EP0362538B1 - Verfahren zum Mischen von Textilfasern - Google Patents

Verfahren zum Mischen von Textilfasern Download PDF

Info

Publication number
EP0362538B1
EP0362538B1 EP89115630A EP89115630A EP0362538B1 EP 0362538 B1 EP0362538 B1 EP 0362538B1 EP 89115630 A EP89115630 A EP 89115630A EP 89115630 A EP89115630 A EP 89115630A EP 0362538 B1 EP0362538 B1 EP 0362538B1
Authority
EP
European Patent Office
Prior art keywords
fibre
component
mixing
fibres
properties
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89115630A
Other languages
English (en)
French (fr)
Other versions
EP0362538A1 (de
Inventor
Jürg Faas
Eduard Nüssli
Christof Gründler
Paul Stäheli
Daniel Hanselmann
Robert Demuth
René Waeber
Peter Fritzsche
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maschinenfabrik Rieter AG
Original Assignee
Maschinenfabrik Rieter AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maschinenfabrik Rieter AG filed Critical Maschinenfabrik Rieter AG
Priority to EP94112175A priority Critical patent/EP0628646A3/de
Publication of EP0362538A1 publication Critical patent/EP0362538A1/de
Application granted granted Critical
Publication of EP0362538B1 publication Critical patent/EP0362538B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01GPRELIMINARY TREATMENT OF FIBRES, e.g. FOR SPINNING
    • D01G99/00Subject matter not provided for in other groups of this subclass
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01GPRELIMINARY TREATMENT OF FIBRES, e.g. FOR SPINNING
    • D01G13/00Mixing, e.g. blending, fibres; Mixing non-fibrous materials with fibres

