EP0462529A1 - Procédé et dispositif pour nettoyage des substances et appareils contaminÀ©s - Google Patents
Procédé et dispositif pour nettoyage des substances et appareils contaminÀ©s Download PDFInfo
- Publication number
- EP0462529A1 EP0462529A1 EP91109841A EP91109841A EP0462529A1 EP 0462529 A1 EP0462529 A1 EP 0462529A1 EP 91109841 A EP91109841 A EP 91109841A EP 91109841 A EP91109841 A EP 91109841A EP 0462529 A1 EP0462529 A1 EP 0462529A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- solvent
- devices
- cleaning
- pcb
- liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004140 cleaning Methods 0.000 title claims abstract description 36
- 238000000034 method Methods 0.000 title claims abstract description 28
- 239000000126 substance Substances 0.000 title claims abstract 5
- 239000002904 solvent Substances 0.000 claims abstract description 64
- 239000007788 liquid Substances 0.000 claims abstract description 31
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 7
- 238000002604 ultrasonography Methods 0.000 claims abstract description 6
- 238000004821 distillation Methods 0.000 claims description 18
- 239000007787 solid Substances 0.000 claims description 8
- 238000009835 boiling Methods 0.000 claims description 4
- 239000003795 chemical substances by application Substances 0.000 claims description 4
- 238000009210 therapy by ultrasound Methods 0.000 claims description 4
- 229940060144 ascarel Drugs 0.000 claims 1
- 238000011068 loading method Methods 0.000 abstract description 3
- 150000003071 polychlorinated biphenyls Chemical class 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- 238000005192 partition Methods 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000011010 flushing procedure Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- GBDZXPJXOMHESU-UHFFFAOYSA-N 1,2,3,4-tetrachlorobenzene Chemical compound ClC1=CC=C(Cl)C(Cl)=C1Cl GBDZXPJXOMHESU-UHFFFAOYSA-N 0.000 description 1
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000012777 electrically insulating material Substances 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000002920 hazardous waste Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000010943 off-gassing Methods 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000004506 ultrasonic cleaning Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/08—Cooling; Ventilating
- H01F27/10—Liquid cooling
- H01F27/12—Oil cooling
- H01F27/14—Expansion chambers; Oil conservators; Gas cushions; Arrangements for purifying, drying, or filling
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G21/00—Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
- C10G21/006—Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents of waste oils, e.g. PCB's containing oils
Definitions
- the invention relates to a method according to the preamble of claim 1 and an apparatus for performing the method.
- transformers, chokes, capacitors and the like have been filled with insulating liquids which, although they have good insulating properties and are flame-retardant, are nevertheless highly toxic to humans.
- insulating liquids which, although they have good insulating properties and are flame-retardant, are nevertheless highly toxic to humans.
- PCBs polychlorinated biphenyls
- PCB-containing insulating liquids ascareles, the latter being mixtures of PCBs, triclorobenzene and tetrachlorobenzene.
- the cleaning of the solids can not only be done by rinsing with solvent, because the insulating liquid has penetrated into the pores of the solids and only the surface is cleaned during rinsing, so that deep cleaning is not possible.
- the fact that large amounts of PCB-containing insulating liquids are still contained in these solid insulating parts is particularly evident when the insulating parts are re-installed in a housing and washed around by a non-PCB-containing replacement insulating liquid. Within a relatively short time, the PCB contained in the insulating parts flows into the new insulating liquid, so that the desired release of the electrical device below the specified limit values has not been achieved.
- This version does achieve sufficient cleaning so that the devices or the isolating parts can be easily deposited in normal waste disposal sites. However, it takes a relatively long time because the devices or insulating parts must remain inside the container until they are completely cleaned. Only after complete cleaning can new insulating parts or devices be used.
- EP-PS 0 098 811 describes a method for decontaminating electromechanical devices contaminated with PCB with evaporated solvent for PCB, the device, the device and the like being inserted into a housing which is filled with solvent vapor. The pressure and temperature of the solvent vapor are maintained so that the vapor condenses on the top of the device.
- the device in question or the device and the like can only be treated in a single operation, so that the time required for this is relatively high.
