EP0493326B1 - Substrat mit verbesserter Oberflächemorphologie mittels schmelzflüssigen Spritzens - Google Patents

Substrat mit verbesserter Oberflächemorphologie mittels schmelzflüssigen Spritzens Download PDF

Info

Publication number
EP0493326B1
EP0493326B1 EP91810992A EP91810992A EP0493326B1 EP 0493326 B1 EP0493326 B1 EP 0493326B1 EP 91810992 A EP91810992 A EP 91810992A EP 91810992 A EP91810992 A EP 91810992A EP 0493326 B1 EP0493326 B1 EP 0493326B1
Authority
EP
European Patent Office
Prior art keywords
metal
micrometers
microinches
melt
profilometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91810992A
Other languages
English (en)
French (fr)
Other versions
EP0493326A2 (de
EP0493326A3 (en
Inventor
Lynne M. Ernes
Richard C. Carlson
Kenneth L. Hardee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eltech Systems Corp
Original Assignee
Eltech Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=24541661&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0493326(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Eltech Systems Corp filed Critical Eltech Systems Corp
Publication of EP0493326A2 publication Critical patent/EP0493326A2/de
Publication of EP0493326A3 publication Critical patent/EP0493326A3/en
Application granted granted Critical
Publication of EP0493326B1 publication Critical patent/EP0493326B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/02Electrodes; Connections thereof