Definitions

  • the invention relates to a method for mixing textile fibers according to the preamble of the first claim and a device according to the preamble of claim 25.
  • the previous methods and devices for mixing consist either in that fiber bales from different provenances are placed in a row and removed by means of a removal device which moves back and forth over them, by removing fiber flakes from the surface and transferring them to a means of transport, or in that parts of fiber bales are lifted manually or mechanically and fed one after the other on a conveyor belt to an opening machine, in which these parts are broken up into fiber flakes and transferred to a means of transport.
  • Such means of transport can be mechanical or pneumatic and convey the fiber flakes into so-called mixing boxes, in which the delivered fibers are filled in as a flake mixture.
  • the fiber flake mixture is placed on a collective transport at different speeds in order to obtain a doubling effect in order to aim for a homogenization of the fiber flake mixture.
  • the disadvantage of the first-mentioned removal and mixing process is that the mixture, due to the stationary rows of bales, is removed until the finished removal such a series is unchangeable, so that the mixing ratio remains the same during this entire time, while the second removal and mixing method additionally exhibits the imprecision of the quantity removed.
  • the mixing components are variable components which can be controlled at any time and in that the percentage of each component, in order to achieve the fiber properties of the mixture mentioned, is automatically optimized, taking into account the fiber properties of the individual components, and automatically if the predetermined fiber properties of the mixture deviate is corrected.
  • fiber properties which are determined beforehand by taking samples from the fiber bales, can be mixed to the desired extent in order to obtain the desired properties of an intermediate product, for example a card sliver or an end product, for example a yarn.
  • FIG. 1 shows a number of conveyor belts 1 for receiving fiber bales 2, which are removed by fiber bale removal elements 3.
  • the respective fiber bale removal member moves on stationary rails which are arranged, for example, in the diagonal direction of the fiber bales 2 located on the conveyor belt.
  • Such a device is basically known from the applicant's CH-A-503 809.
  • the device shown and described in the applicant's EP-A-0 327 885 could be used, in which the removal device 3 is opened and closed on a removal device (not shown) which can be moved back and forth along horizontal bales 2 along the bale can be moved, as well as tilted for diagonal removal.
  • the removal rate in both removal devices can be controlled by changing the displacement speed of the fiber bale removal member 3 along the above-mentioned diagonal path, as well as by changing the feed speed of the fiber bale 2 by means of a variable speed of the individual conveyor belt 1.
  • the fiber flakes detached from the removal drum 4 are transported away in a manner known per se by a pneumatic conveying line 5, which is not described further here.
  • the fiber flakes are conveyed into a mixer 6 and mixed therein to form a uniform mixture.
  • the quantities conveyed into the mixer 6 by means of these individual pneumatic conveying capacities 5 are hereinafter referred to as fiber flake components or simply components.
  • Batch mixers or continuous mixers can be used as mixers; depending on the quantities mentioned are individual weight batches (kg) or a running quantity per unit of time (kg / h).
  • the delivery lines 5 in FIG. 1 schematically open directly into the mixer 6, which is also shown schematically, but in practice this can vary depending on the type of mixer.
  • air-fiber separators can be used to separate the respective fiber-air mixture from one another, so that the fiber flakes can fall into the mixer in free fall, while the air can be led into an exhaust air line.
  • Such separators are well known from practice and are therefore not shown here in particular.
  • the stated quantities of the aforementioned individual fiber flake components which are added to the mixer 6 are controlled by a controller 7 on the basis of a control program.
  • Such a control program can be a computer program which has a component mixing program which can be adapted or changed to adapt to changes in the mixture.
  • Another variant would be a digital control per component, in which the performance of the individual components could be selected or changed manually.
  • the functions determining the removal performance of the components are controlled by one or the other controller.
  • pneumatic conveying lines do not have to convey the removed product directly into the mixer, but that mechanical conveying elements can be connected in between, for example conveyor belts.
  • mechanical conveying elements can be connected in between, for example conveyor belts.
  • the fiber air separators mentioned place their fiber product in such mechanical conveying elements.
  • Each fiber removal member 3 is connected to the controller 7 via a control line 8 and each conveyor belt 1 via a control line 19.
  • FIG. 2 shows a variant of FIG. 1, but in which the same elements have the same reference numerals.
  • the pneumatic conveying lines 5 do not convey the removed fibers or fiber flakes, also called product, directly into the mixer 6, but into component cells 9, from which the product filled therein is discharged by means of a discharge device 10 and into the mixer 6 by means of a subsequent metering device 11 is given.
  • the discharge rate from the individual component cells 9 is controlled by a controller 7.1, which controls the individual metering devices 11 or, as a variant, the discharge devices 10 by means of control lines 12.
  • the metering devices 11 can each be controlled by means of a control line 13 via the dispensing devices 10 in order to coordinate the dispensing with the metering.
  • the discharge apparatus could also be controlled directly by the controller 7.1.
  • the component cells 9 are filled by the elements 1 to 5 already mentioned for FIG. 1, the use of two fiber bale rows, each with the elements 1 to 4, being chosen only as an example. In practice, more than two rows of fiber bales or just a single row per component cell 9 could also be selected. Such a decision depends on the number or mix of provenances per row of bales, which are to form a mixed component to be placed in a corresponding cell 9.
  • the filling of the component cells 9 is controlled, for example, by full-level detectors 14 provided in each cell and by vacancy detectors 15 by means of a controller 16.
  • the controller 16 is for the Back and forth movement of the removal elements 3 by control lines 17 each connected to the fiber bale removal elements 3 and by control lines 18 each to the drive motors of the conveyor belts 1.
  • FIG. 3 shows a further embodiment in which the same elements already shown and described with FIG. 2 have the same reference numerals. This applies to the fiber bales 2, the component cells 9, the discharge apparatus 10, the metering apparatus 11, the mixer 6 as well as the control 7.1 and the control lines 12 and 13.
  • the fiber bales 2 which are here directly on the floor, these are also set up in groups which correspond to the respective provenance of the fiber bales.
  • the removal takes place by means of a mobile fiber bale removal device 20, which runs along the fiber bale groups and removes fibers or fiber flakes from the surface thereof.
  • a mobile fiber bale removal device 20 which runs along the fiber bale groups and removes fibers or fiber flakes from the surface thereof.
  • Such a device is known in the spinning industry under the name "Unifloc" and is sold worldwide by the applicant.
  • This fiber bale removal device 20 conveys the removed fibers in a manner known per se via a pneumatic conveying line 21 into the corresponding component cells 9.
  • This controller is connected to the fiber bale removal device 20 via a control line 24 and controls the removal of fiber flakes from the corresponding fiber bale groups for the filling of the corresponding component cells 9.
  • the fiber bale removal device 20 has a fiber bale removal member 23, known per se from the Unifloc, which removes the fibers from the bale surfaces by means of a removal drum (not shown) rotating therein.
  • the fiber bale removal member 23 can be rotated by 180 ° indicated by the arrow M in such a way that the fiber bale removal member can remove the fiber bale group 2 on the opposite side. This makes it possible that either one of the opposite fiber bale groups is used as a reserve fiber bale group or that with an automatic, aforementioned possibility of rotation of the fiber bale removal device 20, both opposite bale rows can be removed with a predetermined variation.
  • FIG. 4 shows a variant of FIG. 3, so that the elements already described and shown with FIG. 3 have the same reference numerals.
  • control is identified with 22.1 instead of 22, since it means that four individual fiber bale removal devices 20 are to be controlled separately by means of the corresponding control line 24.
  • a pneumatic conveying line is provided for each fiber bale removal device 20, which is accordingly identified with 21.1 instead of 21 and each opens into a component cell 9.
  • FIG. 5 shows an arrangement similar to FIG. 1, in which instead of the single conveyor belt 1 per bale group of FIG. 1, a conveyor belt 30 with a purely conveying function and a conveyor belt 31 with conveying / weighing function, per fiber bale group, is provided for each bale group.
  • the weighing function of the latter conveyor belt can be provided, for example, by supporting the axes of the deflecting rollers of the conveyor belt 31 on pressure sockets 32 known per se, each of which emits a signal 33 corresponding to the weight, each of which via a control line 33 to a control unit processing the signals 7.2 is forwarded.
  • the processing of the above-mentioned signals consists in the control 7.2 working out the control signals therefrom which controls the motors of the conveyor belts 30 and 31 mentioned above and the removal elements 3 via control lines 34.
  • controller 7.2 controls the fiber removal elements 3 and the conveyor belts 30 and 31 at predetermined speeds in order to remove fibers from the fiber bales 2, which are conveyed into the mixer 6 by means of pneumatic conveyor lines 5.
  • Each fiber bale removal member 3 of the individual fiber bale groups feeds a predetermined amount controlled by the control 7.2 into the mixer 6.
  • This predetermined amount to be removed (kg / h) per bale group is determined by the respective weighing conveyor belt 31 or monitored by the pressure cell weighing conveyor belt 31/32 and converted into signals and output to the control system via control lines 33. If the quantity (kg / h) removed per fiber bale group does not match the specified quantity, the control adjusts the quantity to be removed until it matches the specified quantity.
  • measurement is always carried out via the measuring device 32 when the fiber bale removal member is at a standstill for a brief moment at the turning point of the back and forth removal path.
  • the fiber bale removal member 3 always moves back and forth on the same path, essentially lying in the diagonal of the fiber bale to be removed, or up and down.
  • the amount (kg / h) of the fibers to be removed from the bales is generated by means of the feed speed of the conveyor belts 30 and 31 and the removal member 3.
  • the controller 7.2 can be an electronic controller based on the analog technology or a microprocessor, by means of which the different quantities removed per bale group can be set and adapted by the signals of the control lines 33 and input signals explained later.
  • FIGS. 6 and 7 show a weighing system similar to FIG. 5, FIG. 7 being a plan view of FIG. 6, corresponding to the direction of arrow A.
  • this is a number of bale rows or bale groups, which are arranged next to one another and each form a mixing component.
  • the fiber bales 2 each lie on a conveyor belt 40 and an adjoining one Weighing conveyor belt 41.
  • Each weighing conveyor belt 41 can be supported, analogously to the weighing conveyor belt 31 of FIG. 5, on load cells 42, from which a signal corresponding to the weight is output to a controller 44 by means of a control line 43.
  • the fiber bales 2 located on the weighing conveyor 41 are removed by a fiber bale removal device 48 in accordance with EP-A-327 885, which has already been mentioned in connection with FIG. 1.
  • the difference essentially consists in a long fiber bale removal member 49, which extends over the predetermined number of bale rows, with a removal drum 51 which removes fibers from all the bale rows shown in FIG. 7 at the same time.
  • the fiber removal member 49 removes in an oblique removal path which essentially corresponds to the diagonal of a predetermined number of fiber bales 2 lined up, for example as shown in FIGS. 6 and 7, of four fiber bales 2.
  • the fiber material removed by the fiber removal member 49 is conveyed in a pneumatic conveying line 50 which according to the invention opens into a continuous mixer 45.
  • the delivery line 50 can open into a separator (not shown), which discharges the product into the mixer 45.
  • the fiber bale removal device 48 is controlled by the controller 44 via the control line 46 with respect to the driving speed.
  • Another control line 47 is used to control the drive motors of the deflection rollers of the conveyor belts 40 and 41.
  • each deflection rollers of the conveyor belts 40 and 41 (not particularly marked) of each bale group have a separate drive motor, that is to say that each motor has a control line 47 for the control 44 separately.
  • the controller 44 controls the back and forth movement of the fiber bale removal device 48 along the bales located on the weighing conveyor 41 and the up and down movement of the fiber bale removal member 49 on the device 48 during the aforementioned back and forth movement, so that the fiber bales as in FIG Fig. 6 shown in an inclined, substantially the diagonal ver four bales 2 corresponding direction are removed.
  • This removal movement always runs in the same path and at a predetermined speed, so that the removal quantities (kg / h) of the individual fiber bale groups can be selected differently by the individual feed speeds of the conveyor belts 40 and 41.
  • These different feed speeds of the individual bale groups correspond to a removal program different amounts to be removed (kg / h) of the individual bale groups in order to obtain the mixture mentioned.
  • the drive motors for the conveyor belts 40 and 41 are drum motors which are installed in the deflection rollers of the conveyor belts.
  • Such drum motors can be operated by means of frequency inverters at different frequencies, that is to say driven at different speeds, which is a component of the controller 44.
  • the controller 44 can be an analog or digital controller by means of which the quantities of the individual components are controlled. These quantities are corrected by means of the pressure sensor signals, which are input through the control line 43 of the control 44, and the individual component quantity does not correspond to the target specification.
  • FIG. 8 shows an extension of the previously described method, in which it is shown that, after the mixer 6, the product coming from this mixer is put into a so-called blowroom 60, in which cleaning machines known per se are used.
  • the blowroom 60 can contain so-called coarse cleaning machines 61 and fine cleaning machines 62. This blow room, like the previous one, is only shown schematically.
  • the card 63 following the blowroom which can be a card known per se, for example the card C4 distributed worldwide by the applicant.
  • This card 63 is provided with a controller 64 which is known per se and which controls the card functions among other functions also has the function of ensuring the uniformity and the amount (kg / h) of the card sliver.
  • the card sliver is checked by a color sensor 65 and by a sensor 66 for measuring the fiber fineness.
  • the color sensor 65 outputs a signal 67 corresponding to the color of the card sliver and the sensor 66 for measuring the fiber fineness a signal 68 corresponding to the fiber fineness to the control devices 7 mentioned in connection with FIGS. 1 to 7; 7.1; 7.2; 44, which each control the control of the individual fiber components.
  • Another signal 81 corresponding to the card sliver quantity (kg / h) is also input by the card control 64 into the controls 7; 7.1; 7.2; 44.
  • the product discharged from the mixer 6 is conveyed to the blowroom 60 via a conveyor system 69 and to the card 63 from the blowroom 60 via a conveyor system 70.
  • Such conveyor systems can be mechanical or pneumatic, it is also known per se that conveyor systems exist between fine cleaning and coarse cleaning machines.
  • the method according to the invention is likewise not restricted to a single blowroom 60 and a single card 63 after the mixer 6, but rather a plurality of blowrooms 60 and a number of cards 63 can be loaded with the product of the mixer 6 either after the mixer 6, or if a blow room after the mixer 6 is provided, several cards 63 can be loaded with the product of the blow room 60.
  • a color sensor 65 and / or a sensor 66 for measuring the fiber fineness can optionally be provided after each card, or there is also the possibility if several cards process the same product that only one so-called guide card has these latter two test devices .
  • FIG. 9 shows the possibility of providing the blowroom 60 between the fiber removal and the component cells 9, so that an already cleaned fiber material in the component cells 9 is available for the mixture.
  • the conveying device from the fiber bale removal device 20 to the blowroom 60 basically corresponds to the pneumatic conveying line 21, whereby in this case too pneumatic conveyance is not mandatory but can be mechanical.
  • the conveyor between the blowroom 60 and the component cells 9 can also be a pneumatic conveyor line, as indicated by 21, but it can be any conveyor system.
  • the method according to the invention is not restricted to any conveyor system.
  • blowroom 60 is not restricted to the combination with the arrangement from FIG. 3. It goes without saying that fiber components of all the arrangements shown in the figures, with the exception of FIGS. 6 and 7, can first be cleaned and then get into the mixer 6. It is only a matter of effort, since a cleaning shop must be provided for each of the components in FIGS. 1, 2, 4 and 5.
  • FIG. 10 shows a variant of the method of FIG. 9 in that the blow room is divided into a rough cleaning with the cleaning machines 61 and one into a fine cleaning with the fine cleaning machines 71, each of which is preceded by a storage container 72 (for the sake of simplicity only one is marked) is.
