EP0358071A2 - Fotografisches Aufzeichnungsmaterial - Google Patents

Fotografisches Aufzeichnungsmaterial Download PDF

Info

Publication number
EP0358071A2
EP0358071A2 EP89115796A EP89115796A EP0358071A2 EP 0358071 A2 EP0358071 A2 EP 0358071A2 EP 89115796 A EP89115796 A EP 89115796A EP 89115796 A EP89115796 A EP 89115796A EP 0358071 A2 EP0358071 A2 EP 0358071A2
Authority
EP
European Patent Office
Prior art keywords
silver halide
hydrogen
group
compounds
color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89115796A
Other languages
English (en)
French (fr)
Other versions
EP0358071A3 (en
EP0358071B1 (de
Inventor
Reinhart Dr. Matejec
Heinrich Dr. Odenwälder
Hans Dr. Öhlschläger
Erich Dr. Wolff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agfa Gevaert AG
Original Assignee
Agfa Gevaert AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agfa Gevaert AG filed Critical Agfa Gevaert AG
Publication of EP0358071A2 publication Critical patent/EP0358071A2/de
Publication of EP0358071A3 publication Critical patent/EP0358071A3/de
Application granted granted Critical
Publication of EP0358071B1 publication Critical patent/EP0358071B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C7/00Multicolour photographic processes or agents therefor; Regeneration of such processing agents; Photosensitive materials for multicolour processes
    • G03C7/30Colour processes using colour-coupling substances; Materials therefor; Preparing or processing such materials
    • G03C7/305Substances liberating photographically active agents, e.g. development-inhibiting releasing couplers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/06Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein with non-macromolecular additives
    • G03C1/08Sensitivity-increasing substances
    • G03C1/10Organic substances
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/06Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein with non-macromolecular additives
    • G03C1/34Fog-inhibitors; Stabilisers; Agents inhibiting latent image regression
    • G03C1/346Organic derivatives of bivalent sulfur, selenium or tellurium
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C7/00Multicolour photographic processes or agents therefor; Regeneration of such processing agents; Photosensitive materials for multicolour processes
    • G03C7/30Colour processes using colour-coupling substances; Materials therefor; Preparing or processing such materials
    • G03C7/392Additives
    • G03C7/39208Organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S430/00Radiation imagery chemistry: process, composition, or product thereof
    • Y10S430/156Precursor compound

