EP0044408B1 - Verfahren zum Überwachen einer Mischanlage für textile Stapelfasern und Vorrichtung zu dessen Durchführung - Google Patents

Verfahren zum Überwachen einer Mischanlage für textile Stapelfasern und Vorrichtung zu dessen Durchführung Download PDF

Info

Publication number
EP0044408B1
EP0044408B1 EP81104610A EP81104610A EP0044408B1 EP 0044408 B1 EP0044408 B1 EP 0044408B1 EP 81104610 A EP81104610 A EP 81104610A EP 81104610 A EP81104610 A EP 81104610A EP 0044408 B1 EP0044408 B1 EP 0044408B1
Authority
EP
European Patent Office
Prior art keywords
fibres
fibre
measuring device
quantity measuring
fed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81104610A
Other languages
English (en)
French (fr)
Other versions
EP0044408A1 (de
Inventor
Rudolf Wildbolz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maschinenfabrik Rieter AG
Original Assignee
Maschinenfabrik Rieter AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maschinenfabrik Rieter AG filed Critical Maschinenfabrik Rieter AG
Priority to AT81104610T priority Critical patent/ATE13448T1/de
Publication of EP0044408A1 publication Critical patent/EP0044408A1/de
Application granted granted Critical
Publication of EP0044408B1 publication Critical patent/EP0044408B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01GPRELIMINARY TREATMENT OF FIBRES, e.g. FOR SPINNING
    • D01G7/00Breaking or opening fibre bales
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01GPRELIMINARY TREATMENT OF FIBRES, e.g. FOR SPINNING
    • D01G13/00Mixing, e.g. blending, fibres; Mixing non-fibrous materials with fibres

Definitions

  • the present invention relates to a method for monitoring a mixing system for textile staple fibers of different types, in which each type is conveyed from a fiber metering unit to a mixing device and the fibers mixed in it are fed to a storage device, and in which during the feed times the the amount of fiber supplied to the storage device is somewhat larger than the amount of fiber taken from this storage device and as a result the fiber supply from the dosing units to the storage device is interrupted during repetitive time intervals, the dosing units delivering fibers individually and in succession during such time intervals, the latter being used to monitor those of the Dosing units in normal mixed operation conveyed fiber quantity fed to a quantity measuring device and measured.
  • Fiber mixtures which consist of fibers of different types or types.
  • it can be a mixture of natural and synthetic fibers or fibers of different colors or different quality. It is important that the fiber mixtures, as well as threads spun or twisted from them, are of a uniform quality.
  • the fibers or fiber flakes emerging from the mixing plant must have a mixing ratio which lies within clearly defined tolerance limits. If this is, for example, a source material for the manufacture of articles in the clothing industry, tolerance limits which have not been observed can mean a violation of legal regulations.
  • the monitoring methods already known in which the monitoring takes place during the time intervals during which the fiber supply to the storage or filling shaft is interrupted, have the disadvantage of relatively great inaccuracy.
  • the reason for this is that during the start-up and run-down phase of the conveyance, the amount of fiber conveyed by an individually working dosing unit for the purpose of monitoring deviates greatly from the normally conveyed amount of fibers of constant value. If one wants to get rid of the inaccuracy caused by these deviations, the disadvantage of a longer measuring time has to be accepted. This means that more fiber material has to be used for the measurement operation and the measurements can be carried out less often. As a result, monitoring becomes worse and more expensive.
  • the individually operated dosing unit can be run for a relatively long time, so that the deviations from the fiber quantity constant value occurring during the start-up and run-down phase are hardly significant. In this case, however, a standstill of the machine following the mixing plant must be accepted during the monitoring process.
  • a sufficient accuracy of the mixing ratio should be ensured in a simple manner and the disadvantages mentioned should be eliminated in that the conveyed fibers are fed to the quantity measuring device and measured only in such partial areas within repeating time intervals during which there is constant fiber conveyance.
  • the device for carrying out the method comprises a mixing system which comprises a plurality of fiber metering units and, arranged downstream of this, a mixing device and a storage device, the device having a first switch and a quantity measuring device connected thereto. It is characterized in that a second switch is provided between the first switch and the quantity measuring device for selectively guiding or deflecting fibers to and from the quantity measuring device.
  • the invention results in a very reliable and precise monitoring of different types of fibers or fiber flakes, so that the fiber quantities supplied by the fiber metering units to the mixing device can be dimensioned and kept constant in accordance with prescribed values, and thus the mixing ratio can be exactly maintained.
  • the machines fed with the mixed fibers for their further processing do not need to be stopped in order to carry out the monitoring process.
  • H. monitoring can be done while these machines are operating normally.
  • the individual monitoring according to the present invention can be carried out at much shorter time intervals. This gives the very important advantages that deviations from target values are recognized earlier and that relatively short-term fluctuations can also be determined.
  • the device shown in Fig. 1 has two or more fiber metering units 11 (11.1 and 11.2), which, as indicated by arrows 12, fiber material, which largely consists of fiber flakes, but also contains individual fibers, is supplied.
  • fiber material which largely consists of fiber flakes, but also contains individual fibers.
  • the metering units 11 are designed in such a way that they continuously promote a constant and selectable amount of weight of fibers during operation per unit time. Fibers of a certain type are fed to each metering unit 11, fibers of different types reaching the different units 11.1 and 11.2. The amount of fibers conveyed by the different units 11 per unit time will generally be different.
  • An example of a practical application is, for example, a conveyance of 67% cotton in the metering unit 11.1 and a conveyance of 33% polyester in the metering unit 11.2, the percentages denoting the ratio by weight of the fiber quantities conveyed per unit of time.
  • two to four dosing units 11 are used at the same time.
  • a mixing device 13 Following the metering units 11 there is a mixing device 13 and after this a first switch 14. From the latter, in one continuous position of the switch 14, the fibers arrive at a store 15 and from there to subsequent further processing machines, for example cards 16.
  • the fibers are conveyed to a second switch 17 , through which they either reach a collecting container 18 in their continuous position or a quantity measuring device 19, for example a balance, in their switched position.
  • the arrangement with the parts 17, 18 and 19 is used to measure the fiber quantities conveyed by the fiber metering units 11 and is illustrated again in detail in FIG. 2.
  • pneumatic conveying of the fibers by tubes is required.
  • the fiber webs designed as tubes 25 and 26 lead from the second switch 17 to the quantity measuring device 19 or to the receptacle 18.
  • the quantity measuring device 19 designed as a scale is constructed in such a way that the fibers fed to it can be weighed by means of a weighing element 27.
  • An evaluation device 30 is connected to the weighing member 27 via an electrical connection 29. It has a keypad 31 for entering information, an information output point 32 and a display point 33.