- the object of the invention is to provide a method of the type mentioned in which a continuous cleaning of several devices, transformers and the like can be carried out without having to interrupt the cleaning process.
- the first device or the first two devices are removed from the row of devices and one or two further devices are added downstream, so that a cleaned device is continuously removed at the front and an uncleaned device is added to the rear of the row, each device in moves one or two places forward in the row.
- At least the first device i. H. that is, the device or devices which are removed from the row are dried after the cleaning step, while the remaining devices which are still in the row continue to be flowed through by solvents.
- the same principle of multiple solvent use is used as in the cleaning process (first cleaning step) of the devices.
- the individual inner parts are gradually fed to a further upstream stage in a kind of countercurrent principle from a stage downstream in the direction of flow; each of the upstream stages has a cleaner solvent than the previous downstream stage, so that ultimately the purest solvent is ultimately present in the upstream first stage and there is practically no longer any contamination by insulating agent possibly contained in the insulating parts set in the first stage the case is.
- the device with which the step cleaning of the insulating parts is carried out can be found in the characterizing features of claim 7.
- the liquid flows through several chambers, which are separated from one another by means of partition walls serving as weirs or also by pipelines with return protection devices, pumps, membranes or the like. This prevents liquid from flowing back from a chamber lying at the rear in the direction of flow into a chamber located therein.
- the system which is shown in the figure, serves to clean five transformers 10, 11, 12, 13 and 14 arranged in a row one behind the other. In the embodiment shown in the drawing, five transformers are shown; it can of course only be three or more.
- At the output of each transformer 10 to 14 each connect a line 15, 16, 17, 18 and 19. These lines 15 to 19 are connected to a collecting line 20 which is connected to a distillation device 21 via a line 41.
- the distillation device 21 separates the PCB-loaded solvent from PCB and introduces it via a line 22 into a disposal container 23, where it is collected.
- a line 29 which branches into a line 30 and a line 31, the latter being connected to the transformers 11 to 14 via feed lines 32, 33, 34, 35 and 36.
- the distillation device 21 supplies, via the lines 29 and 30, cleaning chambers 24, 25, 26, 27 and 28, the output of which is connected to the line 41 via a line 43, a line 44 branching off on the line 43 and leading into the line 31 of the feed line 32 opens.
- Lines 37, 38, 39 and 40 connect to lines 15, 16, 17, 18 and 19 and are each connected to the next transformer 11, 12, 13 and 14.
- a line 42 is connected to the transformer 14 and can be connected to the transformer 10 at its input.
- the arrangement works as follows: Fresh solvent is fed from the distillation device 21 to the transformer 10 via the lines 29, 31 and 32.
- the fresh solvent is loaded with PCB in the transformer 10.
- This PCB-loaded solvent is supplied via line 37 to transformer 11, from where it is supplied via line 16/38 to transformer 12, etc. until it is has flowed through the transformer 14 and can be fed to the distillation device via lines 19, 20 and 41.
- the first transformer 10 receives the cleanest solvent and the solvent is loaded more and more with PCB by the further transformers, so that solvent 14 with the highest PCB concentration or PCB loading emerges from the transformer.
- the transformer 10 As soon as the transformer 10 is sufficiently cleaned, it is disconnected and a transformer-emptied, solvent-filled transformer takes its place or is connected in its place. This transformer is again given the reference number 10.
- the cleaning sequence then begins with the transformer 11, so that the clean solvent is supplied to the transformer 11 via the lines 29, 31 and 33.
- the PCB-containing solvent loaded with PCB from the transformers 11, 12, 13 and 14 then flows via the line 42 into the transformer 10 and from there via the manifold 20 into the distillation device 21.
- the transformer 11 is clean then another transformer emptied of PCB takes the place of transformer 11 and the clean solvent is now supplied to transformer 12. After flowing through the transformers 12, 13, 14 and 10, the transformer 11 is flowed through with the solvent loaded by the other transformers, and the PCB-containing solvent flows via the line 16 to the collecting line 20 and from there into the distillation device 21.
- the procedure is similar when the cleaned transformers 12, 13, 14 etc. have moved to the first position in the row of treatments.