Definitions

  • the invention relates to a negative type color photographic silver halide material with improved sensitivity.
  • DAR and FAR couplers development accelerator releasing or fogging agent releasing couplers
  • These couplers also include those compounds which split off a connecting part which has both a hydrazide group (fogging agent) and an adhesive group for adsorption on the silver halide grain (DE-A 33 33 355, 3 410 616, EP-A-0 118 087, 0 147 765 and US-A-4 656 123).
  • the increase in sensitivity achieved in this way is not yet sufficient for many applications.
  • the object of the present invention was therefore to provide such additives for photographic materials, with which a further increase in sensitivity can be achieved.
  • the invention therefore relates to a color photographic silver halide material of the negative type, in which at least one silver halide emulsion layer is a compound of the formula A ⁇ (Z) n ⁇ S * (I) contains adsorbed on the silver halide grain, where A is a grain-active adhesion group of the formulas IIa to IId: Z1 the remaining members to complete a preferably 5- or 6-membered ring which contains at least one further heteroatom such as a nitrogen or sulfur atom and is optionally benzo- or naphtho-condensed, Z2 the remaining members to complete a preferably 5- or 6-membered ring which is optionally benzo- or naphtho-condensed, X -NH2, -NHR -NH-NH2, -NH-NHR, -SR, Y -S-, -NH-, -NR-, B, D is hydrogen, R or together the remaining members of a 5- or 6-membered ring, R is an aliphatic,
  • Preferred divalent intermediate members Z are alkylene groups, arylene groups, -COCH2-, -COCH2-S-, -COCH2-O-,
  • Preferred latent fogging agent groups S * correspond to the formulas IIIa to IIIc: wherein in formula IIIc one of the radicals R5, R6, R7 or R8 is the point of attachment for the radical A- (Z) n -.
  • R 1 is hydrogen, halogen, alkyl, alkoxy
  • R2 is an acyl group, for example -CHO, -COR9, -COOR9, -CONH2, -CONHR9, -SO2R9, -PO (R9) 2, -PO (OR9) 2
  • R3 is hydrogen, halogen, alkyl, alkoxy
  • R4 is hydrogen, halogen, alkyl, alkoxy, acylamino, nitro or sulfonyl
  • R5 hydrogen, -CONHR9, -NHCOR9, -SO2NHR9, -NHCOOR9, -NHSO2R9, -NHCONHR9,
  • R6 is hydrogen or alkyl
  • R7 is hydrogen or acyl such as -COR9, -COOR9, -CONHR9, SO2NHR3 or R6 and R7 together are the remaining members of a heterocyclic ring or together with the nitrogen atom
  • the compound I very particularly preferably corresponds to the formula (IV) wherein L1 C1-C6 alkylene, L2 is a sulfur atom, R12 is a heterocyclic radical, p 0 or 1 and q is 0 or 1.
  • Preferred heterocyclic radicals R12 are 2-mercapto-1,3,4-thiadiazol-5-yl, 1-amino-2-mercapto-1,3,4-triazol-5-yl, 1-methyl-2-mercapto-1 , 3,4-triazol-5-yl, 2-mercapto-5-phenyl-1,3,4-triazol-1-yl, 1,2,3-triazol-4-yl, 2-mercapto-4-methyl -1,3-thiazol-5-yl, benzotriazol-5-yl, imidazol-2-yl and 1,3,4-triazol-2-yl.
  • the compounds of formula I or IV are preferably added to the silver halide emulsion after spectral sensitization, in particular in amounts of 0.005 to 1 mmol / mol AgNO3, preferably 0.01 to 0.1 mmol / mol AgNO3.
  • the compounds I and IV are preferably added to the most sensitive layers.
  • the compounds of the formulas I and IV are added to all highly sensitive layers.
  • Examples of negative type color photographic materials are color negative films and color photographic paper.
  • Suitable supports for the production of such color photographic materials are, for example, films and sheets of semisynthetic and synthetic polymers, such as cellulose nitrate, cellulose acetate, cellulose butyrate, polystyrene, polyvinyl chloride, polyethylene terephthalate and polycarbonate, and paper laminated with a baryta layer or ⁇ -olefin polymer layer (eg polyethylene).
  • These supports can be colored with dyes and pigments, for example titanium dioxide. They can also be colored black for the purpose of shielding light.
  • the surface of the support is generally subjected to a treatment in order to improve the adhesion of the photographic emulsion layer, for example a corona discharge with subsequent application of a substrate layer.
  • the color photographic materials usually contain at least one red-sensitive, green-sensitive and blue-sensitive silver halide emulsion layer and, if appropriate, intermediate layers and protective layers.
  • Binding agents, silver halide grains and color couplers are essential components of the photographic emulsion layers.
  • Gelatin is preferably used as the binder. However, this can be replaced in whole or in part by other synthetic, semi-synthetic or naturally occurring polymers.
  • Synthetic gelatin substitutes are, for example, polyvinyl alcohol, poly-N-vinylpyrolidone, polyacrylamides, polyacrylic acid and their derivatives, in particular their copolymers.
  • Naturally occurring gelatin substitutes are, for example, other proteins such as albumin or casein, cellulose, sugar, starch or alginates.
  • Semi-synthetic gelatin substitutes are usually modified natural products.
  • cellulose derivatives such as hydroxyalkyl cellulose, carboxymethyl cellulose and phthalyl cellulose and gelatin derivatives which have been obtained by reaction with alkylating or acylating agents or by grafting on polymerizable monomers.
  • the binders should have a sufficient amount of functional groups, so that by reaction enough suitable layers can be produced with suitable hardening agents.
  • functional groups are in particular amino groups, but also carboxyl groups, hydroxyl groups and active methylene groups.
  • the gelatin which is preferably used can be obtained by acidic or alkaline digestion. Oxidized gelatin can also be used. The production of such gelatins is described, for example, in The Science and Technology of Gelatine, published by A.G. Ward and A. Courts, Academic Press 1977, page 295 ff.
  • the gelatin used in each case should contain the smallest possible amount of photographically active impurities (inert gelatin). High viscosity, low swelling gelatins are particularly advantageous.
  • the silver halide present as a light-sensitive component in the photographic material can contain chloride, bromide or iodide or mixtures thereof as the halide.
  • the halide content of at least one layer can consist of 0 to 15 mol% of iodide, 0 to 100 mol% of chloride and 0 to 100 mol% of bromide.
  • silver bromide iodide emulsions are usually used; in the case of color negative paper, silver chloride bromide emulsions are usually used. It can be about mainly compact crystals that are, for example, regular cubic or octahedral or can have transitional forms.
  • platelet-shaped crystals can preferably also be present, the average ratio of diameter to thickness of which is preferably at least 5: 1, the diameter of a grain being defined as the diameter of a circle with a circle content corresponding to the projected area of the grain.
  • the layers can also have tabular silver halide crystals in which the ratio of diameter to thickness is substantially greater than 5: 1, for example 12: 1 to 30: 1.
  • the silver halide grains can also have a multi-layered grain structure, in the simplest case with an inner and an outer grain area (core / shell), the halide composition and / or other modifications, such as e.g. Doping of the individual grain areas are different.
  • the average grain size of the emulsions is preferably between 0.2 ⁇ m and 2.0 ⁇ m, the grain size distribution can be both homo- and heterodisperse. Homodisperse grain size distribution means that 95% of the grains do not deviate from the mean grain size by more than ⁇ 30%.
  • the emulsions can also contain organic silver salts, e.g. Silver benzotriazolate or silver behenate.
  • Two or more kinds of silver halide emulsions, which are prepared separately, can be used as a mixture.
  • the photographic emulsions can be prepared using various methods (e.g. P. Glafkides, Chimie et Physique Photographique, Paul Montel, Paris (1967), GF Duffin, Photographic Emulsion Chemistry, The Focal Press, London (1966), VL Zelikman et al, Making and Coating Photographic Emulsion, The Focal Press, London (1966) from soluble silver salts and soluble halides.
  • various methods e.g. P. Glafkides, Chimie et Physique Photographique, Paul Montel, Paris (1967), GF Duffin, Photographic Emulsion Chemistry, The Focal Press, London (1966), VL Zelikman et al, Making and Coating Photographic Emulsion, The Focal Press, London (1966) from soluble silver salts and soluble halides.
  • the halide silver is preferably precipitated in the presence of the binder, for example the gelatin, and can be carried out in the acidic, neutral or alkaline pH range, silver halide complexing agents preferably being additionally used.
  • the latter include, for example, ammonia, thioether, imidazole, ammonium thiocyanate or excess halide.
  • the water-soluble silver salts and the halides are combined either in succession by the single-jet process or simultaneously by the double-jet process or by any combination of the two processes. Dosing with increasing inflow rates is preferred, the "critical" feed rate, at which no new germs are being produced, should not be exceeded.
  • the pAg range can vary within wide limits during the precipitation, preferably the so-called pAg-controlled method is used, in which a certain pAg value is kept constant or a defined pAg profile is traversed during the precipitation.
  • so-called inverse precipitation with an excess of silver ions is also possible.
  • the silver halide crystals can also grow by physical ripening (Ostwald ripening), in the presence of excess halide and / or silver halide complexing agent.
  • the growth of the emulsion grains can even take place predominantly by Ostwald ripening, a fine-grained, so-called Lippmann emulsion preferably being mixed with a less soluble emulsion and being redissolved on the latter.
  • Salts or complexes of metals such as Cd, Zn, Pb, Tl, Bi, Ir, Rh, Fe can also be present during the precipitation and / or physical ripening of the silver halide grains.
  • the precipitation can also be carried out in the presence of sensitizing dyes.
  • Complexing agents and / or dyes can be rendered ineffective at any time, e.g. by changing the pH or by an oxidative treatment.
  • the soluble salts are removed from the emulsion, e.g. by pasta and washing, by flakes and washing, by ultrafiltration or by ion exchangers.
  • the silver halide emulsion is generally subjected to chemical sensitization under defined conditions - pH, pAg, temperature, gelatin, silver halide, and sensitizer concentration - until the optimum sensitivity and fog are reached.
  • Chemical sensitization can be carried out with the addition of compounds of sulfur, selenium, tellurium and / or compounds of the metals of subgroup VIII of the periodic table (for example gold, platinum, palladium, iridium) Nitrogen compounds (e.g. imidazoles, azaindenes) or spectral sensitizers (described, for example, by F. Hamer "The Cyanine Dyes and Related Compounds", 1964, or Ullmanns Encyclopedia of Industrial Chemistry, 4th edition, vol. 18, pp. 431 ff. and Research Disclosure No. 17643, Section III).
  • Nitrogen compounds e.g. imidazoles, azaindenes
  • spectral sensitizers described, for example, by F. Hamer "The Cyanine Dyes and Related Compounds", 1964, or Ullmanns Encyclopedia of Industrial Chemistry, 4th edition, vol. 18, pp. 431 ff. and Research Disclosure No. 17643, Section III).
  • a reduction sensitization with the addition of reducing agents can be carried out by hydrogen, by low pAg (eg less than 5) and / or high pH (eg above 8) .
  • the photographic emulsions may contain compounds to prevent fogging or to stabilize the photographic function during production, storage or photographic processing.
  • Azaindenes are particularly suitable, preferably tetra- and penta-azaindenes, in particular those which are substituted by hydroxyl or amino groups. Such connections are for example from Birr, Z. Wiss. Phot. 47 (1952), pp. 2-58. Salts of metals such as mercury or cadmium, aromatic sulfonic or sulfinic acids such as benzenesulfinic acid, or nitrogen-containing heterocycles such as nitrobenzimidazole, nitroindazole, optionally substituted benzotriazoles or benzothiazolium salts can also be used as antifoggants.
  • metals such as mercury or cadmium, aromatic sulfonic or sulfinic acids such as benzenesulfinic acid, or nitrogen-containing heterocycles such as nitrobenzimidazole, nitroindazole, optionally substituted benzotriazoles or benzothiazolium salts can also be used as antifoggants.
  • Heterocycles containing mercapto groups for example mercaptobenzthiazoles, mercaptobenzimidazoles, mercaptotetrazoles, mercaptothiadiazoles, mercaptopyrimidines, are particularly suitable, these mercaptoazoles also being able to contain a water-solubilizing group, for example a carboxyl group or sulfo group.
  • mercaptobenzthiazoles for example mercaptobenzthiazoles, mercaptobenzimidazoles, mercaptotetrazoles, mercaptothiadiazoles, mercaptopyrimidines
  • these mercaptoazoles also being able to contain a water-solubilizing group, for example a carboxyl group or sulfo group.
  • a water-solubilizing group for example a carboxyl group or sulfo group.
  • the stabilizers can be added to the silver halide emulsions before, during or after their ripening.
  • the compounds can also be added to other photographic layers which are assigned to a halogen silver layer.
  • the photographic emulsion layers or other hydrophilic colloid layers of the one produced according to the invention can contain surface-active agents for various purposes, such as coating aids, to prevent electrical charging, to improve the sliding properties, to emulsify the dispersion, to prevent adhesion and to improve the photographic characteristics (eg development acceleration, high contrast, sensitization, etc.) .
  • non-ionic surfactants for example alkylene oxide compounds, glycerol compounds or glycidol compounds
  • cationic surfactants for example higher alkylamines, quaternary ammonium salts, pyridine compounds and other heterocyclic compounds
  • sulfonium compounds or phosphonium compounds anionic surfactants containing an acid group, for example carboxylic acid, sulfonic acid, a phosphoric acid, sulfuric acid ester or phosphoric acid ester group
  • ampholytic surfactants for example amino acid and aminosulfonic acid compounds and sulfur or phosphoric acid esters of an amino alcohol.
  • the photographic emulsions can be spectrally sensitized using methine dyes or other dyes.
  • Particularly suitable dyes are cyanine dyes, merocyanine dyes and complex merocyanine dyes.
  • red sensitizers RS examples include, in particular for negative and reversal film, the red sensitizers RS, green sensitizers GS and blue sensitizers BS listed below, which can be used individually or in combination with one another, for example RS 1 and RS 2, and GS 1 and GS 2.
  • Sensitizers can be dispensed with if the intrinsic sensitivity of the silver halide is sufficient for a certain spectral range, for example the blue sensitivity of silver bromides.
  • the differently sensitized emulsion layers are assigned non-diffusing monomeric or polymeric color couplers, which can be located in the same layer or in a layer adjacent to it.
  • the red-sensitive layers usually turn blue green couplers, the green-sensitive layers of purple couplers and the blue-sensitive layers of yellow couplers.
  • Color couplers for producing the purple partial color image are generally couplers of the 5-pyrazolone, indazolone or pyrazoloazole type; suitable examples are
  • Color couplers for producing the yellow partial color image are generally couplers with an open-chain ketomethylene group, in particular couplers of the ⁇ -acylacetamide type; suitable examples of this are ⁇ -benzoylacetanilide couplers and ⁇ -pivaloylacetanilide couplers of the formulas
  • the color couplers can be 4-equivalent couplers, but also 2-equivalent couplers.
  • the latter are derived from the 4-equivalent couplers in that they contain a substituent in the coupling site which is split off during the coupling.
  • the 2-equivalent couplers include those that are colorless, as well as those that have an intense intrinsic color that disappears when the color is coupled or is replaced by the color of the image dye produced (mask coupler), and the white couplers that react with color developer oxidation products yield essentially colorless products.
  • the 2-equivalent couplers also include those couplers that contain a cleavable residue in the coupling point, which is released upon reaction with color developer oxidation products and thereby either directly or after one or more further groups have been cleaved from the primarily cleaved residue (eg DE-A-27 03-145, DE-A-28 55 697, DE-A-31 05 026, DE-A-33 19 428), a certain desired photographic activity unfolds, for example as a development inhibitor or accelerator.
  • Examples of such 2-equivalent couplers are the known DIR couplers as well as DAR and FAR couplers, the latter being able to be added in addition to the compounds according to the invention.
  • white couplers are:
  • DIR couplers which release development inhibitors of the azole type, for example triazoles and benzotriazoles, are described in DE-A-2 414 006, 2 610 546, 2 659 417, 2 754 281, 2 726 180, 3 626 219, 3 630 564, 3 636 824, 3 644 416 and 2 842 063. Further advantages for color rendering, that is, color separation and color purity, and for detail rendering, that is, sharpness and granularity, can be achieved with those DIR couplers which, for example, do not split off the development inhibitor directly as a result of the coupling with an oxidized color developer, but only after a further follow-up reaction, which is achieved, for example, with a timing group.
  • DIR couplers which release a development inhibitor which is decomposed into essentially photographically ineffective products in the developer bath are described, for example, in DE-A-32 09 486 and in EP-A-167 168 and 219 713. With this measurement, trouble-free development and processing consistency is achieved.
  • the DIR couplers can be added to a wide variety of layers in a multilayer photographic material, for example also light-insensitive or intermediate layers. However, they are preferably added to the light-sensitive silver halide emulsion layers, the characteristic properties of the silver halide emulsion, for example its iodide content, the structure of the silver halide grains or their grain size distribution having an influence on the photographic properties achieved.
  • the influence of the inhibitors released can be limited, for example, by incorporating an inhibitor scavenger layer in accordance with DE-A-24 31 223. For reasons of reactivity or stability, it may be advantageous to insert a DIR coupler set, which forms in the respective layer in which it is introduced, a color different from the color to be generated in this layer in the coupling.
  • DAR or FAR couplers can be used, which release a development accelerator or an fogger.
  • Compounds of this type are, for example, in DE-A-2 534 466, 3 209 110, 3 333 355, 3 410 616, 3 429 545, 3 441 823, in EP-A-89 834, 110 511, 118 087, 147 765 and described in US-A-4,628,572 and 4,656,123.
  • DIR couplers examples are:
  • DIR, DAR or FAR couplers Since with DIR, DAR or FAR couplers the effectiveness of the residue released during coupling is mainly desired and the color-forming properties of these couplers are less important, such DIR, DAR or FAR couplers are also suitable, which give essentially colorless products on coupling (DE-A-1 547 640).
  • the cleavable residue can also be a ballast residue, so that upon reaction with color developer oxidation products coupling products are obtained which are diffusible or at least have a weak or restricted mobility (US Pat. No. 4,420,556).
  • the material may further contain compounds other than couplers, which can, for example, release a development inhibitor, a development accelerator, a bleaching accelerator, a developer, a silver halide solvent, a fogging agent or an antifoggant, for example so-called DIR-hydroquinones and other compounds, as described for example in US-A-4 636 546, 4 345 024, 4 684 604 and in DE-A-3 145 640, 2 515 213, 2 447 079 and in EP-A-198 438. These compounds perform the same function as the DIR, DAR or FAR couplers, except that they do not form coupling products.
  • couplers can, for example, release a development inhibitor, a development accelerator, a bleaching accelerator, a developer, a silver halide solvent, a fogging agent or an antifoggant, for example so-called DIR-hydroquinones and other compounds, as described for example in US-A-4 636 546, 4 345 024, 4 684 604 and
  • High molecular weight color couplers are described, for example, in DE-C-1 297 417, DE-A-24 07 569, DE-A-31 48 125, DE-A-32 17 200, DE-A-33 20 079, DE-A-33 24 932, DE-A-33 31 743, DE-A-33 40 376, EP-A-27 284, US-A-4 080 211.
  • the high molecular weight color couplers are usually produced by polymerizing ethylenically unsaturated monomeric color couplers. However, they can also be obtained by polyaddition or polycondensation.
  • the couplers or other compounds can be incorporated into silver halide emulsion layers by first preparing a solution, a dispersion or an emulsion of the compound in question and then adding it to the casting solution for the layer in question. Choosing the right one Solvents or dispersants depend on the solubility of the compound.
  • Hydrophobic compounds can also be introduced into the casting solution using high-boiling solvents, so-called oil formers. Corresponding methods are described for example in US-A-2 322 027, US-A-2 801 170, US-A-2 801 171 and EP-A-0 043 037.
  • oligomers or polymers instead of the high-boiling solvents, oligomers or polymers, so-called polymeric oil formers, can be used.
  • the compounds can also be introduced into the casting solution in the form of loaded latices.
  • anionic water-soluble compounds eg dyes
  • pickling polymers e.g. acrylic acid
  • Suitable oil formers are e.g. Alkyl phthalates, phosphonic acid esters, phosphoric acid esters, citric acid esters, benzoic acid esters, amides, fatty acid esters, trimesic acid esters, alcohols, phenols, aniline derivatives and hydrocarbons.
  • oil formers examples include dibutyl phthalate, dicyclohexyl phthalate, di-2-ethylhexyl phthalate, decyl phthalate, triphenyl phosphate, tricresyl phosphate, 2-ethylhexyl diphenyl phosphate, tricyclohexyl phosphate, tri-2-ethylhexyl phosphate, tridecoxy phosphate, 2-ethylhexyl phosphate, tridecoxy phosphate, 2-ethylhexyl phylate, , 2-ethylhexyl p-hydroxybenzoate, diethyldodecanamide, N-tetradecylpyrrolidone, isostearyl alcohol, 2,4-di-tert-amylphenol, dioctyl acylate, glycerol tributyrate, isostearyl lactate, trioctyl citrate, N,
  • Each of the differently sensitized, light-sensitive layers can consist of a single layer or can also comprise two or more silver halide emulsion partial layers (DE-C-1 121 470).
  • Red-sensitive silver halide emulsion layers are often arranged closer to the support than green-sensitive silver halide emulsion layers and these are in turn closer than blue-sensitive layers, with a non-light-sensitive yellow filter layer generally being located between green-sensitive layers and blue-sensitive layers.
  • green or red-sensitive layers are suitably low in their own sensitivity, other layer arrangements can be selected without the yellow filter layer, in which e.g. the blue-sensitive, then the red-sensitive and finally the green-sensitive layers follow.
  • the non-light-sensitive intermediate layers which are generally arranged between layers of different spectral sensitivity, can contain agents which prevent undesired diffusion of developer oxidation products from one light-sensitive layer into another light-sensitive layer with different spectral sensitization.
  • Suitable agents which are also called scavengers or EOP-catchers, are described in Research Disclosure 17.643 / 1978, Chapter VII, 17.842 / 1979, pages 94-97 and 18.716 / 1979, page 650 and in EP-A-60 070, 98 072 , 124 877, 125 522 and in US-A-462 226.
  • R1, R2 -t-C8H17 -sec-C12H25 -t-C6H13
  • sub-layers of the same spectral sensitization can differ with regard to their composition, in particular with regard to the type and amount of the silver halide grains.
  • the sublayer with higher sensitivity will be located further from the support than the sublayer with lower sensitivity.
  • Partial layers of the same spectral sensitization can be adjacent to one another or through other layers, for example through Separate layers of other spectral sensitization.
  • all highly sensitive and all low-sensitive layers can be combined to form a layer package (DE-A 1 958 709, DE-A 2 530 645, DE-A 2 622 922).
  • the photographic material can also contain UV light-absorbing compounds, whiteners, spacers, filter dyes, formalin scavengers, light stabilizers, antioxidants, D min dyes, additives for improving the stabilization of dyes, couplers and whites and for reducing the color fog and others.
  • Compounds that absorb UV light are intended on the one hand to protect the image dyes from fading by UV-rich daylight and, on the other hand, as filter dyes to absorb the UV light in daylight upon exposure and thus improve the color rendering of a film.
  • Connections of different structures are usually used for the two tasks. Examples are aryl-substituted benzotriazole compounds (US Pat. No. 3,533,794), 4-thiazolidone compounds (US Pat. Nos. 3,314,794 and 3,352,681), benzophenone compounds (JP-A 2784/71), cinnamic acid ester compounds (US Pat. Nos. 3,705,805 and 3,707) 375), butadiene compounds (US-A 4 045 229) or benzoxazole compounds (US-A 3 700 455).
  • Ultraviolet absorbing couplers such as ⁇ -naphthol type cyan couplers
  • ultraviolet absorbing polymer can also be used. These ultraviolet absorbents can be fixed in a special layer by pickling.
  • Filter dyes suitable for visible light include oxonol dyes, hemioxonol dyes, styryl dyes, merocyanine dyes, cyanine dyes and azo dyes. Of these dyes, oxonol dyes, hemioxonol dyes and merocyanine dyes are used particularly advantageously.
  • Suitable white toners are e.g. in Research Disclosure December 1978, page 22 ff. Unit 17,643, Chapter V, in US-A-2,632,701, 3,269,840 and in GB-A-852,075 and 1,319,763.
  • binder layers in particular the most distant layer from the support, but also occasionally intermediate layers, especially if they are the most distant layer from the support during manufacture, may contain photographically inert particles of inorganic or organic nature, e.g. as a matting agent or as a spacer (DE-A 3 331 542, DE-A 3 424 893, Research Disclosure December 1978, page 22 ff. Unit 17 643, Chapter XVI).
  • photographically inert particles of inorganic or organic nature e.g. as a matting agent or as a spacer (DE-A 3 331 542, DE-A 3 424 893, Research Disclosure December 1978, page 22 ff. Unit 17 643, Chapter XVI).
  • the average particle diameter of the spacers is in particular in the range from 0.2 to 10 ⁇ m.
  • the spacers are water-insoluble and can be alkali-insoluble or alkali-soluble, the alkali-soluble ones generally being removed from the photographic material in the alkaline development bath.
  • suitable polymers are polymethyl methacrylate, copolymers of acrylic acid and methyl methacrylate and hydroxypropyl methyl cellulose hexahydrophthalate.
  • Suitable formalin scavengers include
  • Additives to improve dye, coupler and whiteness stability and to reduce the color fog can belong to the following chemical substance classes: hydroquinones, 6-hydroxychromanes, 5-hydroxycoumarans, spirochromanes, spiroindanes, p- Alkoxyphenols, sterically hindered phenols, gallic acid derivatives, methylenedioxybenzenes, aminophenols, sterically hindered amines, derivatives with esterified or etherified phenolic hydroxyl groups, metal complexes.
  • the layers of the photographic material can be hardened with the usual hardening agents.
  • Suitable curing agents are, for example, formaldehyde, glutaraldehyde and similar aldehyde compounds, diacetyl, cyclopentadione and similar ketone compounds, bis (2-chloroethyl urea), 2-hydroxy-4,6-dichloro-1,3,5-triazine and other compounds, the reactive halogen contain (US-A-3 288 775, US-A-2 732 303, GB-A-974 723 and GB-A 1 167 207) divinyl sulfone compounds, 5-acetyl-1,3-diacryloylhexahydro-1,3,5-triazine and other compounds containing a reactive olefin bond (US-A-3 635 718, US-A-3 232 763 and GB-A 994 869); N-hydroxymethylphthalimide and other N-methylol compounds (US-A 2
  • the hardening can be effected in a known manner by adding the hardening agent to the casting solution for the layer to be hardened or by overlaying the layer to be hardened with a layer which contains a diffusible hardening agent.
  • Immediate hardeners are understood to mean compounds which crosslink suitable binders in such a way that the hardening is completed to such an extent immediately after casting, at the latest after 24 hours, preferably at the latest after 8 hours, that no further change in the sensitometry caused by the crosslinking reaction and the swelling of the layer structure occurs .
  • Swelling is understood to mean the difference between the wet film thickness and the dry film thickness during the aqueous processing of the film (Photogr. Sci., Eng. 8 (1964), 275; Photogr. Sci. Eng. (1972), 449).
  • hardening agents which react very quickly with gelatin are, for example, carbamoylpyridinium salts which are able to react with free carboxyl groups of the gelatin, so that the latter react with free amino groups of the gelatin with the formation of peptide bonds and crosslinking of the gelatin.
  • Suitable examples of instant hardeners are, for example, compounds of the general formulas wherein R1 denotes alkyl, aryl or aralkyl, R2 has the same meaning as R1 or means alkylene, arylene, aralkylene or alkaralkylene, the second bond having a group of the formula is linked, or R1 and R2 together represent the atoms required to complete an optionally substituted heterocyclic ring, for example a piperidine, piperazine or morpholine ring, which ring can be substituted, for example, by C1-C3alkyl or halogen, R3 for hydrogen, alkyl, aryl, alkoxy, -NR4-COR5, - (CH2) m -NR8R9, - (CH2) n -CONR13R14 or or a link or a direct bond to a polymer chain, where R4, R6, R7, R9, R14, R15, R17, R18, and R19 are hydrogen or C
  • Color photographic negative materials are usually processed by developing, bleaching, fixing and washing or by developing, bleaching, fixing and stabilizing without subsequent washing, whereby bleaching and fixing can be combined into one processing step.
  • All developer compounds which have the ability to react in the form of their oxidation product with color couplers to form azomethine or indophenol dyes can be used as the color developer compound.
  • Suitable color developer compounds are aromatic compounds of the p-phenylenediamine type containing at least one primary amino group, for example N, N-dialkyl-p-phenylenediamines such as N, N-diethyl-p-phenylenediamine, 1- (N-ethyl-N-methanesulfonamidoethyl) -3 -methyl-p-phenylenediamine, 1- (N-ethyl-N-hydroxyethyl) -3-methyl-p-phenylenediamine and 1- (N-ethyl-N-methoxyethyl) -3-methyl-p-phenylenediamine.
  • Further useful color developers are described, for example, in J. Amer. Chem. Soc. 73 , 3106 (1951) and G. Haist, Modern Photographic Processing, 1979, John Wiley and Sons, New York, page 545 ff.
  • bleaching agents e.g. Fe (III) salts and Fe (III) complex salts such as ferricyanides, dichromates, water-soluble cobalt complexes can be used.
  • Iron (III) complexes of aminopolycarboxylic acids are particularly preferred, especially e.g. of ethylenediaminetetraacetic acid, propylenediaminetetraacetic acid, diethyltriaminepentaacetic acid, nitrilotriacetic acid, iminodiacetic acid, N-hydroxyethylethylenediaminetriacetic acid, alkyliminodicarboxylic acids and corresponding phosphonic acids.
  • Persulphates are also suitable as bleaching agents.
  • the bleach-fixing bath or fixing bath is usually followed by washing, which is designed as countercurrent washing or consists of several tanks with their own water supply.
  • the washing can be completely replaced by a stabilizing bath, which is usually carried out in countercurrent.
  • this stabilizing bath also functions as a final bath.
  • the substances according to the invention not only increase the developable density in the exposure area, but also that of a veil which may be present.
  • the addition of the substances according to the invention is therefore expediently combined with the addition of suitable photographic stabilizers.
  • compounds of the general formula have proven successful wherein Z the atoms required to complete an oxazole or oxazine ring, and Y is a fused-on aromatic ring system with at least one aromatic ring, which may be substituted with an acidic group, or a substituent with an acidic group.
  • the layers were coated with a protective gelatin layer (0.5 ⁇ m dry layer thickness) and with 0.3 g / m2 of the hardening agent hardened.
  • the layer structures A to G and the comparison structure H were produced without the corresponding additives by successively casting the layers 1 to 14 on a transparent layer support.
  • 4th layer 9th layer (highly red-sensitive layer) 2.2 g AgNO3 of the spectrally red-sensitized Ag (Br, J) emulsion, 6.3 mol% iodide, average grain diameter 0.82 ⁇ m, provided with the additives according to the invention or the comparative additives according to Table 2, 1.2 g gelatin 0.20 g colorless coupler C 2 0.01 g DIR coupler DIR-2 0.02 g colored coupler RM 1 0.15 g Tricresyl phosphate 0.10 g Dibutyl phthalate

