jedoch für Gleitflächen, die das Profil einer Flugzeugtragfläche besitzen.
  • Prinzipielles Problem sämtlicher Gleitfahrzeuge ist es, das Heck während der Fahrt aus dem Wasser herausheben zu können; dies ist entweder durch formbedingten, dynamischen Auftrieb oder aber durch Auftriebshilfen wie z.B. Trimmklappen, side wedges etc., möglich.
  • Der aus der DE-PS bekannte Bootskörper ist insbesondere für Segeljollen- oder -jachten bestimmt, also Wasserfahrzeuge ohne maschinellen Hauptantrieb, und soll übliche, hecklastige Trimmlagen im Bereich schneller Verdrängerfahrt durch ein buglastiges Trimmoment kompensieren und dadurch den Formwiderstandsanteil, der in dieser Phase zwischen Verdränger- und Gleitfahrt naturgemäß sehr groß ist, reduzieren. Gleichzeitig sollen, speziell in dem genannten Geschwindigkeitsbereich, Formwiderstandserhöhungen durch einen allzu tief getauchten Spiegel reduziert werden. Unter diesem Gesichtspunkt, nämlich möglichst geringer Widerstand im Grenzgebiet zwischen Verdränger- und Gleitfahrt, ist diese bekannte Bootsform technisch sinnvoll.
  • Ziel der Erfindung ist die Erhöhung der Auftriebskomponente im Heck des Bootskörpers, insbesondere des dynamischen Auftriebs in schneller Gleitfahrt. Zur Verbesserung der Gleiteigenschaften soll der Energiebedarf für die schnelle Gleitfahrt herabgesetzt werden. Insbesondere hat sich die Erfindung zum Ziel gesetzt, einen relativ kompromißlosen Gleitrumpf zu erstellen, mit dem der Übergang zwischen Verdränger- und Gleitfahrt zeitlich so kurz wie möglich und leistungsmäßig so wenig aufwendig wie möglich gestaltet werden kann.
  • Diese Ziele werden bei einem Bootskörper der eingangs genannten Art durch die im Kennzeichen des Patentanspruches 1 angeführten Merkmale erreicht.
  • Der erfindungsgemäße Bootskörper hat ein dem Profil einer Flugzeugtragfläche ähnliches Profil, das aus einem eindeutigen Linienzug ohne Knick- und Unstetigkeitsstellen besteht, dergestalt, daß an jedem Punkt des Profiles nur eine eindeutige Tangente an die Profilkurve möglich ist. Dabei ist der Scheitelpunkt des Profillängsschnittes bezogen auf den bugseitigen Endpunkt der Sehne des Profillängsschnittes in der vorderen Hälfte der gesamten Sehnenlänge gelegen und die Sehne bildet bei unbelastetem oder belastetem Bootskörper mit der durch den Wasserspiegel definierten Horizontalebene den Winkel α . Das Hinterschiff ist gleitflächenfrei; eigene oder ebene Gleitflächen sind am Bootskörper nicht vorgesehen; Luft unter den Bootskörper eintragende Gleitflächen werden somit vermieden. Die Gleiteigenschaften werden unterstützt, wenn das Vorschiff U-spantenförmig bzw. rundspantenförmig ausgebildet ist bzw. wenn das Vorschiff mit nach innen und oben gezogenen Spanten ausgebildet ist.
  • Der Winkel der Sehne mit dem Wasserspiegel kann entweder durch Trimmen des unbelasteten Bootes (Trimmgewichte, Ketten, Feetballast) oder durch entsprechende Beladung des Schiffes eingestellt werden. Ist der erwünschte Winkel durch Trimmen des unbelasteten Schiffes eingestellt, so sollte dieser durch die Beladung nicht bzw. nur innerhalb der angegebenen Grenzen verändert werden.
  • Erfindungsgemäß ist ferner vorgesehen, daß das knickfreie Flugzeugprofil weitestgehend querströmungsfrei ausgebildet ist und die vom Vorschiff bewirkte, querablaufende Verdrängungsströmung den Schiffskörper seitlich frei und hydrodynamisch ungenutzt verläßt. Diese Ausbildung vermeidet, daß die vom Vorschiff erzeugte Strömung das Verhalten des Hinterschiffs nachteilig beeinflußt und die Gleiteigenschaften des Hinterschiffs optimal nutzbar sind, da der Auftrieb im Hinterschiff somit zumindest zum größten Teil durch die parallel zur Schiffslängsachse verlaufende Strömung bewirkt werden kann.
  • Ferner ist erfindungsgemäß vorgesehen, daß der Profillängsschnitt einen in einem Abstand vom bugseitigen Profilendpunkt von mindestens 30%, vorzugsweise von mindestens 50%, insbesondere von mindestens 60% der gesamten Sehnenlänge gelegenen Wendepunkt besitzt.
  • Bei einer bevorzugten Ausführungsform der Erfindung ist vorgesehen, daß der Profillängsschnitt die Sehne zumindest einmal im Bereich der heckseitigen Hälfte der Sehne schneidet.