  • the fine cleaning machines 71 are started or stopped by a controller 73, namely stopped on the basis of a vacancy detector 74 and started on the basis of a full detector 75 (only one identified). These full and vacancy detectors emit their signals to the control 73 via the lines 76 and 77.
  • the coarse cleaning machines 61 are loaded by means of a fiber transport 78, which can correspond to the pneumatic conveying line 21 from FIG. 9 or to any fiber conveying known per se.
  • the fine cleaning machines each pass their products on to a component mixing cell 9, as has already been described for FIGS. 2 to 4 and for FIG. 9.
  • the components are cleaned individually, accordingly, the vacancy detectors 15 of the individual component cells 9 request the removal of fibers from the corresponding fiber bale group a or b or c or d in order to clean these removed fibers in the coarse cleaning machine and pass them on to the corresponding storage container 72 , which delivers the specified component to the subsequent fine cleaning machines 71.
  • This product request by the vacancy detector 15 occurs because the corresponding fine cleaning machine no longer supplied a product since the vacancy detector 74 in the storage container 72 had also reported vacancy. Accordingly, the corresponding group a to d continues to be removed until the corresponding fullness indicator 74 reports fullness to the removed component. The corresponding fine cleaning machine can thus be put into operation again until the fullness detector 14 reports fullness again to the corresponding component cell 9.
  • the fiber transport 80 between the mixer 6 and the card 63 can correspond to a fiber transport which is identified and described as 70 in FIG. 8.
  • a mixer 6 can operate several cards, so that the fiber transport 80 transports the product delivered by the mixer to the corresponding number of cards.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Preliminary Treatment Of Fibers (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zum Mischen von Textilfasern gemäss Oberbegriff des ersten Anspruches und eine Vorrichtung gemäß Oberbegriff des Anspruchs 25.
  • Die bisherigen Verfahren und Vorrichtungen zum Mischen bestehen entweder darin, dass Faserballen von verschiedenen Provenienzen in einer Reihe aufgestellt werden und mittels einer, in einer Hin- und und Herbewegung darüber fahrenden Abtragvorrichtung abgetragen werden, indem Faserflocken aus der Oberfläche herausgelöst und einem Transportmittel übergeben werden, oder darin, dass Teile von Faserballen manuell oder maschinell abgehoben und nacheinander auf einem Förderband einer Auflösemaschine zugeführt werden, in welcher diese Teile zu Faserflocken aufgelöst und einem Transportmittel übergeben werden.
  • Solche Transportmittel können mechanisch oder pneumatisch sein und fördern die Faserflocken in sogenannte Mischkästen, in welchen die angelieferten Fasern als Flockengemisch eingefüllt werden.
  • Aus diesen Mischkästen wird das Faserflockengemisch, mit unterschiedlichen Geschwindigkeiten auf einen Sammeltransport gegeben, um dadurch einen Doubliereffekt zu erhalten, um eine Homogenisierung des Faserflockengemisches anzustreben.
  • Solche Homogenisiervorrichtungen nach dem oben erwähnten Stand der Technik sind beispielsweise in CH-A-481 230 und US-A-4,009,663 gezeigt und beschrieben.
  • Der Nachteil des erstgenannten Abtrag- und Mischverfahrens besteht jedoch darin, dass die Mischung, infolge der stationären Ballenreihen, bis zum fertigen Abtragen einer solchen Reihe unveränderlich ist, so dass das Mischungsverhältnis während dieser ganzen Zeit das gleiche bleibt, während das zweite Abtrag- und Mischverfahren zusätzlich noch die Ungenauigkeit der abgehobenen Menge aufweist.
  • Es stellte sich deshalb die Aufgabe genaue und homogene Fasermischungen zu erzeugen, welche ausserdem nach Bedarf rasch verändert werden können.
  • Die Aufgabe wird erfindungsgemäss dadurch gelöst, dass die Mischkomponenten jederzeit steuerbar variable Komponenten sind und dass der prozentuale Anteil jeder Komponente, um die genannten Fasereigenschaften der Mischung zu erreichen, unter Berücksichtigung der Fasereigenschaften der einzelnen Komponenten automatisch optimiert und bei Abweichung der vorgegebenen Fasereigenschaften der Mischung automatisch korrigiert wird.
  • Durch die Massnahme gemäss Anspruch 2 können Fasereigenschaften, welche im voraus durch Probenentnahmen aus den Faserballen bestimmt werden, in gewünschtem Masse genau gemischt werden, um die gewünschten Eigenschaften eines Zwischenproduktes, zum Beispiel eines Kardenbandes oder eines Endproduktes, zum Beispiel eines Garnes zu erhalten.
  • Im weiteren besteht gemäss Anspruch 17 die Möglichkeit, durch Messung von Fasereigenschaften am Kardenband oder am Garn Abweichungen festzustellen, welche unverzüglich eine Korrektur der Mischung ermöglichen, um die verlangten Eigenschaften des Kardenbandes oder des Garnes einzuhalten.
  • Vorteilhafte Ausführungsformen der Erfindung sind in den abhängigen Ansprüchen aufgeführt.
  • Die Erfindung wird anhand von lediglich Ausführungswege darstellenden Zeichnungen näher erläutert.
  • Es zeigt:
  • Fig. 1 bis 5
    je eine schematische Darstellung eines erfindungsgemässen Mischverfahrens,
    Fig. 6 und 7
    eine Variante der Ausführungsart des Mischverfahrens von Fig. 5,
    Fig. 8
    eine schematische Darstellung je einer Erweiterung der erfindungsgemässen Verfahren nach Fig. 1 bis 7,
    Fig. 9
    eine schematische Darstellung einer Variante des erweiterten erfindungsgemässen Mischverfahrens von Fig. 1 bis 8, beispielsweise mit einer in Fig. 3 dargestellten Faserabtragung,
    Fig. 10
    eine Variante des Verfahrens von Fig. 9.
  • Figur 1 zeigt eine Anzahl Förderbänder 1, zur Aufnahme von Faserballen 2, welche durch Faserballenabtragorgane 3 abgetragen werden.
  • Dabei bewegt sich das jeweilige Faserballenabtragorgan auf stationären Schienen, welche beispielsweise in diagonaler Richtung der sich auf dem Förderband befindlichen Faserballen 2 angeordnet sind. Eine solche Vorrichtung ist grundsätzlich aus CH-A-503 809 des Anmelders bekannt. Als Variante dazu könnte die in EP-A-0 327 885 des Anmelders gezeigte und beschriebene Vorrichtung verwendet werden, bei welcher das Abtragorgan 3 an einem auf horizontalen Schienen, den Ballen 2 entlang hin- und herfahrbaren Abtragvorrichtung (nicht gezeigt), auf- und abbewegbar, sowie für die diagonale Abtragung schräg stellbar ist.
  • Dabei kann die Abtragleistung bei beiden Abtragvorrichtungen durch Veränderung der Verschiebegeschwindigkeit des Faserballenabtragorganes 3 entlang des genannten diagonalen Weges, sowie durch veränderliche Vorschubgeschwindigkeit der Faserballen 2 mittels veränderlicher Geschwindigkeit des einzelnen Förderbandes 1 gesteuert werden.
  • Die von der Abtragtrommel 4 losgelösten Faserflocken werden in an sich bekannter Weise durch eine pneumatische Förderleitung 5, welche hier nicht weiter beschrieben wird, wegtransportiert.
  • Mit Hilfe dieser pneumatischen Förderleistung 5 werden die Faserflocken in einen Mischer 6 gefördert und darin zu einer gleichmässigen Mischung gemischt.
  • Die mittels diesen einzelnen pneumatischen Förderleistungen 5 in den Mischer 6 geförderten Mengen werden im weiteren als Faserflockenkomponente oder einfach Komponenten bezeichnet.
  • Als Mischer können Chargen-Mischer oder Durchlauf-Mischer verwendet werden; je nachdem sind die genannten Mengen einzelne Gewichtschargen (kg) oder eine laufende Menge pro Zeiteinheit (kg/h).
  • Der Einfachheit halber münden die Förderleitungen 5 in Fig.1 schematisch direkt in den ebenfalls schematisch gezeigten Mischer 6, was jedoch in der Praxis je nach Art des Mischers verschieden sein kann. Beispielsweise können Luft-Faserabscheider verwendet werden, um das jeweilige Faser-Luftgemisch voneinander zu trennen, so dass die Faserflocken im freien Fall in den Mischer fallen können, währenddem die Luft in eine Abluftleitung geführt werden kann. Solche Abscheider sind aus der Praxis bestens bekannt und deshalb hier nicht besonders gezeigt.
  • Die genannten Mengen der vorgenannten einzelnen, in den Mischer 6 gegebenen Faserflockenkomponenten, werden durch eine Steuerung 7 aufgrund eines Steuerprogrammes gesteuert.
  • Ein solches Steuerprogramm kann ein Computerprogramm sein, welches ein Komponentenmischprogramm aufweist, das zur Anpassung an Mischungsveränderungen anpass-, respektiv veränderbar ist.
  • Eine andere Variante bestünde in einer Digitalsteuerung pro Komponente, bei welcher die Leistung der einzelnen Komponenten manuell gewählt respektiv verändert werden könnte.
  • Dabei werden die für die Abtragleistung der Komponenten massgebenden Funktionen, wie zum Beispiel die Vorschubgeschwindigkeit des jeweiligen Förderbandes 1 oder die Abtragbewegung des Faserballenabtragorganes 3 von der einen oder anderen Steuerung gesteuert.
  • Es versteht sich, dass die pneumatischen Förderleitungen das abgetragene Produkt nicht direkt in den Mischer fördern müssen, sondern dass mechanische Förderelemente dazwischen geschaltet werden können, beispielsweise Förderbänder. Die genannten Faser-Luftabscheider geben in einem solchen Falle ihr Faserprodukt in solche mechanische Förderelemente.
  • Jedes Faserabtragorgan 3 ist über eine Steuerleitung 8 und jedes Förderband 1 über eine Steuerleitung 19 mit der Steuerung 7 verbunden.
  • Die drei eingehenden Steuerleitungen in die Steuerung 7 werden später beschrieben.