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Silver Salt Photography Or Processing Solution Therefor (AREA)

Abstract

Farbfotografisches Silberhalogenidmaterial vom Negativtyp, bei dem wenigstens eine Silberhalogenidemulsionsschicht eine Verbindung der Formel A­(Z)n­S* (I) am Silberhalogenidkorn adsorbiert enthält, wobei A eine kornaktive Haftgruppe der Formeln IIa bis IId: <IMAGE> Z ein zweiwertiges Zwischenglied, S* eine latente Schleiermittelgruppe, die bei der Farbentwicklung zum aktiven Schleiermittel (S) wird, und n 0 oder 1 bedeuten, zeichnet sich durch verbesserte Empfindlichkeit aus.

Description

  • Die Erfindung betrifft ein farbfotografisches Silber­halogenidmaterial von Negativ-Typ mit verbesserter Empfindlichkeit.
  • Es ist bekannt, mit Hilfe sogenannter DAR- und FAR-­Kuppler (development accelerator releasing bzw. fogging agent releasing coupler), die bei der Kupplungsreaktion mit dem Entwickleroxidationsprodukt entweder einen Ent­wicklungsbeschleuniger oder ein Schleiermittel abspal­ten, die Empfindlichkeit von fotografischen Silberhalo­genidmaterialien zu erhöhen. Zu diesen Kupplern zählen auch solche Verbindungen, die einen Verbindungsteil ab­spalten, der sowohl eine Hydrazidgruppe (Schleiermittel) und eine Haftgruppe für die Adsorption am Silberhaloge­nidkorn aufweisen (DE-A 33 33 355, 3 410 616, EP-A-­0 118 087, 0 147 765 und US-A-4 656 123). Die so er­reichte Empfindlichkeitssteigerung ist aber für viele Anwendungszwecke noch nicht ausreichend.
  • Aufgabe der vorliegenden Erfindung war es daher, solche Zusätze für fotografische Materialien bereitzustellen, mit denen eine weitere Steigerung der Empfindlichkeit erzielt werden kann.
  • Es wurde nun überraschenderweise gefunden, daß eine solche Empfindlichkeitssteigerung erreicht wird, wenn man Verbindungen mit wenigstens einer kornaktiven Haftgruppe und wenigstens einer latenten Schleier­mittelgruppe vor der bildmäßigen Belichtung am Silber­halogenidkorn adsorbiert.
  • Gegenstand der Erfindung ist daher ein farbfotografi­sches Silberhalogenidmaterial vom Negativtyp, bei dem wenigstens eine Silberhalogenidemulsionsschicht eine Verbindung der Formel
    A―(Z)n―S*      (I)
    am Silberhalogenidkorn adsorbiert enthält,
    wobei A eine kornaktive Haftgruppe der Formeln IIa bis IId:
    Figure imgb0001
    Z₁ die restlichen Glieder zur Vervollständigung eines vorzugsweise 5- oder 6-gliedrigen Ringes, der we­nigstens ein weiteres Heteroatom wie ein Stick­stoff- oder Schwefelatom enthält und gegebenenfalls benzo- oder naphthokondensiert ist,
    Z₂ die restlichen Glieder zur Vervollständigung eines vorzugsweise 5- oder 6-gliedrigen Ringes, der gege­benenfalls benzo- oder naphthokondensiert ist,
    X -NH₂, -NHR -NH-NH₂, -NH-NHR, -SR,
    Y -S-, -NH-, -NR-,
    B, D Wasserstoff, R oder gemeinsam die restlichen Glieder eines 5- oder 6-gliedrigen Ringes,
    R einen aliphatischen, aromatischen oder heterocycli­schen Rest,
    Z ein zweiwertiges Zwischenglied,
    S* eine latente Schleiermittelgruppe, die bei der Farbentwicklung zum aktiven Schleiermittel (S) wird, und
    n 0 oder 1 bedeuten.
  • Bevorzugte zweiwertige Zwischenglieder Z sind Alkylen­gruppen, Arylengruppen, -COCH₂-, -COCH₂-S-, -COCH₂-O-,
    Figure imgb0002
  • Bevorzugte latente Schleiermittelgruppen S* entsprechen den Formeln IIIa bis IIIc:
    Figure imgb0003
    wobei in Formel IIIc einer der Reste R₅, R₆,R₇ oder R₈ die Verknüpfungsstelle für den Rest A-(Z)n- ist.
  • Dabei bedeuten R₁ Wasserstoff, Halogen, Alkyl, Alkoxy,
    R₂ eine Acylgruppe, beispielsweise -CHO, -COR₉, -COOR₉, -CONH₂, -CONHR₉, -SO₂R₉, -PO(R₉)₂, -PO(OR₉)₂,
    R₃ Wasserstoff, Halogen, Alkyl, Alkoxy,
    R₄ Wasserstoff, Halogen, Alkyl, Alkoxy, Acylamino, Nitro oder Sulfonyl,
    R₅ Wasserstoff, -CONHR₉, -NHCOR₉, -SO₂NHR₉, -NHCOOR₉, -NHSO₂R₉, -NHCONHR₉,
    R₆ Wasserstoff oder Alkyl,
    R₇ Wasserstoff oder Acyl wie -COR₉, -COOR₉, -CONHR₉, SO₂NHR₃ oder
    R₆ und R₇ zusammen die restlichen Glieder eines hetero­cyclischen Ringes oder zusammen mit dem Stickstoff­ atom eine Azomethingruppe
    Figure imgb0004
    R₈ Wasserstoff, Alkoxy oder Acylamino
    R₈ und R₆ zusammen die restlichen Glieder eines hetero­cyclischen Ringes, z.B. eines Imidazol- oder Pyri­donringes, der mit dem Naphtholring kondensiert ist,
    R₉ eine gegebenenfalls substituierte aliphatische oder olefinische, cycloaliphatische oder cycloolefi­nische, aromatische oder heterocyclische Gruppe,
    R₁₀ Wasserstoff, Alkyl, Aryl,
    R₁₁ Alkyl, Aryl oder Hetaryl und
    L eine zweiwertige Gruppe, die eine mit der Hydrazin­gruppe verknüpfte -CO-Gruppe enthält, z.B. -
    Figure imgb0005
    -

    oder -CH₂-
    Figure imgb0006
    -.