  • the memory 15 is provided with a signal device 20 which supplies a signal when the memory 15 is at a minimum and at a maximum filling level.
  • the monitoring of the fill level can e.g. by light barriers provided in the memory 15 or by the weight exerted by the fibers.
  • the signals of the device 20 are fed to a control device 34, which may be located in the evaluation device 30, for example.
  • one type of fiber is continuously fed to one of the fiber metering units 11.
  • the fibers conveyed by each of the metering units 11 enter the mixing device 13, where they are mixed with one another. If, as is assumed in this example, the fibers are conveyed pneumatically through pipes, mixing is automatically obtained in the pipe supplied by the metering units 11, so that it works as a mixing device.
  • the switch 14 is set such that the mixed fibers go to the store 15 and from there to the machines used for further processing, e.g. card 16.
  • the data desired for the production and the corresponding mixing ratio are entered into the evaluation device 30 and stored therein.
  • the fiber metering units 11 are stopped. This is followed by a rinsing time during which the fibers still present in the fiber webs are transported to the store 15. If a monitoring operation is now programmed, the switch 14 is changed from the continuous to the deflecting position and at the same time the unit to be monitored, e.g. B. the dosing unit 11.1 switched on, so that only these fibers deliver. The latter reach the collecting container 18 via the switches 14 and 17.
  • the switch 17 After a short running-in period, after which the corresponding fiber metering unit 11.1 has reached its normal production again, the switch 17 is positioned from the direct passage to the deflected passage, so that the fibers no longer to the receptacle 18, but to the quantity measuring device 19.
  • the duration of the fiber supply to the quantity measuring device 19 is determined by the data initially entered by means of the keypad 31. After this fiber supply to the quantity measuring device 19 has ended, the switch 17 is switched back to direct passage in the direction of the collecting container 18. At the same time, the individually operated fiber metering unit 11.1 is brought to a standstill.
  • the switch 14 is also reset to a passage running through to the store 15, whereby the system is again ready for normal operation. It is switched on again as soon as the signal indicating the minimum fill value of the memory 15 is sent by the signal device 20.
  • the weighing of the material introduced into the quantity measuring device 19 can be carried out automatically happen, the weight can be read at the display point 33.
  • the weight of the fibers, which are introduced into the quantity measuring device 19 by the various units 11 during the monitoring processes, can also be continuously printed on an information strip which is running out at the information output point 32.
  • the process just described is illustrated for the sake of clarity in FIG. 3.
  • the timing is in the abscissa direction.
  • the straight lines indicate that the facility in question is in operation.
  • the metering units 11 and the cards 16 operate during the normal mixing process (before the time t1).
  • the switch 14 is in the position (14d) which is continuous with the store 15.
  • the switch 14 remains in the position (14d) which is continuous to the store 15 during the first rinsing time, which lasts from time t1 to time t2.
  • the switch 14 is switched to be conducted whereby the fibers in the starting g e-deflected direction (14s) to the points 17 out.
  • the latter is set for direct passage (17d) to the container 18.
  • the unit 11.1 is being monitored, for example, it is put back into operation.
  • the switch 17 is switched (17s), as a result of which the fibers reach the quantity measuring device 19.
  • the supply of fibers to the quantity measuring device 19 takes place in the partial area lying between the times t3 and t4 of the time interval lasting from the time t1 to the time t7.
  • the switch 17 is switched back to direct passage (17d) at time t4.
  • the metering unit 11.1 is switched off again, and the remaining fibers still present in the fiber channels are then washed away into the container 18, which is ended at time t6.
  • the metering units 11 are put into operation again and the switch 14 is switched back to direct passage (14d) to the memory 15 at the latest at this time t7 .
  • the total amount of fibers supplied by them during a given time interval that is the amount of fibers F shown in the exemplary embodiment in FIG. 3 below, is weighed and the time difference between t2 and t6 is selected.
  • the inaccuracy of the measurement caused by the increasing and decreasing fiber quantities in the start-up or run-down phase (from t2 to t3 or from t5 to t6) is accepted with this type of monitoring.
  • Another monitoring method tries to eliminate the error caused by the inaccurate measurement in the start-up and run-down phase by selecting the fiber quantities used for the measurement sample to be relatively large, so that this inaccuracy is practically insignificant compared to the total amount of fibers falls. Monitoring according to this latter method is not possible without interrupting the operation of the cards 16 or another subsequent machine.
  • the amount of fiber limited to the partial area between the times t3 and t4 is now removed for the measurement. Since the amount of fiber conveyed per unit of time is constant over this entire area, there are no deviations from the correct amount of fiber actually conveyed within the partial area (t3 ... t4) on which the measurement is based from the metering unit to be monitored.
  • the one dosing unit delivers 850 g and the second dosing unit 150 g fibers per weighing, i.e. for a period of 12s. These quantities are called batches. If it is desired that the batches are of equal weight for the monitoring, the measuring times entered (into the keypad 31 of the evaluation device 30) with a total measuring time of 24 s for the two units 11.1 and 11.2 for the dosing unit 3 delivering 85% of the fibers , 6 s and 20.4 s for the dosing unit delivering 15% of the fibers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Preliminary Treatment Of Fibers (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Reinforced Plastic Materials (AREA)

Description

  • Die vorliegende Erfindung bezieht sich auf ein Verfahren zum Überwachen einer Mischanlage für textile Stapelfasern verschiedener Sorten, bei welcher jede Sorte von je einer Faserdosiereinheit zu einer Mischeinrichtung gefördert wird und die in dieser miteinander vermischten Fasern einem Speicher zugeführt werden, und bei welcher während der Zuführungszeiten die dem Speicher zugeführte Fasermenge etwas grösser ist als die diesem Speicher entnommene Fasermenge und als Folge davon während sich wiederholender Zeitintervalle die Faserzulieferung von den Dosiereinheiten zum Speicher unterbrochen wird, wobei die Dosiereinheiten während solchen Zeitintervallen einzeln und nacheinander Fasern liefern, welch letztere zur Überwachung der von den Dosiereinheiten im normalen Mischbetrieb geförderten Fasermenge einer Mengenmesseinrichtung zugeführt und gemessen werden.
  • Gemäss einem solchen Verfahren arbeitende Anlagen sind aus der Spinnereipraxis bekannt. Sie werden angewandt, um Fasermischungen herzustellen, welche aus Fasern verschiedener Arten oder Sorten bestehen. Es kann sich beispielsweise um eine Mischung von Natur- und Kunstfasern oder um Fasern verschiedener Farben oder verschiedener Qualität handeln. Es ist dabei wichtig, dass die Fasermischungen, wie auch daraus gesponnene oder gezwirnte Fäden, von gleichmässiger Beschaffenheit sind. Die aus der Mischanlage austretenden Fasern oder Faserflocken müssen ein Mischverhältnis aufweisen, welches innerhalb scharf festgelegter Toleranzgrenzen liegt. Falls es sich dabei beispielsweise um ein Ausgangsmaterial zum Herstellen von Artikeln der Bekleidungsindustrie handelt, so können nicht eingehaltene Toleranzgrenzen einen Verstoss gegen gesetzliche Vorschriften bedeuten.
  • Die bereits bekannten Überwachungsverfahren, bei denen die Überwachung während der Zeitintervalle stattfindet, während denen die Faserzulieferung zum Speicher oder Füllschacht unterbrochen ist, weisen den Nachteil relativ grosser Ungenauigkeit auf. Die Ursache für diese liegt darin, dass die zum Zwecke der Überwachung von einer einzeln arbeitenden Dosiereinheit geförderte Fasermenge während der Anlauf- und Auslaufphase der Förderung stark von der normalerweise geförderten Fasermenge konstanten Wertes abweicht. Wenn man die durch diese Abweichungen bedingte Ungenauigkeit wegschaffen will, so muss der Nachteil einer längeren Messzeit in Kauf genommen werden. Dadurch muss für die Messoperation mehr Fasermaterial aufgewendet werden und die Messungen können weniger oft durchgeführt werden. Als Folge davon wird die Überwachung schlechter und kostspieliger.
  • In solchen Fällen, bei denen pro Arbeitsschicht nur eine einzige Überwachung durchgeführt wird, kann die einzeln betriebene Dosiereinheit relativ lang laufen gelassen werden, so dass die während der Anlauf- und Auslaufphase vorkommenden Abweichungen von der Fasermenge konstanten Wertes kaum mehr ins Gewicht fallen. In diesem Fall muss jedoch ein Stillstand der der Mischanlage nachfolgenden Maschine während des Überwachungsvorganges in Kauf genommen werden.
  • Gemäss vorliegender Erfindung sollen auf einfache Weise eine genügende Genauigkeit des Mischverhältnisses gewährleistet und die erwähnten Nachteile dadurch beseitigt werden, dass nur während solcher Teilbereiche innerhalb sich wiederholender Zeitintervalle, während welcher eine konstante Faserförderung vorliegt, die geförderten Fasern der Mengenmesseinrichtung zugeführt und gemessen werden.
  • Die Vorrichtung zur Durchführung des Verfahrens umfasst eine Mischanlage, welche eine Mehrzahl von Faserdosiereinheiten und, diesen nachfolgend angeordnet, eine Mischeinrichtung und einen Speicher umfasst, wobei die Vorrichtung eine erste Weiche und eine damit verbundene Mengenmesseinrichtung aufweist. Sie ist dadurch gekennzeichnet, dass zwischen der ersten Weiche und der Mengenmesseinrichtung eine zweite Weiche zum wahlweisen Lenken bzw. Weglenken von Fasern zur bzw. von der Mengenmesseinrichtung vorgesehen ist.
  • Durch die Erfindung ergibt sich eine sehr zuverlässige und genaue Überwachung verschiedener Sorten von Fasern oder Faserflocken, so dass die von den Faserdosiereinheiten der Mischeinrichtung zugeführten Fasermengen genau entsprechend vorgeschriebenen Werten bemessen und konstant gehalten werden können und somit das Mischverhältnis genau eingehalten werden kann.
  • Dank der viel kürzeren Messzeit brauchen die mit den gemischten Fasern zu deren weiterer Verarbeitung gespiesenen Maschinen zum Durchführen des Überwachungsvorgangs nicht stillgesetzt zu werden, d. h. die Überwachung kann durchgeführt werden, während der Betrieb dieser Maschinen normal vor sich geht. Im Vergleich zu der Methode, bei welcher pro Schicht eine einzige Überwachung durchgeführt wird, können die einzelnen Überwachungen gemäss vorliegender Erfindung in viel kürzeren Zeitabständen durchgeführt werden. Dies ergibt die ganz wesentlichen Vorteile, dass Abweichungen von Sollwerten frühzeitiger erkannt, und dass zusätzlich auch relativ kurzzeitige Schwankungen festgestellt werden können.
  • Die Erfindung sei im folgenden anhand eines Ausführungsbeispiels und der Figuren der Zeichnung näher erläutert. In der letzteren ist
    • Fig. 1 eine schematische Darstellung einer erfindungsgemässen Vorrichtung,
    • Fig. eine Einzelheiten zeigende Darstellung der Anordnung zum Bestimmen der von einer einzeln betriebenen Dosiereinheit geförderten Fasermenge und
    • Fig. 3 eine bildliche Darstellung des Arbeitsablaufs für die Überwachung.