  • Die Fig.2 zeigt eine Variante zu Fig.1, in welcher jedoch dieselben Elemente dieselben Bezugszeichen haben. Darin fördern die pneumatischen Förderleitungen 5 die abgetragenen Fasern respektiv Faserflocken, auch Produkt genannt, nicht direkt in den Mischer 6, sondern in Komponentenzellen 9, aus welchen das darin eingefüllte Produkt jeweils mittels eines Austragapparates 10 ausgetragen und mittels eines darauf folgenden Dosierapparates 11 in den Mischer 6 gegeben wird.
  • Je nach Art des Austragapparates 10 kann als Variante, dieser ebenfalls die Dosierfunktion übernehmen.
  • Die Austragleistung aus den einzelnen Komponentenzellen 9 wird durch eine Steuerung 7.1 gesteuert, welche mittels Steuerleitungen 12 die einzelnen Dosierapparate 11 respektiv als Variante, die Austragapparate 10 ansteuert.
  • In der erstgenannten Disposition können die Dosierapparate 11 je mittels einer Steuerleitung 13 via die Austragapparate 10 gesteuert werden, um die Austragung mit der Dosierung zu koordinieren. Die Austragapparate könnten aber auch von der Steuerung 7.1 direkt gesteuert werden.
  • Die Komponentenzellen 9 werden von den bereits für Fig.1 erwähnten Elementen 1 bis 5 gefüllt, wobei das Verwenden von zwei Faserballenreihen, mit je den Elementen 1 bis 4, lediglich beispielsweise gewählt ist. In der Praxis könnten auch mehr als zwei Faserballenreihen oder auch nur eine einzige Reihe pro Komponentenzelle 9 gewählt werden. Ein solcher Entscheid hängt von der Anzahl oder Mischung der Provenienzen pro Ballenreihe ab, die eine in eine entsprechende Zelle 9 zu gebende Mischkomponente bilden sollen.
  • Im weiteren ist das Auffüllen der Komponentenzellen 9 beispielsweise durch in jeder Zelle vorgesehene Vollstandsmelder 14 und durch Leerstandsmelder 15 mittels einer Steuerung 16 gesteuert. Zu diesem Zweck ist die Steuerung 16 für die Hin- und Herbewegung der Abtragorgane 3 durch Steuerleitungen 17 je mit den Faserballen-Abtragorganen 3 und durch Steuerleitungen 18 je mit den Antriebsmotoren der Förderbänder 1 verbunden.
  • Die Fig. 3 zeigt eine weitere Ausführungsform, in welcher die bereits mit Fig.2 gezeigten und beschriebenen gleichen Elemente die gleichen Bezugszeichen aufweisen. Dies betrifft die Faserballen 2, die Komponentenzellen 9, die Austragapparate 10, die Dosierapparate 11, den Mischer 6 sowie die Steuerung 7.1 und die Steuerleitungen 12 und 13.
  • Für das Abtragen der Faserballen 2, die hier direkt auf dem Boden stehen, werden diese ebenfalls in Gruppen aufgestellt, welche der jeweiligen Provenienz der Faserballen entsprechen. Die Abtragung geschieht durch eine fahrbare Faserballenabtragvorrichtung 20, welche entlang der Faserballengruppen fährt und von deren Oberfläche Fasern respektiv Faserflocken abträgt. Eine solche Vorrichtung ist im Spinnereifachgebiet unter dem Namen "Unifloc" bekannt und wird vom Anmelder weltweit vertrieben.
  • Diese Faserballenabtragvorrichtung 20 fördert in an sich bekannter Weise die abgetragenen Fasern über eine pneumatische Förderleitung 21 in die entsprechenden Komponentenzellen 9.
  • Wie bereits für Fig. 2 beschrieben, weisen die Komponentenzellen 9, Vollstandsmelder 14 und Leerstandmelder 15 auf, welche ihre Signale einer Steuerung 22 eingeben. Diese Steuerung ist über eine Steuerleitung 24 mit der Faserballenabtragvorrichtung 20 verbunden und steuert das Abtragen von Faserflocken von den entsprechenden Faserballengruppen für das Auffüllen der entsprechenden Komponentenzellen 9.
  • Wie in Fig. 3 schematisch gezeigt, weist die Faserballenabtragvorrichtung 20 ein an sich vom Unifloc her bekanntes Faserballenabtragorgan 23 auf, welches die Fasern mittels einer darin rotierenden Abtragtrommel (nicht gezeigt) aus den Ballenoberflächen abträgt.
  • Ebenso ist es bekannt, dass das Faserballenabtragorgan 23 derart um mit dem Pfeil M gekennzeichneten 180° gedreht werden kann, dass das Faserballenabtragorgan die Faserballengruppe 2 auf der gegenüberliegenden Seite abtragen kann. Dadurch wird ermöglicht, dass entweder jeweils eine der gegenüberliegenden Faserballengruppen als Reservefaserballengruppe verwendet wird oder, dass bei einer automatischen, vorgenannten Drehmöglichkeit der Faserballenabtragvorrichtung 20 beide einander gegenüberliegenden Ballenreihen mit vorgegebener Abwechslung abgetragen werden können.
  • Die Fig. 4 zeigt eine Variante der Fig. 3, so dass die mit Fig.3 bereits beschriebenen und gezeigten Elemente dieselben Bezugszeichen aufweisen.
  • Der Unterschied zwischen dem mit Fig. 3 und Fig. 4 Gezeigten, besteht darin, dass gesamthaft nicht nur eine einzige Faserballenabtragvorrichtung 20, sondern pro zwei einander gegenüberliegenden Faserballengruppen eine davon vorgesehen ist.
  • Dementsprechend ist die Steuerung mit 22.1 statt mit 22 gekennzeichnet, da damit vier einzelne Faserballenabtragvorrichtungen 20 mittels der entsprechenden Steuerleitung 24 je separat anzusteuern sind. Ebenso ist pro Faserballenabtragvorrichtung 20 eine pneumatische Förderleitung vorgesehen, welche dementsprechend mit 21.1 statt 21 gekennzeichnet ist und je in eine Komponentenzelle 9 mündet.
  • Die Fig. 5 zeigt eine der Fig. 1 ähnliche Anordnung, in welchem anstelle des einzigen Förderbandes 1 pro Ballengruppe der Fig.1 je Ballengruppe ein Förderband 30 mit reiner Förderfunktion und ein Förderband 31 mit Förder-/Verwiegefunktion, pro Faserballengruppe, vorgesehen ist.
  • Die Verwiegefunktion des letztgenannten Förderbandes kann beispielsweise dadurch gegeben sein, dass die Achsen der Umlenkwalzen des Förderbandes 31 auf an sich bekannten Druckdosen 32 abgestützt werden, welche je ein dem Gewicht entsprechendes Signal 33 abgeben, welches je über eine Steuerleitung 33 an eine die Signale verarbeitende Steuerung 7.2 weitergeleitet wird. Die Verarbeitung der vorgenannten Signale besteht darin, dass die Steuerung 7.2 daraus die Steuersignale erarbeitet, welche über Steuerleitungen 35 die Motoren der genannten Förderbänder 30 und 31 und über Steuerleitungen 34 die Abtragorgane 3 ansteuert.
  • Selbstverständlich können auch andere Verwiegesysteme verwendet werden, welche mit Förderbändern kombiniert werden können.
  • Im weiteren sind die bereits für Fig.1 beschriebenen und gezeigten Elemente mit gleichen Bezugszeichen versehen.
  • Im Betrieb steuert die Steuerung 7.2 die Faserabtragorgane 3 sowie die Förderbänder 30 und 31, mit vorgegebenen Geschwindigkeiten, um Fasern von den Faserballen 2 abzutragen, die mittels pneumatischer Förderleitungen 5 in den Mischer 6 gefördert werden.
  • Dabei fördert jedes Faserballenabtragorgan 3 der einzelnen Faserballengruppen je eine vorgegebene, von der Steuerung 7.2 gesteuerte Menge in den Mischer 6. Diese vorgegebene, abzutragende Menge (kg/h) pro Ballengruppe wird durch das jeweilige Verwiegeförderband 31 respektive durch die Druckdosen - Verwiegeförderband 31/32 überwacht und in Signale umgewandelt und über die Steuerleitungen 33 an die Steuerung abgegeben. Stimmt die pro Faserballengruppe abgetragene Menge (kg/h) nicht mit der vorgegebenen Menge überein, so passt die Steuerung die abzutragende Menge an, bis sie mit der vorgegebenen Menge übereinstimmt.
  • Dabei wird immer dann über die Messvorrichtung 32 gemessen, wenn das Faserballenabtragorgan am Wendepunkt des Hin- und Her-Abtragweges für einen kurzen Moment still steht.
  • In dieser Abtragart fährt das Faserballenabtragorgan 3 immer auf demselben, im wesentlichen in der Diagonalen der abzutragenden Faserballe liegende Weg hin und her, respektive auf und ab. Dabei wird die Menge (kg/h) der aus den Ballen abzutragenden Fasern mittels der Vorschubgeschwindigkeit der Förderbänder 30 und 31 und des Abtragorganes 3 erzeugt.
  • Die Steuerung 7.2 kann eine elektronische Steuerung auf der Basis der Analogtechnik oder ein Mikroprozessor sein, mittels welcher die unterschiedlichen Abtragmengen je Ballengruppe eingestellt und durch die Signale der Steuerleitungen 33 sowie später erklärten Eingangssignalen angepasst werden können.
  • Die Figuren 6 und 7 zeigen ein ähnliches Verwiegesystem wie Fig. 5, wobei Fig. 7 eine Draufsicht von Fig. 6 ist, entsprechend der Pfeilrichtung A.
  • Aus Fig. 7 ist ersichtlich, dass es sich dabei um eine Anzahl Ballenreihen respektiv Ballengruppen handelt, welche nebeneinander angeordnet sind und je eine Mischkomponente bilden. Die Faserballen 2 liegen wie in Fig.6 gezeigt, je auf einem Förderband 40 und einem daran anschliessenden Verwiegeförderband 41. Dabei kann jedes Verwiegeförderband 41 analog zum Verwiegeförderband 31 der Fig. 5, auf Druckmessdosen 42 abgestützt sein, von welchen ein dem Gewicht entsprechendes Signal mittels einer Steuerleitung 43 an eine Steuerung 44 abgegeben wird.
  • Die sich auf dem Verwiegeförderband 41 befindenden Faserballen 2 werden durch eine Faserballenabtragvorrichtung 48 entsprechend EP-A-327 885 abgetragen, welche bereits im Zusammenhang mit Fig. 1 erwähnt wurde. Der Unterschied besteht im wesentlichen in einem langen, sich über die vorgegebene Anzahl Ballenreihen erstreckenden Faserballenabtragorgan 49 mit einer Abtragtrommel 51, welche von allen, in Fig. 7 gezeigten Ballenreihen gleichzeitig Fasern abträgt.
  • Ein weiterer Unterschied dieser Abtragweise gegenüber derjenigen für Fig. 1 beschriebenen besteht darin, dass das Faserabtragorgan 49 in einer schrägen Abtraglaufbahn abträgt, welche im wesentlichen der Diagonalen von einer vorgegebenen Anzahl aneinander gereihter Faserballen 2 entspricht, beispielsweise wie in Fig. 6 und 7 gezeigt, von vier Faserballen 2.
  • Es versteht sich jedoch, dass auch eine andere Anzahl Ballenreihen in dieser Weise schräg abgetragen werden können, beispielsweise nur einer, wie dies mit den Fig. 1 und 2 gezeigt ist.
  • Ebenso hängt es von der möglichen Länge des Abtragorganes 49 ab, wieviele Faserballen nebeneinander gereiht werden können, um gleichzeitig abgetragen werden zu können.