Definitions

  • a coating applied directly to a base metal is an electrocatalytic coating, often containing a precious metal from the platinum metal group, and applied directly onto a metal such as a valve metal.
  • the metal may be simply cleaned to give a very smooth surface.
  • U.S. Patent No, 4,797,182. Treatment with fluorine compounds may produce a smooth surfacc.
  • Cleaning might include chemical degreasing, electrolytic degreasing or treatment with an oxidizing acid.
  • Another procedure for anchoring the fresh coating to the substrate that has found utility in the application of an electrocatalytic coating to a valve metal, is to provide a porous oxide layer which can be formed on the base metal.
  • titanium oxide can be flame or plasma sprayed onto substrate metal before application of electrochemically active substance, as disclosed in U.S. Patent No. 4,140,813.
  • the thermally sprayed material may consist of a metal oxide or nitride or so forth, to which electrocatalytically active particles have been pre-applied, as taught in U.S. Patent No. 4,392,927.
  • the coated metal substrate can have highly desirable extended lifetime even in most rigorous industrial environments.
  • the invention can provide for well anchored coatings of uniform planarity, even when utilizing gouged and similarly disfigured substrate metal.
  • the invention is directed to a method of producing a metallic article comprising a substrate having a metal-containing surface adapted for enhanced coating adhesion by melt spraying valve metal particles having a size within the range from 20 to 100 micrometers to produce a surface having a profilometer-measured average surface roughness of about 6.35 micrometers (about 250 microinches), or more, and an average surface peaks per cm of about 15.7 (about 40 peaks per inch), or more, basis a profilometer upper threshold limit of 10.16 micrometers (400 microinches) and a profilometer lower threshold limit of 7.62 micrometers (300 microinches).
  • the invention is directed to the method of preparing a metal surface for enhanced coating adhesion which surface has been gouged and thereby exhibits loss of planarity, which method comprises: plasma spraying the gouges of such surface with a valve metal to establish metal surface planarity, and then plasma spraying the surface to be coated, including the plasma sprayed gouges to provide a surface roughness of enhanced coating adhesion, as defined above.
  • the invention is directed to a metallic article coated with an intermediate layer and an electrochemically active surface coating, particularly for use as an electrode in electrochemical processes.
  • the metal articles are electrocatalytically coated and used as oxygen evolving electrodes, even under the rigorous commercial operations including continuous electrogalvanizing, electrotinning, copper foil plating, electroforming or electrowinning, and including sodium sulfate electrolysis such electrodes can have highly desirable service life.
  • the invention is also directed to such metal articles as are utilized as electrodes.
  • the metals of the substrate are broadly contemplated to be any coatable metal.
  • the substrate metals might be such as nickel or manganese, but will most always be valve metals, including titanium, tantalum, aluminum, zirconium and niobium. Of particular interest for its ruggedness, corrosion resistance and availability is titanium.
  • the suitable metals of the substrate can include metal alloys and intermetallic mixtures, as well as ceramics and cermets such as contain one or more valve metals.
  • titanium may be alloyed with nickel, cobalt, iron, manganese or copper.
  • Grade 5 titanium may include up to 6.75 weight% aluminum and 4.5 weight% vanadium, grade 6 up to 6% aluminum and 3% tin, grade 7 up to 0.25 weight% palladium, grade 10, from 10 to 13 weight% molybdenum plus 4.5 to 7.5 weight% zirconium and so on.
  • metals in their normally available condition, i.e., having minor amounts of impurities.
  • metal of particular interest i.e., titanium
  • various grades of the metal are available including those in which other constituents may be alloys or alloys plus impurities. Grades of titanium have been more specifically set forth in the standard specifications for titanium detailed in ASTM B 265-79.
  • the substrate metal advantageously is a cleaned surface. This may be obtained by any of the treatments used to achieve a clean metal surface, but with the provision that unless called for to remove an old coating, and if etching might be employed, as more specifically detailed hereinbelow, mechanical cleaning is typically minimized. Thus the usual cleaning procedures of degreasing, either chemical or electrolytic, or other chemical cleaning operation may be used to advantage.
  • plasma spraying the metal is melted and sprayed in a plasma stream generated by heating with an electric arc to high temperatures an inert gas, such as argon or nitrogen, optionally containing a minor amount of hydrogen.
  • inert gas such as argon or nitrogen
  • the spraying parameters such as the volume and temperature of the flame or plasma spraying stream, the spraying distance, the feed rate of particulate metal constituents and the like, are chosen so that the particulate metal components are melted by and in the spray stream and deposited on the metal substrate while still substantially in melted form so as to provide an essentially continuous coating (i.e. one in which the sprayed particles are not discernible) having a foraminous structure.
  • spray parameters like those used in the examples give satisfactory coatings.
  • the metal substrate during melt spraying is maintained near ambient temperature. This may be achieved by means such as streams of air impinging on the substrate during spraying or allowing the substrate to air cool between spray passes.
  • the particulate metal employed e.g., titanium powder