  • Durch die Profilkrümmung im vorderen Profilbereich wird an dieser Stelle die Strömung um den erfindungsgemäßen Bootskörper beschleunigt, wodurch eine Unterdruckzone entsteht, wodurch der Schiffsrumpf im gegenständlichen Bereich "angesaugt" wird. Durch die Reduzierung der Profilkrümmung im hinteren Profilbereich bzw. die Tunnelung im hinteren Profilbereich (dieser Terminus Technicus beschreibt die Unterwasserrumpfform, die dadurch entsteht, daß Vertikalschnitte durch den Schiffskörper parallel zur Rumpfmittenlängsachse als Tragflügelprofile mit Wendepunkt ausgebildet sind) wird die Strömungsgeschwindigkeit gegenüber dem vorderen Profilbereich reduziert, wodurch eine Überdruckzone erzeugt wird, die das hintere Ende des Profiles nach oben, also aus dem Wasser, drückt. Durch diese beiden Kräfte entsteht ein Trimmoment, das geeignet erscheint, das Wasserfahrzeug kopflastig zu vertrimmen.
  • Diesem Trimmoment entgegen wirken jedoch die Auftriebskräfte des "schräg angeströmten Körpers", als der sich der Schiffsrumpf infolge der bei Stillstand im unbelasteten bzw. fertig beladenem Zustand des Wasserfahrzeuges nach achtern angestellten, d.h. geneigten Sehne zumindest des Mittenlängsschnittprofiles darstellt. Diese Auftriebskräfte neutralisieren während der Gleitfahrt nicht nur das buglastige Trimmoment, sondern schaffen einen zusätzlichen, dynamischen Auftrieb im Vorschiff, sodaß, infolge des sich einstellenden, dynamischen, hecklastigen Trimmes, die benetzte Oberfläche des Wasserfahrzeuges auf ein Minimum reduziert wird; gleichzeitig reduziert sich durch die hecklastige Vertrimmung während der Gleitfahrt der Formwiderstand.
  • Zu bemerken ist, daß das erfindungsgemäße, einen Wendepunkt aufweisende Profil in einen heckseitigen Endpunkt ausläuft, der unterhalb der Wasseroberfläche gelegen ist. Der erfindungsgemäß vorgesenene statische Trimm (belastet oder unbelastet im Stillstand), d.h. die Neigung der Profilsehne des im Längsschnitt Flugzeugtragflügelflächenform besitzenden Bootskörpers gegenüber dem Wasserspiegel, der eine Hecklastigkeit des Bootskörpers im unbeladenen bzw. beladenen Zustand des Wasserfahrzeuges erzeugt, welcher Winkel insbesondere etwa 1,8° bis 2,2° beträgt, ist in der Schiffbautechnik als ein sehr bedeutender Winkel zu betrachten. Üblicherweise wird die Trimmlage eines schnellen Wasserfahrzeuges auf 100-stel Grad genau ausgemessen und Abweichungen von Zehntelgraden werden unter Zuhilfenahme komplizierter Trimmaßnahmen und Vermessungseinrichtungen bestimmt und ausgeglichen. In der Praxis besitzt der erfindungsgemäße Bootskörper eine auf Grund der Sehnenneigung bei unbelastetem und/oder belastetem Boot beträchtlich unter Wasser liegende Spiegelunterkante, wobei die Eintauchtiefe dem Tangens des Neigungswinkels, multipliziert mit der Sehnenlänge entspricht, ein Wert. welcher bei einem z.B. 5 m langen Schiff schon etwa 15 cm beträgt. Bekannte Flugzeugtragflügelform aufweisende Bootskörper weisen Trimmwerte auf, die sich von diesen erfindungsgemäßen Werten beträchtlich unterscheiden.
  • Beim erfindungsgemäßen Bootskörper ist die Auftriebskomponente im Heckbereich beachtlich, da der Längsprofilschnitt in diesem Bereich einen Wendepunkt hat und der Profillängsschnitt sogar die Sehne schneiden kann und oberhalb der Sehne verläuft, wodurch der Tunnelungseffekt wesentlich stärker und für den gewünschten Auftrieb im Hinterschiff effektiver wird. Gerade durch die Anstellung der Sehne des Profillängsschnittes gegenüber der Schwimmwasserlinie beim unbelasteten bzw. belasteten, stillstehenden Wasserfahrzeug wird im Fahrzustand im Heckbereich der dynamische Auftrieb beträchtlich verstärkt, wodurch sich im Hinblick auf die Gleiteigenschaften und auf den Energiebedarf ausgesprochen günstige Eigenschaften ergeben.
  • Erfindungsgemäß vorteilhafte Ausführungsformen sind der folgenden Beschreibung, den Patentansprüchen und der Zeichnung zu entnehmen.
  • Im folgenden wird der erfindungsgemäße Bootskörper anhand der Zeichnung beispielsweise näher erläutert. Es zeigen Fig.1,2 und 3 verschiedene Ausführungsformen von erfindungsgemäßen Bootskörpern, Fig.4 bis 6 verschiedene Schnittansichten und Fig.7 und 8 Pfeilungsmöglichkeiten für den Bootskörper.