  • Das vom Faserabtragorgan 49 abgetragene Fasermaterial wird in einer pneumatischen Förderleitung 50 gefördert, welche erfindungsgemäss in einen Durchlaufmischer 45 mündet. Wie für Fig. 1 beschrieben, kann die Förderleitung 50 in einen genannten Abscheider (nicht gezeigt) münden, welcher das Produkt in den Mischer 45 abgibt.
  • Im weiteren wird die Faserballenabtragvorrichtung 48 durch die Steuerung 44 über die Steuerleitung 46 bezüglich der Fahrgeschwindigkeit gesteuert.
  • Eine weitere Steuerleitung 47 dient zur Steuerung der Antriebsmotoren der Umlenkwalzen der Förderbänder 40 und 41.
  • Es versteht sich, dass die Umlenkwalzen der Förderbänder 40 und 41 (nicht besonders gekennzeichnet) jeder Ballengruppe einen separaten Antriebsmotor aufweisen, das heisst, dass jeder Motor separat eine Steuerleitung 47 zur Steuerung 44 aufweist.
  • Im Betrieb steuert die Steuerung 44 die Hin- und Herfahrbewegung der Faserballenabtragvorrichtung 48 entlang der sich auf dem Verwiegeförderband 41 befindlichen Ballen und die Auf- und Abbewegung des Faserballenabtragorganes 49 an der Vorrichtung 48 während der vorgenannten Hin- und Herbewegung, so dass die Faserballen wie in Fig. 6 gezeigt in einer geneigten, im wesentlichen der Diagonalen ver vier Ballen 2 entsprechenden Richtung abgetragen werden.
  • Diese Abtragbewegung verläuft immer in derselben Bahn und mit einer vorgegebenen Geschwindigkeit, so dass die Abtragmengen (kg/h) der einzelnen Faserballengruppen durch die individuellen Vorschubgeschwindigkeiten der Förderbänder 40 und 41 unterschiedlich gewählt werden können. Diese unterschiedlichen Vorschubgeschwindigkeiten der einzelnen Ballengruppen entsprechen einem Abtragprogramm mit unterschiedlichen abzutragenden Mengen (kg/h) der einzelnen Ballengruppen, um die genannte Mischung zu erhalten.
  • Vorteilhafterweise sind die Antriebsmotoren für die Förderbänder 40 und 41 Trommelmotoren, welche in den Umlenkwalzen der Förderbänder eingebaut sind. Solche Trommelmotoren können mittels Frequenzinvertern mit unterschiedlicher Frequenz betrieben, das heisst mit unterschiedlichen Drehzahlen angetrieben werden, was ein Bestandteil der Steuerung 44 ist.
  • Ebenso kann die Steuerung 44 wie in allen Fällen in dieser Anmeldung und für Fig. 5 besonders erwähnt, eine analoge oder digitale Steuerung sein, mittels welcher die Mengen der einzelnen Komponenten gesteuert werden. Dabei werden diese Mengen mittels der Druckmessdosensignale, welche durch die Steuerleitung 43 der Steuerung 44 eingegeben werden, korrigiert, die einzelne Komponentenmenge nicht der Sollvorgabe entspricht.
  • Die Fig. 8 zeigt eine Erweiterung des bisher beschriebenen Verfahrens, in dem gezeigt ist, dass nach dem Mischer 6 das von diesem Mischer kommende Produkt in eine sogenannte Putzerei 60 gegeben wird, in welcher an sich bekannte Reinigungsmaschinen verwendet werden.
  • Die Putzerei 60 kann sogenannte Grobreinigungsmaschinen 61 und Feinreinigungsmaschinen 62 enthalten. Diese Putzerei ist wie das bisherige lediglich schematisch dargestellt.
  • Das Gleiche gilt für die der Putzerei nachfolgende Karde 63, welche eine an sich bekannte Karde, beispielsweise die vom Anmelder weltweit vertriebene Karde C4, sein kann.
  • Diese Karde 63 ist mit einer an sich bekannten, die Kardenfunktionen steuernden, Steuerung 64 versehen, welche unter anderen Funktionen auch die Funktion hat, die Gleichmässigkeit und die Menge (kg/h) des Kardenbandes zu gewährleisten.
  • Nach der Karde, in Bandförderrichtung gesehen, vor der nicht gezeigten Kardenbandablage, wird das Kardenband durch einen Farbsensor 65 und durch einen Sensor 66 zur Messung der Faserfeinheit geprüft.
  • Es sei von vornherein erwähnt, dass wahlweise entweder beide Sensoren oder nur der eine oder der andere zur Anwendung kommen kann.
  • In dem in Fig. 8 gegebenen Falle gibt der Farbsensor 65 ein der Farbe des Kardenbandes entsprechendes Signal 67 und der Sensor 66 zur Messung der Faserfeinheit ein der Faserfeinheit entsprechendes Signal 68 an die, im Zusammenhang mit den Fig. 1 bis 7 erwähnten Steuergeräte 7;7.1;7.2;44 ab, welche jeweils die Steuerung der einzelnen Faserkomponenten steuern. Ein weiteres, der Kardenbandmenge (kg/h) entsprechendes Signal 81 wird von der Kardensteuerung 64 ebenfalls in die Steuerungen 7;7.1;7.2;44 eingegeben. Diese drei Signale werden von den vorgenannten Steuerungen mit dem in der Steuerung je eingegebenen Sollwert für die Faserbandfarbe, dem Sollwert für die Faserfeinheit und dem Sollwert für die Leistung verglichen, so dass, falls Abweichungen davon im Laufe des Betriebes entstehen, diese Abweichungen durch Veränderung der Komponentenmischung und der Leistung wieder behoben werden können.
  • Das vom Mischer 6 abgegebene Produkt wird über ein Fördersystem 69 an die Putzerei 60 und von der Putzerei 60 über ein Fördersystem 70 an die Karde 63 gefördert. Solche Fördersysteme können mechanisch oder pneumatisch sein, ebenso ist es an sich bekannt, dass Fördersysteme zwischen Feinreinigungs- und Grobreinigungsmaschinen bestehen.
  • Das erfindungsgemässe Verfahren ist ebenfalls nicht auf eine einzige Putzerei 60 und eine einzige Karde 63 nach dem Mischer 6 eingeschränkt, sondern es können entweder nach dem Mischer 6 mehrere Putzereien 60 und mehrere Karden 63 mit dem Produkt des Mischers 6 beschickt werden, oder falls eine Putzerei nach dem Mischer 6 vorgesehen ist, können mehrere Karden 63 mit dem Produkt der Putzerei 60 beschickt werden.
  • Wenn mehrere Karden vorgesehen sind, kann wahlweise nach jeder Karde ein Farbsensor 65 und/oder ein Sensor 66 zur Messung der Faserfeinheit vorgesehen werden, oder es besteht auch die Möglichkeit falls mehrere Karden dasselbe Produkt verarbeiten, dass nur eine sogenannte Leitkarde diese beiden letztgenannten Prüfgeräte aufweisen.
  • Fig. 9 zeigt die Möglichkeit die Putzerei 60 zwischen der Faserabtragung und den Komponentenzellen 9 vorzusehen, so dass ein bereits gereinigtes Fasermaterial in den Komponentenzellen 9 für die Mischung zur Verfügung steht.
  • Die Fördereinrichtung von der Faserballenabtragvorrichtung 20 bis zur Putzerei 60 entspricht grundsätzlich der pneumatischen Förderleitung 21, wobei auch in diesem Falle eine pneumatische Förderung nicht zwingend ist, sondern mechanisch sein kann.
  • Die Förderung zwischen der Putzerei 60 und den Komponentenzellen 9 kann ebenfalls eine pneumatische Förderleitung sein, wie sie mit 21 gekennzeichnet ist, es kann jedoch irgend ein Fördersystem sein. Das erfindungsgemässe Verfahren ist nicht auf irgendein Fördersystem eingeschränkt.
  • Ebenso ist das Vorsehen der Putzerei 60 nicht auf die Kombination mit der Anordnung von Fig. 3 eingeschränkt. Es versteht sich, dass Faserkomponenten aller in den Figuren gezeigten Anordnungen, ausgenommen der Fig. 6 und 7, zuerst gereinigt und dann in den Mischer 6 gelangen können. Es ist lediglich eine Frage des Aufwandes, da für die Komponenten der Fig. 1, 2, 4, und 5 je eine Putzerei vorgesehen werden muss.
  • Die Fig. 10 zeigt eine Variante des Verfahrens von Fig. 9, indem die Putzerei in eine Grobreinigung mit den Reinigungsmaschinen 61 und eine in eine Feinreinigung mit den Feinreinigungsmaschinen 71 aufgeteilt ist, denen je ein Vorratsbehälter 72 (der Einfachheit halber nur einer gekennzeichnet) vorgeschaltet ist.
  • Die Feinreinigungsmaschinen 71 werden durch eine Steuerung 73 in Gang gesetzt oder gestoppt und zwar gestoppt aufgrund eines Leerstandsmelders 74 und in Gang gesetzt aufgrund eines Vollstandsmelders 75 (je nur einer gekennzeichnet). Diese Voll- und Leerstandsmelder geben ihre Signale über die Leitungen 76 und 77 an die Steuerung 73 ab.
  • Die Beschickung der Grobreinigungsmaschinen 61 geschieht mittels eines Fasertransportes 78, welcher der pneumatischen Förderleitung 21 von Fig. 9 oder irgend einer an sich bekannten Faserförderung entsprechen kann.
  • Dasselbe gilt für den Fasertransport 79 zwischen der Grobreinigungsmaschine 61 und den Vorratsbehältern 72.
  • Die Feinreinigungsmaschinen geben ihre Produkte je in eine Komponentenmischzelle 9 weiter, wie sie bereits für die Fig. 2 bis 4 und für die Fig. 9 beschrieben wurde.
  • Dementsprechend sind die weiteren, bereits beschriebenen Elemente mit denselben Bezugszeichen bezeichnet und für diese Figur nicht weiter beschrieben.
  • Im Betrieb werden die Komponenten einzeln gereinigt, dementsprechend fordern die Leerstandsmelder 15 der einzelnen Komponentenzellen 9 das Abtragen von Fasern von der entsprechenden Faserballengruppe a oder b oder c oder d an, um diese abgetragenen Fasern in der Grobreinigungsmaschine zu reinigen und an den entsprechenden Vorratsbehälter 72 weiterzugeben, welcher die vorgegebene Komponente an daran anschliessende Feinreinigungsmaschinen 71 abgibt.
  • Diese Produkteanforderung durch den Leerstandsmelder 15 geschieht weil, die entsprechende Feinreinigungsmaschine kein Produkt mehr nachlieferte, da der Leerstandsmelder 74 im Vorratsbehälter 72 ebenfalls Leerstand gemeldet hatte. Dementsprechend wird solange von der entsprechenden Gruppe a bis d abgetragen bis der entsprechende Vollstandsmelder 74 der abgetragenen Komponente Vollstand meldet. Damit kann die entsprechende Feinreinigungsmaschine wieder in Betrieb gesetzt werden, bis der Vollstandsmelder 14 der entsprechenden Komponentenzelle 9 wieder Vollstand meldet.
  • Der Fasertransport 80 zwischen dem Mischer 6 und der Karde 63 kann einem Fasertransport entsprechen, welcher in Fig. 8 mit 70 gekennzeichnet und beschrieben ist.
  • Ebenfalls gilt auch für diese Variante, dass ein Mischer 6 mehrere Karden bedienen kann, so dass der Fasertransport 80 das vom Mischer abgegebene Produkt an die entsprechende Anzahl Karden transportiert.

Claims (28)

  1. Verfahren zum Mischen von Textilfasern von unterschiedlicher Provenienz, in welchem jede Provenienz vorgegebene Fasereigenschaften aufweist und in welchem jede Provenienz eine Mischkomponente von vorgegebenem prozentualen Anteil bildet sowie in welchem die Mischung als Ganzes vorgegebene Fasereigenschaften aufweisen soll, dadurch gekennzeichnet, dass die Menge der Mischkomponenten jederzeit steuerbar und variabel ist, und dass der prozentuale Anteil jeder Komponente, um die genannten Fasereigenschaften der Mischung zu erreichen, unter Berücksichtigung der Fasereigenschaften der einzelnen Komponenten automatisch optimiert und bei Abweichung der vorgegebenen Fasereigenschaften der Mischung automatisch korrigiert wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Komponentenmischung in Abhängigkeit von vorgegebenen und festgestellten Eigenschaften eines nachfolgend hergestellten Zwischenproduktes, vorzugsweise eines Kardenbandes, oder eines nachfolgend hergestellten Endproduktes, vorzugsweise eines Garnes, bestimmt und bei Abweichungen davon unverzüglich und automatisch korrigiert wird.
  3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die festgestellte Eigenschaft des Zwischenproduktes die Feinheit der sich darin befindenden Fasern ist.
  4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die festgestellte Eigenschaft des Zwischenproduktes oder des Endproduktes die Farbe der sich darin befindenden Fasern ist.
  5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die festgestellten Eigenschaften des Endproduktes die Festigkeit des zu produzierenden Garnes ist.
  6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die festgestellten Eigenschaften des Zwischen- oder Endproduktes die Länge der Fasern ist.
  7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Fasermischungskomponenten Komponenten sind, in welchen analysierte Fasereigenschaften, wie beispielsweise Faserlänge, Faserfeinheit, Faserfestigkeit und Farbe, auswahlweise in der jeweiligen Komponente eine dominierende Rolle spielen.
  8. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Fasereigenschaften von Fasern analysiert werden, welche den einzelnen Faserballen entnommen werden und dass die Fasern aufgrund solcher Analysen den Fasermischungskomponenten zugeteilt werden.
  9. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Faserballenprovenienzen eine Fasermischungskomponente bilden.
  10. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Fasermischungskomponente durch eine oder mehrere in der Abtragleistung steuerbare Faserabtragvorrichtung(en) (3) in an sich bekannter Weise abgetragen und dass die dadurch abgetragenen Fasern zur Bildung der Komponentenmischung verwendet werden.
  11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass die von den Ballen (2) abgetragenen Fasern zur Bildung der Komponentenmischung einer Mischvorrichtung (6) übergeben werden.
  12. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass die von den Ballen (2) abgetragenen Fasern je in eine entsprechend der Fasermischungskomponente zugeteilte Komponentenzelle (9) gefördert und aus diesen Zellen mit einer dem Anteil im Mischungsverhältnis der Komponentenmischung entsprechenden Leistung ausgetragen und der Mischvorrichtung (6) übergeben werden.
  13. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass die als Fasermischungskomponenten zusammengefügten Faserballengruppe gleichzeitig durch je ein Abtragungsorgan (3) abgetragen werden.
  14. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass die als Fasermischungskomponenten zusammengefügten Faserballengruppen abwechselnd durch ein Abtragorgan (3) abgetragen werden und die daraus gewonnenen Fasern in die jeweils zugeteilten Komponentenzellen (9) eingegeben werden.
  15. Verfahren nach Anspruch 10 und folgende, dadurch gekennzeichnet, dass die abgetragenen Fasern vor der Bildung der Komponentenmischung gereinigt werden.
  16. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass die abgetragenen Fasern nach der Bildung der Komponentenmischung gereinigt werden.
  17. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Komponentenmischung kardiert und die Faserfeinheit und/oder die Farbe des Kardenbandes gemessen wird sowie, dass das daraus gewonnene Messignal die Komponentenmischung korrigierend beeinflusst.
  18. Verfahren nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, dass die Anteile an der Komponentenmischung durch ein Computerprogramm optimiert werden.
  19. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass die als Fasermischungskomponenten zusammengefügten Faserballengruppen gleichzeitig durch ein Abtragorgan (3) abgetragen werden.
  20. Verfahren nach Anspruch 13 und 19, dadurch gekennzeichnet, dass die daraus gewonnenen Fasern in einen Mischer (6) eingegeben werden.
  21. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass die daraus gewonnenen Fasern in jeweils zugeteilte Komponentenzellen (9) eingegeben werden.
  22. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Komponentenanteile volumetrisch dosiert werden.
  23. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Komponentenanteile gravimetrisch dosiert werden.
  24. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Anteile an der Komponentenmischung durch ein Computerprogramm optimiert werden, welches die prozentualen Anteile der Fasereigenschaften in den Fasermischungskomponenten berücksichtigt und daraus die prozentualen Anteile der Komponentenmischung vor dem Start des Betriebes aufgrund der vorgegebenen Eigenschaften des Zwischenproduktes oder Endproduktes bestimmt und während dem Betrieb automatisch aufgrund festgestellter Abweichungen der Eigenschaften des Zwischenproduktes oder Endproduktes automatisch aufrechterhält.
  25. Anlage zum Mischen von Textilfasern von unterschiedlicher Provenienz mit mehreren Ballenabtragvorrichtungen (1,3;20) und einer Mischeinrichtung (6), dadurch gekennzeichnet, dass eine Messvorrichtung (65;66) zur Feststellung von vorgegebenen Fasereigenschaften in der Mischung vorgesehen ist, die mit einer Steuervorrichtung (7;7.1;7.2) verbunden ist, welche den prozentualen Anteil jeder Mischkomponente unter Berücksichtigung der Fasereigenschaften der einzelnen Komponenten automatisch optimiert und bei Abweichung der vorgegebenen Fasereigenschaften der Mischung automatisch korrigiert.
  26. Anlage nach Anspruch 25, dadurch gekennzeichnet, dass die Messeinrichtung ein Farbsensor (65) ist.
  27. Anlage nach Anspruch 25 oder 26, dadurch gekennzeichnet, dass die Messeinrichtung ein sensor zur Messung der Faserfeinheit (66) ist.
  28. Anlage nach einem der Ansprüche 25 bis 27, dadurch gekennzeichnet, dass Komponentenzellen (9) zwischen den Abtragvorrichtungen (1,3;20) und einer Mischeinrichtung (6) vorgesehen sind, in welche die Faserflocken aus einer vorgewählten Reihe von Faserballen einer oder mehreren Provenienzen eingefüllt werden, und deren Dosierapparate (11) die Fasern in die Mischeinrichtung abgeben, wobei die Dosierapparate mit der Steuerung (7.1) verbunden sind.
EP89115630A 1988-09-06 1989-08-24 Verfahren zum Mischen von Textilfasern Expired - Lifetime EP0362538B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP94112175A EP0628646A3 (de) 1988-09-06 1989-08-24 Verfahren zum Mischen von Textilfasern.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH333588 1988-09-06
CH3335/88 1988-09-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP94112175.8 Division-Into 1989-08-24