  • Ganz besonders bevorzugt entspricht die Verbindung I der Formel (IV)
    Figure imgb0007
    worin
    L₁ C₁-C₆-Alkylen,
    L₂ ein Schwefelatom,
    R₁₂ einen heterocyclischen Rest,
    p 0 oder 1 und
    q 0 oder 1 bedeuten.
  • Bevorzugte heterocyclische Reste R₁₂ sind 2-Mercapto-­1,3,4-thiadiazol-5-yl, 1-Amino-2-mercapto-1,3,4-triazol-­5-yl, 1-Methyl-2-mercapto-1,3,4-triazol-5-yl, 2-Mercap­to-5-phenyl-1,3,4-triazol-1-yl, 1,2,3-Triazol-4-yl, 2-­Mercapto-4-methyl-1,3-thiazol-5-yl, Benztriazol-5-yl, Imidazol-2-yl und 1,3,4-triazol-2-yl.
  • Die Verbindungen der Formel I bzw. IV werden der Silber­halogenidemulsion vorzugsweise nach der spektralen Sen­sibilisierung und zwar insbesondere in Mengen von 0,005 bis 1 mMol/Mol AgNO₃, vorzugsweise 0,01 bis 0,1 mMol/Mol AgNO₃ zugegeben.
  • Enthält das fotografische Material lichtempfindliche Schichten gleicher spektraler Sensibilisierung aber unterschiedliche Empfindlichkeit, werden die Verbin­dungen I bzw. IV bevorzugt den höchstempfindlichen Schichten zugegeben. Insbesondere werden die Verbin­dungen der Formeln I bzw. IV allen höchstempfindlichen Schichten zugegeben.
  • Beispiele für erfindungsgemäße Verbindungen sind:
    Figure imgb0008
    Figure imgb0009
    Figure imgb0010
    Figure imgb0011
    Figure imgb0012
    Figure imgb0013
    Figure imgb0014
  • Die Verbindungen sind zum Teil literaturbekannt oder lassen sich nach literaturbekannten Verfahren her­stellen.
  • Die Verwendung von Hydrazinderivaten in der Fotographie ist schon seit langem bekannt; ausführlich berichtet darüber der Artikel; Development nucleation by hydrazine and hydrazine derivatives, Research Disclosure Nr. 23 510, Nov. 1983.
  • Beispiele für farbfotografische Materialien vom Negativ-­Typ sind Farbnegativfilme und farbfotografisches Papier.
  • Geeignete Träger zur Herstellung solcher farbfotogra­fischer Materialien sind z.B. Filme und Folien von halb­synthetischen und synthetischen Polymeren, wie Cellulo­senitrat, Celluloseacetat, Cellulosebutyrat, Polystyrol, Polyvinylchlorid, Polyethylenterephthalat und Polycar­bonat und mit einer Barytschicht oder α-Olefinpolymer­schicht (z.B. Polyethylen) laminiertes Papier. Diese Träger können mit Farbstoffen und Pigmenten, beispiels­weise Titandioxid, gefärbt sein. Sie können auch zum Zwecke der Abschirmung von Licht schwarz gefärbt sein. Die Oberfläche des Trägers wird im allgemeinen einer Behandlung unterzogen, um die Adhäsion der fotogra­fischen Emulsionsschicht zu verbessern, beispielsweise einer Corona-Entladung mit nachfolgendem Antrag einer Substratschicht.
  • Die farbfotografischen Materialien enthalten üblicher­weise mindestens je eine rotempfindliche, grünempfind­liche und blauempfindliche Silberhalogenidemulsions­schicht sowie gegebenenfalls Zwischenschichten und Schutzschichten.
  • Wesentliche Bestandteile der fotografischen Emulsions­schichten sind Bindemittel, Silberhalogenidkörnchen und Farbkuppler.
  • Als Bindemittel wird vorzugsweise Gelatine, verwendet. Diese kann jedoch ganz oder teilweise durch andere synthetische, halbsynthetische oder auch natürlich vor­kommende Polymere ersetzt werden. Synthetische Gelatine­ersatzstoffe sind beispielsweise Polyvinylalkohol, Poly-­N-vinylpyrolidon, Polyacrylamide, Polyacrylsäure und deren Derivate, insbesondere deren Mischpolymerisate. Natürlich vorkommende Gelatineersatzstoffe sind bei­spielsweise andere Proteine wie Albumin oder Casein, Cellulose, Zucker, Stärke oder Alginate. Halbsynthe­tische Gelatineersatzstoffe sind in der Regel modifi­zierte Naturprodukte. Cellulosederivate wie Hydroxy­alkylcellulose, Carboxymethylcellulose und Phthalyl­cellulose sowie Gelatinederivate, die durch Umsetzung mit Alkylierungs- oder Acylierungsmitteln oder durch Aufpfropfung von polymerisierbaren Monomeren erhalten worden sind, sind Beispiele hierfür.
  • Die Bindemittel sollen über eine ausreichende Menge an funktionellen Gruppen verfügen, so daß durch Umsetzung mit geeigneten Härtungsmitteln genügend widerstands­fähige Schichten erzeugt werden können. Solche funktio­nellen Gruppen sind insbesondere Aminogruppen, aber auch Carboxylgruppen, Hydroxylgruppen und aktive Methylen­gruppen.
  • Die vorzugsweise verwendete Gelatine kann durch sauren oder alkalischen Aufschluß erhalten sein. Es kann auch oxidierte Gelatine verwendet werden. Die Herstellung solcher Gelatinen wird beispielsweise in The Science and Technology of Gelatine, herausgegeben von A.G. Ward und A. Courts, Academic Press 1977, Seite 295 ff beschrie­ben. Die jeweils eingesetzte Gelatine soll einen mög­lichst geringen Gehalt an fotografisch aktiven Verun­reinigungen enthalt (Inertgelatine). Gelatinen mit hoher Viskosität und niedriger Quellung sind besonders vorteilhaft.
  • Das als lichtempfindlicher Bestandteil in dem fotogra­fischen Material befindliche Silberhalogenid kann als Halogenid Chlorid, Bromid oder Iodid bzw. Mischungen davon enthalten. Beispielsweise kann der Halogenidanteil wenigstens einer Schicht zu 0 bis 15 Mol-% aus Iodid, zu 0 bis 100 Mol-% aus Chlorid und zu 0 bis 100 Mol-% aus Bromid bestehen. Im Falle von Farbnegtivfilmen werden üblicherweise Silberbromidiodidemulsionen, im Falle von Farbnegativpapier üblicherweise Silberchlo­ridbromidemulsionen verwendet. Es kann sich um über­ wiegend kompakte Kristalle handeln, die z.B. regulär kubisch oder oktaedrisch sind oder Übergangsformen aufweisen können. Vorzugsweise können aber auch plättchenförmige Kristalle vorliegen, deren durch­schnittliches Verhältnis von Durchmesser zu Dicke bevor­zugt wenigstens 5:1 ist, wobei der Durchmesser eines Kornes definiert ist als der Durchmesser eines Kreises mit einem Kreisinhalt entsprechend der projizierten Fläche des Kornes. Die Schichten können aber auch tafel­förmige Silberhalogenidkristalle aufweisen, bei denen das Verhältnis von Durchmesser zu Dicke wesentlich größer als 5:1 ist, z.B. 12:1 bis 30:1.
  • Die Silberhalogenidkörner können auch einen mehrfach ge­schichteten Kornaufbau aufweisen, im einfachsten Fall mit einem inneren und einem äußeren Kornbereich (core/­shell), wobei die Halogenidzusammensetzung und/oder sonstige Modifizierungen, wie z.B. Dotierungen der ein­zelnen Kornbereiche unterschiedlich sind. Die mittlere Korngröße der Emulsionen liegt vorzugsweise zwischen 0,2 µm und 2,0 µm, die Korngrößenverteilung kann sowohl homo- als auch heterodispers sein. Homodisperse Korn­größenverteilung bedeutet, daß 95 % der Körner nicht mehr als ± 30% von der mittleren Korngröße abweichen. Die Emulsionen können neben dem Silberhalogenid auch organische Silbersalze enthalten, z.B. Silberbenztriazo­lat oder Silberbehenat.
  • Es können zwei oder mehrere Arten von Silberhalogenid­emulsionen, die getrennt hergestellt werden, als Mi­schung verwendet werden.
  • Die fotografischen Emulsionen können nach verschiedenen Methoden (z.B. P. Glafkides, Chimie et Physique Photo­graphique, Paul Montel, Paris (1967), G.F. Duffin, Photographic Emulsion Chemistry, The Focal Press, London (1966), V.L. Zelikman et al, Making and Coating Photo­graphic Emulsion, The Focal Press, London (1966) aus löslichen Silbersalzen und löslichen Halogeniden herge­stellt werden.
  • Die Fällung des Halogenidsilbers erfolgt bevorzugt in Gegenwart des Bindemittels, z.B. der Gelatine und kann im sauren, neutralen oder alkalischen pH-Bereich durch­geführt werden, wobei vorzugsweise Silberhalogenidkom­plexbildner zusätzlich verwendet werden. Zu letzteren gehören z.B. Ammoniak, Thioether, Imidazol, Ammonium­thiocyanat oder überschüssiges Halogenid. Die Zusammen­führung der wasserlöslichen Silbersalze und der Halo­genide erfolgt wahlweise nacheinander nach dem single-­jet- oder gleichzeitig nach dem double-jet-Verfahren oder nach beliebiger Kombination beider Verfahren. Be­vorzugt wird die Dosierung mit steigenden Zuflußraten, wobei die "kritische" Zufuhrgeschwindigkeit, bei der gerade noch keine Neukeime entstehen, nicht überschrit­ten werden sollte. Der pAg-Bereich kann während der Fällung in weiten Grenzen variieren, vorzugsweise wird das sogenannte pAg-gesteuerte Verfahren benutzt, bei dem ein bestimmter pAg-Wert konstant gehalten oder ein definiertes pAg-Profil während der Fällung durch­fahren wird. Neben der bevorzugten Fällung bei Halo­genidüberschuß ist aber auch die sogenannte inverse Fällung bei Silberionenüberschluß möglich. Außer durch Fällung können die Silberhalogenidkristalle auch durch physikalische Reifung (Ostwaldreifung), in Gegenwart von überschüssigem Halogenid und/oder Silberhalogenidkom­plexierungsmittel wachsen. Das Wachstum der Emulsions­körner kann sogar überwiegend durch Ostwaldreifung erfolgen, wobei vorzugsweise eine feinkörnige, soge­nannte Lippmann-Emulsion, mit einer schwerer löslichen Emulsion gemischt und auf letzterer umgelöst wird.
  • Während der Fällung und/oder der physikalischen Reifung der Silberhalogenidkörner können auch Salze oder Kom­plexe von Metallen, wie Cd, Zn, Pb, Tl, Bi, Ir, Rh, Fe vorhanden sein.
  • Ferner kann die Fällung auch in Gegenwart von Sensibili­sierungsfarbstoffen erfolgen. Komplexierungsmittel und/oder Farbstoffe lassen sich zu jedem beliebigen Zeitpunkt unwirksam machen, z.B. durch Änderung des pH-­Wertes oder durch eine oxidative Behandlung.
  • Nach abgeschlossener Kristallbildung oder auch schon zu einem früheren Zeitpunkt werden die löslichen Salze aus der Emulsion entfernt, z.B. durch Nudeln und Waschen, durch Flocken und Waschen, durch Ultrafiltration oder durch Ionenaustauscher.
  • Die Silberhalogenidemulsion wird im allgemeinen einer chemischen Sensibilisierung unter definierten Bedin­gungen - pH, pAg, Temperatur, Gelatine-, Silberhaloge­nid, und Sensibilisatorkonzentration - bis zum Erreichen des Empfindlichkeits- und Schleieroptimums unterworfen.
  • Die Verfahrensweise ist z.B. bei H. Frieser "Die Grund­lagen der Photographischen Prozesse mit Silberhalo­geniden" Seite 675-734, Akademische Verlagsgesellschaft (1968) beschrieben.
  • Dabei kann die chemische Sensibilisierung unter Zusatz von Verbindungen von Schwefel, Selen, Tellur und/oder Verbindungen der Metalle der VIII. Nebengruppe des Periodensystems (z.B. Gold, Platin, Palladium, Iridium) erfolgen, weiterhin können Thiocyanatverbindungen, ober­flächenaktive Verbindungen, wie Thioether, heterocycli­sche Stickstoffverbindungen (z.B. Imidazole, Azaindene) oder auch spektrale Sensibilisatoren (beschrieben z.B. bei F. Hamer "The Cyanine Dyes and Related Compounds", 1964, bzw. Ullmanns Encyclopädie der technischen Chemie, 4. Auflage, Bd. 18, S. 431 ff. und Research Disclosure Nr. 17643, Abschnitt III) zugegeben werden. Ersatzweise oder zusätzlich kann eine Reduktionssensibilisierung unter Zugabe von Reduktionsmitteln (Zinn-II-Salze, Amine, Hydrazinderivate, Aminoborane, Silane, Formami­dinsulfinsäure) durch Wasserstoff, durch niedrigen pAg (z.B. kleiner 5) und/oder hohen pH (z.B. über 8) durch­geführt werden.
  • Die fotografischen Emulsionen können Verbindungen zur Verhinderung der Schleierbildung oder zur Stabilisierung der fotografischen Funktion während der Produktion, der Lagerung oder der fotografischen Verarbeitung enthal­ten.
  • Besonders geeignet sind Azaindene, vorzugsweise Tetra- und Pentaazaindene, insbesondere solche, die mit Hydroxyl- oder Aminogruppen substituiert sind. Derartige Verbindungen sind z.B. von Birr, Z. Wiss. Phot. 47 (1952), S. 2-58 beschrieben worden. Weiter können als Antischleiermittel Salze von Metallen wie Quecksilber oder Cadmium, aromatische Sulfon- oder Sulfinsäuren wie Benzolsulfinsäure, oder stickstoffhaltige Heterocyclen wie Nitrobenzimidazol, Nitroindazol, gegebenenfalls sub­stituierte Benztriazole oder Benzthiazoliumsalze einge­setzt werden. Besonders geeignet sind Mercaptogruppen enthaltende Heterocyclen, z.B. Mercaptobenzthiazole, Mercaptobenzimidazole, Mercaptotetrazole, Mercaptothia­diazole, Mercaptopyrimidine, wobei diese Mercaptoazole auch eine wasserlöslichmachende Gruppe, z.B. eine Car­boxylgruppe oder Sulfogruppe, enthalten können. Weitere geeignete Verbindungen sind in Research Disclosure Nr. 17643 (1978), Abschnitt VI, veröffentlicht.
  • Die Stabilisatoren können den Silberhalogenidemulsionen vor, während oder nach deren Reifung zugesetzt werden. Selbstverständlich kann man die Verbindungen auch ande­ren fotografischen Schichten, die einer Halogensilber­schicht zugeordnet sind, zusetzen.
  • Es können auch Mischungen aus zwei oder mehreren der ge­nannten Verbindungen eingesetzt werden.
  • Die fotografischen Emulsionsschichten oder andere hydro­phile Kolloidschichten des erfindungsgemäß hergestellten lichtempfindlichen Materials können oberflächenaktive Mittel für verschiedene Zwecke enthalten, wie Überzugs­hilfen, zur Verhinderung der elektrischen Aufladung, zur Verbesserung der Gleiteigenschaften, zum Emulgieren der Dispersion, zur Verhinderung der Adhäsion und zur Ver­besserung der fotografischen Charakteristika (z.B. Ent­wicklungsbeschleunigung, hoher Kontrast, Sensibilisie­rung usw.). Neben natürlichen oberflächenaktiven Verbin­dungen, z.B. Saponin, finden hauptsächlich synthetische oberflächenaktive Verbindungen (Tenside) Verwendung: nicht-ionische Tenside, z.B. Alkylenoxidverbindungen, Glycerinverbindungen oder Glycidolverbindungen, katio­nische Tenside, z.B. höhere Alkylamine, quartäre Ammo­niumsalze, Pyridinverbindungen und andere hetero­cyclische Verbindungen, Sulfoniumverbindungen oder Phos­phoniumverbindungen, anionische Tenside, enthaltend eine Säuregruppe, z.B. Carbonsäure-, Sulfonsäure-, eine Phos­phorsäure-, Schwefelsäureester- oder Phosphorsäureester­gruppe, ampholytische Tenside, z.B. Aminosäure- und Aminosulfonsäureverbindungen sowie Schwefel- oder Phos­phorsäureester eines Aminoalkohols.
  • Die fotografischen Emulsionen können unter Verwendung von Methinfarbstoffen oder anderen Farbstoffen spektral sensibilisiert werden. Besonders geeignete Farbstoffe sind Cyaninfarbstoffe, Merocyaninfarbstoffe und komplexe Merocyaninfarbstoffe.
  • Eine Übersicht über die als Spektralsensibilisatoren ge­eigneten Polymethinfarbstoffe, deren geeignete Kombina­tionen und supersensibilisierend wirkenden Kombinationen enthält Research Disclosure 17643/1978 in Abteilung IV.
  • Insbesondere sind die folgenden Farbstoffe- geordnet nach Spektralgebieten - geeignet:
    • 1. als Rotsensibilisatoren
      9-Ethylcarbocyanine mit Benzthiazol, Benzselenazol oder Naphthothiazol als basische Endgruppen, die in 5- und/oder 6-Stellung durch Halogen, Methyl, Methoxy, Carbalkoxy, Aryl substituiert sein können sowie 9-Ethyl-naphthoxathia- bzw. -selencarbo­cyanine und 9-Ethyl-naphthothiaoxa- bzw. -benz­imidazocarbocyanine, vorausgesetzt, daß die Farb­stoffe mindestens eine Sulfoalkylgruppe am hetero­cyclischen Stickstoff tragen.
    • 2. als Grünsensibilisatoren
      9-Ethylcarbocyanine mit Benzoxazol, Naphthoxazol oder einem Benzoxazol und einem Benzthiazol als basische Endgruppen sowie Benzimidazocarbocyanine, die ebenfalls weiter substituiert sein können und ebenfalls mindestens eine Sulfoalkylgruppe am hete­rocyclischen Stickstoff enthalten müssen.
    • 3. als Blausensilbilisatoren
      symmetrische oder asymmetrische Benzimidazo-, Oxa-, Thia- oder Selenacyanine mit mindestens einer Sulfoalkylgruppe am heterocyclischen Stickstoff und gegebenenfalls weiteren Substituierten am aromati­schen Kern, sowie Apomerocyanine mit einer Rhoda­ningruppe.
  • Als Beispiele seien, insbesondere für Negativ- und Um­kehrfilm, die nachfolgend aufgeführen Rotsensibilisato­ren RS, Grünsensibilisatoren GS und Blausensibilisatoren BS genannt, die jeweils einzeln oder in Kombination untereinander eingesetzt werden können, z.B. RS 1 und RS 2, sowie GS 1 und GS 2.
    Figure imgb0015
    RS 1: R₁, R₃, R₇, R₉ = H; R₂, R₈ = Cl; R₄ = SO₃
    Figure imgb0016
    H(C₂H₅)₃; R₅ = C₂H₅; R₆ = SO₃; m, n = 3; X, Y = S;
    RS 2: R₁, R₃, R₉ = H; R₂ = Phenyl;
    Figure imgb0017
    R₅ = C₂H₅; R₆ = SO₃; R₇, R₈ = -OCH₃; m = 2;
    n = 3; x = O; Y = S;

    RS 3: R₁, R₉ = H; R₂, R₃ zusammen -CH=CH-CH=CH-;
    R₄ = SO₃Na; R₅ = C₂H₅; R₆ = SO₃; R₇, R₈ = Cl;
    m, n = 3; X = S; Y = N-C₂H₅;

    RS 4: R₁ = OCH₃; R₂, R₈ = CH₃; R₃, R₄, R₇, R₉ = H;
    R₅ = C₂H₅; R₆ = SO₃; m = 2; n = 4; X = S;
    Y = Se;