  • Fig.1 zeigt einen schematischen Schnitt durch einen erfindungsgemäßen Bootskörper 2. Der Bootskörper 2 besitzt in dem dargestellten Mittelschnitt ein Unterwasserprofil, das von einem gekrümmten Profilabschnitt, der allgemein mit 8 bezeichnet ist, gebildet ist. Vom hinteren Profilendpunkt 4 führt nach oben bis zum Wasserspiegel 3 ein Abschnitt 5′ des Spiegels 5. Die Profillinie 8 verlängert sich im Bugbereich vom vorderen Endpunkt 4′ des Unterwasserprofiles 8 allenfalls abgewickelt über den Wasserspiegel 3 hinaus in den Bugteil 2′ vorteilhaft in einer stetigen, ununterbrochenen Profillinie; im Heck verlängert sich der unter Wasser befindliche Abschnitt 5′ in die über dem Wasserspiegel 3 gelegene Hecklinie 5 vorteilhaft in Form eines geraden Überganges. Die Sehne 1 des Profils 8 verläuft vom bugseitigen Endpunkt 4′, d.h. dem vorderen Schnittpunkt des Profiles 8 mit dem Wasserspiegel 3, bis zum heckseitigen Endpunkt 4 der Profilsehne 1, die unterhalb des Wasserspiegels 3 gelegen ist und von der in einem Winkel α - (Fig.1,7) geneigt oder senkrecht zum Wasserspiegel verlaufenden Spiegellinie 5,5′ geschnitten wird. Die Sehne 1 schließt mit der Horizontalebene, die vom Wasserspiegel 3 gebildet wird, einen Winkel φ ein, der zwischen 1° bis 3°, vorzugsweise etwa 2°, beträgt. Bei unbelastetem Bootskörper 2 im Ruhezustand liegt somit die gesamte Sehne 1, insbesondere der Heckbereich bzw. der Endpunkt 4 der Sehne 1 bzw. des Profillängsschnittes 8 unterhalb des Wasserspiegels 3, während der bugseitige Endpunkt 4′ der Sehne 1 möglichst genau in der Wasseroberfläche liegt. Die strichlierte Linie 80 ergänzt das Profil 8 zu einem tragflügelähnlichen Profil.
  • Das in Fig.1 dargestellte Profil 8 verläuft vom bugseitigen Endpunkt 4′ gekrümmt bis zum Scheitelpunkt 9 mit dem größten Sehnenabstand Y max, nimmt dann ab bis zu einem Wendepunkt 6, der knapp unterhalb der Sehne 1 gelegen ist, schneidet die Sehne 1 in einem Scnnittpunkt 7, verläuft daraufhin mit einem Abschnitt 8′ oberhalb der Sehne 1 und läuft dann schneidend, d.h. nicht tangierend, in die Sehne 1 im Endpunkt 4 ein. Damit werden im Heckbereich des Bootskörpers 2 insbesondere durch die Krümmung des Profilabschnittes 8′ die gewünschten dynamischen Auftriebswerte erreicht.
  • Ein ähnliches Profil ist in Fig.3 dargestellt, bei dem die Profillinie 8 einen weiteren Schnittpunkt 7′ mit der Sehne 1 besitzt. Im Falle von zwei Schnittpunkten 7,7′ läuft der hintere Endbereich der Profillinie 8 von unten in den Endpunkt 4 schneidend zur Sehne 1 ein.
  • Fig.2 zeigt einen Profilverlauf, bei dem das Profil 8, ausgehend vom vorderen , in der Höhe des Wasserspiegels 3 liegenden Endpunkt 4′ sich vorerst zum Scheitelpunkt 9 verdickt, daraufhin abnimmt und einen Wendepunkt 6 aufweist, von dem aus bei gleichzeitiger, weiterer Profilabnahme das Profil schneidend, nicht tangierend in den heckseitigen Endpunkt 4 der Sehne 1 einläuft, in dem sich der Profilabschnitt 5′ anschließt.
  • Die Spiegelunterkante, welche, sofern sie waagrecht verläuft, in der Zeichnung mit dem Endpunkt 4 zusammenfällt, liegt bei unbelastetem Bootskörper 2 mit ihrer gesamten, quer zum Mittelschnitt verlaufenden Länge unter dem Wasserspiegel.
  • Vorteilhaft ist es, wie Fig.2 zeigt, wenn die Höhe Y des Profillängsschnittes 8 unterhalb der Sehne 1 zwischen dem heckseitigen Endpunkt 4 der Sehne 1 und einem Bereich von 20% - 40%, vorzugsweise 20% bis 30%, der Gesamtsehnenlänge gegenüber der Profilhöhe Y max im Scheitelpunkt 9 auf weniger als 20%, vorzugsweise weniger als 15% abgenommen ist und in den unterhalb der Horizontalebene 3 gelegenen Endpunkt 4 der Sehne 1 von unten schneidend einläuft. Damit wird ein ausgewogenes Trimmverhältnis bei der schnellen Gleitfahrt erreicht.
  • Allgemein ist es zweckmäßig, wenn der Scheitelpunkt 9 des Profillängsschnittes 8 bezogen auf den bugseitigen Endpunkt 4′ der Sehne 1 in einem Abstandsbereich von 20% bis 40%, insbesondere 25% bis 35%, der gesamten Sehnenlänge gelegen ist. Durch diese Maßnahme wird das sogenannte "Absaugen" des Bugbereiches des Bootskörpers in Grenzen gehalten und bei Fahrtbeginn ein ausgeglichenes Fahrverhalten erreicht. Hiebei ist es zweckmäßig, wenn die Höhe Y max des Profillängsschnittes 8 im Scheitelpunkt 9 weniger als 20%, vorzugsweise weniger als 15%, der Sehnenlänge beträgt.