Publications (2)

Publication Number Publication Date
EP0362538A1 EP0362538A1 (de) 1990-04-11
EP0362538B1 true EP0362538B1 (de) 1995-03-01

Family

ID=4253747

Family Applications (2)

Application Number Title Priority Date Filing Date
EP89115630A Expired - Lifetime EP0362538B1 (de) 1988-09-06 1989-08-24 Verfahren zum Mischen von Textilfasern
EP94112175A Withdrawn EP0628646A3 (de) 1988-09-06 1989-08-24 Verfahren zum Mischen von Textilfasern.

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP94112175A Withdrawn EP0628646A3 (de) 1988-09-06 1989-08-24 Verfahren zum Mischen von Textilfasern.

Country Status (10)

Country Link
US (1) US5025533A (de)
EP (2) EP0362538B1 (de)
JP (1) JPH02139427A (de)
CN (1) CN1041013A (de)
AU (1) AU629231B2 (de)
CS (1) CS505589A2 (de)
DD (1) DD284705A5 (de)
DE (1) DE58909054D1 (de)
RU (1) RU2037572C1 (de)
ZA (1) ZA896176B (de)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3919746A1 (de) * 1989-06-16 1990-12-20 Rieter Ag Maschf Verfahren zum mischen von textilfasern
DE4025908A1 (de) * 1989-10-05 1991-04-18 Hollingsworth Gmbh Mehrballenoeffner
DE3933274A1 (de) * 1989-10-05 1991-04-18 Hollingsworth Gmbh Mehrballenoeffner
CH681228A5 (de) * 1990-04-25 1993-02-15 Peyer Ag Siegfried
US5509179A (en) * 1990-06-25 1996-04-23 Mondini; Giancarlo Autoleveller draw frame having process feed back control system
DE59108679D1 (de) * 1990-11-02 1997-05-28 Rieter Ag Maschf Verfahren zum Feststellen einer Eigenschaft eines Faserverbandes
IT1255284B (it) * 1991-06-12 1995-10-26 Truetzschler & Co Procedimento e dispositivo per l'asportazione e il mescolamento di fibre tessili per esempio di cotone,fibre artificiali o simili
JP3359935B2 (ja) * 1991-08-28 2002-12-24 ツリュツラー ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト 木綿、化学繊維などからなる繊維俵を準備する方法及び装置
DE59711965D1 (de) 1996-05-20 2004-11-04 Rieter Ag Maschf Anlage zum Verarbeiten von Fasern
DE19630018A1 (de) * 1996-07-25 1998-01-29 Rieter Ag Maschf Anlage zum Verarbeiten von Fasern
GB9800089D0 (en) * 1998-01-06 1998-03-04 Lockwood Keith M Yarn manufacture and products
US6065277A (en) 1998-05-15 2000-05-23 Tuscarora Yarns, Inc. Process for producing dyed spun cotton yarns having improved uniformity, physical properties, and luster and yarns thus produced
US20070202294A1 (en) * 2000-03-13 2007-08-30 L&P Property Management Company Protective fire retardant component for a composite furniture system
US20090126119A1 (en) * 2000-03-13 2009-05-21 L&P Property Management Company, A Delaware Corporation Fire resistant insulator pad
DE60129038D1 (de) * 2000-09-01 2007-08-02 Raymond Keith Foster Vorrichtung zum mischen von textilfasern
US6393665B1 (en) * 2000-09-01 2002-05-28 Raymond Keith Foster Method and apparatus for mixing textile fibers and particulate materials
US6442803B1 (en) * 2001-02-14 2002-09-03 Raymond Keith Foster Method of producing blends of cotton lint
US6715191B2 (en) 2001-06-28 2004-04-06 Owens Corning Fiberglass Technology, Inc. Co-texturization of glass fibers and thermoplastic fibers
US7329043B2 (en) * 2003-11-04 2008-02-12 L&P Property Management Company Thermal properties testing apparatus and methods
CN100402717C (zh) * 2004-08-02 2008-07-16 吕恒正 混棉机组
US20070006383A1 (en) * 2005-07-06 2007-01-11 Ogle Steven E Mattress with substantially uniform fire resistance characteristic
CN100425747C (zh) * 2006-01-06 2008-10-15 浙江华孚色纺有限公司 一种色纺专用混色机及其混合方法
US8454795B1 (en) 2006-12-05 2013-06-04 Mark J. Henderson System and method for producing bonded fiber/cellulose products
US7814623B2 (en) * 2007-02-09 2010-10-19 United Feather & Down, Inc. Blended fiber containing silver, blended filling containing silver fibers, and method for making same
CN101358389B (zh) * 2007-07-31 2010-12-15 浙江华孚色纺有限公司 色纺混纺专用预混机
US8474115B2 (en) * 2009-08-28 2013-07-02 Ocv Intellectual Capital, Llc Apparatus and method for making low tangle texturized roving
CN102041587B (zh) * 2011-01-07 2013-03-20 青岛东佳纺机(集团)有限公司 联合混色机
CN102978749B (zh) * 2012-12-06 2015-10-28 绍兴国周纺织新材料有限公司 色纺纱混棉工艺
BR112018006948B1 (pt) * 2015-10-09 2022-07-19 Ww Systems Ltda Método para formar uma mistura homogeneizada de fardos de algodão para um processo de fiação
DE102015122807A1 (de) * 2015-12-23 2017-06-29 Temafa Maschinenfabrik Gmbh Faserbearbeitungsanlage sowie Verfahren zum Öffnen und Mischen von Fasermaterial in einer Faserbearbeitungsanlage
CH712382A1 (de) * 2016-04-21 2017-10-31 Rieter Ag Maschf Verfahren zum Betrieb eines Ballenöffners und Ballenöffner.
CN106637539B (zh) * 2016-12-20 2018-10-23 绍兴柯桥南红纱业有限公司 多纤维混棉工艺
DE102017102623A1 (de) * 2017-02-09 2018-08-09 TRüTZSCHLER GMBH & CO. KG Verfahren und Anlage zur Bearbeitung von Fasern
CN108505148A (zh) * 2018-06-01 2018-09-07 桐乡市建泰纺织有限公司 一种羊毛加料和毛装置
CN108532033A (zh) * 2018-06-01 2018-09-14 桐乡市建泰纺织有限公司 一种羊毛供料和毛机构
CN108517586A (zh) * 2018-06-01 2018-09-11 桐乡市建泰纺织有限公司 一种羊毛和毛装置
CN110846745A (zh) * 2019-12-14 2020-02-28 王其珍 一种纤维调色试制装置
CN111764012A (zh) * 2020-07-05 2020-10-13 安徽华茂纺织股份有限公司 一种差异化纤维品种防色差的方法
CN115058798A (zh) * 2022-06-23 2022-09-16 湖南津东云纺纺织有限公司 一种混纺均匀的色纺纱混棉装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2897548A (en) * 1953-01-02 1959-08-04 Johns Manville Method and apparatus for opening and cleaning fibers
US2885741A (en) * 1955-03-15 1959-05-12 James Hunter Inc Method and system of blending fibers
US2964802A (en) * 1957-08-05 1960-12-20 Toyo Boseki Continuous production of slivers from textile fibres
DE1685596B2 (de) * 1966-12-24 1978-06-29 Schubert & Salzer Maschinenfabrik Ag, 8070 Ingolstadt Arbeitsverfahren und Vorrichtung zum Zusammenstellen von Fasermischungen
IT1009799B (it) * 1974-04-10 1976-12-20 Marzoli E C Spa Flli Metodo ed impianto di dosaggio per fibre tessili
US4009663A (en) * 1974-09-20 1977-03-01 Alex Jacques Keller Apparatus for positioning bales within a bale assembly area
DE2658044C3 (de) * 1976-12-22 1980-02-21 Truetzschler Gmbh & Co Kg, 4050 Moenchengladbach Verfahren und Vorrichtung zum Erzeugen eines gleichmäßigen Faserbandes
US4100651A (en) * 1977-06-22 1978-07-18 Aldrich Machine Works Apparatus and method for removing and blending fibers from a plurality of fiber bales
EP0044408B1 (de) * 1980-07-23 1985-05-22 Maschinenfabrik Rieter Ag Verfahren zum Überwachen einer Mischanlage für textile Stapelfasern und Vorrichtung zu dessen Durchführung
DE3335763A1 (de) * 1983-10-01 1985-04-18 Trützschler GmbH & Co KG, 4050 Mönchengladbach Verfahren und vorrichtung zum zuspeisen von fasermaterial zu einer mehrzahl von faserverarbeitungseinrichtungen
DE3513295C2 (de) * 1985-04-13 1998-05-14 Truetzschler Gmbh & Co Kg Vorrichtung zum Abtragen von Faserballen
GB8524304D0 (en) * 1985-10-02 1985-11-06 Rieter Ag Maschf Flock delivery systems
EP0226430A3 (de) * 1985-12-13 1988-03-23 Unisearch Limited Messung von Fremdmaterial in Faserzusammensetzungen

Also Published As

Publication number Publication date
US5025533A (en) 1991-06-25
RU2037572C1 (ru) 1995-06-19
EP0628646A2 (de) 1994-12-14
EP0362538A1 (de) 1990-04-11
AU629231B2 (en) 1992-10-01
CS505589A2 (en) 1991-09-15
CN1041013A (zh) 1990-04-04
ZA896176B (en) 1991-01-30
DE58909054D1 (de) 1995-04-06
DD284705A5 (de) 1990-11-21
AU3932389A (en) 1990-03-15
JPH02139427A (ja) 1990-05-29
EP0628646A3 (de) 1995-02-08

Similar Documents

Publication Publication Date Title
EP0362538B1 (de) Verfahren zum Mischen von Textilfasern
DE3151063C2 (de) Verfahren und Vorrichtung zum Mischen von Textilfasern
EP0399315B1 (de) Reinigungs-Optimierung
DE3233246C2 (de) Verfahren zum Zuführen von abgewogenen Fasermengen zu einem Fördermittel
US20060010655A1 (en) Apparatus for measuring the mass of fibre material passing through a spinning preparation machine or system
EP0402940B1 (de) Verfahren zum Mischen von Textilfasern
DE2532061C2 (de) Vorrichtung zur Beschickung einer Mehrzahl von Karden
CH698193B1 (de) Vorrichtung zum Mischen von Faserkomponenten, z.B. Faserflocken, insbesondere in der Spinnereivorbereitung oder Faservliesherstellung.
DE3513295A1 (de) Verfahren und vorrichtng zum abtragen von faserballen
EP2028297B1 (de) Verfahren zum Öffnen und Dosieren von Fasermaterial
EP3412804B1 (de) Verfahren und vorrichtung zur produktionssteuerung in einer putzerei
EP1149196B2 (de) Mischen von faserkomponenten
EP3184676B1 (de) Faserbearbeitungsanlage sowie verfahren zum öffnen und mischen von fasermaterial in einer faserbearbeitungsanlage
EP1917388A1 (de) Flockenbeschickungssystem.
DE1510391C3 (de) Verfahren und Anlage zur Herstellung von Asbestvliesen
CH683347A5 (de) Steuerung bzw. Regelung einer Faserverarbeitungsanlage.
EP0149177A2 (de) Vorrichtung zum Vorbereiten einer harte Textilabfälle (Hardwaste) enthaltenden Fasermischung für das Offenend-Spinnen
DE69303846T2 (de) Vorrichtung zum Einführen von fehlenden Gegenständen in einen Strom von Gegenständen während des Verpackungsvorganges
DE3913733A1 (de) Kastenspeiser mit waage
EP0409772A1 (de) Verfahren zur optimierten Aufbereitung von Textilfasern verschiedener Provenienzen
DE2504873A1 (de) Anlage zum pneumatischen beschicken tabakverarbeitender strangmaschinen
DE4213460A1 (de) Verfahren und vorrichtung zum abtragen und mischen von textilfasern, z. b. baumwolle, chemiefasern u. dgl.
DE9116319U1 (de) Vorrichtung zum Abtragen und Mischen von Textilfasern, z.B. Baumwolle, Chemiefasern u.dgl.
DE102008022817A1 (de) Kontinuierliche Verwiegung von Faserflocken
DE8137585U1 (de) Vorrichtung zum mischen von textilfasern

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI

17P Request for examination filed

Effective date: 19900504

17Q First examination report despatched

Effective date: 19911024

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

XX Miscellaneous (additional remarks)

Free format text: TEILANMELDUNG 94112175.8 EINGEREICHT AM 24/08/89.

REF Corresponds to:

Ref document number: 58909054

Country of ref document: DE

Date of ref document: 19950406

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950330

ITF It: translation for a ep patent filed
ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950714

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970430

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010724

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20010726

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010801

Year of fee payment: 13

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030301

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050824