    RS 5: R₁, R₇ = H; R₂, R₃ sowie R₈, R₉ zusammen -CH=CH-CH=CH-; R₄ = SO₃
    Figure imgb0018
    H(C₂H₅)₃; R₅ = C₂H₅;
    R₆ = SO₃; m = 2; n = 3; X, Y = S;

    GS 1: R₁, R₃, R₇, R₉ = H; R₂ = Phenyl;
    Figure imgb0019
    R₅ = C₂H₅; R₆ = SO₃;
    R₈ = Cl; m = 2; n = 3; X, Y = O;

    GS 2: R₁, R₂, R₇, R₈ = Cl; R₃, R₅, R₆, R₉ = H;
    Figure imgb0020
    m, n = 2; X, Y = N-C₂H₅;
    GS 3: R₁, R₇ = H; R₂, R₃ sowie R₈, R₉ zusammen -CH=CH-CH=CH-; R₄ = SO₃Na; R₅ = C₂H₅;
    R₆ = SO₃; m, n = 3; X, Y = O;

    GS 4: R₁, R₃, R₄, R₇, R₈, R₉ = H; R₂ = OCH₃; R₅ = C₂H₅;
    R₆ = SO₃; m = 2; n = 4; X = O; Y = S;
    Figure imgb0021
  • Auf Sensibilisatoren kann verzichtet werden, wenn für einen bestimmten Spektralbereich die Eigenempfindlich­keit des Silberhalogenids ausreichend ist, beispiels­weise die Blauempfindlichkeit von Silberbromiden.
  • Den unterschiedlich sensibilisierten Emulsionsschichten werden nicht diffundierende monomere oder polymere Farb­kuppler zugeordnet, die sich in der gleichen Schicht oder in einer dazu benachbarten Schicht befinden können. Gewöhnlich werden den rotempfindlichen Schichten Blau­ grünkuppler, den grünempfindlichen Schichten Purpur­kuppler und den blauempfindlichen Schichten Gelbkuppler zugeordnet.
  • Farbkuppler zur Erzeugung des blaugrünen Teilfarben­bildes sind in der Regel Kuppler vom Phenol- oder α-­Naphtholtyp; geeignete Beispiele hierfür sind
    Figure imgb0022
    BG 1: R₁ = H; R₂ = H;
    Figure imgb0023
    BG 2: R₁ = -NHCOOCH₂-CH(CH₃)₂; R₂ = H; R₃ = -(CH₂)₃-OC₁₂H₂₅
    BG 3: R₁ = H; R₂ = -OCH₂-CH₂-SO₂CH₃; R₃ = C₁₆H₃₃
    BG 4: R₁ = H; R₂ = -OCH₂-CONH-(CH₂)₂-OCH₃;
    Figure imgb0024
    BG 5: R₁ = H; R₂ = H;
    Figure imgb0025
    BG 6: R₁ = H; R₂ = H;
    Figure imgb0026
    BG 7: R₁ = H; R₂ = Cl; R₃ = -C (C₂H₅)₂-(CH₂)₂₀-CH₃
    BG 8: R₁ = H; R₂ = -O-CH₂-CH₂-S-CH(COOH)-C₁₂H₂₅ R₃ = Cyclohexyl
    Figure imgb0027
    BG 9: R₁ = -C₄H₉; R₂ = H; R₃ = -CN; R₄ = Cl
    BG 10: R₁ = -C₄H₉; R₂ = H; R₃ = H; R₄ = -SO₂CHF₂
    BG 11: R₁ = -C₄H₉;
    Figure imgb0028
    R₃ = H; R₄ = -CN
    BG 12: R₁ = C₂H₅; R₂ = H; R₃ = H; R₄ = -SO₂CH₃
    BG 13: R₁ = -C₄H₉; R₂ = H; R₃ = H; R₄ = -SO₂-C₄H₉
    BG 14: R₁ = -C₄H₉; R₂ = H; R₃ = -CN; R₄ = -CN
    BG 15: R₁ = -C₄H₉; R₂ = H; R₃ = H; R₄ = -SO₂-CH₂-CHF₂
    BG 16: R₁ = -C₂H₅; R₂ = H; R₃ = H; R₄ = -SO₂CH₂-CHF-C₃H₇
    BG 17: R₁ = -C₄H₉; R₂ = H; R₃ = H; R₄ = F
    BG 18: R₁ = -C₄H₉; R₂ =H; R₃ =H; R₄ = -SO₂-CH₃
    BG 19: R₁ = -C₄H₉; R₂ =H; R₃ =H; R₄ = -CN
    Figure imgb0029
    BG 20: R₁ = -CH₃; R₂ = -C₂H₅; R₃, R₄ = -t-C₅H₁₁
    BG 21: R₁ = -CH₃; R₂ = H; R₃, R₄ = -t-C₅H₁₁
    BG 22: R₁ = -C₂H₅; R₂ = -C₂H₅; R₃, R₄ = -t-C₅H₁₁
    BG 23: R₁ = -C₂H₅; R₂ = -C₄H₉; R₃, R₄ = -t-C₅H₁₁
    BG 24: R₁ = -C₂H₅; R₂ = -C₄H₉; R₃, R₄ = -t-C₄H₉
    Figure imgb0030
    BG 25: R₁, R₂ = -t-C₅H₁₁; R₃ = -C₄H₉; R₄ = H; R₅ = -C₃F₇
    BG 26: R₁ = -NHSO₂-C₄H₉; R₂ = H; R₃ = -C₁₂H₂₅; R₄ = Cl; R₅ = Phenyl
    BG 27: R₁, R₂ = -t-C₅H₁₁; R₂ = Cl, R₃ = -CH(CH₃)₂; R₄ = Cl; R₅ = Pentafluorphenyl
    BG 28: R₁ = -t-C₅H₁₁; R₂ = Cl; R₃ = -C₆H₁₃; R₄ = Cl; R₅ = -2-Chlorphenyl
  • Farbkuppler zur Erzeugung des purpurnen Teilfarbenbildes sind in der Regel Kuppler vom Typ des 5-Pyrazolons, des Indazolons oder der Pyrazoloazole; geeignete Beispiele hierfür sind
    Figure imgb0031
    Figure imgb0032
    Figure imgb0033
    Figure imgb0034
    Figure imgb0035
  • Farbkuppler zur Erzeugung des gelben Teilfarbenbildes sind in der Regel Kuppler mit einer offenkettigen Keto­methylengruppierung, insbesondere Kuppler vom Typ des α-Acylacetamids; geeignete Beispiele hierfür sind α-­Benzoylacetanilidkuppler und α-Pivaloylacetanilidkuppler der Formeln
    Figure imgb0036
    Figure imgb0037
    Figure imgb0038
    Figure imgb0039
    Figure imgb0040
  • Bei den Farbkupplern kann es sich um 4-Äquivalentkupp­ler, aber auch um 2-Äquivalentkuppler handeln. Letztere leiten sich von den 4-Äquivalentkupplern dadurch ab, daß sie in der Kupplungsstelle einen Substituenten enthal­ten, der bei der Kupplung abgespalten wird. Zu den 2-­Äquivalentkupplern sind solche zu rechnen, die farblos sind, als auch solche, die eine intensive Eigenfarbe aufweisen, die bei der Farbkupplung verschwindet bzw. durch die Farbe des erzeugten Bildfarbstoffes ersetzt wird (Maskenkuppler), und die Weißkuppler, die bei Reak­tion mit Farbentwickleroxidationsprodukten im wesentli­chen farblose Produkte ergeben. Zu den 2-Äquivalentkupp­lern sind ferner solche Kuppler zu rechnen, die in der Kupplungsstelle einen abspaltbaren Rest enthalten, der bei Reaktion mit Farbentwickleroxidationsprodukten in Freiheit gesetzt wird und dabei entweder direkt oder nachdem aus dem primär abgespaltenen Rest eine oder mehrere weitere Gruppen abgespalten worden sind (z.B. DE-A-27 03-145, DE-A-28 55 697, DE-A-31 05 026, DE-A-­33 19 428), eine bestimmte erwünschte fotografische Wirksamkeit entfaltet, z.B. als Entwicklungsinhibitor oder -accelerator. Beispiele für solche 2-Äquivalent­kuppler sind die bekannten DIR-Kuppler wie auch DAR- bzw. FAR-Kuppler, wobei letztere zusätzlich zu den er­findungsgemäßen Verbindungen zugesetzt werden können.
  • Beispiele für Weißkuppler sind:
    Figure imgb0041
    Figure imgb0042
  • Beispiele für Maskenkuppler sind
    Figure imgb0043
    Figure imgb0044
    Figure imgb0045
    Figure imgb0046
    Figure imgb0047
  • DIR-Kuppler, die Entwicklungsinhibitoren vom Azoltyp, z.B. Triazole und Benzotriazole freisetzen, sind in DE-­A-2 414 006, 2 610 546, 2 659 417, 2 754 281, 2 726 180, 3 626 219, 3 630 564, 3 636 824, 3 644 416 und 2 842 063 beschrieben. Weitere Vorteile für die Farbwidergabe, d.h., Farbtrennung und Farbreinheit, und für die Detail­widergabe, d.h., Schärfe und Körnigkeit, sind mit sol­chen DIR-Kupplern zu erzielen, die z.B. den Entwick­lungsinhibitor nicht unmittelbar als Folge der Kupplung mit einem oxidierten Farbentwickler abspalten, sondern erst nach einer weiteren Folgereaktion, die beispiels­weise mit einer Zeitsteuergruppe erreicht wird. Beispie­le dafür sind in DE-A-28 55 697, 32 99 671, 38 18 231, 35 18 797, in EP-A-157 146 und 204 175, in US-A-­4 146 396 und 4 438 393 sowie in GB-A-2 072 363 be­schrieben.
  • DIR-Kuppler, die einen Entwicklungsinhibitor freisetzen, der im Entwicklerbad zu im wesentlichen fotografisch un­wirksamen Produkten zersetzt wird, sind beispielsweise in DE-A-32 09 486 und in EP-A-167 168 und 219 713 be­schrieben. Mit dieser Meßnahme wird eine störungsfreie Entwicklung und Verarbeitungskonstanz erreicht.
  • Bei Einsatz von DIR-Kupplern, insbesondere von solchen, die einen gut diffundierbaren Entwicklungsinhibitor ab­spalten, lassen sich durch geeignete Maßnahmen bei der optischen Sensibilisierung Verbesserungen der Farbwider­gabe, z.B. eine differenziertere Farbwidergabe, erzie­len, wie beispielsweise in EP-A-115 304, 167 173, GB-A-­2 165 058, DE-A-3 700 419 und US-A-707 436 beschrie­ben.
  • Die DIR-Kuppler können in einem mehrschichtigen fotogra­fischen Material den unterschiedlichsten Schichten zuge­setzt werden, z.B. auch lichtunempfindlichen oder Zwi­schenschichten. Vorzugsweise werden sie jedoch den lichtempfindlichen Silberhalogenidemulsionsschichten zugesetzt, wobei die charakteristischen Eigenschaften der Silberhalogenidemulsion, z.B. deren Iodidgehalt, die Struktur der Silberhalogenidkörner oder deren Korn­größenverteilung von Einfluß auf die erzielten fotogra­fischen Eigenschaften sind. Der Einfluß der freigesetz­ten Inhibitoren kann beispielsweise durch den Einbau einer Inhibitorfängerschicht gemäß DE-A-24 31 223 be­grenzt werden. Aus Gründen der Reaktivität oder Stabili­tät kann es vorteilhaft sein, einen DIR-Kuppler einzu­ setzen, der in der jeweiligen Schicht, in der er einge­bracht ist, eine von der in dieser Schicht zu erzeugen­den Farbe abweichende Farbe bei der Kupplung bildet.
  • Zur Steigerung der Empfindlichkeit, des Kontrastes und der maximalen Dichte können vor allem DAR- bzw. FAR-­Kuppler eingesetzt werden, die einen Entwicklungsbe­schleuniger oder ein Schleiermittel abspalten. Verbin­dungen dieser Art sind beispielsweise in DE-A-2 534 466, 3 209 110, 3 333 355, 3 410 616, 3 429 545, 3 441 823, in EP-A-89 834, 110 511, 118 087, 147 765 und in US-A-­4 628 572 und 4 656 123 beschrieben.
  • Als Beispiel für den Einsatz von DAR-Kuppler wird auf EP-A-193 389 verwiesen.
  • Es kann vorteilhaft sein, die Wirkung einer aus einem Kuppler abgespaltenen fotografisch wirksamen Gruppe dadurch zu modifizieren, daß eine intermolekulare Reak­tion dieser Gruppe nach ihrer Freisetzung mit einer anderen Gruppe gemäß DE-A-3 506 805 eintritt.
  • Beispiele für DIR-Kuppler sind:
    Figure imgb0048
    Figure imgb0049
    Figure imgb0050
    Figure imgb0051
    Figure imgb0052
    Figure imgb0053
  • Beispiele für DAR-Kuppler
    Figure imgb0054
    Figure imgb0055
  • Da bei den DIR-, DAR- bzw. FAR-Kupplern hauptsächlich die Wirksamkeit des bei der Kupplung freigesetzten Restes erwünscht ist und es weniger auf die farbbilden­den Eigenschaften dieser Kuppler ankommt, sind auch sol­che DIR-, DAR- bzw. FAR-Kuppler geeignet, die bei der Kupplung im wesentlichen farblose Produkte ergeben (DE-­A-1 547 640).
  • Der abgespaltbare Rest kann auch ein Ballastrest sein, so daß bei der Reaktion mit Farbentwickleroxidations­produkten Kupplungsprodukte erhalten werden, die diffu­sionsfähig sind oder zumindest eine schwache bzw. einge­schränkte Beweglichkeit aufweisen (US-A-4 420 556).
  • Das Material kann weiterhin von Kupplern verschiedene Verbindungen enthalten, die beispielsweise einen Ent­wicklungsinhibitor, einen Entwicklungsbeschleuniger, einen Bleichbeschleuniger, einen Entwickler, ein Sil­berhalogenidlösungsmittel, ein Schleiermittel oder ein Antischleiermittel in Freiheit setzen können, beispiels­weise sogenannte DIR-Hydrochinone und andere Verbin­dungen, wie sie beispielsweise in US-A-4 636 546, 4 345 024, 4 684 604 und in DE-A-3 145 640, 2 515 213, 2 447 079 und in EP-A-198 438 beschrieben sind. Diese Verbindungen erfüllen die gleiche Funktion wie die DIR-, DAR- oder FAR-Kuppler, außer daß sie keine Kupplungs­produkte bilden.
  • Hochmolekulare Farbkuppler sind beispielsweise in DE-C-­1 297 417, DE-A-24 07 569, DE-A-31 48 125, DE-A-­32 17 200, DE-A-33 20 079, DE-A-33 24 932, DE-A-­33 31 743, DE-A-33 40 376, EP-A-27 284, US-A-4 080 211 beschrieben. Die hochmolekularen Farbkuppler werden in der Regel durch Polymerisation von ethylenisch unge­sättigten monomeren Farbkupplern hergestellt. Sie können aber auch durch Polyaddition oder Polykondensation er­halten werden.
  • Die Einarbeitung der Kuppler oder anderer Verbindungen in Silberhalogindemulsionsschichten kann in der Weise erfolgen, daß zunächst von der betreffenden Verbindung eine Lösung, eine Dispersion oder eine Emulsion herge­stellt und dann der Gießlösung für die betreffende Schicht zugefügt wird. Die Auswahl des geeigneten Lösungs- oder Dispersionsmittel hängt von der jeweiligen Löslichkeit der Verbindung ab.
  • Methoden zum Einbringen von in Wasser im wesentlichen unlöslichen Verbindungen durch Mahlverfahren sind beispielsweise in DE-A-2 609 741 und DE-A-2 609 742 beschrieben.
  • Hydrophobe Verbindungen können auch unter Verwendung von hochsiedenden Lösungsmitteln, sogenannten Ölbildnern, in die Gießlösung eingebracht werden. Entsprechende Me­thoden sind beispielsweise in US-A-2 322 027, US-A-­2 801 170, US-A-2 801 171 und EP-A-0 043 037 beschrie­ben.
  • Anstelle der hochsiedenden Lösungsmitteln können Oligo­mere oder Polymere, sogenannte polymere Ölbildner Ver­wendung finden.