- the respective disconnected transformer After the respective disconnected transformer has been dried, it is broken down into its components, such as copper coils, laminated core and connections, etc., which components are either subjected to a second flushing treatment with the same solvent and / or an ultrasound treatment.
- the parts are suitably placed in closed containers which are provided with inlets and outlets for connection to the solvent.
- the containers can now either be connected alone to a further branch of the line 31 (not shown) or to the first position in the flushing row for transformers, i. H. instead of the transformer 10 or connected to several containers to form a separate cleaning chain that corresponds to the cleaning chain of the transformers 10 to 14.
- the pre-cleaned parts in particular the solid insulating parts, have been removed from the transformers 10 to 14 or at least initially from the transformer 10. These parts are used in chambers 24, 25, 26, 27 and 28. These chambers are separated from one another by walls (without reference numbers) and are connected to one another in such a way that no liquid can flow back from the downstream chambers into the respective adjacent, upstream chamber. That can e.g. B. can be achieved so that the partitions in the direction of the solvent flow are designed as weirs, wherein - seen in the direction of flow - each downstream downstream partition is formed somewhat lower than the previous partition. The same effect can, however, also be achieved with pipelines in which corresponding backflow prevention devices or membranes are installed.
- the internal parts made of solid materials and electrically insulating material, which have been removed from the transformer, are first introduced into the chambers 24 to 28, which contain an ultrasound radiation device (not shown), against the solvent flow direction, into the chamber 28, and after a certain time from there into the chamber 27. placed in chamber 26, chamber 25 and chamber 24. In each of these chambers, the parts are exposed to ultrasound for a certain time. They are exposed to sound from five sides in particular, so that the greatest possible cleaning effect is guaranteed. Solvent flows from the distillation device 21 via the line 29 and the line 30 to the chamber 24; it passes through the chambers 24 to 28 in this order and from there reaches the distillation device via the lines 43, 41.
- the treatment is improved in that the solvent for ultrasound treatment and for rinsing is heated to below its boiling temperature and used at this temperature, as is also known from DE-PS 36 40 949.
- every new transformer is connected to the end of a pre-cleaning chain and continues to advance within this cleaning chain. After the transformer in question has been rinsed at the first point for a certain time, it can be removed from the cleaning chain.
- the cleaning chain is characterized in that the first transformer 10 is supplied with clean solvent at the beginning of this chain or row, which passes through the various transformers of the chain or row and is thereby increasingly loaded with the pollutant to be removed.
- the countercurrent principle in the device with the chambers 24 to 28 also saves considerable distillation power.
- the individual treatment units are designed so that appropriate vapors can be extracted separately. They do not pollute the hall air in which the system is located and avoid high costs for renewing the air at the workplaces.
- transformers 10 to 14 there is also the possibility of placing the transformers 10 to 14 under a slight positive pressure using inert gas.
- controllable valves in the individual lines, which can be controlled so that a desired solvent flow is generated through the devices, chambers and lines.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Processing Of Solid Wastes (AREA)
- Cleaning By Liquid Or Steam (AREA)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE4019598 | 1990-06-20 | ||