  • Besonders zweckmäßige Werte für die Tunnelung liegen dann vor, wenn die Höhe des oberhalb der Sehne 1 verlaufenden Abschnittes 8′ des Längsschnittprofiles 8 bis zu 20%, vorzugsweise bis zu 15% , der Sehnenlänge beträgt.
  • Nach vorne ist das Längsschnittprofil der Unterseite des Bootskörpers 2 über die Horizontalebene 3 (Wasserspiegel) vorteilhaft mit unveränderter oder nur wenig veränderter Krümmung bis zu einem Punkt 24 fortgeführt. Der weitere Verlauf richtet sich nach der Gestalt des Buges, für den verschiedene Formen möglich sind.
  • Es ist möglich, Bootskörper zu erstellen, bei denen die Profilsehnenebene 42 (von nebeneinanderliegenden Sehnen 1 aufgespannte Ebene) nebeneinanderliegende Profillängsschnitte die Wasserlinien 3 in einem vorher festgelegten Winkel schneidet, was in Fig.4 und 5 dargestellt ist. Die linke Hälfte der Fig.4 zeigt einen lotrechten Querschnitt durch einen Bootskörper, bei welchem der erfindungsgemäße Profil- bzw. Sehnenverlauf des Bootskörpers 2 auf eine schmale, die lotrechte Längsmittelebene 38 aufnehmende Zone 40 beschränkt ist. Mithin gilt es nur für diese Zone 40, daß der vordere Endpunkt 4′ der Sehne 1 in der Horizontalebene 3 liegt; die Sehne 1 ist vorteilhafterweise aber noch immer im Winkel α zur Horizontalebene geneigt. Die in größerem Abstand von der Längsmittelebene 38 verlaufenden Längsprofile der Unterseite des Bootskörpers haben zwar dieselbe Gestalt wie das Längsschnittprofil in der Zone 40, doch haben sie verschiedene Höhenlagen. Ihre Sehnen liegen nämlich in den Flächen 42, die nach den Bootskörperseiten 44,46 hin ansteigen. Bei den Ausführungsformen, die rechts und links in Fig.4 gezeigt sind, stellen die Flächen 42 Ebenen dar. Die Bootskörperseiten können gerade Spanten 44, wie in Fig.4 links gezeigt, oder auch gebogene Spanten 46 haben, wie in Fig.4 rechts gezeigt.
  • In Fig.5 sind zwei Ausführungsformen dargestellt, bei denen die Flächen 42 nicht eben, sondern geknickt sind. Dabei bilden die Knicklinien 48 Gerade, die parallel zur lotrechten Längsmittelebene 38 des Bootskörpers verlaufen.
  • Weitere verwickelte, mehrfach geknickte Flächenanordnungen sind in Fig. 6 angegeben. Die dort wiedergegebenen Kennlinien stellen die Flächen 42 dar, in denen die jeweiligen Sehnen 1 der lotrechten Längsschnittprofile der Bootskörperunterseite liegen. Die Linie A ist zweimal geknickt, nämlich bei 48 und 50. Die Linie B ist ebenfalls zweimal geknickt und verläuft von der lotrechten Längsmittelebene 38 aus erst schwach und dann stärker aufwärts und außerhalb der Knicklinie 50 entweder aufwärts oder abwärts. Die Linie C zeigt eine Fläche 42, die von der lotrechten Längsmittelebene 38 aus zunächst schwach abwärts und außerhalb der Knicklinie 48 aufwärts verläuft. Die Linie D ähnelt der Linie C, hat aber eine zweite Knicklinie 50 und kann jenseits dieser Knicklinie drei verschiedene Richtungen einnehmen.
  • Auf der rechten Seite der Fig.6 sind Ausführungsformen gezeigt, bei der die Flächen 42, in den sich die Sehnen 1 der Profile der Bootsunterseite befinden, gekrümmt sind. Diese gekrümmten Flächen 42 haben gerade (vorteilhaft geneigte) Mantellinien, die parallel zur lotrechten Längsmittelebene 38 des Bootskörpers verlaufen. Die gekrümmten Flächen 42 sind der Einfachheit halber ohne Bezugnahme auf die Horizontalebene des Wasserspiegels 3 dargestellt.
  • Fig.7 zeigt eine Untersicht des in Fig.2 veranschaulichten Bootskörpers 2, dessen tragende Flächen nach hinten gepfeilt sind. Die lotrechte Längsmittelebene 38 des Bootskörpers fällt mit der Horizontalebene 3 zusammen und ist in Fig.7 als eine Gerade gezeichnet, unter der strichpunktiert der zugehörige Profillängsschnitt 8 und strichliert die im Winkel angestellte Sehne 1 eingezeichnet sind. Der Scheitelpunkt 9 befindet sich in der lotrechten Querebene 52 in einer Entfernung Y max von der Sehne 1.