  • the metallic constituency of the particulates may be as above-described for the metals of the substrate, e.g., the titanium might be one of several grades most usually grade 1 titanium. It is also contemplated that mixtures may be applied, e.g., mixtures of metals or of metals with other subsituents, which can include metal oxides, for example a predominant amount of metal with a minor amount of other substituents.
  • plasma spray applications may be used in combination with etching of the substrate metal surface, with each treatment most always being applied to different portions of a surface. If etching is used, it is important to aggressively etch the metal surface to provide deep grain boundaries and well exposed, three-dimensional grains. It is preferred that such operation will etch impurities located at such grain boundaries.
  • the metal article can be disfigured and can have lost surface planarity.
  • disfiguring will be in nicks and gouges of the surface.
  • all such surface disfigurement, including nicks, scrapes, and gouges, and burns where metal may actually be melted and resolidify will generally be referred to herein simply as "gouges.”
  • gouges may or may not be filled with a metal filling. If the overall surface were to be subsequently etched before recoating, the filled zones can be expected to yield poor etch results.
  • gouging of the substrate may be extensive, or the substrate from its heat history and/or chemistry may not achieve desirable results in etching. It may, therefore, be especially desirable to simply plasma spray the entire surface which can overcome these substrate deficiencies. It is also contemplated that it may be useful to combine plasma spray application with etching in some situations.
  • gouges and the like may be filled by plasma spray technique. Usually, the areas of the surface which are not disfigured will first be etched, then the planar, etched areas can be masked, and the gouges remaining will be filled and/or surface treated by plasma spray application. That is, plasma spray can be used to fill and reactivate a gouge, or it simply can be used to just reactivate gouges without necessarily restoring surface planarity. By reactivation is meant the plasma spray application to prepare the gouge for subsequent treatment. Hence, the entire surface will have the needed roughness for coating, and if desired it may in the same processing be refurbished to desirable planarity.
  • the heat treatment history of the metal can be important.
  • a metal such as titanium for etching
  • annealing proper annealing of grade 1 titanium will enhance the concentration of the iron impurity at grain boundaries.
  • the suitable preparation includes annealing, and the metal is grade 1 titanium
  • the titanium can be annealed at a temperature of at least about 500°C. for a time of at least about 15 minutes.
  • a more elevated annealing temperature e.g., 600°-800°C. is advantageous.
  • etching it will be with a sufficiently active etch solution to develop aggressive grain boundary attack.
  • Typical etch solutions are acidic solutions. These can be provided by hydrochloric, sulfuric, perchloric, nitric, oxalic, tartaric, and phosphoric acids as well as mixtures thereof, e.g., aqua regia.
  • Other etchants that may be utilized include caustic etchants such as a solution of potassium hydroxide/hydrogen peroxide in combination, or a melt of potassium hydroxide with potassium nitrate.
  • the etch solution is advantageously a strong, or concentrated solution such as an 18-22 weight% solution of hydrochloric acid.
  • the solution is advantageously maintained during etching at elevated temperature such as at 80°C. or more for aqueous solutions, and often at or near boiling condition or greater, e.g., under refluxing condition.
  • elevated temperature such as at 80°C. or more for aqueous solutions, and often at or near boiling condition or greater, e.g., under refluxing condition.
  • the etched metal surface can then be subjected to rinsing and drying steps to prepare the surface for coating.
  • a more detailed discussion of the etching and annealing can be found in EP-A-0 407 349.
  • the metal surface For the plasma spray applied surface roughness, it is necessary that the metal surface have an average roughness (Ra) about 6.35 micrometers (about 250 microinches), or more, and an average number of surface peaks per cm (Nr) of at least about 15.7 (about 40 peaks per inch).
  • the surface peaks per cm can be typically measured at a lower threshold limit of 7.62 micrometers (300 microinches) and an upper threshold limit of 10.16 micrometers (400 microinches).
  • a surface having an average roughness of below about 6.35 micrometers (about 250 microinches) will be undesirably smooth, as will a surface having an average number of surface peaks per cm of below about 15.7 (about 40 peaks per inch) for providing the needed, substantially enhanced, coating adhesion.
  • the surface will have an average roughness of on the order of about 10.16 micrometers (about 400 microinches) or more, e.g., ranging up to about 19-38.1 micrometers (about 750-1500 microinches), with no low spots of less than about 5.08 micrometers (about 200 microinches).
  • the surface will be free from low spots that are less than about 5.33 to 5.59 micrometers (about 210 to 220 microinches). It is preferable that the surface have an average roughness of from about 7.62 to 12.7 micrometers (about 300 to about 500 microinches).
  • the surface has an average number of peaks per cm of at least about 23.25 (about 60 peaks per inch), but which might be on the order of as great as about 130 or more, with an average from about 80 to about 120 being preferred. It is further advantageous for the surface to have an average distance between the maximum peak and the maximum valley (Rm) of at least about 25.37 ⁇ m (1,000 microinches) and to have an average peak height (Rz) of at least about 25.37 ⁇ m (1,000 microinches). All of such foregoing surface characteristics are as measured by a profilometer.
  • the surface for coating will have an Rm value of at least about 38.1 ⁇ m (1,500 microinches) to about 53.34 ⁇ m (3500 microinches) and have a maximum valley characteristic of at least about 38.1 ⁇ m (1,500 microinches) up to about 53.34 ⁇ m (3500 microinches).
  • the surface may then proceed through various operations, including pretreatment before coating.
  • the surface may be subjected to a cleaning operation, e.g., a solvent wash.
  • a subsequent etching or hydriding or nitriding treatment Prior to coating with an electrochemically active material, it has been proposed to provide an oxide layer by heating the substrate in air or by anodic oxidation of the substrate as described in U.S. Patent No. 3,234,110.
  • European patent application No. 0,090,425 proposes to platinum electroplate the substrate to which then an oxide of ruthenium, palladium or iridium is chemideposited.
  • electrochemically active coatings that may then be applied to the etched surface of the metal, are those provided from platinum or other platinum group metals or they can be represented by active oxide coatings such as platinum group metal oxides, magnetite , ferrite, cobalt spinel or mixed metal oxide coatings.
  • active oxide coatings such as platinum group metal oxides, magnetite , ferrite, cobalt spinel or mixed metal oxide coatings.
  • Such coatings have typically been developed for use as anode coatings in the industrial electrochemical industry. They may be water based or solvent based, e.g., using alcohol solvent. Suitable coatings of this type have been generally described in one or more of the U.S. Patent Nos. 3,265,526, 3,632,498, 3,711,385 and 4,528,084.
  • the mixed metal oxide coatings can often include at least one oxide of a valve metal with an oxide of a platinum group metal including platinum, palladium, rhodium, iridium and ruthenium or mixtures of themselves and with other metals.
  • Further coatings in addition to those enumerated above include manganese dioxide, lead dioxide, platinate coatings such as M x Pt 3 O 4 where M is an alkali metal and X is typically targeted at approximately 0.5, nickel-nickel oxide and nickel plus lanthanide oxides.
  • coatings will be applied to the metal by any of those means which are useful for applying a liquid coating composition to a metal substrate. Such methods include dip spin and dip drain techniques, brush application, roller coating and spray application such as electrostatic spray. Moreover spray application and combination techniques, e.g., dip drain with spray application can be utilized. With the above-mentioned coating compositions for providing an electrochemically active coating, a modified dip drain operation can be most serviceable. Following any of the foregoing coating procedures, upon removal from the liquid coating composition, the coated metal surface may simply dip drain or be subjected to other post coating technique such as forced air drying.
  • Typical curing conditions for electrocatalytic coatings can include cure temperatures of from about 300°C. up to about 600°C. Curing times may vary from only a few minutes for each coating layer up to an hour or more, e.g., a longer cure time after several coating layers have been applied. However, cure procedures duplicating annealing conditions of elevated temperature plus prolonged exposure to such elevated temperature, are generally avoided for economy of operation.
  • the curing technique employed can be any of those that may be used for curing a coating on a metal substrate.
  • oven curing including conveyor ovens may be utilized.
  • infrared cure techniques can be useful.
  • oven curing is used and the cure temperature used for electrocatalytic coatings will be within the range of from about 450°C. to about 550°C. At such temperatures, curing times of only a few minutes, e.g., from about 3 to 10 minutes, will most always be used for each applied coating layer.
  • a titanium nut is welded to the back of each sample plate having an approximate 7.5 cm 2 sample face and each being unalloyed grade 1 titanium.
  • the sample plates were then mounted to a large back plate to provide a mosaic of sample plates. This mounting scheme served to provide a large array of sample plates which could be handled as a unit in ensuing operations.
  • the sample plates were grit blasted with aluminum oxide, then rinsed in acetone and dried.
  • a coating on the sample plates of titanium powder was produced using a powder having average particle size of 50 - 60 ⁇ m (microns).
  • the sample plates were coated with this powder using a Metco plasma spray gun equipped with a GH spray nozzle.
  • the spraying conditions were: a current of 500 amps; a voltage of 45 - 50 volts; a plasma gas consisting of argon and helium; a titanium feed rate of 1.36 kg (3 pounds) per hour; a spray bandwidth of 6.7 millimeters (mm); and a spraying distance of 64 mm, with the resulting titanium layer on the titanium sample plates having a thickness of about 150 micrometers.
  • the coated surface of the sample plates were then subjected to surface prolifilometer measurement using a Hommel model T1000 C instrument manufactured by Hommelwerk GmbH.
  • the plate surface profilometer measurements were determined from three separate measurements conducted by running the instrument in random orientation across the coated flat face of the plate. This gave average values as measured on three sample plates for surface roughness (Ra) of 11.38, 12.45 and 13.9 micrometers (448, 490 and 548 microinches), respectively for the three plates, and peaks per cm (Nr) of 29.8, 24.7 and 29.8 (76, 63 and 76 peaks per inch), respectively for the three plates.
  • the peaks per cm were measured within the threshold limits of 7.62 micrometers (300 microinches) (lower) and 10.16 micrometers (400 microinches) (upper).
  • the sample then received a coating of plasma spray applied titanium using the titanium powder and the application procedure as described in Example 1. Under profilometer measurement conducted in the manner of Example 1, the resulting average values for a flat surface of the sample were found to be 650 (Ra) and 69 (Nr).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Pinball Game Machines (AREA)

Claims (39)

  1. Verfahren zur Herstellung eines metallischen Gegenstandes, der ein Substrat umfaßt, das eine metall-enthaltende Oberfläche aufweist, die für eine erhöhte Beschichtungshaftung ausgelegt ist, bei dem Ventilmetallteilchen mit einer Größe im Bereich von 20 bis 100 µm schmelzgesprüht werden, um eine Oberfläche mit einer mittels Profilometer gemessenen durchschnittlichen Oberflächenrauheit von etwa 6,35 µm (etwa 250 Mikroinch) oder mehr und einem Durchschnitt von Oberflächenpeaks/cm von etwa 15,7 (etwa 40 Peaks/Inch) oder mehr, auf Basis einer oberen Profilometerschwellengrenze von 10,16 µm (400 Mikroinch) und einer unteren Profilometerschwellengrenze von 7,62 µm (300 Mikroinch) herzustellen.
  2. Verfahren nach Anspruch 1, bei dem das Substrat ein Ventilmetall wie eines oder mehrere von einem Metall, einer Legierung, einer intermetallischen Mischung, einer Keramik oder einem Cermet umfaßt.
  3. Verfahren nach Anspruch 1 oder 2, bei dem das schmelzgesprühte Metall der Oberfläche ausgewählt ist aus den Metallen, Legierungen und intermetallischen Mischungen von Titan, Tantal, Niob, Aluminium, Zirkonium, Mangan und Nickel.
  4. Verfahren nach Anspruch 3, bei dem die Metalloberfläche eine mittels Profilometer gemessene durchschnittliche Rauheit von etwa 7,62 µm (etwa 300 Mikroinch) oder mehr ohne niedrige Stellen von weniger als etwa 5,33 µm (etwa 210 Mikroinch) aufweist.
  5. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die Oberfläche einen mittels Profilometer gemessenen Durchschnitt von Oberflächenpeaks/cm von mindestens etwa 23,6 (etwa 60 Peaks/Inch), auf Basis einer oberen Schwellengrenze von 10,16 µm (400 Mikroinch) und einer unteren Schwellengrenze von 7,62 µm (300 Mikroinch), aufweist.
  6. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die Oberfläche einen mittels Profilometer gemessenen durchschnittlichen Abstand zwischen dem Maximumpeak und dem Maximumtal von mindestens etwa 25,4 µm (etwa 1000 Mikroinch) aufweist.
  7. Verfahren nach Anspruch 6, bei dem die Oberfläche einen mittels Profilometer gemessenen durchschnittlichen Abstand zwischen dem Maximumpeak und dem Maximumtal von etwa 38,1 µm (etwa 1500 Mikroinch) bis etwa 88,9 µm (etwa 3500 Mikroinch) aufweist.
  8. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die Oberfläche eine mittels Profilometer gemessenen durchschnittliche Peakhöhe von etwa 25,4 µm (etwa 1000 Mikroinch) oder mehr aufweist.
  9. Verfahren nach Anspruch 8, bei dem die Oberfläche eine mittels Profilometer gemessene durchschnittliche Peakhöhe von etwa 38,1 µm (etwa 1500 Mikroinch) bis etwa 88,9 µm (etwa 3500 Mikroinch) aufweist.
  10. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die Oberfläche beschichtet ist.
  11. Verfahren nach Anspruch 10, bei dem die Oberfläche mit einer elektrochemisch aktiven Oberflächenbeschichtung beschichtet ist, die ein Platingruppemetall oder ein Metalloxid oder deren Mischungen enthält, insbesondere ein gemischtes Kristallmaterial aus mindestens einem Oxid eines Ventilmetalls und mindestens einem Oxid eines Platingruppemetalls.
  12. Verfahren nach Anspruch 11, bei dem die elektrochemisch aktive Oberflächenbeschichtung mindestens ein Oxid ausgewählt aus den Platingruppemetalloxiden, Magnetit, Ferrit und Kobaltoxidspinell, Mangandioxid, Bleidioxid, Zinnoxid, Platinatsubstituent, Nickel-Nickeloxid und Nickel plus Lanthanoxiden enthält.
  13. Verfahren nach Anspruch 11 oder 12, bei dem vor der Aufbringung der elektrochemisch aktiven Oberflächenbeschichtung eine Oxid-, Hydrid- oder Nitridschicht auf der schmelzgesprühten Oberfläche erzeugt wird.
  14. Verfahren nach Anspruch 11 oder 12, bei dem vor der Aufbringung der elektrochemischen aktiven Oberflächenbeschichtung eine schützende und leitfähige Zwischenunterschicht wie beispielsweise elektroplattiertes Platin, elektroabgelagertes Kobaltoxid oder Bleioxid oder eine auf Zinnoxid basierende Schicht auf die plasma-gesprühte Oberfläche aufgebracht wird.
  15. Verfahren nach einem der vorhergehenden Ansprüche zur Herstellung einer Elektrode für elektrochemische Verfahren, insbesondere eine sauerstoffentwickelnde Anode.
  16. Verfahren nach Anspruch 15 zur Herstellung einer Anode in einer anodisierenden elektroplattierenden oder elektrolytischen Gewinnungszelle.
  17. Verfahren nach Anspruch 15 zur Herstellung einer Anode zum Elektrogalvanisieren, Elektroverzinnen, zur Natriumsulfatelektrolyse oder Kupferfolienplattierung.
  18. Verfahren zur Herstellung einer planaren Metalloberfläche für eine erhöhte Beschichtungshaftung, wobei die Oberfläche ausgehöhlt worden ist und dadurch einen Verlust an Planarität zeigt, bei dem:
    a) die Höhlungen der Oberfläche mit einem Ventilmetall schmelzgesprüht werden, vorzugsweise durch Plasmasprühen, um eine Metalloberflächenplanarität zu bilden, und dann
    b) die zu beschichtende Oberfläche, einschließlich der schmelzgesprühten Höhlungen vorzugsweise mit dem gleichen Ventilmetall wie zuvor vorzugsweise durch Plasmasprühen mit Teilchen mit einer Größe innerhalb des Bereichs von 20 bis 100 µm schmelzgesprüht wird, um eine Oberflächenrauheit mit erhöhter Beschichtungshaftung gemäß Anspruch 1 zu liefern.
  19. Verfahren nach Anspruch 18, bei dem die Höhlungen zuerst teilweise mit Schweißmaterial gefüllt werden und dann mit Ventilmetall schmelzgesprüht werden.
  20. Verfahren nach Anspruch 18 oder 19, bei dem die Höhlungen zuerst gefräst werden, um gefräste Höhlungen für mittels Schmelzsprühen aufgebrachtes Metall zu liefern.
  21. Verfahren zur Herstellung einer Oberfläche aus beschichtetem Metall in planarer Gestalt zur erneuten Beschichtung, wobei die Oberfläche durch Gebrauch ausgehöhlt worden ist und einen Verlust an Planarität zeigt, bei dem
    a) die beschichtete Metalloberfläche einer Schmelze, die geschmolzenes Material enthält, zur Entfernung dieser Beschichtung ausgesetzt wird, vorzugsweise durch Eintauchen der beschichteten Metalloberfläche in die Schmelze,
    b) die Metalloberfläche von der Schmelze getrennt wird, sie abgekühlt wird und der Schmelzrückstand davon entfernt wird,
    c) die Oberfläche bei einer erhöhten Temperatur und mit einer starken Säure oder einem kaustischen Ätzmittel intergranular geätzt wird,
    d) die geätzte Oberfläche gewaschen wird, was die Aushöhlungen freilegt, und
    e) die Aushöhlungen der Oberfläche mit Teilchen eines Ventilmetalls mit einer Größe im Bereich von 20 bis 100 µm, vorzugsweise durch Plasmasprühen schmelzgesprüht werden, um eine Metalloberflächenplanarität herzustellen und Oberflächenrauheit zu liefern, und
    f) wobei die Oberfläche eine Oberflächenplanarität plus Oberflächenrauheit für eine erhöhte Beschichtungshaftung gemäß Anspruch 1 aufweist und die Oberflächenrauheit sowohl durch intergranulares Ätzen als auch durch Plasmasprühen erzeugt wird.
  22. Verfahren nach Anspruch 21, bei dem die Oberfläche, die von der Beschichtungs-entfernenden Schmelze getrennt worden ist, einem Glühen bei erhöhter Temperatur für einen Zeitraum ausgesetzt wird, der ausreicht, um mindestens ein im wesentlichen kontinuierliches intergranulares Netzwerk von Verunreinigungen, einschließlich Verunreinigungen an der Oberfläche des Metalls zu liefern.
  23. Verfahren nach Anspruch 21 oder 22, bei dem die Aushöhlungen zuerst teilweise mit Schweißmaterial gefüllt werden und dann mit Ventilmetall, vorzugsweise durch Plasmasprühen schmelzgesprüht werden.
  24. Verfahren nach Anspruch 23, bei dem die Aushöhlungen zuerst gefräst werden, um gefräste Aushöhlungen für mittels Schmelzsprühen aufgebrachtes Ventilmetall zu liefern.
  25. Beschichteter metallischer Gegenstand, der:
    - ein Substrat mit einer Metall-enthaltenden Oberfläche, die für erhöhte Beschichtungshaftung ausgelegt ist, wobei die Oberfläche eine mittels Schmelzsprühen aufgebrachten Ventilmetalloberfläche auf dem Substrat umfaßt, die durch Schmelzsprühen von Ventilmetallteilchen mit einer Größe im Bereich von 20 bis 100 µm aufgebracht worden ist und eine mittels Profilometer gemessene durchschnittliche Oberflächenrauheit von etwa 6,35 µm (etwa 250 Mikroinch) oder mehr und einem Durchschnitt von Oberflächenpeaks/cm von etwa 15,7 (etwa 40 Peaks/Inch) oder mehr, auf Basis einer oberen Profilometerschwellengrenze von 10,16 µm (400 Mikroinch) und einer unteren Profilometerschwellengrenze von 7,62 µm (300 Mikroinch) aufweist;
    - eine leitfähige Zwischenschicht, die eine Oxidschicht ist, die durch Oxidation der schmelzgesprühten Ventilmetalloberfläche durch Erhitzen in Luft oder durch anodische Oxidation hergestellt worden ist, oder eine Hydrid- oder Nitridschicht ist, die hergestellt worden ist, indem die schmelzgesprühte Ventilmetalloberfläche einer hydrierenden oder nitridierenden Behandlung unterzogen worden ist, oder eine schützende und leitfähige Subschicht ist, die auf die schmelzgesprühte Ventilmetalloberfläche aufgebracht worden ist, und
    - eine elektrochemisch aktive Oberflächenbeschichtung umfaßt.
  26. Gegenstand nach Anspruch 25, bei dem das Substrat ein Ventilmetall wie ein oder mehrere eines Metalls, einer Legierung, einer intermetallischen Mischung, einer Keramik oder eines Cermets umfaßt.
  27. Gegenstand nach Anspruch 25 oder 26, bei dem das schmelzgesprühte Metall der Oberfläche ausgewählt ist aus den Metallen, Legierungen und intermetallischen Mischungen von Titan, Tantal, Niob, Aluminium, Zirkonium, Mangan und Nickel.
  28. Gegenstand nach Anspruch 27, bei dem die Metalloberfläche eine mittels Profilometer gemessene durchschnittliche Rauheit von etwa 7,62 µm (etwa 300 Mikroinch) oder mehr ohne niedrige Stellen von weniger als etwa 5,33 µm (etwa 210 Mikroinch) aufweist.
  29. Gegenstand nach einem der Ansprüche 25 bis 28, bei dem die Oberfläche einen mittels Profilometer gemessenen Durchschnitt an Oberflächenpeaks/cm von mindestens etwa 23,6 (etwa 60 Peaks/Inch), auf Basis einer oberen Schwellengrenze von 10,16 µm (400 Mikroinch) und einer unteren Schwellengrenze von 7,62 µm (300 Mikroinch) aufweist.
  30. Gegenstand nach einem der Ansprüche 25 bis 29, bei dem die Oberfläche einen mittels Profilometer gemessenen durchschnittlichen Abstand zwischen dem Maximumpeak und dem Maximumtal von mindestens etwa 25,4 µm (etwa 1000 Mikroinch) aufweist.
  31. Gegenstand nach Anspruch 30, bei dem die Oberfläche einen mittels Profilometer gemessenen durchschnittlichen Abstand zwischen dem Maximumpeak und dem Maximumtal von etwa 38,1 µm (etwa 1500 Mikroinch) bis etwa 88,9 µm (etwa 3500 Mikroinch) aufweist.
  32. Gegenstand nach einem der Ansprüche 25 bis 31, bei dem die Oberfläche eine mittels Profilometer gemessene durchschnittliche Peakhöhe von etwa 25,4 µm (1000 Mikroinch) oder mehr aufweist.
  33. Gegenstand nach Anspruch 32, bei dem die Oberfläche eine mittels Profilometer gemessene durchschnittliche Peakhöhe von etwa 38,1 µm (etwa 1500 Mikroinch) bis etwa 88,9 µm (etwa 3500 Mikroinch) aufweist.
  34. Gegenstand nach einem der Ansprüche 25 bis 33, bei dem die Zwischenschicht eine Oxidschicht ist, die in der schmelzgesprühten Oberfläche durch Erhitzen in Luft oder durch anodische Oxidation hergestellt worden ist.
  35. Gegenstand nach einem der Ansprüche 25 bis 33, bei dem die Zwischenschicht eine aufgebrachte Subschicht ausgewählt aus elektroplattiertem Platin, elektroabgelagertem Kobaltoxid oder Bleioxid oder einer auf Zinnoxid basierenden Schicht ist.
  36. Gegenstand nach einem der Ansprüche 25 bis 35, der eine Elektrode für elektrochemische Verfahren, insbesondere eine sauerstoffentwickelnde Anode ist.
  37. Gegenstand nach Anspruch 36, der eine Anode in einer anodisierenden, elektroplattierenden oder elektrolytisch gewinnenden Zelle ist.
  38. Gegenstand nach Anspruch 36, der eine Anode zum Elektrogalvanisieren, Elektroverzinnen, zur Natriumsulfatelektrolyse oder Kupferfolienplattierung ist.
  39. Zelle für die Elektrolyse einer gelösten Spezies, die in einem Bad dieser Zelle enthalten ist, welche eingetaucht in dieses Bad eine Anode aufweist, die ein beschichteter metallischer Gegenstand gemäß einem der Ansprüche 25 bis 38 ist.
EP91810992A 1990-12-26 1991-12-20 Substrat mit verbesserter Oberflächemorphologie mittels schmelzflüssigen Spritzens Expired - Lifetime EP0493326B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US63391490A 1990-12-26 1990-12-26
US633914 1990-12-26