| DE4019598A DE4019598A1 (de) | 1990-06-20 | 1990-06-20 | Verfahren und vorrichtung zur reinigung von kontaminierten stoffen und geraeten |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP0462529A1 true EP0462529A1 (fr) | 1991-12-27 |
| EP0462529B1 EP0462529B1 (fr) | 1994-08-03 |
Family
ID=6408702
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP91109841A Expired - Lifetime EP0462529B1 (fr) | 1990-06-20 | 1991-06-15 | Procédé et dispositif pour nettoyage des substances et appareils contaminés |
Country Status (2)
| Country | Link |
|---|---|
| EP (1) | EP0462529B1 (fr) |
| DE (2) | DE4019598A1 (fr) |
Families Citing this family (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE4320711A1 (de) * | 1993-06-23 | 1995-01-05 | Peter Rusbuelt | Verfahren zum Reinigen von Transformatoren |
| DE4408784C3 (de) * | 1994-03-15 | 2000-01-27 | Linde Ag | Reinigung von Materialien mit verflüssigten oder überkritischen Gasen |
| DE4420604C2 (de) * | 1994-06-13 | 2003-05-08 | Wmv Appbau Gmbh & Co Kg | Vakuum-Zentrifugiereinrichtung und Reinigungsverfahren |
| DE4427748C1 (de) * | 1994-08-05 | 1996-02-29 | Peter Rusbuelt | Verfahren und Vorrichtung zum Reinigen von Transformatoren |
| DE19546602C2 (de) * | 1995-12-13 | 2003-02-20 | Wmv Appbau Gmbh & Co Kg | Vakuum-Zentrifugiereinrichtung und Vakuum-Reinigungs- und Trocknungsverfahren |
| CN107065947A (zh) * | 2017-02-27 | 2017-08-18 | 环境保护部华南环境科学研究所 | 间歇式逆流清洗镀件的智能控水设备及其自动控水方法 |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2578759A1 (fr) * | 1985-03-18 | 1986-09-19 | Henkel France | Procede de nettoyage d'un equipement alimentaire par une solution de nettoyage et de triage en retour de cette solution, ainsi qu'installation permettant la mise en oeuvre de ce procede |
| CH670055A5 (fr) * | 1987-03-23 | 1989-05-12 | Ciba Geigy Ag | |
| DE3823322A1 (de) * | 1988-07-09 | 1990-01-11 | Carl Dittmann Gmbh & Co Kg | Verfahren zum reinigen und entfetten von behandlungsgut mit loesungsmitteln |
| DE3901986A1 (de) * | 1989-11-06 | 1990-07-26 | Ohtsuka Giken Kogyo Co | Vorrichtung zur reinigung von werkstuecken unter verwendung eines chlor-fluor-kohlenstoff-loesungsmittels |
Family Cites Families (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE7908914U1 (de) * | 1979-03-29 | 1979-07-12 | Langbein-Pfanhauser Werke Ag, 4040 Neuss | Vorrichtung zur entfettung und/oder reinigung von fuer eine oberflaechenbehandlung bestimmten gegenstaende |
| SE7905806L (sv) * | 1979-07-03 | 1981-01-04 | Nordnero Ab | Vattenbaserat rengoringssystem |
| US4375992A (en) * | 1980-12-24 | 1983-03-08 | Rca Corporation | Apparatus and method for cleaning recorded discs |
| DE3427878A1 (de) * | 1984-07-28 | 1986-03-06 | Didier-Werke Ag, 6200 Wiesbaden | Verfahren zur entfernung von polychlorbiphenylen (pcb) aus elektroisolierfluessigkeiten |
| IT1190411B (it) * | 1985-10-24 | 1988-02-16 | Ecolsir Srl | Procedimento per il disinquinamento di apparecchiature o altri materiali contaminati con pcb o altre sostanze tossiche e nocive |
| DE3615036A1 (de) * | 1986-05-03 | 1987-11-05 | Wessling Erwin Chem Lab | Verfahren zur wiederverwendbarmachung von mit pcb und anderen umweltschaedlichen rueckstaenden belasteten transformatoren |
| DE3715235A1 (de) * | 1987-05-07 | 1988-11-24 | Micafil Ag | Verfahren und vorrichtung zum extrahieren von oel oder polychloriertem biphenyl aus impraegnierten elektrischen teilen mittels eines loesungsmittels sowie zur destillation des loesungsmittels |
-
1990
- 1990-06-20 DE DE4019598A patent/DE4019598A1/de not_active Withdrawn
-
1991
- 1991-06-15 DE DE59102413T patent/DE59102413D1/de not_active Expired - Fee Related
- 1991-06-15 EP EP91109841A patent/EP0462529B1/fr not_active Expired - Lifetime
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2578759A1 (fr) * | 1985-03-18 | 1986-09-19 | Henkel France | Procede de nettoyage d'un equipement alimentaire par une solution de nettoyage et de triage en retour de cette solution, ainsi qu'installation permettant la mise en oeuvre de ce procede |