  • In der Längsebene 54, die parallel zur Längsmittelebene 38 verläuft, hat die unter der Wasserspiegelebene liegende Unterseite des Bootskörpers einen kürzeren Profillängsschnitt 8 mit einer kürzeren Sehne 1 als der Profillängsschnitt in der Mittelebene 38; auch der Scheitelpunkt 9′ besitzt einen kleineren Höchstwert Y max, der sich in der Querebene 60 befindet, die weiter zum Heck gelegen ist, als die Querebene 52. Grund dafür ist, daß die bugseitigen Endpunkte 4′,4˝ der Profillinien 8 bzw. Sehnen 1 auf einer im Winkel 90°φv zur Mittelebene 38 geneigten Graden (Kurve) bzw. alternativ dazu in einer Ebene (gekrümmte Fläche) 74 liegen, sodaß außenliegende Profile im ähnlichen Maßstab verkleinert sind. In der lotrechten Längsebene 62, die sich parallel zur Längsebene 54 und zur Längsmittelebene 38 erstreckt, hat die unter der Wasserspiegelebene liegende Unterseite des Bootskörpers 2 ein noch kürzeres Profil 8 mit dem Scheitelpunkt 9˝,dessen Y max kleiner ist als das des Scheitelpunktes 9′. Der Scheitelpunkt 9˝ liegt in einer Querebene 66, die sich näher am Heck befindet als die Querebene 60. Die drei Scheitelpunkte 9,9′,9˝ liegen somit in einer lotrechten Ebene (gekrümmten Fläche) 51, die mit der Querebene 52 den Winkel φ einschließt. Erfindungsgemäß ist somit vorgesehen, daß, ausgehend vom Profillängsschnitt 8 in der Mittelebene, nach außen zu folgende Profillängsschnitte 8 bzw. Sehnen 1 und/oder der Winkel α mit der Horizontalebene 3 von nach außen zu folgenden Profillinien unter Berücksichtigung der Gesetze der Ähnlichkeit verkürzt bzw. verkleinert sind. Auch wenn der Winkel der Sehne 1 nach außen hin abnehmen kann, erreicht er nicht den Wert 0°. Ein wichtiger Wert für die Pfeilung des Profils bzw. für die Ähnlichkeit sind die Winkel φ und φv , den die Flächen 51 und 74 mit Querebenen zur Bootslängsrichtung einschließen.
  • Über der Horizontalebene des Wasserspiegels 3 hat der Bootskörper 2 am Heck eine Rückseite 70, die zur lotrechten Längsmittelebene 38 im Winkel φH geneigt verlaufen kann, wie durch die beiden Winkel φH in Fig.7 angegeben ist.
  • Während bei der Ausführungsform der Fig.7 die Fläche 51 eine Ebene ist, besteht auch die Möglichkeit, sie geknickt bzw. gekrümmt verlaufen zu lassen. Das bedeutet, daß die Endpunkte 4′,4˝ bzw. die Scheitelpunkte 9,9′,9˝ eine geknickte bzw. gekrümmte Verbindungslinie haben. Haben die Profillinien in den Längsebenen (z.B. 38,54,62) dasselbe Verhältnis der Länge zur Dicke, und verringert sich die Länge ihrer Sehnen 1 mit zunehmendem Abstand von der Längsmittelebene 38, dann werden die absoluten Werte der Profil- bzw. der Sehnenlänge und der Scheiteldicke Y max zur Seite des Bootes hin kleiner. Somit kann, auch wenn die Sehnen 1 in derselben Horizontalebene liegen, der Bootsboden nach außen hin ansteigen. Diese Wirkung kann dadurch gesteigert werden, daß die Sehnen statt in der gleichen Höhenlage in den Ebenen 42 gemäß den Fig.4 und 6 angeordnet werden.
  • Bei der in Fig.8 gezeigten Gestalt des Bootskörpers 2 nehmen die Sehnenlängen der Profillinien der Bootskörperunterseite von innen nach außen bis auf Null im Punkt 4′′′ ab. Die vorderen Endpunkte der Profile liegen auf einer lotrechten Ebene 74, welche die Ebene 51 (mit den Scheitelpunkten) im Heck 70 im Punkt 4′′′ schneidet. Je weiter außen eines der lotrechten Längsschnittprofile liegt, umso geringer wird auch der Abstand des vorderen Endpunktes 4′, dieses Profiles von den Scheitelpunkten 9,9′, bis sie in dem Punkt 4′′′ zusammenfallen.
  • Erfindungsgemäß ist ein Winkel α von mehr als 1,3°. Nach oben ist lediglich aus Konstruktionsgründen eine Grenze gesetzt. Vorteilhaft sind Winkel α von 1,7° bis 3°. Winkel α von weniger als 1,3° zeigten sich als wenig vorteilhaft. Mit Winkeln zwischen 1,5° und 2,5° konnten sehr gute Ergebnisse erzielt werden.
  • Die erfindungsgemäßen Bootskörper werden vorteilhaft für motorgetriebene, schnelle Gleitfahrzeuge verwendet. Die Bootsrümpfe können für Fahrzeuge mit einem oder mehreren Rümpfen (Katamarane) eingesetzt werden.
  • Im folgenden wird eine allgemeine Formel für den erfindungsgemäßen Kurvenverlauf (f(x)) eines Profillängsschnittes angegeben:
    Figure imgb0001