Publications (3)

Publication Number Publication Date
EP0493326A2 EP0493326A2 (de) 1992-07-01
EP0493326A3 EP0493326A3 (en) 1993-03-17
EP0493326B1 true EP0493326B1 (de) 1997-06-25

Family

ID=24541661

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91810992A Expired - Lifetime EP0493326B1 (de) 1990-12-26 1991-12-20 Substrat mit verbesserter Oberflächemorphologie mittels schmelzflüssigen Spritzens

Country Status (12)

Country Link
EP (1) EP0493326B1 (de)
JP (1) JP2825383B2 (de)
KR (1) KR100235378B1 (de)
AT (1) ATE154834T1 (de)
AU (1) AU643350B2 (de)
CA (1) CA2056943C (de)
DE (1) DE69126656T2 (de)
DK (1) DK0493326T3 (de)
ES (1) ES2104684T3 (de)
GR (1) GR3024677T3 (de)
MX (1) MX9102511A (de)
TW (1) TW197475B (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015116123A3 (en) * 2014-01-31 2015-10-22 Hewlett-Packard Development Company, L.P. Surface treatments of metal substrates

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5314601A (en) * 1989-06-30 1994-05-24 Eltech Systems Corporation Electrodes of improved service life
JP3228644B2 (ja) * 1993-11-05 2001-11-12 東京エレクトロン株式会社 真空処理装置用素材及びその製造方法
WO1997017478A1 (de) * 1995-11-08 1997-05-15 Fissler Gmbh Verfahren zur erzeugung einer antihaftbeschichtung sowie mit einer solchen versehene gegenstände
CA2627605A1 (en) * 2005-09-20 2007-03-29 Kudu Industries Inc. Process for hardfacing a progressing cavity pump/motor rotor
FI118159B (fi) * 2005-10-21 2007-07-31 Outotec Oyj Menetelmä elektrokatalyyttisen pinnan muodostamiseksi elektrodiin ja elektrodi
ITMI20070980A1 (it) * 2007-05-15 2008-11-16 Industrie De Nora Spa Elettrodo per celle elettrolitiche a membrana
EP2022447A1 (de) 2007-07-09 2009-02-11 Astra Tech AB Nanooberfläche
ITMI20102354A1 (it) * 2010-12-22 2012-06-23 Industrie De Nora Spa Elettrodo per cella elettrolitica
CN104073842A (zh) * 2011-10-13 2014-10-01 金川集团有限公司 一种电积、电解镍的阴极板
WO2013191140A1 (ja) 2012-06-18 2013-12-27 旭化成株式会社 複極式アルカリ水電解ユニット、及び電解槽
JP6234754B2 (ja) * 2013-09-18 2017-11-22 株式会社神戸製鋼所 電極用金属板及び電極
JP7334095B2 (ja) * 2019-01-21 2023-08-28 Dowaメタルマイン株式会社 錫の電解採取方法
DE102020120412A1 (de) 2020-08-03 2022-02-03 Canon Production Printing Holding B.V. Vorrichtung zum Erwärmen eines Aufzeichnungsträgers mit einem auf dem Aufzeichnungsträger gedruckten Druckbild

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2320329A (en) * 1942-08-06 1943-05-25 Metallizing Engineering Co Inc Spray metal coated, metal surfaced articles
DE2300422C3 (de) * 1973-01-05 1981-10-15 Hoechst Ag, 6000 Frankfurt Verfahren zur Herstellung einer Elektrode
JPS5137837A (ja) * 1974-09-27 1976-03-30 Tokyo Metarikon Kk Himakukeiseiho
DE3106587C2 (de) * 1981-02-21 1987-01-02 Heraeus Elektroden GmbH, 6450 Hanau Elektrode und deren Verwendung
JPS60159199A (ja) * 1984-01-27 1985-08-20 Plasma Giken Kogyo Kk 二酸化鉛電極
JPS63176453A (ja) * 1987-01-16 1988-07-20 Dainippon Toryo Co Ltd 金属溶射被膜の作製方法
DE3712684A1 (de) * 1987-04-14 1988-10-27 Castolin Sa Verfahren zum herstellen einer gespritzten oberflaeche mit definierter rauhigkeit sowie dessen verwendung
JPH01150000A (ja) * 1987-12-07 1989-06-13 Nippon Steel Corp 電気メッキ用不溶性陽極
JPH01152294A (ja) * 1987-12-09 1989-06-14 Nippon Mining Co Ltd 不溶性アノード用材料の製造方法
JPH01177399A (ja) * 1988-01-07 1989-07-13 Kawasaki Steel Corp 電気めっき用Pb系不溶性陽極
JPH02200799A (ja) * 1989-01-27 1990-08-09 Kobe Steel Ltd 電解用不溶性電極及びそれを使用したカチオン電着塗装方法
GB8903322D0 (en) * 1989-02-14 1989-04-05 Ici Plc Electrolytic process
TW214570B (de) * 1989-06-30 1993-10-11 Eltech Systems Corp