  • Die Verbindungen können auch in Form beladener Latices in die Gießlösung eingebracht werden. Verwiesen wird beispielsweise auf DE-A-2 541 230, DE-A-2 541 274, DE-A-­2 835 856, EP-A-0 014 921, EP-A-0 069 671, EP-A-­0 130 115, US-A-4 291 113.
  • Die diffusionsfeste Einlagerung anionischer wasserlösli­cher Verbindungen (z.B. von Farbstoffen) kann auch mit Hilfe von kationischen Polymeren, sogenannten Beizen­polymeren erfolgen.
  • Geeignete Ölbildner sind z.B. Phthalsäurealkylester, Phosphonsäureester, Phosphorsäureester, Citronensäure­ester, Benzoesäureester, Amide, Fettsäureester, Trime­sinsäureester, Alkohole, Phenole, Anilinderivate und Kohlenwasserstoffe.
  • Beispiele für geeignete Ölbildner sind Dibutylphthalat, Dicyclohexylphthalat, Di-2-ethylhexylphthalat, Decyl­phthalat, Triphenylphosphat, Tricresylphosphat, 2-Ethyl­hexyldiphenylphosphat, Tricyclohexylphosphat, Tri-2-­ethylhexylphosphat, Tridecylphosphat, Tributoxyethyl­phosphat, Trichlorpropylphosphat, Di-2-ethylhexylphe­nylphosphat, 2-Ethylhexylbenzoat, Dodecylbenzoat, 2-­Ethylhexyl-p-hydroxybenzoat, Diethyldodecanamid, N-­Tetradecylpyrrolidon, Isostearylalkohol, 2,4-Di-tert.-­amylphenol, Dioctylacelat, Glycerintributyrat, Iso­stearyllactat, Trioctylcitrat, N,N-Dibutyl-2-butoxy-5-­tert.-octylanilin, Paraffin, Dodecylbenzol und Diiso­propylnaphthalin.
  • Jede der unterschiedlich sensibilisierten, lichtempfind­lichen Schichten kann aus einer einzigen Schicht beste­hen oder auch zwei oder mehr Silberhalogenidemulsions­teilschichten umfassen (DE-C-1 121 470). Dabei sind rotempfindliche Silberhalogenidemulsionsschichten dem Schichtträger häufig näher angeordnet als grünempfind­liche Silberhalogenidemulsionsschichten und diese wiederum näher als blauempfindliche, wobei sich im allgemeinen zwischen grünempfindlichen Schichten und blauempfindlichen Schichten eine nicht lichtempfindliche gelbe Filterschicht befindet.
  • Bei geeignet geringer Eigenempfindlichkeit der grün- bzw. rotempfindlichen Schichten kann man unter Verzicht auf die Gelbfilterschicht andere Schichtanordnungen wählen, bei denen auf den Träger z.B. die blauempfind­lichen, dann die rotempfindlichen und schließlich die grünempfindlichen Schichten folgen.
  • Die in der Regel zwischen Schichten unterschiedlicher Sprektralempfindlichkeit angeordneten nicht licht­empfindlichen Zwischenschichten können Mittel enthal­ten, die eine unerwünschte Diffusion von Entwickler­oxidationsprodukten aus einer lichtempfindlichen in eine andere lichtempfindliche Schicht mit unterschiedlicher spektraler Sensibilisierung verhindern.
  • Geeignete Mittel, die auch Scavenger oder EOP-Fänger genannt werden, werden in Research Disclosure 17.643/­1978, Kapitel VII, 17,842/1979, Seite 94-97 und 18.716/­1979, Seite 650 sowie in EP-A-60 070, 98 072, 124 877, 125 522 und in US-A-462 226 beschrieben.
  • Beispiele für besonders geeignete Verbindungen sind:
    Figure imgb0056
    R₁, R₂ = -t-C₈H₁₇
    -sec-C₁₂H₂₅
    -t-C₆H₁₃
    Figure imgb0057
  • Liegen mehrere Teilschichten gleicher spektraler Sensi­bilisierung vor, so können sich diese hinsichtlich ihrer Zusammensetzung, insbesondere was Art und Menge der Sil­berhalogenidkörnchen betrifft unterscheiden. Im allge­meinen wird die Teilschicht mit höherer Empfindlichkeit von Träger entfernter angeordnet sein als die Teil­schicht mit geringerer Empfindlichkeit. Teilschichten gleicher spektraler Sensibilisierung können zueinander benachbart oder durch andere Schichten, z.B. durch Schichten anderer spektraler Sensibilisierung getrennt sein. So können z.B. alle hochempfindlichen und alle niedrigempfindlichen Schichten jeweils zu einem Schicht­paket zusammengefaßt sein (DE-A 1 958 709, DE-­A 2 530 645, DE-A 2 622 922).
  • Das fotografische Material kann weiterhin UV-Licht ab­sorbierende Verbindungen, Weißtöner, Abstandshalter, Filterfarbstoffe, Formalinfänger, Lichtschutzmittel, Antioxidantien, DMin-Farbstoffe, Zusätze zur Verbesse­rung der Farbstoff-, Kuppler- und Weißenstabilisierung sowie zur Verringerung des Farbschleiers und anderes enthalten.
  • UV-Licht absorbierende Verbindungen sollen einerseits die Bildfarbstoffe vor dem Ausbleichen durch UV-reiches Tageslicht schützen und andererseits als Filterfarb­stoffe das UV-Licht im Tageslicht bei der Belichtung absorbieren und so die Farbwiedergabe eines Films ver­bessern. Üblicherweise werden für die beiden Aufgaben Verbindungen unterschiedlicher Struktur eingesetzt. Bei­spiele sind arylsubstituierte Benzotriazolverbindungen (US-A 3 533 794), 4-Thiazolidonverbindungen (US-­A 3 314 794 und 3 352 681), Benzophenonverbindungen (JP-­A 2784/71), Zimtsäureesterverbindungen (US-A 3 705 805 und 3 707 375), Butadienverbindungen (US-A 4 045 229) oder Benzoxazolverbindungen (US-A 3 700 455).
  • Beispiele besonders geeigneter Verbindungen sind
    Figure imgb0058
    R, R₁ = H; R₂ = t-C₄H₉
    R = H; R₁, R₂ = t-C₄H₉
    R = H; R₁, R₂ = t-C₅H₁₁-tert.
    R = H; R₁ = sec-C₄H₉; R₂ = t-C₄H₉
    R = Cl; R₁ = t-C₄H₉; R₂ = sec-C₄H₉
    R = Cl; R₁, R₂ = t-C₄H₉
    R = Cl; R₁ = t-C₄H₉-tert.; R₂ = -CH₂-CH₂-COOC₈H₁₇
    R = H; R = iso-C₁₂H₂₅; R₂ = CH₃
    R, R₁, R₂ = t-C₄H₉
    Figure imgb0059
    R₁, R₂ = n-C₆H₁₃; R₃, R₄ = CN
    R₁, R₂ = C₂H₅;
    Figure imgb0060
    R₄ = COOC₈H₁₇
    R₁, R = C₂H₅;
    Figure imgb0061
    R₄ = COOC₁₂H₂₅
    R₁, R₂ = CH₂=CH-CH₂; R₃, R₄ = CN
    Figure imgb0062
    R₁, R₂ = H; R₃ = CN; R₄ = CO-NHC₁₂H₂₅
    R₁, R₂ = CH₃; R₃ = CN; R₄ = CO-NHC₁₂H₂₅
    Figure imgb0063
  • Es können auch ultraviolettabsorbierende Kuppler (wie Blaugrünkuppler des α-Naphtholtyps) und ultraviolettab­sorbierende Polymer verwendet werden. Diese Ultravio­lettabsorbentien können durch Beizen in einer speziellen Schicht fixiert sein.
  • Für sichtbares Licht geeignete Filterfarbstoffe umfassen Oxonolfarbstoffe, Hemioxonolfarbstoffe, Styrylfarb­stoffe, Merocyaninfarbstoffe, Cyaninfarbstoffe und Azo­ farbstoffe. Von diesen Farbstoffen werden Oxonolfarb­stoffe, Hemioxonolfarbstoffe und Merocyaninfarbstoffe besonders vorteilhaft verwendet.
  • Geeignete Weißtöner sind z.B. in Research Disclosure Dezember 1978, Seite 22 ff. Referat 17 643, Kapitel V, in US-A-2 632 701, 3 269 840 und in GB-A-852 075 und 1 319 763 beschrieben.
  • Bestimmte Bindemittelschichten, insbesondere die vom Träger am weitesten entfernte Schicht, aber auch ge­legentlich Zwischenschichten, insbesondere, wenn sie während der Herstellung die vom Träger am weitesten entfernte Schicht darstellen, können fotografisch inerte Teilchen anorganischer oder organischer Natur enthal­ten, z.B. als Mattierungsmittel oder als Abstandshalter (DE-A 3 331 542, DE-A 3 424 893, Research Disclosure Dezember 1978, Seite 22 ff. Referat 17 643, Kapitel XVI).
  • Der mittlere Teilchendurchmesser der Abstandshalter liegt insbesondere im Bereich von 0,2 bis 10 µm. Die Ab­standshalter sind wasserunlöslich und können alkaliun­löslich oder alkalilöslich sein, wobei die alkalilös­lichen im allgemeinen im alkalischen Entwicklungsbad aus dem fotografischen Material entfernt werden. Beispiele für geeignete Polymere sind Polymethylmethacrylat, Co­polymere aus Acrylsäure und Methylmethacrylat sowie Hydroxypropylmethylcellulosehexahydrophthalat.
  • Geeignete Formalinfänger sind z.B.
    Figure imgb0064
  • Zusätze zur Verbesserung der Farbstoff-, Kuppler- und Weißenstabilität sowie zur Verringerung des Farbschlei­ers (Research Disclosure 17 643/1978, Kapitel VII) können den folgenden chemischen Stoffklasen angehöhren: Hydrochinone, 6-Hydroxychromane, 5-Hydroxycumarane, Spirochromane, Spiroindane, p-Alkoxyphenole, sterische gehinderte Phenole, Gallussäurederivate, Methylendioxy­benzole, Aminophenole, sterisch gehinderte Amine, Deri­vate mit veresterten oder verätherten phenolischen Hy­droxylgurppen, Metallkomplexe.
  • Verbindungen, die sowohl eine sterisch gehinderte Amin-­Partialstruktur als auch eine sterisch gehinderte Phenol-Partialstruktur in einem Molekül aufweisen (US-­A-4 268 593), sind besonders wirksam zur Verhinderung der Beeinträchtigung (Verschlechterung bzw. Abbau) von gelben Farbbildern als Folge der Entwicklung von Wärme, Feuchtigkeit und Licht. Um die Beeinträchtigung (Ver­schlechterung bzw. den Abbau) von purpurroten Farb­bildern, insbesondere ihre Beeinträchtigung (Ver­schlechterung bzw. Abbau) als Folge der Einwirkung von Licht, zu verhindern, sind Spiroindane (JP-A-159 644/81) und Chromane, die durch Hydrochinondiether oder -mono­ether substituiert sind (JP-A- 89 835/80) besonders wirksam.
  • Beispiele besonders geeigneter Verbindungen sind:
    Figure imgb0065
    Figure imgb0066
    sowie die als EOP-Fänger aufgeführten Verbindungen.
  • Die Schichten des fotografischen Materials können mit den üblichen Härtungsmitteln gehärtet werden. Geeignete Härtungsmittel sind z.B. Formaldehyd, Glutaraldehyd und ähnliche Aldehydverbindungen, Diacetyl, Cyclopentadion und ähnliche Ketonverbindungen, Bis-(2-chlorethylharn­stoff), 2-Hydroxy-4,6-dichlor-1,3,5-triazin und andere Verbindungen, die reaktives Halogen enthalten (US-A 3 288 775, US-A-2 732 303, GB-A-974 723 und GB-A 1 167 207) Divinylsulfonverbindungen, 5-Acetyl-1,3-di­acryloylhexahydro-1,3,5-triazin und andere Verbindungen, die eine reaktive Olefinbindung enthalten (US-A 3 635 718, US-A-3 232 763 und GB-A 994 869); N-Hydroxy­methylphthalimid und andere N-Methylolverbindungen (US-A 2 732 316 und US-A 2 586 168); Isocyanate (US-A 3 103 437); Aziridinverbindungen (US-A 3 017 280 und US-A 2 983 611); Säurederivate (US-A 2 725 294 und US-A 2 725 295); Verbindungen vom Carbodiimidtyp (US-A 3 100 704); Carbamoylpyridiniumsalze (DE-A 2 225 230 und DE-A 2 439 551); Carbamoyloxypyridiniumverbindungen (DE-A-2 408 814); Verbindungen mit einer Phosphor-Halo­gen-Bindung (JP-A- 113 929/83); N-Carbonyloximid-Ver­bindungen (JP-A- 43353/81); N-Sulfonyloximido-Verbin­dungen (US-A- 4 111 926), Dihydrochinolinverbindungen (US-A- 4 013 468), 2-Sulfonyloxypyridiniumsalze (JP-A- 110 762/81), Formamidiniumsalze (EP-A 0 162 308), Ver­bindungen mit zwei oder mehr N-Acyloximino-Gruppen (US-A 4 052 373), Epoxyverbindungen (US-A 3 091 537), Verbin­dungen vom Isoxazoltyp (US-A 3 321 313 und US-A- 3 543 292); Halogencarboxyladehyde, wie Mucochlorsäure; Dioxanderivate, wie Dihydroxydioxan und Di-chlordioxan; und anorganische Härter, wie Chromalaun und Zirkonsulfat.
  • Die Härtung kann in bekannter Weise dadurch bewirkt wer­den, daß das Härtungsmittel der Gießlösung für die zu härtende Schicht zugesetzt wird, oder dadurch, daß die zu härtende Schicht mit einer Schicht überschichtet wird, die ein diffusionsfähiges Härtungsmittel enthält.
  • Unter den aufgeführten Klassen gibt es langsam wirkende und schnell wirkende Härtungsmittel sowie sogenannte Soforthärter, die besonders vorteilhaft sind. Unter Soforthärtern werden verbindungen verstanden, die ge­eignete Bindemittel so vernetzen, daß unmittelbar nach Beguß, spätestens nach 24 Stunden, vorzugsweise spätestens nach 8 Stunden die Härtung so weit abge­schlossen ist, daß keine weitere durch die Vernetzungs­reaktion bedingte Änderung der Sensitometrie und der Quellung des Schichtverbandes auftritt. Unter Quellung wird die Differenz von Naßschichtdicke und Trocken­schichtdicke bei der wäßrigen Verarbeitung des Films verstanden (Photogr. Sci., Eng. 8 (1964), 275; Photogr. Sci. Eng. (1972), 449).