    wobei m eine gerade Zahl sein soll und die halbe Stützstellenanzahl angibt. Die Koeffizienten ak laufen von K=1 bis m und die Koeffizienten bk von K=1 bis m=1.
  • Unter Stützstellen werden die jeweiligen Abszissenwerte längs des Bootes verstanden, deren zugeordnete Ordinatenwerte empirisch ermittelt oder vorgegeben werden und somit den Kurvenverlauf bestimmen.

Claims (19)

  1. Bootskörper, für Schnelle Gleitfahrzeuge, dessen zur Gänze als Gleitfläche ausgebildete Unterseite mindestens in einem Längsschnitt durch bzw. parallel zur Mittelebene ein dem Profil einer Krümmungen besitzenden Flugzeugtragflügelunterfläche ähnliches Profil hat, wobei der Scheitelpunkt des Profillängsschnittes bezogen auf den bugseitigen Endpunkt der Sehne des Profillängsschnittes in der vorderen Hälfte der gesamten Sehnenlänge gelegen ist, wobei der heckseitige Profilendpunkt am unteren Endpunkt des Hecks bzw. Spiegels unter dem Wasserspiegel gelegen ist, dadurch gekennzeichnet, daß die Sehne (1) des knick- bzw. unstetigkeitsfreien bzw. strakenden Profillängsschnittes (8) bei belastetem und ausgetrimmten oder unbelastetem und ausgetrimmten Bootskörper (2) mit der durch den Wasserspiegel (3) definierten Horizontalebene einen Winkel (α) von 1,3° bis 4°, vorzugsweise von 1,5° bis 2,5°, insbesondere von 1,8° bis 2,2°, einschließt, daß der Profillängsschnitt (8) einen in einem Abstand vom bugseitigen Profilendpunkt (4′) von mindestens 30%, vorzugsweise von mindestens 50%, insbesondere von mindestens 60%, der gesamten Sehnenlänge zwischen dem Scheitelpunkt (9) und dem hinteren Profilendpunkt (4) gelegenen Wendepunkt (6) besitzt und daß die vom Vorschiff bewirkte, querablaufende Verdrängungsströmung, d.h. die Bugwelle, das Vorschiff seitlich frei und hydronamisch ungenutzt verläßt.
  2. Bootskörper nach Anspruch 1, dadurch gekennzeichnet, daß der Profillängsschnitt (8) die Sehne (1) zumindest einmal im Bereich der heckseitigen Hälfte der Sehne (1) schneidet.
  3. Bootskörper nach Ansprüche 1 oder 2, dadurch gekennzeichnet, daß die Spiegelunterkante bei unbelastetem Bootskörper (2) mit ihrer gesamten Länge unter dem Wasserspiegel (3) gelegen ist.
  4. Bootskörper nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Höhe des Profillängsschnittes (8) unterhalb der Sehne (1) in einem Bereich ausgehend vom heckseitigen Endpunkt (4) der Sehne (1) bis zu einem Bereich von 20% bis 40%, vorzugsweise 20% bis 30%, der Gesamtsehnenlänge gegenüber der Profilhöhe des Profillangsschnittes im Scheitelpunkt (9) auf weniger als 30 %, vorzugsweise auf weniger als 20 %, insbesondere auf weniger als 15 %, abgenommen ist und in den unterhalb des Wasserspiegels (3) gelegenen Endpunkt (4) der Sehne (1) von unten schneidend einläuft.
  5. Bootskörper nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß sowohl die Sehne (1) des Profillängsschnittes (8) der lotrechten Längsmittelebene als auch einige, vorzugsweise alle, Sehnen von Profillangsschnitten in parallel zu dieser Ebene verlaufenden Ebenen zur durch den Wasserspiegel (3) gegebenen Horizontalebene im Winkel (α) geneigt verlaufen.
  6. Bootskörper nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß nur die in der senkrechten Längsmittelebene oder dicht daneben befindlichen Sehnen des Längsschnittprofils (8) zur durch den Wasserspiegel (3) gegebenen Horizontalebene im Winkel (α) geneigt verlaufen.
  7. Bootskörper nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Sehnen von außerhalb der Längsmittelebene liegenden Profillängsschnitten in verschiedenen Höhenlagen in Flächen(A,B,C,D;42) liegen, die nach den Bootskörperseiten hin über die Horizontalebene (3) ansteigen, wobei die Flächen geknickt oder gekrümmt sind und die Knicklinien bzw. die Mantellinien parallel zur lotrechten Längsmittelebene (38) des Bootskörpers (2) verlaufende Gerade bilden.
  8. Bootskörper nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die bugseitigen Endpunkte (4′,4˝) und die Scheitelpunkte (9,9′,9˝) von in verschiedenen Abständen von der lotrechten Längsmittelebene (38) des Bootskörpers (2) verlaufenden Profillängsschnitten (54,62) jeweils auf einer geraden, geknickten oder gekrümmten Linie (51,74) liegen, die mit einer lotrechten Querebene des Bootskörpers (2) einen spitzen Winkel (φ,φv) einschließt.
  9. Bootskörper nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß der Scheitelpunkt (9) des Profillängsschnittes (8) bezogen auf den bugseitigen Endpunkt (4′) der Sehne (1) in einem Bereich von 20 % bis 40 %, insbesondere 25 % bis 35 %, der gesamten Sehnenlänge gelegen ist.
  10. Bootskörper nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Höhe des Profillängsschnittes (8) im Scheitelpunkt (9) weniger als 25 %, vorzugsweise weniger als 20 %, insbesondere weniger als 15 %, der gesamten Sehnenlänge beträgt.
  11. Bootskörper nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Höhe des oberhalb der Sehne (1) verlaufenden Abschnittes (8′) des Längsschnittprofiles (8) weniger als 20 %, vorzugsweise weniger als 15 %, der Höhe des Profillängsschnittes (8) im Scheitelpunkt (9) beträgt.
  12. Bootskörper nach einem der Ansprüche 2 bis 11, dadurch gekennzeichnet, daß der Profillängsschnitt (8) in den heckseitigen Endpunkt (4) der Sehne (1) von oben schneidend einläuft.
  13. Bootskörper nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß ausgehend vom Profillängsschnitt (8) in der Mittelebene (38) nach außen hin folgende Profillängsschnitte (8) bzw. Sehnen (1) und/oder der Winkel (α) von nach außen hin folgenden Profillängsschnitten unter Berücksichtung der Gesetze der Ähnlichkeit verkürzt bzw. verkleinert sind.
  14. Bootskörper nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß der Wendepunkt (6) des Profillängsschnittes (8) und der Schnittpunkt (6) des Profillängsschnittes (8) mit der Sehne (1) in einem gegenseitigen Abstand von weniger als 30%, vorzugsweise weniger als 15%, der gesamten Sehnenlänge gelegen sind oder gegebenenfalls im wesentlichen zusammenfallen.
  15. Bootskörper nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß die als knickfreie Flugzeugprofil unterseite ausgebildete Gleitfläche querströmungsfrei ausgebildet ist.
  16. Bootskörper nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß der Bootskörper gleitstufenfrei ausgebildet ist.
  17. Bootskörper nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, daß das Hinterschiff insbesondere in Schnitten parallel zur Mittellinie und senkrecht zur Wasserfläche frei von ebenen Gleitflächen ist.
  18. Bootskörper nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, daß das Vorschiff U-spantenförmig bzw. rundspantenförmig ausgebildet ist.
  19. Bootskörper nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, daß das Vorschiff mit nach innen und oben gezogenen Spanten ausgebildet ist.
EP91900753A 1989-11-27 1990-11-27 Bootskörper Expired - Lifetime EP0502963B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AT271389 1989-11-27
AT2713/89 1989-11-27
PCT/EP1990/002028 WO1991008137A1 (de) 1989-11-27 1990-11-27 Bootskörper

Publications (2)

Publication Number Publication Date
EP0502963A1 EP0502963A1 (de) 1992-09-16
EP0502963B1 true EP0502963B1 (de) 1994-06-01

Family

ID=3539133

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91900753A Expired - Lifetime EP0502963B1 (de) 1989-11-27 1990-11-27 Bootskörper

Country Status (13)

Country Link
US (1) US5499593A (de)
EP (1) EP0502963B1 (de)
JP (1) JPH05504115A (de)
KR (1) KR0183951B1 (de)
AT (1) ATE106338T1 (de)
AU (1) AU644836B2 (de)
BR (1) BR9007873A (de)
CA (1) CA2069751C (de)
DE (1) DE59005965D1 (de)
FI (1) FI103568B (de)
HU (1) HU217260B (de)
NO (1) NO178180C (de)
WO (1) WO1991008137A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9325762D0 (en) * 1993-12-16 1994-02-23 Paragon Mann Ltd Boat
AT406143B (de) * 1997-10-16 2000-02-25 Eder Theodor Schiffskörper
KR20000025585A (ko) * 1998-10-13 2000-05-06 이해규 선박의 문풀부 저항 저감 장치
JP3490392B2 (ja) * 2000-11-22 2004-01-26 株式会社川崎造船 トランサムスターン型船尾形状
US7040874B1 (en) * 2004-11-18 2006-05-09 Honeywell International, Inc. Integrated turbocharger lubricant filter system
US20060254486A1 (en) * 2005-05-12 2006-11-16 Ashdown Glynn R Winged hull for a watercraft
US10518842B1 (en) * 2018-11-15 2019-12-31 James H. Kyle Boat hull
CN113955037B (zh) * 2021-11-23 2024-05-28 中国舰船研究设计中心 一种带导流罩的调查船艏部及附体线型集成设计方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US912814A (en) * 1908-05-06 1909-02-16 George Ronstrom Clifford Hydroplane vessel.
FR507556A (fr) * 1914-07-10 1920-09-18 Villard Ghislaine Bateau glisseur hydroplane à hélice aérienne
FR515361A (fr) * 1920-05-05 1921-03-31 Clement Galvin Coque pour hydroglisseur
US1505113A (en) * 1922-10-30 1924-08-19 Gidley Boat Company Ltd Motor boat
FR689792A (fr) * 1930-02-12 1930-09-11 Chris Smith & Sons Boat Compan Canot automobile
DE687340C (de) * 1937-08-01 1940-01-27 Gotthard Sachsenberg Zentralge Wasserfahrzeug
DE872018C (de) * 1941-02-18 1953-03-30 Hans Jastram Rumpfform fuer flach gehende Wasserfahrzeuge mit Heckantrieb und Schabloneneinrichtung zur Herstellung derselben
GB1025454A (en) * 1964-02-07 1966-04-06 Edward James Wilkins Improved hull for power driven boats
US3342032A (en) * 1966-06-29 1967-09-19 Clifford B Cox Jet propulsion means for a boat
DE3022966C2 (de) * 1980-06-19 1986-07-17 Paul Dr. 1000 Berlin Mader Bootskörper, insbesondere für eine Segeljolle
JPH0643002B2 (ja) * 1986-02-17 1994-06-08 株式会社森精機製作所 Nc旋盤
DE3717548A1 (de) * 1987-05-25 1988-12-15 Internaval Trust Reg Schnelles wasserfahrzeug
US5002004A (en) * 1987-11-11 1991-03-26 Mitsui Engineering & Shipbuilding Co., Ltd. Planing boat