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, vol. 1111, no. 24, 11 December 1989, Columbus, Ohio, US; abstract no. 221016x, KATSURADA 'nonconsumable anode for electroplating' page 447 ;column 111 ; & JP-A-01150000 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015116123A3 (en) * 2014-01-31 2015-10-22 Hewlett-Packard Development Company, L.P. Surface treatments of metal substrates

Also Published As

Publication number Publication date
ES2104684T3 (es) 1997-10-16
DK0493326T3 (da) 1997-12-29
EP0493326A2 (de) 1992-07-01
GR3024677T3 (en) 1997-12-31
ATE154834T1 (de) 1997-07-15
KR920011628A (ko) 1992-07-24
AU643350B2 (en) 1993-11-11
DE69126656D1 (de) 1997-07-31
EP0493326A3 (en) 1993-03-17
AU8995491A (en) 1992-07-02
CA2056943C (en) 1997-11-11
MX9102511A (es) 1992-06-01
JPH04301062A (ja) 1992-10-23
KR100235378B1 (ko) 1999-12-15
DE69126656T2 (de) 1998-01-02
JP2825383B2 (ja) 1998-11-18
CA2056943A1 (en) 1992-06-27
TW197475B (de) 1993-01-01

Similar Documents

Publication Publication Date Title
US6071570A (en) Electrodes of improved service life
US5366598A (en) Method of using a metal substrate of improved surface morphology
EP0493326B1 (de) Substrat mit verbesserter Oberflächemorphologie mittels schmelzflüssigen Spritzens
US6527939B1 (en) Method of producing copper foil with an anode having multiple coating layers
US5324407A (en) Substrate of improved plasma sprayed surface morphology and its use as an electrode in an electrolytic cell
JP2721739B2 (ja) 改良されたアノードの製造方法
JP2761751B2 (ja) 耐久性電解用電極及びその製造方法
US5167788A (en) Metal substrate of improved surface morphology
EP1313894B1 (de) Kupfer elektrogewinnung
US5262040A (en) Method of using a metal substrate of improved surface morphology
US7201830B2 (en) Anode for oxygen evolution and relevant substrate
JP3259869B2 (ja) 電解用電極基体及びその製造方法
JPH05171483A (ja) 酸素発生用陽極の製法
JP3422885B2 (ja) 電極基体
JPH09125292A (ja) 電極基体
JPH0754182A (ja) 電解用電極基体及びその製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19930611

17Q First examination report despatched

Effective date: 19940427

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

REF Corresponds to:

Ref document number: 154834

Country of ref document: AT

Date of ref document: 19970715

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69126656

Country of ref document: DE

Date of ref document: 19970731

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: MOINAS KIEHL SAVOYE & CRONIN

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 19970917

Year of fee payment: 7

ET Fr: translation filed
ITF It: translation for a ep patent filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2104684

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3024677

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19980109

Year of fee payment: 7

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: HERAEUS ELEKTROCHEMIE GMBH

Effective date: 19980325

NLR1 Nl: opposition has been filed with the epo

Opponent name: HERAEUS ELEKTROCHEMIE GMBH

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: HERAEUS ELEKTROCHEMIE GMBH

Effective date: 19980325

R26 Opposition filed (corrected)

Opponent name: HERAEUS ELEKTROCHEMIE GMBH

Effective date: 19980325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981231

NLR1 Nl: opposition has been filed with the epo

Opponent name: HERAEUS ELEKTROCHEMIE GMBH

NLR1 Nl: opposition has been filed with the epo

Opponent name: HERAEUS ELEKTROCHEMIE GMBH

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: DE NORA DEUTSCHLAND GMBH

Effective date: 19980325

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLR1 Nl: opposition has been filed with the epo

Opponent name: DE NORA DEUTSCHLAND GMBH

PLBO Opposition rejected

Free format text: ORIGINAL CODE: EPIDOS REJO

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

27O Opposition rejected

Effective date: 20010120

NLR2 Nl: decision of opposition
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20060927

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20061016

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20061204

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20061220

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20071213

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20071221

Year of fee payment: 17

Ref country code: IT

Payment date: 20071222

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20071218

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20071217

Year of fee payment: 17

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071221

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20071221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080702

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20081220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071220

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081220

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20090701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081220

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101222

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20110124

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69126656

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69126656

Country of ref document: DE

BE20 Be: patent expired

Owner name: *ELTECH SYSTEMS CORP.

Effective date: 20111220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20111221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081220