| CH670055A5 (fr) * | 1987-03-23 | 1989-05-12 | Ciba Geigy Ag | |
| DE3823322A1 (de) * | 1988-07-09 | 1990-01-11 | Carl Dittmann Gmbh & Co Kg | Verfahren zum reinigen und entfetten von behandlungsgut mit loesungsmitteln |
| DE3901986A1 (de) * | 1989-11-06 | 1990-07-26 | Ohtsuka Giken Kogyo Co | Vorrichtung zur reinigung von werkstuecken unter verwendung eines chlor-fluor-kohlenstoff-loesungsmittels |
Also Published As
| Publication number | Publication date |
|---|---|
| DE59102413D1 (de) | 1994-09-08 |
| DE4019598A1 (de) | 1992-01-02 |
| EP0462529B1 (fr) | 1994-08-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP0451721B1 (fr) | Procédé de nettoyage d'objets et appareil pour l'exécuter | |
| EP3374100B1 (fr) | Dispositif et procédé de nettoyage d'une partie d'une installation d'embouteillage | |
| EP0270928B1 (fr) | Procédé de nettoyage pour un élément isolant | |
| EP1206413A1 (fr) | Installation et procede pour le traitement de l'eau circulant dans des systemes de refroidissement a circulation ouverts | |
| DE2511181A1 (de) | Verfahren zur reinigung von abgasen | |
| EP0462529B1 (fr) | Procédé et dispositif pour nettoyage des substances et appareils contaminés | |
| DE2821097C2 (de) | Vorrichtung zur Dekontamination von radioaktiven Abwässern | |
| DE69706082T2 (de) | Verfahren und Vorrichtung zur Reinigung von Filtern, die mit Polymeren und schmelzbaren Harzen verunreinigt sind, in situ, ohne die Filterelemente zu entnehmen | |
| DE4030416A1 (de) | Verfahren zur dekontamination von verunreinigten boeden | |
| DE69108169T2 (de) | Reinigungsapparat. | |
| EP0608700A1 (fr) | Procédé de récuperation d'un fluide dissous dans un bain de rinçage | |
| DE3939222C1 (fr) | ||
| DE3522890C2 (de) | Vorrichtung und Verfahren zum Erzeugen steriler Luft | |
| DE3610199A1 (de) | Verfahren zur reinigung von mit schadstoffen verunreinigten boeden | |
| DE10160566B4 (de) | Verbessertes Verfahren zur verbrennungslosen Dekontamination von Materialien, die gefährliche Bestandteile enthalten | |
| DE69216813T2 (de) | Filtrationsanlage für Luftbehandlungsysteme oder Küchenhauben | |
| DE4137445C2 (fr) | ||
| DE4206308A1 (de) | Verfahren und vorrichtung zum reinigen und/oder entsorgen von pcb-belasteten elektrischen bzw. elektronischen bauelementen | |
| DE3312538A1 (de) | Verfahren zum entfernen von kondensationsprodukten von bauteiloberflaechen | |
| EP0784039A1 (fr) | Procédé et appareil pour décomposition des déchets organiques | |
| DE4231306C2 (de) | Verfahren zum Reinigen von mit Polymeren verunreinigten Maschinenteilen und Vorrichtung zur Reinigung von durch Polymere verschmutzten metallischen Maschinenteilen | |
| EP1947059A2 (fr) | Dispositif destiné à augmenter la concentration | |
| DE3839544A1 (de) | Verfahren und anlage zur bodenextraktion | |
| DE3540291C2 (de) | Verfahren zum Entfernen von Polychlorbiphenylen von elektrischen Vorrichtungen | |
| DE3615036A1 (de) | Verfahren zur wiederverwendbarmachung von mit pcb und anderen umweltschaedlichen rueckstaenden belasteten transformatoren |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE DE FR |
|
| 17P | Request for examination filed |
Effective date: 19920508 |
|
| 17Q | First examination report despatched |
Effective date: 19930709 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE FR |
|
| ET | Fr: translation filed | ||
| REF | Corresponds to: |
Ref document number: 59102413 Country of ref document: DE Date of ref document: 19940908 |
|
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| 26N | No opposition filed | ||
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20000413 Year of fee payment: 10 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20000428 Year of fee payment: 10 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20000620 Year of fee payment: 10 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010630 |
|
| BERE | Be: lapsed |
Owner name: ABB PATENT G.M.B.H. Effective date: 20010630 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020228 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020403 |