  • Bei diesen mit Gelatine sehr schnell reagierenden Här­tungsmitteln handelt es sich z.B. um Carbamoylpyri­diniumsalze, die mit freien Carboxylgruppen der Gelatine zu reagieren vermögen, so daß letztere mit freien Amino­gruppen der Gelatine unter Ausbildung von Peptidbin­dungen und Vernetzung der Gelatine reagieren.
  • Geeignete Beispiele für Soforthärter sind z.B. Verbin­dungen der allgemeinen Formeln
    Figure imgb0067
    worin
    R₁ Alkyl, Aryl oder Aralkyl bedeutet,
    R₂ die gleiche Bedeutung wie R₁ hat oder Alkylen, Arylen, Aralkylen oder Alkaralkylen bedeutet, wobei die zweite Bindung mit einer Gruppe der Formel
    Figure imgb0068
    verknüpft ist, oder
    R₁ und R₂ zusammen die zur Vervollständigung eines gegebenenfalls substituierten heterocyclischen Ringes, beispielsweise eines Piperidin-, Pipe­razin- oder Morpholinringes erforderlichen Atome bedeuten, wobei der Ring z.B. durch C₁-­C₃-Alkyl oder Halogen substituiert sein kann,
    R₃ für Wasserstoff, Alkyl, Aryl, Alkoxy, -NR₄-COR₅, -(CH₂)m-NR₈R₉, -(CH₂)n-CONR₁₃R₁₄ oder
    Figure imgb0069
    oder ein Brüchenglied oder eine direkte Bindung an eine Polymerkette steht, wobei
    R₄, R₆, R₇, R₉, R₁₄, R₁₅, R₁₇, R₁₈, und R₁₉ Wasserstoff oder C₁-C₄-Alkyl,
    R₅ Wasserstoff, C₁-C₄-Alkyl oder NR₆R₇,
    R₈ -COR₁₀
    R₁₀ NR₁₁R₁₂
    R₁₁ C₁-C₄-Alkyl oder Aryl, insbesondere Phenyl,
    R₁₂ Wasserstoff, C₁-C₄-Alkyl oder Aryl, insbeson­dere Phenyl,
    R₁₃ Wasserstoff, C₁-C₄-Alkyl oder Aryl, insbeson­dere Phenyl,
    R₁₆ Wasserstoff, C₁-C₄-Alkyl, COR₁₈ oder CONHR₁₉,
    m eine Zahl 1 bis 3
    n eine Zahl 0 bis 3
    p eine Zahl 2 bis 3 und
    Y O oder NR₁₇ bedeuten oder
    R₁₃ und R₁₄ gemeinsam die zur Vervollständigung eines gegebenenfalls substituierten hetero­cyclischen Ringes, beispielsweise eines Piperidin-, Piperazin- oder Morpholinringes erforderlichen Atome darstellen, wobei der Ring z.B. durch C₁-C₃-Alkyl oder Halogen substituiert sein kann,
    Z die zur Vervollständigung eines 5- oder 6-­gliedrigen aromatischen heterocyclischen Ringes, gegebenenfalls mit anelliertem Ben­zolring, erforderlichen C-Atome und
    X ein Anion bedeuten, das entfällt, wenn bereits eine anionische Gruppe mit dem übrigen Molekül verknüpft ist;
    Figure imgb0070
    worin
    R₁, R₂, R₃ und X die für Formel (a) angegebene Bedeutung besitzen.
  • Es gibt diffusionsfähige Härtungsmittel, die auf alle Schichten innerhalb eines Schichtverbandes in gleicher Weise härtend wirken. Es gibt aber auch schichtbegrenzt wirkende, nicht diffundierende, niedermolekulare und hochmolekulare Härter. Mit ihnen kann man einzelnen Schichten, z.B. die Schutzschicht besonders stark ver­netzen. Dies ist wichtig, wenn mann die Silberhalogenid-­Schicht wegen der Silberdeckkrafterhöhung wenig härtet und mit der Schutzschicht die mechanischen Eigenschaften verbessern muß (EP-A 0 114 699).
  • Farbfotografische Negativmaterialien werden üblicher­weise durch Entwickeln, Bleichen, Fixieren und Wässern oder durch Entwickeln, Bleichen, Fixieren und Stabili­sieren ohne nachfolgende Wässerung verarbeitet, wobei Bleichen und Fixieren zu einem Verarbeitungsschritt zusammengefaßt sein können. Als Farbentwicklerverbindung lassen sich sämtliche Entwicklerverbindungen verwenden, die die Fähigkeit besitzen, in Form ihres Oxidations­produktes mit Farbkupplern zu Azomethin- bzw. Indo­phenolfarbstoffen zu reagieren. Geeignete Farbentwick­lerverbindungen sind aromatische, mindestens eine primäre Aminogruppen enthaltende Verbindungen vom p-­Phenylendiamintyp, beispielsweise N,N-Dialkyl-p-­phenylendiamine wie N,N-Diethyl-p-phenylendiamin, 1-(N-­Ethyl-N-methansulfonamidoethyl)-3-methyl-p-phenylen­diamin, 1-(N-Ethyl-N-hydroxyethyl)-3-methyl-p-pheny­lendiamin und 1-(N-Ethyl-N-methoxyethyl)-3-methyl-p-­phenylendiamin. Weitere brauchbare Farbentwickler sind beispielsweise in J. Amer. Chem. Soc. 73, 3106 (1951) und G. Haist, Modern Photographic Processing, 1979, John Wiley and Sons, New York, Seite 545 ff. beschrieben.
  • Nach der Farbentwicklung kann ein saures Stoppbad oder eine Wässerung folgen.
  • Üblicherweise wird das Material unmittelbar nach der Farbentwicklung gebleicht und fixiert. Als Bleichmit­tel können z.B. Fe(III)-Salze und Fe(III)-Komplexsalze wie Ferricyanide, Dichromate, wasserlösliche Kobalt-­komplexe verwendet werden. Besonders bevorzugt sind Eisen-(III)-Komplexe von Aminopolycarbonsäuren, insbe­sondere z.B. von Ethylendiamintetraessigsäure, Propylen­diamintetraessigsäure, Diethyltriaminpentaessigsäure, Nitrilotriessigsäure, Iminodiessigsäure, N-Hydroxy­ethyl-ethylendiamintriessigsäure, Alkyliminodicarbon­säuren und von entsprechenden Phosphonsäuren. Geeignete als Bleichmittel sind weiterhin Persulfate.
  • Auf das Bleichfixierbad oder Fixierbad folgt meist eine Wässerung, die als Gegenstromwässerung ausgeführt ist oder aus mehreren Tanks mit eigener Wasserzufuhr be­steht.
  • Günstige Ergebnisse können bei Verwendung eines darauf folgenden Schlußbades, das keinen oder nur wenig Formaldehyd enthält, erhalten werden.
  • Die Wässerung kann aber durch ein Stabilisierbad voll­ständig ersetzt werden, das üblicherweise im Gegenstrom geführt wird. Dieses Stabilisierbad übernimmt bei Form­aldehydzusatz auch die Funktion eines Schlußbades.
  • Da durch die erfindungsgemäßen Verbindungen die Körnig­keit im Bereich niedriger Farbdichten ansteigt, em­pfiehlt es sich, diese Verbindungen bei Materialien, die mehr als eine Schicht für einen Spektralbereich enthal­ten, den höchstempfindlichen Teilschichten zuzusetzen.
  • In der Regel erhöhen die erfindungsgemäßen Substanzen nicht nur die entwickelbare Dichte im Belichtungs­bereich, sondern auch diejenige eines gegebenenfalls anwesendenden Schleiers. Zweckmäßigerweise wird daher der Zusatz der erfindungsgemäßen Substanzen mit einem Zusatz von geeigneten fotografischen Stabilisatoren kombiniert. Bewährt haben sich beispielsweise Verbindun­gen der allgemeinen Formel
    Figure imgb0071
    worin
    Z die zur Vervollständigung eines Oxazol- oder Oxazinringes erforderlichen Atome, und
    Y ein ankondensiertes aromatisches Ringsystem mit mindestens einem aromatischen Ring, das mit einer sauren Gruppe substituiert sein kann, oder einen Substituenten mit einer sauren Gruppe bedeuten.
  • Beispiel 1 (Einzelschichten)
  • Auf einen transparenten Schichtträger aus Cellu­losetriacetat wurden folgende Schichten aufgetragen.
  • Die Mengenangaben beziehen sich jeweils auf 1 m². Für den Silberhalogenidauftrag werden die äquivalenten Mengen an AgNO₃ angegeben.
  • 4,0 g AgNO₃ einer spektral grünsensibilisierten Ag(Cl, Br, J)-Emulsion mit 4,5 Mol-% I, 2,0 Mol-% Cl, mitt­lere Korngröße 0,65 µm, kristallografisch begrenzt durch 100-Flächen, stabilisiert mit 30 mg 4-Hydroxy-6-methyl-­1,3,3a,7-tetraazainden und 80 mg des Stabilisators der Formel
    Figure imgb0072
    die 2,8 g Gelatine enthielt, wurden mit 0,03 mMol der erfindungsgemäßen kornaktiven latenten Schleiermittel oder der Vergleichsverbindung gemäß Tabelle 1 versetzt.
  • 0,8 g des Farbkupplers der Formel
    Figure imgb0073
    in 0,8 g Trikresylphosphat wurden zugefügt.
  • Die Schichten wurden mit einer Gelatine-Schutzschicht (0,5 µm Trockenschichtdicke) überzogen und mit 0,3 g/m² des Härtungsmittels
    Figure imgb0074
    gehärtet.
  • Nach bildmäßiger Belichtung mit weißem Licht mit einer Belichtungszeit von 1/100 sek hinter einem grauen Sensitometerkeil wurden die Proben nach einem Color-­Negativ-Verfahren, das in "The Britisch Journal of Photography", 1974, Seiten 597 und 598 beschrieben ist, verarbeitet.
  • Die fotografischen Empfindlichkeiten sind in der nach­folgenden Tabelle dargestellt.
  • Vergleichsverbindung:
  • Figure imgb0075
    Tabelle 1
    Zusatz fotogr. Empfindlichkeit
    Verbindung Molgewicht mMole auf 1 Mol AgNO₃
    Vergleich ohne - - 23,2 DIN
    Vergleich Vergleichsverbindung 829,1 0,03 23,6 DIN
    Erfindung 15 355,5 0,03 26,8 DIN
    Erfindung 22 288,3 0,03 26,7 DIN
    Erfindung 23 376,4 0,03 26,5 DIN
    Erfindung 24 347,4 0,03 26,8 DIN
    Erfindung 25 346,8 0,03 26,4 DIN
    Erfindung 26 316 0,03 25,2 DIN
  • Beispiel 2
  • Wie nachfolgend beschrieben wurden durch Zusatz der Vergleichssubstanz und der erfindungsgemäßen Substanzen zu den hochempfindlichen Teilschichten 9, 11 und 13 die Schichtaufbauten A bis G sowie der Vergleichsaufbau H ohne die entsprechenden Zusätze hergestellt, indem die Schichten 1 bis 14 nacheinander auf einem transparenten Schichtträger gegossen wurden.
  • Schichtträger, Mengenangaben und Stabilisierung der Emulsionen wie bei Beispiel 1.
    1. Schicht (Antihalo-Schicht)
    0,2 g schwarzes kolloidales Silber
    1,2 g Gelatine
    0,1 g UV-Absorber UV 1
    0,2 g UV-Absorber UV 2
    0,02 g Trikresylphosphat
    0,03 g Dibutylphthalat
    2. Schicht (Mikrat-Zwischenschicht)
    0,4 g AgNO₃ einer Mikrat-Ag(BrJ)-Emulsion, mittlerer Korndurchmesser 0,05 µm, 2 Mol-% Iodid
    1,2 g Gelatine
    0,08 g farbiger Kuppler RM 1
    0,15 g Dibutylphthalat
    3. Schicht (niedrig-rotempfindliche Schicht)
    2,0 g AgNO₃ einer spektral rotsensibilisierten Ag(Br,J)-Emulsion mit 3,5 Mol-% Iodid, mittlerer Korndurchmesser 0,42 µm
    2,0 g Gelatine
    0,58 g farbloser Kuppler C1
    0,02 g DIR-Kuppler DIR 1
    0,02 g DIR-Kuppler DIR 2
    0,05 g farbiger Kuppler RM 1
    0,40 g Trikresylphosphat
    0,15 g Dibutylphthalat
    4. Schicht (Trennschicht)
    0,8 g Gelatine
    0,05 g 2,5-Di-t-pentadecylhydrochinon
    0,05 g Trikresylphosphat
    0,05 g Dibutylphthalat
    5. Schicht (niedrig-grünempfindliche Schicht)
    1,8 g AgNO₃ einer spektral grünsensibilisierten Ag(Br,J)-Emulsion, 4,35 Mol-% Iodid, mittlerer Korndurchmesser 0,36 µm
    1,6 g Gelatine
    0,45 g farbloser Kuppler M 2
    0,05 g DIR-Kuppler DIR-2
    0,12 g farbiger Kuppler YM 1
    0,52 g Trikresylphosphat
    6. Schicht (Gelbfilterschicht)
    0,02 g gelbes kolloidales Silber, passiviert durch
    6 mg 1-Phenyl-5-mercaptotetrazol/g AgNO₃
    0,8 g Gelatine
    0,15 g 2,5-Di-t-pentadecylhydrochinon
    7. Schicht (niedrig-blauempfindliche Schicht)
    0,65 g einer spektral blausensibilisierten Ag(Br,J)-Emulsion, 4,35 Mol-% Iodid, mittlerer Korndurchmesser 0,43 µm
    1,95 g Gelatine
    0,85 g farbloser Kuppler Y1
    0,15 g DIR-Kuppler DIR 3
    0,90 g Trikresylphosphat
  • 8. Schicht (Trennschicht)
  • wie 4. Schicht
    9. Schicht (hoch-rotempfindliche Schicht)
    2,2 g AgNO₃ der spektral rotsensibilisierten Ag(Br,J)-Emulsion, 6,3 Mol-% Iodid, mittlerer Korndurchmesser 0,82 µm, versehen mit den erfindungsgemäßen Zusätzen oder den Vergleichszusätzen gemäß Tabelle 2,
    1,2 g Gelatine
    0,20 g farbloser Kuppler C 2
    0,01 g DIR-Kuppler DIR-2
    0,02 g farbiger Kuppler RM 1
    0,15 g Trikresylphosphat
    0,10 g Dibutylphthalat
  • 10. Schicht (Trennschicht)
  • wie 4. Schicht
    Figure imgb0076
  • 12. Schicht (Gelbfilterschicht)
  • wie 6. Schicht
    Figure imgb0077
    Figure imgb0078
  • Im Beispiel 2 verwendete Substanzen:
    Figure imgb0079
    Figure imgb0080
    Figure imgb0081
    Figure imgb0082
    Tabelle 2
    Schicht-Aufbau Zusatz Empfindlichkeit
    Art mMol auf 1 Mol AgNO₃ zur: bg pp gb
    9.Schicht 11.Schicht 13.Schicht
    Vergleich H ohne - - - 26,2 26,4 27,0
    Vergleich A Vergleichssubstanz 0,03 0,04 0,05 26,4 26,7 27,2
    Erfindung B 15 0,03 0,04 0,05 27,8 28,0 29,2
    Erfindung C 22 0,02 0,02 0,03 28,0 28,5 29,1
    Erfindung D 23 0,03 0,04 0,04 28,2 28,5 29,0
    Erfindung E 24 0,02 0,02 0,03 28,3 28,7 29,2
    Erfindung F 25 0,03 0,03 0,03 28,1 28,6 29,4
    Erfindung G 26 0,02 0,03 0,05 27,8 28,9 28,8