  • Die in Fig. 1 gezeigte Vorrichtung weist zwei oder mehr Faserdosiereinheiten 11 (11.1 und 11.2) auf, denen, wie durch Pfeile 12 angedeutet ist, Fasermaterial, welches grösstenteils aus Faserflocken besteht, aber auch einzelne Fasern enthält, zugeführt wird. - In der Beschreibung und in den Patentansprüchen ist das aus Faserflocken und Einzelfasern bestehende Fasermaterial durchwegs mit dem Ausdruck «Fasern» bezeichnet. - Die Dosiereinheiten 11 sind in der Weise ausgebildet, dass sie im Betrieb pro Zeiteinheit dauernd eine konstante und wählbare Gewichtsmenge von Fasern fördern. Jeder Dosiereinheit 11 werden Fasern einer bestimmten Sorte zugeführt, wobei auf die verschiedenen Einheiten 11.1 und 11.2 Fasern verschiedener Sorten gelangen. Die pro Zeiteinheit von den verschiedenen Einheiten 11 geförderten Fasermengen werden im allgemeinen verschieden sein. Ein Beispiel einer praktischen Anwendung ist beispielsweise eine Förderung von 67% Baumwolle bei der Dosiereinheit 11.1 und eine Förderung von 33% Polyester bei der Dosiereinheit 11.2, wobei die Prozente das gewichtsmässige Verhältnis der pro Zeiteinheit geförderten Fasermengen bedeuten. Bei den meisten Anwendungen in der Praxis sind zwei bis vier Dosiereinheiten 11 gleichzeitig im Einsatz. Anschliessend an die Dosiereinheiten 11 ist eine Mischeinrichtung 13 und nach dieser eine erste Weiche 14 vorgesehen. Von der letzteren gelangen in der einen durchgehenden Stellung der Weiche 14 die Fasern zu einem Speicher 15 und von diesem zu nachfolgenden, weiteren Verarbeitungsmaschinen, z.B. Karden 16. In der anderen, umgeschalteten Stellung der ersten Weiche 14 werden die Fasern zu einer zweiten Weiche 17 gefördert, durch welche sie entweder in deren durchgehender Stellung zu einem Auffangbehältnis 18 oder in deren umgeschalteter Stellung zu einer Mengenmesseinrichtung 19, z.B. einer Waage, gelangen.
  • Die Anordnung mit den Teilen 17, 18 und 19 dient zum Messen der von den Faserdosiereinheiten 11 geförderten Fasermengen und ist in Fig. 2 nochmals in detaillierter Weise veranschaulicht. Im gezeigten Beispiel wird eine durch Rohre erfolgende, pneumatische Förderung der Fasern vorausgesetzt. Die als Rohre 25 und 26 ausgebildeten Faserbahnen führen von der zweiten Weiche 17 zur Mengenmesseinrichtung 19, bzw. zum Auffangbehältnis 18. Die als Waage ausgebildete Mengenmesseinrichtung 19 ist in der Weise aufgebaut, dass die ihr zugeführten Fasern mittels eines Wägeorgans 27 gewogen werden können. Ein Auswertgerät 30 steht über eine elektrische Verbindung 29 mit dem Wägeorgan 27 in Verbindung. Es besitzt ein Tastenfeld 31 zur Eingabe von Information, eine Informationsausgabestelle 32 und eine Anzeigestelle 33.
  • Damit die Karden 16 ununterbrochen im Betrieb gehalten werden können, muss im Speicher 15 dauernd Fasermaterial vorhanden sein. Damit dies der Fall ist, wird ihm während der Zulieferungszeiten etwas mehr Material zugeführt als von den Karden 16 verbraucht wird. Der Speicher 15 ist mit einer Signalvorrichtung 20 versehen, welche bei minimalem und bei maximalem Füllzustand des Speichers 15 ein Signal liefert. Die Überwachung des Füllzustandes kann z.B. durch im Speicher 15 vorgesehene Lichtschranken oder durch das von den Fasern ausgeübte Gewicht erfolgen. Die Signale der Vorrichtung 20 werden einer Steuereinrichtung 34, welche sich beispielsweise im Auswertgerät 30 befinden kann, zugeführt.
  • Im Betrieb der in Fig. 1 gezeigten Anlage wird je einer der Faserdosiereinheiten 11 dauernd je eine Sorte von Fasern zugeführt. Die von jeder der Dosiereinheiten 11 geförderten Fasern gelangen in die Mischeinrichtung 13, wo sie miteinander vermischt werden. Falls die Fasern, wie in diesem Beispiel angenommen ist, pneumatisch durch Rohre befördert werden, so erhält man in dem von den Dosiereinheiten 11 belieferten Rohr ganz von selbst eine Vermischung, so dass dieses als Mischeinrichtung arbeitet. Im normalen Betrieb ist die Weiche 14 so gestellt, dass die gemischten Fasern zum Speicher 15 und von diesem zu den der weiteren Verarbeitung dienenden Maschinen, wie z.B. den Karden 16, gelangen.
  • Mittels der Tasten des Tastenfeldes 31 werden die für die Produktion gewünschten und die dem gewünschten Mischungsverhältnis entsprechenden Daten in das Auswertgerät 30 eingegeben und in diesem gespeichert.
  • Sobald vom Speicher 15 durch ein Signal angezeigt wird, dass dieser seinen maximalen Füllwert erreicht hat, werden die Faserdosiereinheiten 11 angehalten. Daraufhin folgt eine Spülzeit, während der die noch in den Faserbahnen vorhandenen Fasern zum Speicher 15 befördert werden. Falls nun eine Überwachungsoperation programmiert ist, wird die Weiche 14 von der durchgehenden in die ablenkende Position gewechselt und gleichzeitig die zu überwachende Einheit, z. B. die Dosiereinheit 11.1 eingeschaltet, so dass nur diese Fasern liefert. Die lezteren gelangen über die Weichen 14 und 17 zum Auffangbehältnis 18. Nach einer kurzen Einlaufzeit, nach welcher die entsprechende Faserdosiereinheit 11.1 ihre normale Produktion wieder erreicht hat, wird die Weiche 17 vom direkten Durchgang auf den abgelenkten Durchgang positioniert, so dass die Fasern nicht mehr zum Auffangbehältnis 18, sondern zur Mengenmesseinrichtung 19 gelangen. Die Dauer der Fasernzufuhr zur Mengenmesseinrichtung 19 ist durch die am Anfang mittels des Tastenfeldes 31 eingegebenen Daten festgelegt. Nach Beendigung dieser Faserzufuhr zur Mengenmesseinrichtung 19 wird die Weiche 17 wieder auf direkten Durchgang in Richtung zum Auffangbehältnis 18 umgestellt. Gleichzeitig wird die einzeln betriebene Faserdosiereinheit 11.1 zum Stillstand gebracht. Sobald nach einer zweiten Spülung die noch in der Faserbahn verbliebenen Fasern weggeschafft sind, wird auch die Weiche 14 auf zum Speicher 15 durchgehenden Durchgang zurückgestellt, womit die Anlage wieder für den normalen Betrieb bereit ist. Sie wird wieder eingeschaltet, sobald von der Signalvorrichtung 20 das den minimalen Füllwert des Speichers 15 anzeigende Signal ausgesandt wird.
  • Die Wägung des in die Mengenmesseinrichtung 19 eingebrachten Materials kann automatisch geschehen, wobei das Gewicht an der Anzeigestelle 33 abgelesen werden kann. Das Gewicht der Fasern, welche von den verschiedenen Einheiten 11 während der Überwachungsvorgänge in die Mengenmesseinrichtung 19 eingeleitet werden, kann auch laufend auf einen an der Informationsausgabestelle 32 auslaufenden Informationsstreifen gedruckt werden.
  • Der soeben beschriebene Vorgang ist der besseren Übersichtlichkeit wegen in Fig. 3 noch bildlich dargestellt. Der zeitliche Ablauf erfolgt in der Abszissenrichtung. Die ausgezogenen Geraden zeigen an, dass sich die betreffende Einrichtung im Betrieb befindet. Wie in Fig. 3 gezeigt ist, arbeiten während des normalen Mischungsvorganges (vor dem Zeitpunkt t1) die Dosiereinheiten 11 und die Karden 16. Die Weiche 14 befindet sich in der zum Speicher 15 durchgehenden Position (14d). Nach der Stillsetzung der Faserdosiereinheiten 11 verbleibt während der ersten Spülzeit, welche vom Zeitpunkt t1 bis zum Zeitpunkt t2 dauert, die Weiche 14 in der zum Speicher 15 durchgehenden Position (14d). Nach der Beendigung dieses Spülprozesses zum Zeitpunkt t2 wird die Weiche 14 umgeschaltet, wodurch die Fasern in die abge-lenkte Richtung (14s) zur Weiche 17 hin geführt werden. Die letztere ist zu diesem Zeitpunkt auf direkten Durchgang (17d) zum Behältnis 18 hin eingestellt. Zudem wird, falls es sich z.B. um eine Überwachung der Einheit 11.1 handelt, diese wieder in Betrieb gesetzt.
  • Zum Zeitpunkt t3 wird die Weiche 17 umgeschaltet (17s), wodurch die Fasern zur Mengenmesseinrichtung 19 gelangen. Die Zufuhr von Fasern zur Mengenmesseinrichtung 19 findet im zwischen den Zeitpunkten t3 und t4 liegenden Teilbereich des vom Zeitpunkt t1 bis zum Zeitpunkt t7 dauernden Zeitintervalles statt. Die Weiche 17 wird zum Zeitpunkt t4 wieder auf direkten Durchgang (17d) umgeschaltet. Zum Zeitpunkt t5 wird die Dosiereinheit 11.1 wieder abgestellt, und darauf werden die noch in den Faserkanälen vorhandenen, restlichen Fasern ins Behältnis 18 weggespült, was im Zeitpunkt t6 beendigt ist.
  • Sobald zum Zeitpunkt t7 von der Signalvorrichtung 20 das Signal ausgesandt wird, welches das Eintreten des minimalen Füllwertes anzeigt, werden die Dosiereinheiten 11 wieder in Betrieb gesetzt und die Weiche 14 wird spätestens zu diesem Zeitpunkt t7 wieder auf direkten Durchgang (14d) zum Speicher 15 umgeschaltet.
  • Im unteren Teil der Fig. 3 ist zusätzlich eine von der Dosiereinheit 11.1 gelieferte Fasermenge F gezeigt. Es ist ersichtlich, wie diese mit dem Anlaufen der Einheit 11.1 vom Zeitpunkt t2 weg zunimmt und mit dem Abstellen vom Zeitpunkt t5 weg wieder abnimmt. Zusätzlich sind noch beim gleichzeitigen Betrieb der beiden Einheiten 11.1 und 11.2 gelieferte Fasern FM gezeigt.
  • Bei einem bereits erwähnten, bekannten Überwachungsverfahren wird zur Kontrolle der Dosiereinheiten die von diesen während eines gegebenen Zeitintervalles gelieferte, gesamte Fasermenge, das ist die im Ausführungsbeispiel in Fig. 3 unten gezeigte Fasermenge F, gewogen und als Zeitintervall die Zeitdifferenz zwischen t2 und t6 gewählt. Dabei wird die durch die zu- und abnehmenden Fasermengen in der Anlauf- bzw. Auslaufphase (von t2 bis t3 bzw. von t5 bis t6) bedingte Ungenauigkeit der Messung bei dieser Art der Überwachung in Kauf genommen. Bei einem anderen Überwachungsverfahren wird versucht, den durch die ungenaue Messung in der Anlauf- und Auslaufphase bedingten Fehler dadurch zu beseitigen, dass die für die Messprobe benützten Fasermengen relativ gross gewählt werden, damit diese Ungenauigkeit im Vergleich zur gesamten Menge von Fasern praktisch nicht ins Gewicht fällt. Eine Überwachung gemäss diesem letzteren Verfahren ist aber ohne Unterbruch des Betriebes der Karden 16 oder einer anderen nachfolgenden Maschine nicht möglich.
  • Gemäss vorliegender Erfindung wird nun aber zur Messung die auf den Teilbereich zwischen den Zeitpunkten t3 und t4 begrenzte Fasermenge herausgenommen. Da über diesen gesamten Bereich die pro Zeiteinheit geförderte Fasermenge konstant ist, entstehen keinerlei Abweichungen von der korrekten, tatsächlich innerhalb des der Messung zugrunde liegenden Teilbereichs (t3...t4) von der zu überwachenden Dosiereinheit geförderten Fasermenge.
  • Um den Sachverhalt bei verschiedenen Mischungsverhältnissen der Fasern zu erläutern, sei im folgenden angenommen, dass zwei Faserdosiereinheiten 11.1 und 11.2 pro Stunde 300 kg Fasern fördern, und dass die dem Teilbereich zwischen den Zeitpunkten t3 und t4 entsprechende Zeitspanne 12 Sekunden beträgt. Unter diesen Verhältnissen werden im Normalbetrieb während 12s
    Figure imgb0001
    Fasern gefördert. Bei einem Mischverhältnis von je 50% werden daher während 12 s von jeder Dosiereinheit 500 g Fasern gefördert, so dass während jedes Überwachungsprozesses 500 g Fasern der Mengenmesseinrichtung 19 zugeführt werden.
  • Bei einem anderen Mischverhältnis von 85% und 15% liefert die eine Dosiereinheit 850 g und die zweite Dosiereinheit 150 g Fasern pro Wägung, d.h. während einer Zeitspanne von 12s. Diese Mengen werden Chargen genannt. Wird gewünscht, dass für die Überwachung die Chargen gleich schwer seien, so müssen die (in das Tastenfeld 31 des Auswertgerätes 30) eingegebenen Messzeiten bei einer gesamten Messzeit von 24 s für die beiden Einheiten 11.1 und 11.2 für die 85% der Fasern liefernde Dosiereinheit 3,6 s und für die 15% der Fasern liefernde Dosiereinheit 20,4 s betragen.
  • Diese Werte stellen die ungefähren Grenzen der Variationen des Mischungsverhältnisses dar, für welche die vorliegende Erfindung speziell geeignet ist.

Claims (10)

1. Verfahren zum Überwachen einer Mischanlage für textile Stapelfasern verschiedener Sorten, bei welcher jede Sorte von je einer Faserdosiereinheit zu einer Mischeinrichtung gefördert wird und die in dieser miteinander vermischten Fasern einem Speicher zugeführt werden, und bei welcher während der Zuführungszeiten die dem Speicher zugeführte Fasermenge etwas grösser ist als die diesem Speicher entnommene Fasermenge und als Folge davon während sich wiederholender Zeitintervalle die Faserzulieferung von den Dosiereinheiten zum Speicher unterbrochen wird, wobei die Dosiereinheiten während solcher Zeitintervalle einzeln und nacheinander Fasern liefern, welch letztere zur Überwachung der von den Dosiereinheiten im normalen Mischbetrieb geförderten Fasermenge einer Mengenmesseinrichtung zugeführt und gemessen werden, welches Verfahren dadurch gekennzeichnet ist, dass nur während solcher Teilbereiche (t3...t4) innerhalb sich wiederholender Zeitintervalle (t1...t7), während welcher eine konstante Faserförderung vorliegt, die geförderten Fasern der Mengenmesseinrichtung (19) zugeführt und gemessen werden.
2. Verfahren nach Patentanspruch 1, dadurch gekennzeichnet, dass von der Gesamtheit der während eines Zeitintervalles (t1...t7) geförderten Fasern (F) diejenigen ausserhalb des Teilbereichs (t3...t4) konstanter Faserförderung einem Auffangbehältnis (18) zugeführt werden.
3. Verfahren nach Patentanspruch 1, dadurch gekennzeichnet, dass die Fasern pneumatisch gefördert werden.
4. Vorrichtung zur Durchführung des Verfahrens nach Patentanspruch 1 bei einer Mischanlage mit einer Mehrzahl von Faserdosiereinheiten und, diesen nachfolgend angeordnet, einer Mischeinrichtung und einem Speicher, wobei die Vorrichtung eine erste Weiche und eine damit verbundene Mengenmesseinrichtung aufweist und dadurch gekennzeichnet ist, dass zwischen der ersten Weiche (14) und der Mengenmesseinrichtung (19) eine zweite Weiche (17) zum wahlweisen Lenken bzw. Weglenken von Fasern zur bzw. von der Mengenmesseinrichtung (19) vorgesehen ist.
5. Vorrichtung nach Patentanspruch 4, dadurch gekennzeichnet, dass eine Steuereinrichtung (34) vorgesehen ist, welche zum Steuern der ersten Weiche (14), der zweiten Weiche (17) und zum Anhalten und Inbetriebsetzen der einzeln betriebenen Faserdosiereinheiten (11) dient.
6. Vorrichtung nach Patentanspruch 4, dadurch gekennzeichnet, dass eine Steuereinrichtung (34) vorgesehen ist, welche zum Steuern der Mengenmesseinrichtung (19) und zur automatischen Registrierung mittels der Informationsausgabestelle (32) der Messwerte derselben dient.
7. Vorrichtung nach Patentanspruch 4, dadurch gekennzeichnet, dass die Mengenmesseinrichtung (19) eine zum Wägen von Fasern dienende Waage ist.
8. Vorrichtung nach Patentanspruch 6, dadurch gekennzeichnet, dass der Speicher (15) mit einer Signalvorrichtung (20) versehen ist, welche dazu dient, beim Erreichen eines minimalen und eines maximalen Füllungszustandes des Speichers (15) je ein Signal zu erzeugen, und dass die Signalvorrichtung (20) mit der Steuereinrichtung (30) verbunden ist.
9. Vorrichtung nach Patentanspruch 2, dadurch gekennzeichnet, dass beim Vorliegen von zwei Faserdosiereinheiten (11) der gewichtsmässige Mischungsanteil der einen Fasersorte zwischen 10% und 90% liegt.
10. Vorrichtung nach Patentanspruch 2, dadurch gekennzeichnet, dass die Mengenmesseinrichtung (19) ein Fassungsvermögen aufweist, um mindestens 10 Teilwägungen ä je 500g Fasern aufnehmen zu können.
EP81104610A 1980-07-23 1981-06-15 Verfahren zum Überwachen einer Mischanlage für textile Stapelfasern und Vorrichtung zu dessen Durchführung Expired EP0044408B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT81104610T ATE13448T1 (de) 1980-07-23 1981-06-15 Verfahren zum ueberwachen einer mischanlage fuer textile stapelfasern und vorrichtung zu dessen durchfuehrung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH561080 1980-07-23
CH5610/80 1980-07-23

Publications (2)

Publication Number Publication Date
EP0044408A1 EP0044408A1 (de) 1982-01-27
EP0044408B1 true EP0044408B1 (de) 1985-05-22

Family

ID=4296481

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81104610A Expired EP0044408B1 (de) 1980-07-23 1981-06-15 Verfahren zum Überwachen einer Mischanlage für textile Stapelfasern und Vorrichtung zu dessen Durchführung

Country Status (8)

Country Link
US (1) US4399590A (de)
EP (1) EP0044408B1 (de)
JP (1) JPS5751819A (de)
AT (1) ATE13448T1 (de)
BR (1) BR8104737A (de)
DE (1) DE3170585D1 (de)
ES (1) ES8302130A1 (de)
IN (1) IN154895B (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3151063C2 (de) * 1981-12-23 1984-05-24 Trützschler GmbH & Co KG, 4050 Mönchengladbach Verfahren und Vorrichtung zum Mischen von Textilfasern
DE3360334D1 (en) * 1982-05-04 1985-08-08 Rieter Ag Maschf Method of opening fibre bales
JPS59116424A (ja) * 1982-12-22 1984-07-05 Nippon Spindle Mfg Co Ltd 混打綿機に対する原綿自動供給方法
AU629231B2 (en) * 1988-09-06 1992-10-01 Maschinenfabrik Rieter A.G. A method of blending textile fibres
DE3919746A1 (de) * 1989-06-16 1990-12-20 Rieter Ag Maschf Verfahren zum mischen von textilfasern
EP0409772A1 (de) * 1989-07-18 1991-01-23 Maschinenfabrik Rieter Ag Verfahren zur optimierten Aufbereitung von Textilfasern verschiedener Provenienzen
EP0622480A1 (de) * 1993-04-20 1994-11-02 Maschinenfabrik Rieter Ag Verfahren zur Dosierung vorgebbarer Mengen von Faserflocken unterschiedlicher Qualität und/oder Farbe
DE10053353B4 (de) * 2000-10-27 2013-06-06 Hubert Hergeth Bandwaage
US8030000B2 (en) * 2002-02-21 2011-10-04 Alere San Diego, Inc. Recombinase polymerase amplification
CN104846498A (zh) * 2015-06-16 2015-08-19 李先登 高效全时空混棉纺纱方法
CN110055649B (zh) * 2019-05-15 2021-06-08 江南大学 混纺纱的智能生产方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2156893A (en) * 1938-10-07 1939-05-02 Henry A Wallace Cotton sampler apparatus
US2166811A (en) * 1939-01-17 1939-07-18 Henry A Wallace Cotton sample selecting device
US2320544A (en) * 1941-07-30 1943-06-01 George E Gaus Cotton sampler apparatus
US3110182A (en) * 1959-12-23 1963-11-12 Botany Ind Inc Cotton sampling apparatus
FR1374523A (fr) * 1963-08-30 1964-10-09 Installation de filature automatique
CH472514A (de) * 1965-07-21 1969-05-15 Fiber Controls Corp Zyklisch arbeitende Steuerungseinrichtung zum Abmessen und Ausgeben von Material
US4103398A (en) * 1977-07-05 1978-08-01 Wise Industries, Inc. Method and apparatus for blending textile fibers
US4301573A (en) * 1979-06-18 1981-11-24 Gunter & Cooke, Inc. Fiber processing apparatus and method
DE2939890C3 (de) * 1979-10-02 1982-02-25 Schubert & Salzer Maschinenfabrik Ag, 8070 Ingolstadt Verfahren und Vorrichtung zum Öffnen und Mischen von Faserballen

Also Published As

Publication number Publication date
US4399590A (en) 1983-08-23
EP0044408A1 (de) 1982-01-27
JPH0217644B2 (de) 1990-04-23
JPS5751819A (en) 1982-03-26
BR8104737A (pt) 1982-04-13
ATE13448T1 (de) 1985-06-15
ES504335A0 (es) 1983-01-01
ES8302130A1 (es) 1983-01-01
IN154895B (de) 1984-12-22
DE3170585D1 (en) 1985-06-27

Similar Documents

Publication Publication Date Title
EP0044408B1 (de) Verfahren zum Überwachen einer Mischanlage für textile Stapelfasern und Vorrichtung zu dessen Durchführung
DE3111811C2 (de) Wägemaschine
WO1995014805A1 (de) Verfahren zur verfolgung von fehlern in textilen warenbahnen
WO1998031993A1 (de) Bandwaage
DE10234545B4 (de) Verfahren und Vorrichtung zum Liefern von Fäden
CH659487A5 (de) Verfahren und vorrichtung zum mischen von textilfasern.
DE3335793C2 (de) Verfahren und Vorrichtung zum Betreiben eines Ballenöffners, insbesondere zur Ermittlung der Höhe von Textilfaserballen
CH673289A5 (de)
DE3152510C2 (de)
DE3919746A1 (de) Verfahren zum mischen von textilfasern
DE2938536A1 (de) Vorrichtung zum steuern des wasserzulaufs zu einer waschmaschine, insbesondere einer haushaltswaschmaschine
CH681462A5 (de)
CH672325A5 (de)
EP0348443B1 (de) Vorrichtung zur automatischen feinheitsbestimmung von textilem prüfgut, und verwendung der vorrichtung
EP0249741B1 (de) Verfahren zur Ausgabe von Messergebnissen in graphischer Form bei Prüfgeräten für textiles Prüfgut und Vorrichtung zur Durchführung des Verfahrens
EP0302219B1 (de) Verfahren und Vorrichtung zur kontinuierlichen Nass-in-Nass-Behandlung
CH663427A5 (de) Verfahren und vorrichtung zur bestimmung der mittleren feinheit und des variationskoeffizienten der feinheitsschwankungen von textilen und technischen gespinsten.
EP0483607B1 (de) Verfahren zum Feststellen einer Eigenschaft eines Faserverbandes
DE3346842A1 (de) Vorrichtung zum vorbereiten einer harte textilabfaelle (hardwaste) enthaltenden fasermischung fuer das offenend-spinnen
DE2432938B2 (de) Verfahren und vorrichtung zur fadenlaengenmessung in einer textilmaschine mit mehreren wickelstationen
DE3313030C2 (de)
DE10041894A1 (de) Vorrichtung an einer Regulierstrecke für Fasermaterial zum direkten Ermitteln von Einstellwerten für den Reguliereinsatzpunkt
DE10041893A1 (de) Vorrichtung an einer Regulierstrecke zum direkten Ermitteln von Einstellwerten für den Reguliereinsatzpunkt
DE10053353B4 (de) Bandwaage
EP0479983B1 (de) Verfahren zur optimierung der faserqualität

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT NL

17P Request for examination filed

Effective date: 19820623

ITF It: translation for a ep patent filed

Owner name: GUZZI E RAVIZZA S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL

REF Corresponds to:

Ref document number: 13448

Country of ref document: AT

Date of ref document: 19850615

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3170585

Country of ref document: DE

Date of ref document: 19850627

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19920518

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920520

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19920529

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920630

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19930615

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19930630

BERE Be: lapsed

Owner name: MASCHINENFABRIK RIETER A.G.

Effective date: 19930630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940514

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940516

Year of fee payment: 14

Ref country code: CH

Payment date: 19940516

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19950630

Ref country code: CH

Effective date: 19950630

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950615

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960301