Also Published As

Publication number Publication date
CA2069751C (en) 1998-10-06
BR9007873A (pt) 1992-08-25
FI103568B1 (fi) 1999-07-30
NO178180C (no) 1996-02-07
AU644836B2 (en) 1993-12-23
NO922093L (no) 1992-07-01
FI922394A (fi) 1992-05-26
FI922394A0 (fi) 1992-05-26
JPH05504115A (ja) 1993-07-01
DE59005965D1 (de) 1994-07-07
FI103568B (fi) 1999-07-30
ATE106338T1 (de) 1994-06-15
US5499593A (en) 1996-03-19
KR0183951B1 (ko) 1999-05-01
WO1991008137A1 (de) 1991-06-13
HU217260B (hu) 1999-12-28
HUT66052A (en) 1994-09-28
CA2069751A1 (en) 1991-05-28
HU9201654D0 (en) 1992-09-28
NO922093D0 (no) 1992-05-26
KR920703384A (ko) 1992-12-17
EP0502963A1 (de) 1992-09-16
AU6965291A (en) 1991-06-26
NO178180B (no) 1995-10-30

Similar Documents

Publication Publication Date Title
EP0094673B1 (de) Tragflügelanordnung für einen Katamaran
EP0199145B1 (de) Tragflügelanordnung für einen Gleitboot-Katamaran
EP0182314A2 (de) Katamaran-Luftkissenwasserfahrzeug
DE60101949T2 (de) Verfahren zur Verringerung des in Heck entstanden Wellenwiderstands und Heckform
DE3831468A1 (de) Segelyacht
DE2060607C3 (de) Wassertragfliigeleinrichtung für Tragflügelboote
DE2931020A1 (de) Staufluegelboot
EP0502963B1 (de) Bootskörper
DE2430937C3 (de) Gleitboot
EP0042584B1 (de) Bootskörper
DE1202165B (de) Bugwulst fuer voellige Frachtschiffe
WO1994018063A1 (de) Rumpf für wasserfahrzeuge, insbesondere segelboote und surfbretter
EP0300520B1 (de) Schnelles Wasserfahrzeug
DE60007970T2 (de) Schwimmkörper für schnelle wasserfahrzeuge
EP0648668A1 (de) Schnelles Schiff, insbesondere Faehrschiff
DE1781128C3 (de) Hinterschiff für große Einschraubenschiffe
AT504311B1 (de) Bootskörper für schnelle wasserfahrzeuge
DE60029759T2 (de) Aussenhautformen für gleitende oder halbgleitende wasserfahrzeuge
DE2512928A1 (de) Segelbrett
DE2749362C3 (de) Bootsrumpf mit einem an jeder Seite unterhalb der Wasserlinie angeordneten Verdrängungs-Kimmkiel
DE2014495A1 (de) Boot oder ähnliches Wasserfahrzeug
DE1506204C (de) Gleitboot mit deltafbrmiger Gleitfläche
DE3539827A1 (de) Boot mit verbessertem rumpf
DE8511673U1 (de) Katamaran
DE1272759B (de) Wasserfahrzeug, insbesondere fuer hohe Geschwindigkeiten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19920518

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17Q First examination report despatched

Effective date: 19931013

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940601

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19940601

Ref country code: FR

Effective date: 19940601

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19940601

Ref country code: DK

Effective date: 19940601

Ref country code: BE

Effective date: 19940601

REF Corresponds to:

Ref document number: 106338

Country of ref document: AT

Date of ref document: 19940615

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59005965

Country of ref document: DE

Date of ref document: 19940707

ITF It: translation for a ep patent filed

Owner name: STUDIO TORTA SOCIETA' SEMPLICE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19940901

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940915

EN Fr: translation not filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19941130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19991014

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20001128

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011127

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20031029

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20031103

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20041127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051127