Claims (7)

1. Farbfotografisches Silberhalogenidmaterial vom Ne­gativtyp, bei dem wenigstens eine Silberhalogenid­emulsionsschicht eine Verbindung der Formel
A―(Z)n―S*      (I)
am Silberhalogenidkorn adsorbiert enthält,
wobei A eine kornaktive Haftgruppe der Formeln IIa bis IId:
Figure imgb0083
worin
Z₁ die restlichen Glieder zur Vervollständigung eines vorzugsweise 5- oder 6-gliedrigen Rin­ges, der wenigstens ein weiteres Heteroatom wie ein Stickstoff- oder Schwefelatom enthält und gegebenenfalls benzo- oder naphthokon­densiert ist,
Z₂ die restlichen Glieder zur Vervollständigung eines vorzugsweise 5- oder 6-gliedrigen Ringes, der gegebenenfalls benzo- oder naphthokondensiert ist,
X -NH₂, -NHR,
Figure imgb0084
-NH-NH₂, -NH-NHR, -SR,
Y -S-, -NH-, -NR-,
B, D Wasserstoff, R oder gemeinsam die restlichen Glieder eines 5- oder 6-gliedrigen Ringes,
R einen aliphatischen, aromatischen oder hete­rocyclischen Rest,
Z ein zweiwertiges Zwischenglied,
S* eine latente Schleiermittelgruppe, die bei der Farbentwicklung zum aktiven Schleiermittel (S) wird, und
n 0 oder 1 bedeuten.
2. Farbfotografisches Silberhalogenidmaterial nach Anspruch 1, dadurch gekennzeichnet, daß
Z Alkylen, Arylen, -COCH₂-, -COCH₂-S-, -COCH₂O-,
Figure imgb0085
S* einen Rest der Formeln
Figure imgb0086
wobei
in Formel IIIc einer der Reste R₅, R₆,R₇ oder R₈ die Verknüpfungsstelle für den Rest A-(Z)n-ist,
R₁ Wasserstoff, Halogen, Alkyl, Alkoxy,
R₂ eine Acylgruppe, beispielsweise -CHO-, -COR₉, -COOR₉, -CONH₂, -CONHR₉, -SO₂R₉, -PO(R₉)₂, -PO(OR₉)₂,
R₃ Wasserstoff, Halogen, Alkyl, Alkoxy,
R₄ Wasserstoff, Halogen, Alkyl, Alkoxy, Acyl­amino, Nitro oder Sulfonyl,
R₅ Wasserstoff, -CONHR₉, -NHCOR₉, -SO₂NHR₉, -NHCOOR₉, -NHSO₂R₉, -NHCONHR₉,
R₆ Wasserstoff oder Alkyl,
R₇ Wasserstoff oder Acyl wie -COR₉, -COOR₉, -CONHR₉, SO₂NHR₃ oder
R₆ und R₇ zusammen die restlichen Glieder eines heterocyclischen Ringes oder zusammen mit dem Stickstoffatom eine Azomethingruppe
Figure imgb0087
R₈ Wasserstoff, Alkoxy oder Acylamino,
R₈ und R₆ zusammen die restlichen Glieder eines heterocyclischen Ringes, der mit dem Naphtholring kondensiert ist,
R₉ eine gegebenenfalls substituierte aliphatische oder olefinische, cycloaliphatische oder cycloolefinische, aromatische oder hetero­cyclische Gruppe,
R₁₀ Wasserstoff, Alkyl, Aryl,
R₁₁ Alkyl, Aryl oder Hetaryl und
L eine zweiwertige Gruppe, die eine mit der Hydrazingruppe verknüpft -CO-Gruppe enthält,
bedeuten.
3. Farbfotografisches Silberhalogenidmaterial nach An­spruch 1, dadurch gekennzeichnet, daß die Verbin­dung I der Formel (IV) entspricht
Figure imgb0088
worin
L₁ C₁-C₆-Alkylen,
L₂ ein Schwefelatom,
R₁₂ einen heterocyclischen Rest,
p 0 oder 1 und
q 0 oder 1 bedeuten.
4. Farbfotografisches Silberhalogenidmaterial nach An­spruch 1, dadurch gekennzeichnet, daß die Verbin­dung I der Silberhalogenidemulsion nach der spek­tralen Sensibilisierung in einer Menge von 0,005 bis 1 mMol/Mol AgNO₃ zugegeben wird.
5. Farbfotografisches Silberhalogenidmaterial nach An­spruch 1, dadurch gekennzeichnet, daß es Schichten gleicher spektraler Sensibilisierung aber unter­schiedlicher Empfindlichkeit enthält, wobei sich die Verbindung der Formel (I) in der höchstempfind­lichen Schicht befindet.
6. Farbfotografisches Material nach Anspruch 1, das wenigstens eine rotempfindliche, wenigstens einen Blaugrünkuppler enthaltende Schicht, wenigstens eine grünempfindliche, wenigstens einen Purpurkupp­ler enthaltende Schicht und wenigstens eine blau­empfindliche, einen Gelbkuppler enthaltende Schicht hat.
7. Farbfotografisches Material nach Anspruch 6, das wenigstens zwei rotempfindliche, wenigstens zwei grünempfindliche und wenigstens zwei blauempfind­liche Schichten enthält, wobei alle höchstempfind­lichen Schichten eine Verbindung der Formel (I) enthalten.
EP89115796A 1988-09-08 1989-08-26 Fotografisches Aufzeichnungsmaterial Expired - Lifetime EP0358071B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3830512 1988-09-08
DE3830512A DE3830512A1 (de) 1988-09-08 1988-09-08 Fotografisches aufzeichnungsmaterial

Publications (3)

Publication Number Publication Date
EP0358071A2 true EP0358071A2 (de) 1990-03-14
EP0358071A3 EP0358071A3 (en) 1990-12-27
EP0358071B1 EP0358071B1 (de) 1995-01-11

Family

ID=6362517

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89115796A Expired - Lifetime EP0358071B1 (de) 1988-09-08 1989-08-26 Fotografisches Aufzeichnungsmaterial

Country Status (4)

Country Link
US (1) US4985351A (de)
EP (1) EP0358071B1 (de)
JP (1) JPH02113244A (de)
DE (2) DE3830512A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0652474A1 (de) * 1993-11-08 1995-05-10 Agfa-Gevaert AG Farbfotografisches Aufzeichnungsmaterial
DE19507913A1 (de) * 1995-03-07 1996-09-12 Agfa Gevaert Ag Farbfotografisches Silberhalogenidmaterial

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2699012B2 (ja) * 1989-10-12 1998-01-19 富士写真フイルム株式会社 ハロゲン化銀カラー写真感光材料
US5147764A (en) * 1990-06-28 1992-09-15 Eastman Kodak Company Photographic element with 2-equivalent 5-pyrazolone and competitor for oxidized developing agent
JP3487459B2 (ja) * 1995-04-04 2004-01-19 富士写真フイルム株式会社 ハロゲン化銀写真乳剤の還元増感法及びこの乳剤を用いたハロゲン化銀写真感光材料
DE19538620C2 (de) * 1995-10-17 2001-09-13 Agfa Gevaert Ag Farbfotografisches Aufzeichnungsmaterial
US5747235A (en) * 1996-01-26 1998-05-05 Eastman Kodak Company Silver halide light sensitive emulsion layer having enhanced photographic sensitivity
US5747236A (en) * 1996-01-26 1998-05-05 Eastman Kodak Company Silver halide light sensitive emulsion layer having enhanced photographic sensitivity
US6010841A (en) * 1996-01-26 2000-01-04 Eastman Kodak Company Silver halide light sensitive emulsion layer having enhanced photographic sensitivity
JPH11133530A (ja) * 1997-10-29 1999-05-21 Oriental Photo Ind Co Ltd ハロゲン化銀写真感光材料及び画像形成方法
US6437169B1 (en) 1998-04-16 2002-08-20 Fuji Photo Film Co., Ltd. 1-naphthol compound and method for preparing compound having acidic proton using the same
EP0950922A1 (de) * 1998-04-16 1999-10-20 Fuji Photo Film Co., Ltd. Farbphotographisches lichtempfindliches Silberhalogenidmaterial

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0117511A2 (de) * 1983-02-25 1984-09-05 Fuji Photo Film Co., Ltd. Farbphotographisches lichtempfindliches Silberhalogenidmaterial
EP0154293A2 (de) * 1984-02-28 1985-09-11 Fuji Photo Film Co., Ltd. Photographisches Silberhalogenidmaterial
JPS62175749A (ja) * 1986-01-29 1987-08-01 Fuji Photo Film Co Ltd カラ−画像形成法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60258537A (ja) * 1984-06-05 1985-12-20 Fuji Photo Film Co Ltd 高コントラストネガティブ画像の形成方法
JPH0736076B2 (ja) * 1986-03-24 1995-04-19 富士写真フイルム株式会社 ハロゲン化銀写真感光材料およびそれを用いた画像形成方法
JPH0782219B2 (ja) * 1986-04-03 1995-09-06 富士写真フイルム株式会社 超硬調ネガ型写真感光材料
JPH0670711B2 (ja) * 1986-09-29 1994-09-07 富士写真フイルム株式会社 ハロゲン化銀カラ−ネガ写真感光材料

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0117511A2 (de) * 1983-02-25 1984-09-05 Fuji Photo Film Co., Ltd. Farbphotographisches lichtempfindliches Silberhalogenidmaterial
EP0154293A2 (de) * 1984-02-28 1985-09-11 Fuji Photo Film Co., Ltd. Photographisches Silberhalogenidmaterial
JPS62175749A (ja) * 1986-01-29 1987-08-01 Fuji Photo Film Co Ltd カラ−画像形成法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 12, no. 19 (P-657)(2866) 21 Januar 1988, & JP-A-62 175749 (FUJI PHOTO FILM) 01 August 1987, *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0652474A1 (de) * 1993-11-08 1995-05-10 Agfa-Gevaert AG Farbfotografisches Aufzeichnungsmaterial
DE19507913A1 (de) * 1995-03-07 1996-09-12 Agfa Gevaert Ag Farbfotografisches Silberhalogenidmaterial
DE19507913C2 (de) * 1995-03-07 1998-04-16 Agfa Gevaert Ag Farbfotografisches Silberhalogenidmaterial

Also Published As

Publication number Publication date
DE3830512A1 (de) 1990-03-15
US4985351A (en) 1991-01-15
DE58908872D1 (de) 1995-02-23
EP0358071A3 (en) 1990-12-27
EP0358071B1 (de) 1995-01-11
JPH02113244A (ja) 1990-04-25

Similar Documents

Publication Publication Date Title
EP0313949B1 (de) Farbfotografisches Silberhalogenidmaterial
EP0320776B1 (de) Farbfotografisches Silberhalogenidmaterial
EP0358071B1 (de) Fotografisches Aufzeichnungsmaterial
EP0464409B1 (de) Farbfotografisches Aufzeichnungsmaterial
EP0358073B1 (de) Fotografisches Aufzeichnungsmaterial
EP0351588B1 (de) Farbfotografisches Aufzeichnungsmaterial
EP0370226B1 (de) Fotografisches Silberhalogenidmaterial und Verfahren zu seiner Verarbeitung
EP0652474B1 (de) Farbfotografisches Aufzeichnungsmaterial
EP0377889B1 (de) Silberhalogenidaufzeichnungsmaterial
EP0413204A2 (de) Farbfotografisches Silberhalogenidmaterial
EP0447656A1 (de) Farbfotografisches Silberhalogenidmaterial und seine Entwicklung
EP0377181A2 (de) Farbfotografisches Material
EP0369235B1 (de) Fotografisches Aufzeichnungsmaterial
EP0363820A2 (de) Farbfotografisches Silberhalogenidmaterial
EP0373339B1 (de) Silberhalogenidaufzeichnungsmaterial
EP0697624B1 (de) Farbphotographisches Aufzeichnungsmaterial
EP0345514A2 (de) Farbfotografisches Silberhalogenidmaterial
EP0616256B1 (de) Farbfotografisches Aufzeichnungsmaterial
EP0322648A2 (de) Farbfotografisches Aufzeichnungsmaterial und Verfahren zur Herstellung einer fotografischen Silberhalogenidemulsion
EP0330948A2 (de) Verfahren zur Erzeugung von Colorbildern
EP0315833A2 (de) Farbfotografisches Material
EP0447657B1 (de) Fotografisches Aufzeichnungsmaterial
DE3838467A1 (de) Fotografisches aufzeichnungsmaterial
EP0362604A2 (de) Farbfotografisches Silberhalogenidmaterial
EP0709731A2 (de) Farbfotografisches Silberhalogenidmaterial

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19890826

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE DE FR GB NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE DE FR GB NL

17Q First examination report despatched

Effective date: 19931220

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB NL

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950119

REF Corresponds to:

Ref document number: 58908872

Country of ref document: DE

Date of ref document: 19950223

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19950817

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19950830

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19960831

BERE Be: lapsed

Owner name: AGFA-GEVAERT A.G.

Effective date: 19960831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19970301

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19970301

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990707

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000705

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000710

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010826

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020430

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST