EP0652474B1 - Farbfotografisches Aufzeichnungsmaterial - Google Patents
Farbfotografisches Aufzeichnungsmaterial Download PDFInfo
- Publication number
- EP0652474B1 EP0652474B1 EP94116952A EP94116952A EP0652474B1 EP 0652474 B1 EP0652474 B1 EP 0652474B1 EP 94116952 A EP94116952 A EP 94116952A EP 94116952 A EP94116952 A EP 94116952A EP 0652474 B1 EP0652474 B1 EP 0652474B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- silver halide
- compounds
- layer
- group
- coup
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03C—PHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
- G03C7/00—Multicolour photographic processes or agents therefor; Regeneration of such processing agents; Photosensitive materials for multicolour processes
- G03C7/30—Colour processes using colour-coupling substances; Materials therefor; Preparing or processing such materials
- G03C7/305—Substances liberating photographically active agents, e.g. development-inhibiting releasing couplers
- G03C7/30541—Substances liberating photographically active agents, e.g. development-inhibiting releasing couplers characterised by the released group
Definitions
- the invention relates to a negative type color photographic silver halide material with improved sensitivity.
- DAR and FAR development accelerator releasing or fogging agent releasing coupler
- the object of the present invention was to provide additives for photographic materials with which an increase in sensitivity can be achieved without a simultaneous increase in fog.
- connection residue splitting off the 4-equivalent coupler carries a ballast group that makes the connection diffusion-resistant, while the splitted off coupler has a silver-affine group with which it is adsorbed on the silver grain.
- the silver-affine group can be linked directly or via an intermediate link Z to the 4-equivalent coupler.
- Preferred divalent intermediate members Z are alkylene groups, arylene groups, -COCH 2 -, -COCH 2 -S-, -COCH 2 -O-, (COUP-D) can be connected to T 1 via a bond to COUP or to D. The same applies to M 2 .
- the group AB can be a coupler residue, a redox compound or a residue which can split off the group (T 1 ) m - (COUP-D) - (T 2 ) n in a non-imagewise manner, for example solely through the alkali of the developer.
- Suitable redox compounds are oxidizable compounds which, after their oxidation, can split off the group (T 1 ) m - (COUP-D) - (T 2 ) n .
- T 1 can also be a coupler residue.
- T 2 can be a hydrolyzable group such as -OCOCH 2 Cl, -OCO-phenyl, -OSO 2 CH 3 , or or a coupler residue.
- the group AB is preferably the remainder of a 2-equivalent coupler which contains the remainder (T 1 ) m - (COUP-D) - (T 2 ) n bound to the coupling point.
- (COUP-D) is preferably linked to B via the silver-affine group D.
- (COUP-D) preferably does not contain any diffusion-resistant ballast residue.
- B and COUP can be the residues of yellow, purple or cyan couplers or the residues of couplers that do not produce color.
- the compounds of the formula I are used in particular in an amount of 0.0005 to 0.05 mmol / m 2 of photographic material, it being possible for the total amount to be used in one layer or distributed over several layers.
- the compounds of the formula I are preferably used in double- or triple-layer packages in the highly sensitive layers.
- mixtures of several compounds of the formula I can also be used, the amount given above also being the total amount in this case.
- Examples of negative type color photographic materials are color negative films, color photographic paper, color reversal films and color reversal paper.
- the invention is particularly valuable for color negative films.
- Suitable supports for the production of such color photographic materials are, for example, films and foils of semisynthetic and synthetic polymers, such as cellulose nitrate, cellulose acetate, cellulose butyrate, polystyrene, polyvinyl chloride, polyethylene terephthalate and polycarbonate, and paper laminated with a barite layer or ⁇ -olefin polymer layer (eg polyethylene).
- These carriers can be colored with dyes and pigments, for example titanium dioxide. They can also be colored black for the purpose of shielding light.
- the surface of the support is generally subjected to a treatment in order to improve the adhesion of the photographic emulsion layer, for example a corona discharge with subsequent application of a substrate layer.
- the color photographic materials usually contain at least one red-sensitive, green-sensitive and blue-sensitive silver halide emulsion layer and, if appropriate, intermediate layers and protective layers.
- Binding agents, silver halide grains and color couplers are essential components of the photographic emulsion layers.
- Gelatin is preferably used as the binder. However, this can be replaced in whole or in part by other synthetic, semi-synthetic or naturally occurring polymers.
- Synthetic gelatin substitutes are, for example, polyvinyl alcohol, poly-N-vinylpyrolidone, polyacrylamides, polyacrylic acid and their derivatives, in particular their copolymers.
- Naturally occurring gelatin substitutes are, for example, other proteins such as albumin or casein, cellulose, sugar, starch or alginates.
- Semi-synthetic gelatin substitutes are usually modified natural products.
- Cellulose derivatives such as hydroxyalkyl cellulose, carboxymethyl cellulose and phthalyl cellulose and gelatin derivatives, which have been obtained by reaction with alkylating or acylating agents or by grafting on polymerizable monomers, are examples of this.
- the binders should have a sufficient amount of functional groups so that enough resistant layers can be produced by reaction with suitable hardening agents.
- functional groups are in particular amino groups, but also carboxyl groups, hydroxyl groups and active methylene groups.
- the gelatin which is preferably used can be obtained by acidic or alkaline digestion. Oxidized gelatin can also be used. The production of such gelatins is described, for example, in The Science and Technology of Gelatine, published by A.G. Ward and A. Courts, Academic Press 1977, page 295 ff.
- the gelatin used in each case should contain the lowest possible level of photographically active impurities (inert gelatin). High viscosity, low swelling gelatins are particularly advantageous.
- the silver halide present as a light-sensitive component in the photographic material can contain chloride, bromide or iodide or mixtures thereof as the halide.
- the halide content of at least one layer can consist of 0 to 15 mol% of iodide, 0 to 100 mol% of chloride and 0 to 100 mol% of bromide.
- the color photographic material according to the invention preferably contains silver bromide iodide emulsions with 5 to 15 mol% of silver iodide.
- It can be predominantly compact crystals, which are, for example, regularly cubic or octahedral or can have transitional forms.
- Preferably can but there are also platelet-shaped crystals, the average ratio of diameter to thickness of which is preferably at least 5: 1, the diameter of a grain being defined as the diameter of a circle with a circle content corresponding to the projected area of the grain.
- the layers can also have tabular silver halide crystals in which the ratio of diameter to thickness is substantially greater than 5: 1, for example 12: 1 to 30: 1.
- the silver halide grains can also have a multi-layered grain structure, in the simplest case with an inner and an outer grain area (core / shell), the halide composition and / or other modifications, such as e.g. Doping of the individual grain areas are different.
- the average grain size of the emulsions is preferably between 0.2 ⁇ m and 2.0 ⁇ m, the grain size distribution can be either homodisperse or heterodisperse. Homodisperse grain size distribution means that 95% of the grains do not deviate from the mean grain size by more than ⁇ 30%.
- the emulsions can also contain organic silver salts, e.g. Silver benzotriazolate or silver behenate.
- Two or more kinds of silver halide emulsions, which are prepared separately, can be used as a mixture.
- the photographic emulsions can be prepared using various methods (e.g. P. Glafkides, Chimie et Physique Photographique, Paul Montel, Paris (1967), GF Duffin, Photographic Emulsion Chemistry, The Focal Press, London (1966), VL Zelikman et al, Making and Coating Photographic Emulsion, The Focal Press, London (1966) from soluble silver salts and soluble halides become.
- the silver halide crystals can also grow by physical ripening (Ostwald ripening) in the presence of excess halide and / or silver halide complexing agent.
- the growth of the emulsion grains can even take place predominantly by Ostwald ripening, preferably a fine-grained, so-called Lippmann emulsion, mixed with a less soluble emulsion and redissolved on the latter.
- Salts or complexes of metals such as Cd, Zn, Pb, Tl, Bi, Ir, Rh, Fe may also be present during the precipitation and / or physical ripening of the silver halide grains.
- the precipitation can also be carried out in the presence of sensitizing dyes.
- Complexing agents and / or dyes can be rendered ineffective at any time, e.g. by changing the pH or by an oxidative treatment.
- the soluble salts are removed from the emulsion, for example by pasta and washing, by flaking and washing, by ultrafiltration or by ion exchangers.
- the silver halide emulsion is generally subjected to chemical sensitization under defined conditions - pH, pAg, temperature, gelatin, silver halide and sensitizer concentration - until the optimum sensitivity and fog are reached.
- Chemical sensitization can be carried out with the addition of compounds of sulfur, selenium, tellurium and / or compounds of the metals of subgroup VIII of the periodic table (for example gold, platinum, palladium, iridium) Nitrogen compounds (e.g. imidazoles, azaindenes) or spectral sensitizers (described, for example, by F. Hamer "The Cyanine Dyes and Related Compounds", 1964, or Ullmanns Encyclopedia of Industrial Chemistry, 4th edition, vol. 18, pp. 431 ff. and Research Disclosure No. 17643, Section III).
- Nitrogen compounds e.g. imidazoles, azaindenes
- spectral sensitizers described, for example, by F. Hamer "The Cyanine Dyes and Related Compounds", 1964, or Ullmanns Encyclopedia of Industrial Chemistry, 4th edition, vol. 18, pp. 431 ff. and Research Disclosure No. 17643, Section III).
- a reduction sensitization with the addition of reducing agents by hydrogen, by low pAg (eg less than 5) and / or high pH (eg above 8).
- the photographic emulsions may contain compounds to prevent fogging or to stabilize the photographic function during production, storage or photographic processing.
- Azaindenes are particularly suitable, preferably tetra and pentaazaindenes, in particular those which are substituted by hydroxyl or amino groups. Such connections are for example from Birr, Z. Wiss. Phot. 47 (1952), pp. 2-58. Furthermore, salts of metals such as mercury or cadmium, aromatic sulfonic or sulfinic acids such as benzenesulfinic acid, or nitrogen-containing heterocycles such as nitrobenzimidazole, nitroindazole, optionally substituted benzotriazoles or benzothiazolium salts can be used as antifoggants.
- metals such as mercury or cadmium, aromatic sulfonic or sulfinic acids such as benzenesulfinic acid, or nitrogen-containing heterocycles such as nitrobenzimidazole, nitroindazole, optionally substituted benzotriazoles or benzothiazolium salts can be used as antifoggants.
- Heterocycles containing mercapto groups for example mercaptobenzthiazoles, mercaptobenzimidazoles, mercaptotetrazoles, mercaptothiadiazoles, mercaptopyrimidines, are particularly suitable, these mercaptoazoles also being able to contain a water-solubilizing group, for example a carboxyl group or sulfo group.
- mercaptobenzthiazoles for example mercaptobenzthiazoles, mercaptobenzimidazoles, mercaptotetrazoles, mercaptothiadiazoles, mercaptopyrimidines
- these mercaptoazoles also being able to contain a water-solubilizing group, for example a carboxyl group or sulfo group.
- a water-solubilizing group for example a carboxyl group or sulfo group.
- the stabilizers can be added to the silver halide emulsions before, during or after their ripening.
- the compounds can also be added to other photographic layers which are assigned to a halogen silver layer.
- the photographic emulsion layers or other hydrophilic colloid layers of the light-sensitive material produced according to the invention can contain surface-active agents for various purposes, such as coating aids, for preventing electrical charging, for improving the sliding properties, for emulsifying the dispersion, for preventing adhesion and for improving the photographic characteristics (eg acceleration of development, high contrast, sensitization etc.).
- coating aids for preventing electrical charging, for improving the sliding properties, for emulsifying the dispersion, for preventing adhesion and for improving the photographic characteristics (eg acceleration of development, high contrast, sensitization etc.).
- non-ionic surfactants for example alkylene oxide compounds, glycerol compounds or glycidol compounds
- cationic surfactants for example higher alkylamines, quaternary ammonium salts, pyridine compounds and other heterocyclic compounds
- sulfonium compounds or phosphonium compounds anionic surfactants containing an acid group, for example carboxylic acid, sulfonic acid, a phosphoric acid, sulfuric acid ester or phosphoric acid ester group
- ampholytic surfactants for example amino acid and Aminosulfonic acid compounds as well as sulfuric or phosphoric acid esters of an amino alcohol.
- the photographic emulsions can be spectrally sensitized using methine dyes or other dyes.
- Particularly suitable dyes are cyanine dyes, merocyanine dyes and complex merocyanine dyes.
- Sensitizers can be dispensed with if the intrinsic sensitivity of the silver halide is sufficient for a certain spectral range, for example the blue sensitivity of silver bromides.
- the differently sensitized emulsion layers are assigned non-diffusing monomeric or polymeric color couplers, which can be located in the same layer or in a layer adjacent to it.
- cyan couplers are assigned to the red-sensitive layers, purple couplers to the green-sensitive layers and yellow couplers to the blue-sensitive layers.
- Color couplers for producing the blue-green partial color image are usually couplers of the phenol or ⁇ -naphthol type.
- Color couplers for producing the purple partial color image are usually couplers of the 5-pyrazolone, indazolone or pyrazoloazole type.
- Color couplers for producing the yellow partial color image are generally couplers with an open-chain ketomethylene group, in particular couplers of the ⁇ -acylacetamide type; suitable examples are ⁇ -benzoylacetanilide couplers and ⁇ -pivaloylacetanilide couplers.
- the color couplers can be 4-equivalent couplers, but also 2-equivalent couplers.
- the latter are derived from the 4-equivalent couplers in that they contain a substituent in the coupling point, which is split off during the coupling.
- the 2-equivalent couplers include those that are colorless, as well as those that have an intense intrinsic color that disappears when the color is coupled or is replaced by the color of the image dye produced (mask coupler), and the white couplers that react with color developer oxidation products yield essentially colorless products.
- the 2-equivalent couplers also include those couplers which contain a cleavable residue in the coupling site, which is released upon reaction with color developer oxidation products and either directly or after one or after the residue from the primary cleavage group several other groups have been split off (e.g. DE-A-27 03-145, DE-A-28 55 697, DE-A-31 05 026, DE-A-33 19 428), a certain desired photographic effectiveness unfolds, e.g. as a development inhibitor (DIR coupler).
- DIR coupler development inhibitor
- DIR couplers the development inhibitors of the azole type, e.g. Triazoles and benzotriazoles are released in DE-A-2 414 006, 2 610 546, 2 659 417, 2 754 281, 2 726 180, 3 626 219, 3 630 564, 3 636 824, 3 644 416 and 2 842 063 described.
- Further advantages for color rendering, i.e. color separation and color purity, and for detail rendering i.e. sharpness and granularity can be achieved with such DIR couplers which e.g. do not split off the development inhibitor directly as a result of the coupling with an oxidized color developer, but only after a further subsequent reaction, which is achieved, for example, with a timing group.
- DIR couplers which release a development inhibitor which is decomposed into essentially photographically ineffective products in the developer bath are described, for example, in DE-A-32 09 486 and in EP-A-167 168 and 219 713. This measure makes trouble-free Development and processing consistency achieved.
- the DIR couplers can be added to a wide variety of layers in a multilayer photographic material, e.g. also light-insensitive or intermediate layers. However, they are preferably added to the photosensitive silver halide emulsion layers, the characteristics of the silver halide emulsion, e.g. whose iodide content, the structure of the silver halide bodies or their grain size distribution influence the photographic properties achieved.
- the influence of the inhibitors released can be limited, for example, by incorporating an inhibitor scavenger layer in accordance with DE-A-24 31 223. For reasons of reactivity or stability, it can be advantageous to use a DIR coupler which forms a color in the coupling in the respective layer in which it is introduced, which color differs from the color to be produced in this layer.
- the material may further contain compounds other than couplers, which can, for example, release a development inhibitor, a development accelerator, a bleaching accelerator, a developer, a silver halide solvent, a fogging agent or an antifoggant, for example so-called DIR hydroquinones and other compounds, as described for example in US-A-4 636 546, 4 345 024, 4 684 604 and in DE-A-3 145 640, 2 515 213, 2 447 079 and in EP-A-198 438. These compounds perform the same function as the DIR, DAR or FAR couplers, except that they do not form coupling products.
- couplers can, for example, release a development inhibitor, a development accelerator, a bleaching accelerator, a developer, a silver halide solvent, a fogging agent or an antifoggant, for example so-called DIR hydroquinones and other compounds, as described for example in US-A-4 636 546, 4 345 024, 4 684 604 and in DE-A
- High molecular weight color couplers are described, for example, in DE-C-1 297 417, DE-A-24 07 569, DE-A-31 48 125, DE-A-32 17 200, DE-A-33 20 079, DE-A-33 24 932, DE-A-33 31 743, DE-A-33 40 376, EP-A-27 284, US-A-4 080 211.
- the high molecular weight color couplers are usually produced by polymerizing ethylenically unsaturated monomeric color couplers. However, they can also be obtained by polyaddition or polycondensation.
- the couplers or other compounds can be incorporated into silver halide emulsion layers by first preparing a solution, a dispersion or an emulsion of the compound in question and then adding it to the casting solution for the layer in question.
- the selection of the suitable solvent or dispersing agent depends on the solubility of the compound.
- Hydrophobic compounds can also be introduced into the casting solution using high-boiling solvents, so-called oil formers. Corresponding methods are described for example in US-A-2 322 027, US-A-2 801 170, US-A-2 801 171 and EP-A-0 043 037.
- oligomers or polymers instead of the high-boiling solvents, oligomers or polymers, so-called polymeric oil formers, can be used.
- the compounds can also be introduced into the casting solution in the form of loaded latices.
- anionic water-soluble compounds e.g. dyes
- pickling polymers e.g. acrylic acid
- Suitable oil formers are e.g. Alkyl phthalates, phosphonic acid esters, phosphoric acid esters, citric acid esters, benzoic acid esters, amides, fatty acid esters, trimesic acid esters, alcohols, phenols, aniline derivatives and hydrocarbons.
- oil formers examples include dibutylphthalate, dicyclohexylphthalate, di-2-ethylhexylphthalate, decylphthalate, triphenylphosphate, tricresylphosphate, 2-ethylhexyldiphenylphosphate, tricyclohexylphosphate, tri-2-ethylhexylphosphate, tridecoxyphosphate, 2-ethylhexylphosphate, tridecoxyphosphate, 2-ethylhexylphosphate, , 2-ethylhexyl p-hydroxybenzoate, diethyldodecanamide, N-tetradecylpyrrolidone, isostearyl alcohol, 2,4-di-tert-amylphenol, dioctyl acylate, glycerol tributyrate, isostearyl lactate, trioctyl citrate, N, N-doxy-5-butyl-2-butyl
- Each of the differently sensitized, light-sensitive layers can consist of a single layer or two or more silver halide emulsion partial layers include (DE-C-1 121 470).
- red-sensitive silver halide emulsion layers are often arranged closer to the support than green-sensitive silver halide emulsion layers and these are in turn closer than blue-sensitive layers, a non-light-sensitive yellow filter layer generally being located between green-sensitive layers and blue-sensitive layers.
- the green or Red-sensitive layers can be selected without the yellow filter layer, other layer arrangements in which e.g. the blue-sensitive, then the red-sensitive and finally the green-sensitive layers follow.
- the non-light-sensitive intermediate layers which are generally arranged between layers of different spectral sensitivity, can contain agents which prevent an undesired diffusion of developer oxidation products from one light-sensitive layer into another light-sensitive layer with different spectral sensitization.
- Suitable agents which are also called scavengers or EDP scavengers, are described in Research Disclosure 17.643 / 1978, Chapter VII, 17.842 / 1979, pages 94-97 and 18.716 / 1979, page 650 and in EP-A-69 070, 98 072 , 124 877, 125 522 and in US-A-463 226.
- sub-layers of the same spectral sensitization can differ with regard to their composition, in particular with regard to the type and amount of the silver halide grains.
- the sublayer with higher sensitivity will be located further away from the support than the sublayer with lower sensitivity.
- Partial layers of the same spectral sensitization can be adjacent to one another or through other layers, e.g. separated by layers of other spectral sensitization.
- all highly sensitive and all low-sensitive layers can be combined to form a layer package (DE-A 1 958 709, DE-A 2 530 645, DE-A 2 622 922).
- the photographic material can also contain UV light absorbing compounds, whiteners, spacers, filter dyes, formalin scavengers, light stabilizers, antioxidants, D Min dyes, additives for improving the stabilization of dyes, couplers and whites and for reducing the color fog and others.
- the layers of the photographic material can be hardened with the usual hardening agents.
- Suitable curing agents are, for example, formaldehyde, glutaraldehyde and similar aldehyde compounds, diacetyl, cyclopentadione and similar ketone compounds, bis (2-chloroethyl urea), 2-hydroxy-4,6-dichloro-1,3,5-triazine and others Compounds containing reactive halogen (US-A 3,288,775, US-A-2,732,303, GB-A-974,723 and GB-A 1,167,207) divinyl sulfone compounds, 5-acetyl-1,3-diacryloylhexahydro-1, 3,5-triazine and other compounds containing a reactive olefin bond (US-A 3 635 718, US-A-3 232 763 and GB-A 994 869); N-hydroxymethylphthalimide and other N-methylol compounds (US-A 2
- the hardening can be effected in a known manner by adding the hardening agent to the casting solution for the layer to be hardened, or by overlaying the layer to be hardened with a layer which contains a diffusible hardening agent.
- Immediate hardeners are understood to mean compounds which crosslink suitable binders in such a way that the hardening is completed to such an extent immediately after casting, at the latest after 24 hours, preferably after 8 hours at the latest, that no further change in the sensitometry caused by the crosslinking reaction and the swelling of the layer structure occurs .
- Swelling is understood to mean the difference between the wet film thickness and the dry film thickness during the aqueous processing of the film (Photogr. Sci., Eng. 8 (1964), 275; Photogr. Sci. Eng. (1972), 449).
- hardening agents that react very quickly with gelatin are e.g. to carbamoylpyridinium salts, which are able to react with free carboxyl groups of the gelatin, so that the latter react with free amino groups of the gelatin to form peptide bonds and crosslink the gelatin.
- Color photographic negative materials are usually processed by developing, bleaching, fixing and washing or by developing, bleaching, fixing and stabilizing without subsequent washing, whereby bleaching and fixing can be combined into one processing step.
- All developer compounds which have the ability in the form of their oxidation product can be used as the color developer compound to react product with color couplers to azomethine or indophenol dyes.
- Suitable color developer compounds are aromatic compounds of the p-phenylenediamine type containing at least one primary amino group, for example N, N-dialkyl-p-phenylenediamines such as N, N-diethyl-p-phenylenediamine, 1- (N-ethyl-N-methanesulfonamidoethyl) -3 -methyl-p-phenylenediamine, 1- (N-ethyl-N-hydroxyethyl) -3-methyl-p-phenylenediamine and 1- (N-ethyl-N-methoxyethyl) -3-methyl-p-phenylenediamine.
- Other useful color developers are described, for example, in J. Amer. Chem. Soc. 73 , 3106 (1951) and G. Haist, Modern Photographic Processing, 1979, John Wiley and Sons, New York, page 545 ff.
- Fe (III) salts and Fe (III) complex salts such as ferricyanides, dichromates, water-soluble cobalt complexes can be used as bleaching agents.
- Iron (III) complexes of aminopolycarboxylic acids in particular, for example, ethylenediaminetetraacetic acid, propylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, nitrilotriacetic acid, iminodiacetic acid, N-hydroxyethylethylenediaminetriacetic acid, and alkyliminodicarboxylic acids and corresponding phosphonic acids are particularly preferred.
- Persulphates are also suitable as bleaching agents.
- the bleach-fixing bath or fixing bath is usually followed by washing, which is designed as countercurrent washing or consists of several tanks with their own water supply.
- the washing can be completely replaced by a stabilizing bath, which is usually carried out in countercurrent.
- this stabilizing bath also acts as a final bath.
- the compounds according to the invention have an increase in sensitivity.
- a compound according to the invention or a comparative compound is added in an amount of 4.25 ⁇ mol / m 2 per layer to the 4th, 7th and 10th layers of the layer structure 2.
- the compounds and the results are shown in Table 2. Part of the material is kept for 2 weeks at 60 ° C and 35% relative humidity, another part of the material is stored in a room climate (23 ° C 60% RH). All materials are exposed and processed as described in Example 1. The increase in fog of the warmer material compared to the material stored in the indoor climate is taken as a measure of the instability.
- the comparison compounds show a strong increase in fog, while the compounds according to the invention show the storage behavior of the reference material 2A.
- the material according to the invention shows improved sharpness with the same sensitivity with a lower amount of silver.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Silver Salt Photography Or Processing Solution Therefor (AREA)
Description
- Die Erfindung betrifft ein farbfotografisches Silberhalogenidmaterial von Negativ-Typ mit verbesserter Empfindlichkeit.
- Es ist bekannt, mit Hilfe sogenannter DAR- und FAR-Kuppler (development accelerator releasing bzw. fogging agent releasing coupler), die bei der Kupplungsreaktion mit dem Entwickleroxidationsprodukt entweder einen Entwicklungsbeschleuniger oder ein Schleiermittel abspalten, die Empfindlichkeit von fotografischen Silberhalogenidmaterialien zu erhöhen. Die so erreichte Empfindlichkeitssteigerung ist aber für viele Anwendungszwecke noch nicht ausreichend. Außerdem wird der Schleier in unerwünschtem Maße erhöht.
- Es ist weiterhin bekannt, am Silberkorn haftende, mit dem Entwickleroxidationsprodukt reagierende Verbindungen einzusetzen, die das Empfindlichkeits-/Körnigkeitsverhältnis verbessern (EP-A-377 181) oder am Silberkorn haftende, bei der Entwicklung ein aktives Schleiermittel erzeugende Verbindungen einzusetzen, die die Empfindlichkeit verbessern (EP-A-358 071).
- Aufgabe der vorliegenden Erfindung war es, Zusätze für fotografische Materialien bereitzustellen, mit denen eine Steigerung der Empfindlichkeit ohne gleichzeitigen Schleieranstieg erzielt werden kann.
- Es wurde nun überraschenderweise gefunden, daß eine solche Empfindlichkeitssteigerung erreicht wird, wenn man Verbindungen, die bei der Entwicklung einen eine silberaffine Haftgruppe aufweisenden 4-Äquivalentkuppler abspalten, einsetzt. Solche Verbindungen werden im folgenden als ACR-Verbindungen (Adsorbing Coupler Releasing) bezeichnet. Dabei trägt der den 4-Äquivalentkuppler abspaltende Verbindungsrest eine Ballastgruppe, die die Verbindung diffusionsfest macht, während der abgespaltene Kuppler eine silberaffine Gruppe aufweist, mit der er am Silberkorn adsorbiert wird.
-
- A
- einen Ballastrest,
- B
- den Rest einer Verbindung, die bei der Entwicklung unter Abspaltung von (T1)m-(COUP-D)-T2)n reagiert,
- T1 und T2
- Zeitsteuerglieder, die bei der Entwicklung abgespalten werden können,
- m, n
- 0 oder 1,
COUP den Rest eines 4-Äquivalent-Kupplers und - D
- eine silberaffine Gruppe bedeuten.
-
- Z1
- die restlichen Glieder zur Vervollständigung eines vorzugsweise 5- oder 6-gliedrigen Ringes, der wenigstens ein weiteres Heteroatom wie ein Stickstoff- oder Schwefelatom enthält,
- Z2
- die restlichen Glieder zur Vervollständigung eines vorzugsweise 5- oder 6-gliedrigen Ringes,
- X
- -NH2, -NHR,
- Y
- -S-, -NR-, -O-,
- R
- einen aliphatischen, aromatischen oder heterocyclischen Rest und
- R1, R2
- H, einen aliphatischen, aromatischen oder heterocyclischen Rest oder gemeinsam die restlichen Gliedereines 5- oder 6-gliedrigen Ringes
- Die silberaffine Gruppe kann direkt oder über ein Zwischenglied Z mit dem 4-Äquivalentkuppler verknüpft sein.
-
- Die Gruppe A-B kann ein Kupplerrest, eine Redoxverbindung oder ein Rest sein, der nicht-bildmäßig, z.B. allein durch das Alkali des Entwicklers die Gruppe (T1)m-(COUP-D)-(T2)n abspalten kann. Geeignete Redoxverbindungen sind oxidierbare Verbindungen, die nach ihrer Oxidation die Gruppe (T1)m-(COUP-D)-(T2)n abspalten können.
-
-
- Die Gruppe A-B ist vorzugsweise der Rest eines 2-Äquivalentkupplers, der an die Kupplungsstelle abspaltbar den Rest (T1)m-(COUP-D)-(T2)n gebunden enthält. Vorzugsweise ist (COUP-D) über die silberaffine Gruppe D mit B verknüpft. (COUP-D) enthält bevorzugt keinen diffusionsfest-machenden Ballastrest.
- Als Kupplerreste können B und COUP die Reste von Gelb-, Purpur- oder Blaugrün-Kupplern oder die Reste von Kupplern sein, die keine Farbe erzeugen.
- Die Verbindungen der Formel I werden insbesondere in einer Menge von 0,0005 bis 0,05 mmol/m2 fotografisches Material eingesetzt, wobei die Gesamtmenge in einer Schicht oder verteilt auf mehrere Schichten eingesetzt werden kann. Vorzugsweise werden die Verbindungen der Formel I bei Doppel- oder Dreifachschichtpaketen in den hochempfindlichen Schichten eingesetzt. Anstelle einer Verbindung der Formel I können auch Gemische mehrerer Verbindungen der Formel I Anwendung finden, wobei die vorstehend angegebene Menge auch in diesem Fall als Gesamtmenge gilt.
- Beispiele für farbfotografische Materialien vom Negativ-Typ sind Farbnegativfilme, farbfotografisches Papier, Farbumkehrfilme und Farbumkehrpapier. Die Erfindung ist besonders wertvoll für Farbnegativfilme.
- Geeignete Träger zur Herstellung solcher farbfotografischer Materialien sind z.B. Filme und Folien von halbsynthetischen und synthetischen Polymeren, wie Cellulosenitrat, Celluloseacetat, Cellulosebutyrat, Polystyrol, Polyvinylchlorid, Polyethylenterephthalat und Polycarbonat und mit einer Barytschicht oder α-Olefinpolymerschicht (z.B. Polyethylen) laminiertes Papier. Diese Träger können mit Farbstoffen und Pigmenten, beispielsweise Titandioxid, gefärbt sein. Sie können auch zum Zwecke der Abschirmung von Licht schwarz gefärbt sein.
- Die Oberfläche des Trägers wird im allgemeinen einer Behandlung unterzogen, um die Adhäsion der fotografischen Emulsionsschicht zu verbessern, beispielsweise einer Corona-Entladung mit nachfolgendem Antrag einer Substratschicht.
- Die farbfotografischen Materialien enthalten üblicherweise mindestens je eine rotempfindliche, grünempfindliche und blauempfindliche Silberhalogenidemulsionsschicht sowie gegebenenfalls Zwischenschichten und Schutzschichten.
- Wesentliche Bestandteile der fotografischen Emulsionsschichten sind Bindemittel, Silberhalogenidkörnchen und Farbkuppler.
- Als Bindemittel wird vorzugsweise Gelatine verwendet. Diese kann jedoch ganz oder teilweise durch andere synthetische, halbsynthetische oder auch natürlich vorkommende Polymere ersetzt werden. Synthetische Gelatineersatzstoffe sind beispielsweise Polyvinylalkohol, Poly-N-vinylpyrolidon, Polyacrylamide, Polyacrylsäure und deren Derivate, insbesondere deren Mischpolymerisate. Natürlich vorkommende Gelatineersatzstoffe sind beispielsweise andere Proteine wie Albumin oder Casein, Cellulose, Zucker, Stärke oder Alginate. Halbsynthetische Gelatineersatzstoffe sind in der Regel modifizierte Naturprodukte. Cellulosederivate wie Hydroxyalkylcellulose, Carboxymethylcellulose und Phthalylcellulose sowie Gelatinederivate, die durch Umsetzung mit Alkylierungs- oder Acylierungsmitteln oder durch Aufpfropfung von polymerisierbaren Monomeren erhalten worden sind, sind Beispiele hierfür.
- Die Bindemittel sollen über eine ausreichende Menge an funktionellen Gruppen verfügen, so daß durch Umsetzung mit geeigneten Härtungsmitteln genügend widerstandsfähige Schichten erzeugt werden können. Solche funktionellen Gruppen sind insbesondere Aminogruppen, aber auch Carboxylgruppen, Hydroxylgruppen und aktive Methylengruppen.
- Die vorzugsweise verwendete Gelatine kann durch sauren oder alkalischen Aufschluß erhalten sein. Es kann auch oxidierte Gelatine verwendet werden. Die Herstellung solcher Gelatinen wird beispielsweise in The Science and Technology of Gelatine, herausgegeben von A.G. Ward und A. Courts, Academic Press 1977, Seite 295 ff beschrieben. Die jeweils eingesetzte Gelatine soll einen möglichst geringen Gehalt an fotografisch aktiven Verunreinigungen enthalten (Inertgelatine). Gelatinen mit hoher Viskosität und niedriger Quellung sind besonders vorteilhaft.
- Das als lichtempfindlicher Bestandteil in dem fotografischen Material befindliche Silberhalogenid kann als Halogenid Chlorid, Bromid oder Iodid bzw. Mischungen davon enthalten. Beispielsweise kann der Halogenidanteil wenigstens einer Schicht zu 0 bis 15 Mol-% aus Iodid, zu 0 bis 100 Mol-% aus Chlorid und zu 0 bis 100 Mol-% aus Bromid bestehen. Bevorzugt enthält das erfindungsgemäße farbfotografische Material Silberbromidiodidemulsionen mit 5 bis 15 Mol-% Silberiodid.
- Es kann sich um überwiegend kompakte Kristalle handeln, die z.B. regulär kubisch oder oktaedrisch sind oder Übergangsformen aufweisen können. Vorzugsweise können aber auch plättchenförmige Kristalle vorliegen, deren durchschnittliches Verhältnis von Durchmesser zu Dicke bevorzugt wenigstens 5:1 ist, wobei der Durchmesser eines Kornes definiert ist als der Durchmesser eines Kreises mit einem Kreisinhalt entsprechend der projizierten Fläche des Kornes. Die Schichten können aber auch tafelförmige Silberhalogenidkristalle aufweisen, bei denen das Verhältnis von Durchmesser zu Dicke wesentlich größer als 5:1 ist, z.B. 12:1 bis 30:1.
- Die Silberhalogenidkörner können auch einen mehrfach geschichteten Kornaufbau aufweisen, im einfachsten Fall mit einem inneren und einem äußeren Kornbereich (core/shell), wobei die Halogenidzusammensetzung und/oder sonstige Modifizierungen, wie z.B. Dotierungen der einzelnen Kornbereiche unterschiedlich sind. Die mittlere Korngröße der Emulsionen liegt vorzugsweise zwischen 0,2 µm und 2,0 µm, die Korngrößenverteilung kann sowohl homo- als auch heterodispers sein. Homodisperse Korngrößenverteilung bedeutet, daß 95 % der Körner nicht mehr als ± 30% von der mittleren Korngröße abweichen. Die Emulsionen können neben dem Silberhalogenid auch organische Silbersalze enthalten, z.B. Silberbenztriazolat oder Silberbehenat.
- Es können zwei oder mehrere Arten von Silberhalogenidemulsionen, die getrennt hergestellt werden, als Mischung verwendet werden.
- Die fotografischen Emulsionen können nach verschiedenen Methoden (z.B. P. Glafkides, Chimie et Physique Photographique, Paul Montel, Paris (1967), G.F. Duffin, Photographic Emulsion Chemistry, The Focal Press, London (1966), V.L. Zelikman et al, Making and Coating Photographic Emulsion, The Focal Press, London (1966) aus löslichen Silbersalzen und löslichen Halogeniden hergestellt werden.
- Außer durch Fällung können die Silberhalogenidkristalle auch durch physikalische Reifung (Ostwaldreifung), in Gegenwart von überschüssigem Halogenid und/oder Silberhalogenidkomplexierungsmittel wachsen. Das Wachstum der Emulsionskörner kann sogar überwiegend durch Ostwaldreifung erfolgen, wobei vorzugsweise eine feinkörnige, sogenannte Lippmann-Emulsion, mit einer schwerer löslichen Emulsion gemischt und auf letzterer umgelöst wird.
- Während der Fällung und/oder der physikalischen Reifung der Silberhalogenidkörner können auch Salze oder Komplexe von Metallen, wie Cd, Zn, Pb, Tl, Bi, Ir, Rh, Fe vorhanden sein.
- Ferner kann die Fällung auch in Gegenwart von Sensibilisierungsfarbstoffen erfolgen. Komplexierungsmittel und/oder Farbstoffe lassen sich zu jedem beliebigen Zeitpunkt unwirksam machen, z.B. durch Änderung des pH-Wertes oder durch eine oxidative Behandlung.
- Nach abgeschlossener Kristallbildung oder auch schon zu einem früheren Zeitpunkt werden die löslichen Salze aus der Emulsion entfernt, z.B. durch Nudeln und Waschen, durch Flocken und Waschen, durch Ultrafiltration oder durch Ionenaustauscher.
- Die Silberhalogenidemulsion wird im allgemeinen einer chemischen Sensibilisierung unter definierten Bedingungen - pH, pAg, Temperatur, Gelatine-, Silberhalogenid- und Sensibilisatorkonzentration - bis zum Erreichen des Empfindlichkeits- und Schleieroptimums unterworfen.
- Die Verfahrensweise ist z.B. bei H. Frieser "Die Grundlagen der Photographischen Prozesse mit Silberhalogeniden" Seite 675-734, Akademische Verlagsgesellschaft (1968) beschrieben.
- Dabei kann die chemische Sensibilisierung unter Zusatz von Verbindungen von Schwefel, Selen, Tellur und/oder Verbindungen der Metalle der VIII. Nebengruppe des Periodensystems (z.B. Gold, Platin, Palladium, Iridium) erfolgen, weiterhin können Thiocyanatverbindungen, oberflächenaktive Verbindungen, wie Thioether, heterocyclische Stickstoffverbindungen (z.B. Imidazole, Azaindene) oder auch spektrale Sensibilisatoren (beschrieben z.B. bei F. Hamer "The Cyanine Dyes and Related Compounds", 1964, bzw. Ullmanns Encyclopädie der technischen Chemie, 4. Auflage, Bd. 18, S. 431 ff. und Research Disclosure Nr. 17643, Abschnitt III) zugegeben werden. Ersatzweise oder zusätzlich kann eine Reduktionssensibilisierung unter Zugabe von Reduktionsmitteln (Zinn-II-Salze, Amine, Hydrazinderivate, Aminoborane, Silane, Formamidinsulfinsäure) durch Wasserstoff, durch niedrigen pAg (z.B. kleiner 5) und/oder hohen pH (z.B. über 8) durchgeführt werden.
- Die fotografischen Emulsionen können Verbindungen zur Verhinderung der Schleierbildung oder zur Stabilisierung der fotografischen Funktion während der Produktion, der Lagerung oder der fotografischen Verarbeitung enthalten.
- Besonders geeignet sind Azaindene, vorzugsweise Tetraund Pentaazaindene, insbesondere solche, die mit Hydroxyl- oder Aminogruppen substituiert sind. Derartige Verbindungen sind z.B. von Birr, Z. Wiss. Phot. 47 (1952), S. 2-58 beschrieben worden. Weiter können als Antischleiermittel Salze von Metallen wie Quecksilber oder Cadmium, aromatische Sulfon- oder Sulfinsäuren wie Benzolsulfinsäure, oder stickstoffhaltige Heterocyclen wie Nitrobenzimidazol, Nitroindazol, gegebenenfalls substituierte Benztriazole oder Benzthiazoliumsalze eingesetzt werden. Besonders geeignet sind Mercaptogruppen enthaltende Heterocyclen, z.B. Mercaptobenzthiazole, Mercaptobenzimidazole, Mercaptotetrazole, Mercaptothiadiazole, Mercaptopyrimidine, wobei diese Mercaptoazole auch eine wasserlöslichmachende Gruppe, z.B. eine Carboxylgruppe oder Sulfogruppe, enthalten können. Weitere geeignete Verbindungen sind in Research Disclosure Nr. 17643 (1978), Abschnitt VI, veröffentlicht.
- Die Stabilisatoren können den Silberhalogenidemulsionen vor, während oder nach deren Reifung zugesetzt werden. Selbstverständlich kann man die Verbindungen auch anderen fotografischen Schichten, die einer Halogensilberschicht zugeordnet sind, zusetzen.
- Es können auch Mischungen aus zwei oder mehreren der genannten Verbindungen eingesetzt werden.
- Die fotografischen Emulsionsschichten oder andere hydrophile Kolloidschichten des erfindungsgemäß hergestellten lichtempfindlichen Materials können oberflächenaktive Mittel für verschiedene Zwecke enthalten, wie Überzugshilfen, zur Verhinderung der elektrischen Aufladung, zur Verbesserung der Gleiteigenschaften, zum Emulgieren der Dispersion, zur Verhinderung der Adhäsion und zur Verbesserung der fotografischen Charakteristika (z.B. Entwicklungsbeschleunigung, hoher Kontrast, Sensibilisierung usw.). Neben natürlichen oberflächenaktiven Verbindungen, z.B. Saponin, finden hauptsächlich synthetische oberflächenaktive Verbindungen (Tenside) Verwendung: nicht-ionische Tenside, z.B. Alkylenoxidverbindungen, Glycerinverbindungen oder Glycidolverbindungen, kationische Tenside, z.B. höhere Alkylamine, quartäre Ammoniumsalze, Pyridinverbindungen und andere heterocyclische Verbindungen, Sulfoniumverbindungen oder Phosphoniumverbindungen, anionische Tenside, enthaltend eine Säuregruppe, z.B. Carbonsäure-, Sulfonsäure-, eine Phosphorsäure-, Schwefelsäureester- oder Phosphorsäureestergruppe, ampholytische Tenside, z.B. Aminosäure- und Aminosulfonsäureverbindungen sowie Schwefel- oder Phosphorsäureester eines Aminoalkohols.
- Die fotografischen Emulsionen können unter Verwendung von Methinfarbstoffen oder anderen Farbstoffen spektral sensibilisiert werden. Besonders geeignete Farbstoffe sind Cyaninfarbstoffe, Merocyaninfarbstoffe und komplexe Merocyaninfarbstoffe.
- Eine Übersicht über die als Spektralsensibilisatoren geeigneten Polymethinfarbstoffe, deren geeignete Kombinationen und supersensibilisierend wirkenden Kombinationen enthält Research Disclosure 17643/1978 in Abteilung IV.
- Insbesondere sind die folgenden Farbstoffe - geordnet nach Spektralgebieten - geeignet:
- 1. als Rotsensibilisatoren
9-Ethylcarbocyanine mit Benzthiazol, Benzselenazol oder Naphthothiazol als basische Endgruppen, die in 5- und/oder 6-Stellung durch Halogen, Methyl, Methoxy, Carbalkoxy, Aryl substituiert sein können sowie 9-Ethyl-naphthoxathia- bzw. -selencarbocyanine und 9-Ethyl-naphthothiaoxa- bzw. -benzimidazocarbocyanine, vorausgesetzt, daß die Farbstoffe mindestens eine Sulfoalkylgruppe am heterocyclischen Stickstoff tragen. - 2. als Grünsensibilisatoren
9-Ethylcarbocyanine mit Benzoxazol, Naphthoxazol oder einem Benzoxazol und einem Benzthiazol als basische Endgruppen sowie Benzimidazocarbocyanine, die ebenfalls weiter substituiert sein können und ebenfalls mindestens eine Sulfoalkylgruppe am heterocyclischen Stickstoff enthalten müssen. - 3. als Blausensibilisatoren
symmetrische oder asymmetrische Benzimidazo-, Oxa-, Thia- oder Selenacyanine mit mindestens einer Sulfoalkylgruppe am heterocyclischen Stickstoff und gegebenenfalls weiteren Substituenten am aromatischen Kern, sowie Apomerocyanine mit einer Rhodaningruppe. - Auf Sensibilisatoren kann verzichtet werden, wenn für einen bestimmten Spektralbereich die Eigenempfindlichkeit des Silberhalogenids ausreichend ist, beispielsweise die Blauempfindlichkeit von Silberbromiden.
-
-
- 30,6 g der Verbindung I-1-a und 14,1 g der Verbindung I-1-b werden in 200 ml Dimethylacetamid verrührt; dann werden 7,8 ml Tetramethylguanidin zugegeben und 1,5 h bei Raumtemperatur gerührt. Das Reaktionsgemisch wird zu einer Mischung von Eiswasser/wss. HCl gegeben und der Niederschlag abgesaugt, mit Wasser und Methanol gewaschen und getrocknet. Der Rückstand wird mit 200 ml 1-Chlorbutan heiß verrührt, nach Kühlen auf Raumtemperatur abfiltriert, mit 1-Chlorbuten gewaschen und mit 150 ml einer Mischung von Methanol/Ethylacetat/4:1 verrührt, filtriert und gewaschen.
- Es werden 25,4 g der Verbindung I-1 erhalten, die bei 158 bis 161°C schmilzt.
- Den unterschiedlich sensibilisierten Emulsionsschichten werden nicht diffundierende monomere oder polymere Farbkuppler zugeordnet, die sich in der gleichen Schicht oder in einer dazu benachbarten Schicht befinden können. Gewöhnlich werden den rotempfindlichen Schichten Blaugrünkuppler, den grünempfindlichen Schichten Purpurkuppler und den blauempfindlichen Schichten Gelbkuppler zugeordnet.
- Farbkuppler zur Erzeugung des blaugrünen Teilfarbenbildes sind in der Regel Kuppler vom Phenol- oder α-Naphtholtyp.
- Farbkuppler zur Erzeugung des purpurnen Teilfarbenbildes sind in der Regel Kuppler vom Typ des 5-Pyrazolons, des Indazolons oderder Pyrazoloazole.
- Farbkuppler zur Erzeugung des gelben Teilfarbenbildes sind in der Regel Kuppler mit einer offenkettigen Ketomethylengruppierung, insbesondere Kuppler vom Typ des α-Acylacetamids; geeignete Beispiele hierfür sind α-Benzoylacetanilidkuppler und α-Pivaloylacetanilidkuppler.
- Bei den Farbkupplern kann es sich um 4-Äquivalentkuppler, aber auch um 2-Äquivalentkuppler handeln. Letztere leiten sich von den 4-Äquivalentkupplern dadurch ab, daß sie in der Kupplungsstelle einen Substituenten enthalten, der bei der Kupplung abgespalten wird. Zu den 2-Äquivalentkupplern sind solche zu rechnen, die farblos sind, als auch solche, die eine intensive Eigenfarbe aufweisen, die bei der Farbkupplung verschwindet bzw. durch die Farbe des erzeugten Bildfarbstoffes ersetzt wird (Maskenkuppler), und die Weißkuppler, die bei Reaktion mit Farbentwickleroxidationsprodukten im wesentlichen farblose Produkte ergeben. Zu den 2-Äquivalentkupplern sind ferner solche Kuppler zu rechnen, die in der Kupplungsstelle einen abspaltbaren Rest enthalten, der bei Reaktion mit Farbentwickleroxidationsprodukten in Freiheit gesetzt wird und dabei entweder direkt oder nachdem aus dem primär abgespaltenen Rest eine oder mehrere weitere Gruppen abgespalten worden sind (z.B. DE-A-27 03-145, DE-A-28 55 697, DE-A-31 05 026, DE-A-33 19 428), eine bestimmte erwünschte fotografische Wirksamkeit entfaltet, z.B. als Entwicklungsinhibitor (DIR-Kuppler).
- DIR-Kuppler, die Entwicklungsinhibitoren vom Azoltyp, z.B. Triazole und Benzotriazole freisetzen, sind in DE-A-2 414 006, 2 610 546, 2 659 417, 2 754 281, 2 726 180, 3 626 219, 3 630 564, 3 636 824, 3 644 416 und 2 842 063 beschrieben. Weitere Vorteile für die Farbwidergabe, d.h., Farbtrennung und Farbreinheit, und für die Detailwidergabe, d.h., Schärfe und Körnigkeit, sind mit solchen DIR-Kupplern zu erzielen, die z.B. den Entwicklungsinhibitor nicht unmittelbar als Folge der Kupplung mit einem oxidierten Farbentwickler abspalten, sondern erst nach einer weiteren Folgereaktion, die beispielsweise mit einer Zeitsteuergruppe erreicht wird. Beispiele dafür sind in DE-A-28 55 697, 32 99 671, 38 18 231, 35 18 797, in EP-A-157 146 und 204 175, in US-A-4 146 396 und 4 438 393 sowie in GB-A-2 072 363 beschrieben.
- DIR-Kuppler, die einen Entwicklungsinhibitor freisetzen, der im Entwicklerbad zu im wesentlichen fotografisch unwirksamen Produkten zersetzt wird, sind beispielsweise in DE-A-32 09 486 und in EP-A-167 168 und 219 713 beschrieben, Mit dieser Maßnahme wird eine störungsfreie Entwicklung und Verarbeitungskonstanz erreicht.
- Bei Einsatz von DIR-Kupplern, insbesondere von solchen, die einen gut diffundierbaren Entwicklungsinhibitor abspalten, lassen sich durch geeignete Maßnahmen bei der optischen Sensibilisierung Verbesserungen der Farbwidergabe, z.B. eine differenziertere Farbwiedergabe, erzielen, wie beispielsweise in EP-A-115 304, 167 173, GB-A-2 165 058, DE-A-3 700 419 und US-A-4 707 436 beschrieben.
- Die DIR-Kuppler können in einem mehrschichtigen fotografischen Material den unterschiedlichsten Schichten zugesetzt werden, z.B. auch lichtunempfindlichen oder Zwischenschichten. Vorzugsweise werden sie jedoch den lichtempfindlichen Silberhalogenidemulsionsschichten zugesetzt, wobei die charakteristischen Eigenschaften der Silberhalogenidemulsion, z.B. deren Iodidgehalt, die Struktur der Silberhalogenidkörper oder deren Korngrößenverteilung von Einfluß auf die erzielten fotografischen Eigenschaften sind. Der Einfluß der freigesetzten Inhibitoren kann beispielsweise durch den Einbau einer Inhibitorfängerschicht gemäß DE-A-24 31 223 begrenzt werden. Aus Gründen der Reaktivität oder Stabilität kann es vorteilhaft sein, einen DIR-Kuppler einzusetzen, der in der jeweiligen Schicht, in der er eingebracht ist, eine von der in dieser Schicht zu erzeugenden Farbe abweichende Farbe bei der Kupplung bildet.
- Es kann vorteilhaft sein, die Wirkung einer aus einem Kuppler abgespaltenen fotografisch wirksamen Gruppe dadurch zu modifizieren, daß eine intermolekulare Reaktion dieser Gruppe nach ihrer Freisetzung mit einer anderen Gruppe gemäß DE-A-3 506 805 eintritt.
- Da bei den Verbindungen der Formel I und den DIR-Kupplern hauptsächlich die Wirksamkeit des bei der Kupplung freigesetzten Restes erwünscht ist und es weniger auf die farbbildenden Eigenschaften dieser Kuppler ankommt, sind auch solche Substanzen geeignet, die bei der Kupplung im wesentlichen farblose Produkte ergeben (DE-A-1 547 640).
- Das Material kann weiterhin von Kupplern verschiedene Verbindungen enthalten, die beispielsweise einen Entwicklungsinhibitor, einen Entwicklungsbeschleuniger, einen Bleichbeschleuniger, einen Entwickler, ein Silberhalogenidlösungsmittel, ein Schleiermittel oder ein Antischleiermittel in Freiheit setzen können, beispielsweise sogenannte DIR-Hydrochinone und andere Verbindungen, wie sie beispielsweise in US-A-4 636 546, 4 345 024, 4 684 604 und in DE-A-3 145 640, 2 515 213, 2 447 079 und in EP-A-198 438 beschrieben sind. Diese Verbindungen erfüllen die gleiche Funktion wie die DIR-, DAR- oder FAR-Kuppler, außer daß sie keine Kupplungsprodukte bilden.
- Hochmolekulare Farbkuppler sind beispielsweise in DE-C-1 297 417, DE-A-24 07 569, DE-A-31 48 125, DE-A-32 17 200, DE-A-33 20 079, DE-A-33 24 932, DE-A-33 31 743, DE-A-33 40 376, EP-A-27 284, US-A-4 080 211 beschrieben. Die hochmolekularen Farbkuppler werden in der Regel durch Polymerisation von ethylenisch ungesättigten monomeren Farbkupplern hergestellt. Sie können aber auch durch Polyaddition oder Polykondensation erhalten werden.
- Die Einarbeitung der Kuppler oder anderer Verbindungen in Silberhalogindemulsionsschichten kann in der Weise erfolgen, daß zunächst von der betreffenden Verbindung eine Lösung, eine Dispersion oder eine Emulsion hergestellt und dann der Gießlösung für die betreffende Schicht zugefügt wird. Die Auswahl des geeigneten Lösungs- oder Dispersionsmittel hängt von der jeweiligen Löslichkeit der Verbindung ab.
- Methoden zum Einbringen von in Wasser im wesentlichen unlöslichen Verbindungen durch Mahlverfahren sind beispielsweise in DE-A-2 609 741 und DE-A-2 609 742 beschrieben.
- Hydrophobe Verbindungen können auch unter Verwendung von hochsiedenden Lösungsmitteln, sogenannten Ölbildnern, in die Gießlösung eingebracht werden. Entsprechende Methoden sind beispielsweise in US-A-2 322 027, US-A-2 801 170, US-A-2 801 171 und EP-A-0 043 037 beschrieben.
- Anstelle der hochsiedenden Lösungsmitteln können Oligomere oder Polymere, sogenannte polymere Ölbildner Verwendung finden.
- Die Verbindungen können auch in Form beladener Latices in die Gießlösung eingebracht werden. Verwiesen wird beispielsweise auf DE-A-2 541 230, DE-A-2 541 274, DE-A-2 835 856, EP-A-0 014 921, EP-A-0 069 671, EP-A-0 130 115, US-A-4 291 113.
- Die diffusionsfeste Einlagerung anionischer wasserlöslicher Verbindungen (z.B. von Farbstoffen) kann auch mit Hilfe von kationischen Polymeren, sogenannten Beizenpolymeren erfolgen.
- Geeignete Ölbildner sind z.B. Phthalsäurealkylester, Phosphonsäureester, Phosphorsäureester, Citronensäureester, Benzoesäureester, Amide, Fettsäureester, Trimesinsäureester, Alkohole, Phenole, Anilinderivate und Kohlenwasserstoffe.
- Beispiele für geeignete Ölbildner sind Dibutylphthalat, Dicyclohexylphthalat, Di-2-ethylhexylphthalat, Decylphthalat, Triphenylphosphat, Tricresylphosphat, 2-Ethylhexyldiphenylphosphat, Tricyclohexylphosphat, Tri-2-ethylhexylphosphat, Tridecylphosphat, Tributoxyethylphosphat, Trichlorpropylphosphat, Di-2-ethylhexylphenylphosphat, 2-Ethylhexylbenzoat, Dodecylbenzoat, 2-Ethylhexyl-p-hydroxybenzoat, Diethyldodecanamid, N-Tetradecylpyrrolidon, Isostearylalkohol, 2,4-Di-tert.-amylphenol, Dioctylacelat, Glycerintributyrat, Isostearyllactat, Trioctylcitrat, N,N-Dibutyl-2-butoxy-5-tert.-octylanilin, Paraffin, Dodecylbenzol und Diisopropylnaphthalin.
- Jede der unterschiedlich sensibilisierten, lichtempfindlichen Schichten kann aus einer einzigen Schicht bestehen oder auch zwei oder mehr Silberhalogenidemulsionsteilschichten umfassen (DE-C-1 121 470). Dabei sind rotempfindliche Silberhalogenidemulsionsschichten dem Schichtträger häufig näher angeordnet als grünempfindliche Silberhalogenidemulsionsschichten und diese wiederum näher als blauempfindliche, wobei sich im allgemeinen zwischen grünempfindlichen Schichten und blauempfindlichen Schichten eine nicht lichtempfindliche gelbe Filterschicht befindet.
- Bei geeignet geringer Eigenempfindlichkeit der grün-bzw. rotempfindlichen Schichten kann man unter Verzicht auf die Gelbfilterschicht andere Schichtanordnungen wählen, bei denen auf den Träger z.B. die blauempfindlichen, dann die rotempfindlichen und schließlich die grünempfindlichen Schichten folgen.
- Die in der Regel zwischen Schichten unterschiedlicher Sprektralempfindlichkeit angeordneten nicht lichtempfindlichen Zwischenschichten können Mittel enthalten, die eine unerwünschte Diffusion von Entwickleroxidationsprodukten aus einer lichtempfindlichen in eine andere lichtempfindliche Schicht mit unterschiedlicher spektraler Sensibilisierung verhindern.
- Geeignete Mittel, die auch Scavenger oder EDP-Fänger genannt werden, werden in Research Disclosure 17.643/ 1978, Kapitel VII, 17.842/1979, Seite 94-97 und 18.716/ 1979, Seite 650 sowie in EP-A-69 070, 98 072, 124 877, 125 522 und in US-A-463 226 beschrieben.
- Liegen mehrere Teilschichten gleicher spektraler Sensibilisierung vor, so können sich diese hinsichtlich ihrer Zusammensetzung, insbesondere was Art und Menge der Silberhalogenidkörnchen betrifft unterscheiden. Im allgemeinen wird die Teilschicht mit höherer Empfindlichkeit von Träger entfernter angeordnet sein als die Teilschicht mit geringerer Empfindlichkeit. Teilschichten gleicher spektraler Sensibilisierung können zueinander benachbart oder durch andere Schichten, z.B. durch Schichten anderer spektraler Sensibilisierung getrennt sein. So können z.B. alle hochempfindlichen und alle niedrigempfindlichen Schichten jeweils zu einem Schichtpaket zusammengefaßt sein (DE-A 1 958 709, DE-A 2 530 645, DE-A 2 622 922).
- Das fotografische Material kann weiterhin UV-Licht absorbierende Verbindungen, Weißtöner, Abstandshalter, Filterfarbstoffe, Formalinfänger, Lichtschutzmittel, Antioxidantien, DMin-Farbstoffe, Zusätze zur Verbesserung der Farbstoff-, Kuppler- und Weißenstabilisierung sowie zur Verringerung des Farbschleiers und anderes enthalten.
- Die Schichten des fotografischen Materials können mit den üblichen Härtungsmitteln gehärtet werden. Geeignete Härtungsmittel sind z.B. Formaldehyd, Glutaraldehyd und ähnliche Aldehydverbindungen, Diacetyl, Cyclopentadion und ähnliche Ketonverbindungen, Bis-(2-chlorethylharnstoff), 2-Hydroxy-4,6-dichlor-1,3,5-triazin und andere Verbindungen, die reaktives Halogen enthalten (US-A 3 288 775, US-A-2 732 303, GB-A-974 723 und GB-A 1 167 207) Divinylsulfonverbindungen, 5-Acetyl-1,3-diacryloylhexahydro-1,3,5-triazin und andere Verbindungen, die eine reaktive Olefinbindung enthalten (US-A 3 635 718, US-A-3 232 763 und GB-A 994 869); N-Hydroxymethylphthalimid und andere N-Methylolverbindungen (US-A 2 732 316 und US-A 2 586 168); Isocyanate (US-A 3 103 437); Aziridinverbindungen (US-A 3 017 280 und US-A 2 983 611); Säurederivate (US-A 2 725 294 und US-A 2 725 295); Verbindungen vom Carbodiimidtyp (US-A 3 100 704); Carbamoylpyridiniumsalze (DE-A 2 225 230 und DE-A 2 439 551); Carbamoyloxypyridiniumverbindungen (DE-A-2 408 814); Verbindungen mit einer Phosphor-Halogen-Bindung (JP-A- 113 929/83); N-Carbonyloximid-Verbindungen (JP-A- 43353/81); N-Sulfonyloximido-Verbindungen (US-A- 4 111 926), Dihydrochinolinverbindungen (US-A- 4 013 468), 2-Sulfonyloxypyridiniumsalze (JP-A-110 762/81), Formamidiniumsalze (EP-A 0 162 308), Verbindungen mit zwei oder mehr N-Acyloximino-Gruppen (US-A 4 052 373), Epoxyverbindungen (US-A 3 091 537), Verbindungen vom Isoxazoltyp (US-A 3 321 313 und US-A-3 543 292); Halogencarboxyaldehyde, wie Mucochlorsäure; Dioxanderivate, wie Dihydroxydioxan und Di-chlordioxan; und anorganische Härter, wie Chromalaun und Zirkonsulfat.
- Die Härtung kann in bekannter Weise dadurch bewirkt werden, daß das Härtungsmittel der Gießlösung für die zu härtende Schicht zugesetzt wird, oder dadurch, daß die zu härtende Schicht mit einer Schicht überschichtet wird, die ein diffusionsfähiges Härtungsmittel enthält.
- Unter den aufgeführten Klassen gibt es langsam wirkende und schnell wirkende Härtungsmittel sowie sogenannte Soforthärter, die besonders vorteilhaft sind. Unter Soforthärtern werden verbindungen verstanden, die geeignete Bindemittel so vernetzen, daß unmittelbar nach Beguß, spätestens nach 24 Stunden, vorzugsweise spätestens nach 8 Stunden die Härtung so weit abgeschlossen ist, daß keine weitere durch die Vernetzungsreaktion bedingte Änderung der Sensitometrie und der Quellung des Schichtverbandes auftritt. Unter Quellung wird die Differenz von Naßschichtdicke und Trockenschichtdicke bei der wäßrigen Verarbeitung des Films verstanden (Photogr. Sci., Eng. 8 (1964), 275; Photogr. Sci. Eng. (1972), 449).
- Bei diesen mit Gelatine sehr schnell reagierenden Härtungsmitteln handelt es sich z.B. um Carbamoylpyridiniumsalze, die mit freien Carboxylgruppen der Gelatine zu reagieren vermögen, so daß letztere mit freien Aminogruppen der Gelatine unter Ausbildung von Peptidbindungen und Vernetzung der Gelatine reagieren.
- Farbfotografische Negativmaterialien werden üblicherweise durch Entwickeln, Bleichen, Fixieren und Wässern oder durch Entwickeln, Bleichen, Fixieren und Stabilisieren ohne nachfolgende Wässerung verarbeitet, wobei Bleichen und Fixieren zu einem Verarbeitungsschritt zusammengefaßt sein können. Als Farbentwicklerverbindung lassen sich sämtliche Entwicklerverbindungen verwenden, die die Fähigkeit besitzen, in Form ihres Oxidationsproduktes produktes mit Farbkupplern zu Azomethin- bzw. Indophenolfarbstoffen zu reagieren. Geeignete Farbentwicklerverbindungen sind aromatische, mindestens eine primäre Aminogruppe enthaltende Verbindungen vom p-Phenylendiamintyp, beispielsweise N,N-Dialkyl-p-phenylendiamine wie N,N-Diethyl-p-phenylendiamin, 1-(N-Ethyl-N-methansulfonamidoethyl)-3-methyl-p-phenylendiamin, 1-(N-Ethyl-N-hydroxyethyl)-3-methyl-p-phenylendiamin und 1-(N-Ethyl-N-methoxyethyl)-3-methyl-p-phenylendiamin. Weitere brauchbare Farbentwickler sind beispielsweise in J. Amer. Chem. Soc. 73, 3106 (1951) und G. Haist, Modern Photographic Processing, 1979, John Wiley and Sons, New York, Seite 545 ff. beschrieben.
- Nach der Farbentwicklung kann ein saures Stoppbad oder eine Wässerung folgen.
- Üblicherweise wird das Material unmittelbar nach der Farbentwicklung gebleicht und fixiert. Als Bleichmittel können z.B. Fe(III)-Salze und Fe(III)-Komplexsalze wie Ferricyanide, Dichromate, wasserlösliche Kobaltkomplexe verwendet werden. Besonders bevorzugt sind Eisen-(III)-Komplexe von Aminopolycarbonsäuren, insbesondere z.B. von Ethylendiamintetraessigsäure, Propylendiamintetraessigsäure, Diethylentriaminpentaessigsäure, Nitrilotriessigsäure, Iminodiessigsäure, N-Hydroxyethyl-ethylendiamintriessigsäure, Alkyliminodicarbonsäuren und von entsprechenden Phosphonsäuren. Geeignete als Bleichmittel sind weiterhin Persulfate.
- Auf das Bleichfixierbad oder Fixierbad folgt eist eine Wässerung, die als Gegenstromwässerung ausgeführt ist oder aus mehreren Tanks mit eigener Wasserzufuhr besteht.
- Günstige Ergebnisse können bei Verwendung eines darauf folgenden Schlußbades, das keinen oder nur wenig Formaldehyd enthält, erhalten werden.
- Die Wässerung kann aber durch ein Stabilisierbad vollständig ersetzt werden, das üblicherweise im Gegenstrom geführt wird. Dieses Stabilisierbad übernimmt bei Formaldehydzusatz auch die Funktion eines Schlußbades.
- Ein farbfotografisches Aufzeichnungsmaterial für die Colornegativfarbentwicklung wurde hergestellt (Schichtaufbau 1A), indem auf einen transparenten Schichtträger aus Cellulosetriacetat die folgenden Schichten in der angegebenen Reihenfolge aufgetragen wurden. Die Mengenangaben beziehen sich jeweils auf 1 m2. Für den Silberhalogenidauftrag werden die entsprechenden Mengen AgNO3 mit 0,5 g 4-Hydroxy-6-methyl-1,3,3a,7-tetraazainden stabilisiert.
- 1. Schicht (Antihalo-Schicht)
- 0,3 g
- schwarzes kolloidales Silber
- 1,2 g
- Gelatine
- 0,4 g
- UV-Absorber UV 1
- 0,02 g
- Trikresylphosphat (TKP)
- 2. Schicht (Mikrat-Zwischenschicht)
- 0,25 g
- AgNO3 einer Mikrat-Ag(BrJ)-Emulsion, mittlerer Korndurchmesser 0,07 µm, 0,5 Mol-% Iodid
- 1,0 g
- Gelatine
- 3. Schicht (niedrig-rotempfindliche Schicht)
- 2,7 g
- AgNO3 einer spektral rotsensibilisierten Ag(Br,J)-Emulsion mit 4 Mol-% Iodid, mittlerer Korndurchmesser 0,5 µm
- 2,0 g
- Gelatine
- 0,88 g
- farbloser Kuppler C1
- 0,02 g
- DIR-Kuppler D 1
- 0,05 g
- farbiger Kuppler RC-1
- 0,07 g
- farbiger Kuppler YC-1
- 0,75 g
- TKP
- 4. Schicht (hoch-rotempfindliche Schicht)
- 2,2 g
- AgNO3 der spektral rotsensibilisierten Ag(Br,J)-Emulsion, 12 Mol-% Iodid, mittlerer Korndurchmesser 1,0 µm,
- 1,8 g
- Gelatine
- 0,19 g
- farbloser Kuppler C 2
- 0,17 g
- TKP
- 5. Schicht (Zwischenschicht)
- 0,4 g
- Gelatine
- 0,15 g
- Weißkuppler W-1
- 0,06 g
- Aluminiumsalz der Aurintricarbonsäure
- 6. Schicht (niedrig-grünempfindliche Schicht)
- 1,9 g
- AgNO3 einer spektral grünsensibilisierten Ag(Br,J)-Emulsion, 4 Mol-% Iodid, mittlerer Korndurchmesser 0,35 µm
- 1,8 g
- Gelatine
- 0,54 g
- farbloser Kuppler M-1
- 0,24 g
- DIR-Kuppler D-1
- 0,065 g
- farbiger Kuppler YM-1
- 0,6 g
- TKP
- 7. Schicht (hoch-grünempfindliche Schicht)
- 1,25 g
- AgNO3 einer spektral grünsensibilisierten Ag(Br,J)-Emulsion, 9 Mol-% Iodid, mittlerer Korndurchmesser 0,8 µm,
- 1,1 g
- Gelatine
- 0,195 g
- farbloser Kuppler M-2
- 0,05 g
- farbiger Kuppler YM-2
- 0,245 g
- TKP
- 8. Schicht (Gelbfilterschicht)
- 0,09 g
- gelbes kolloidales Silber
- 0,25 g
- Gelatine
- 0,08 g
- Scavenger SC1
- 0,40 g
- Formaldehydfänger FF-1
- 0,08 g
- TKP
- 9. Schicht (niedrig-blauempfindliche Schicht)
- 0,9 g
- einer spektral blausensibilisierten Ag(Br,J)-Emulsion, 6 Mol-% Iodid, mittlerer Korndurchmesser 0,6 µm
- 2,2 g
- Gelatine
- 1,1 g
- farbloser Kuppler Y-1
- 0,037 g
- DIR-Kuppler D-1
- 1,14 g
- TKP
- 10. Schicht (hoch-blauempfindliche Schicht)
- 0,6 g
- AgNO3 einer spektral blausensibilisierten Ag(Br,J)-Emulsion, 10 Mol-% Iodid, mittlerer Korndurchmesser 1,2 µm,
- 0,6 g
- Gelatine
- 0,2 g
- farbloser Kuppler Y-1
- 0,003 g
- DIR-Kuppler D-1
- 0,22 g
- TKP
- 11. Schicht (Mikrat-Schicht)
- 0,06 g
- AgNO3 einer Mikrat-Ag(Br,J)-Emulsion, mittlerer Korndurchmesser 0,06 µm, 0,5 Mol-% Iodid,
- 1 g
- Gelatine
- 0,3 g
- UV-Absorber UV-2
- 0,3 g
- TKP
- 12. Schicht (Schutz- und Härtungsschicht)
- 0,25 g
- Gelatine
- 0,75 g
- Härtungsmittel der Formel
-
- Bei den Schichtaufbauten 1B-1K wurde in die 10. Schicht zusätzlich eine erfindungsgemäße Verbindung oder eine Vergleichsverbindung in einer Menge von 4,25 µmol/m2 gegeben. Die Verbindungen und die Ergebnisse sind in Tabelle 1 dargestellt.
- Nach Aufbelichten eines Graukeils wird die Entwicklung nach "The British Journal of Photography", 1974, Seiten 597 und 598 durchgeführt.
Tabelle 1 Material Verbindung relative Empfindlichkeit Gelb Bemerkung 1A - 100 Vergleich 1B V1 99 Vergleich 1C V2 100 Vergleich 1D V3 99 Vergleich 1E V4 101 Vergleich 1F I-1 115 Erfindung 1G I-5 113 Erfindung 1H I-12 109 Erfindung 1I I-19 110 Erfindung 1K I-20 107 Erfindung - Wie man sieht, erfolgt bei den erfindungsgemäßen Verbindungen eine Empfindlichkeitssteigerung.
- Bei den Materialien 2B bis 2G wird in die 4., 7. und 10. Schicht des Schichtaufbau 2 jeweils eine erfindungsgemäße Verbindung oder eine Vergleichsverbindung in einer Menge von 4,25 µmol/m2 je Schicht gegeben. Die Verbindungen und die Ergebnisse sind in Tabelle 2 dargestellt. Ein Teil des Materials wird 2 Wochen bei 60°C und 35 % relativer Feuchte aufbewahrt, ein anderer Teil des Materials wird bei Raumklima (23°C 60 % rF) gelagert. Alle Materialien werden, wie unter Beispiel 1 beschrieben, belichtet und verarbeitet. Die Schleierzunahme des wärmer gelagerten Materials gegenüber dem bei Raumklima gelagerten Material wird als Maß für die Instabilität gewertet.
Tabelle 2 Material Kuppler Schleierzunahme nach Lagerung bei 23°C, 60 % rF Bemerkung gb pp bg 2A=1A - 8 1 3 Vergleich 2B V-5 15 10 7 Vergleich 2C V-6 10 4 6 Vergleich 2D V-7 31 14 10 Vergleich 2E I-1 9 1 3 Erfindung 2F I-8 8 2 4 Erfindung 2G I-17 7 2 3 Erfindung gb = Gelb, pp = Purpur, bg = Blaugrün. - Wie man sieht, ergibt sich bei dem Vergleichsverbindungen eine starke Schleierzunahme, während die erfindungsgemäßen Verbindungen das Lagerverhalten des Referenzmaterials 2A zeigen.
- Es wurde ein Material hergestellt, dessen 1. bis 8. und 11. Schicht dem Material nach Beispiel 1A entsprachen.
- Schicht 9
- (1. blauempfindliche Schicht, gering empfindlich)
blausensibilisierte Silberbromidiodidemulsion (6 mol-% Iodid; mittlerer Korndurchmesser 0,60 µm) aus
0,75 g AgNO3, mit
2,2 g Gelatine
1,1 g Gelbkuppler Y-2
0,034 g DIR-Kuppler D-1
1,1 g TKP - Schicht 10
- (2. blauempfindliche Schicht, hochempfindlich),
blausensibilisierte Silberbromidiodidemulsion (10 mol-% Iodid; mittlerer Korndurchmesser 1,20 µm) aus
0,48 g AgNO3, mit
0,6 g Gelatine
0,2 g Gelbkuppler Y-2
0,003 g DIR-Kuppler D-1
0,22 g TKP
0,003 g Verbindung 1-6 - Material mit Schichtaufbau 1A und Material nach Beispiel 3 wurden wie unter Beispiel 1 beschrieben, belichtet und verarbeitet. Die sensitiometrischen Ergebnisse sind in Tabelle 3 niedergegeben. Zusätzlich ist dort als Schärfeparameter die Kantenübertragungsfunktion (KÜF) eines Balkenrasters mit 40 Linienpaaren pro mm im Verhältnis zur Eingangsmodulation (= 100) angegeben.
Tabelle 3 Material Bemerkung rel. Empfindlichkeit KÜF bei 40 Lp/mm gb pp bg pp bg 1A Vergleich 100 100 100 70 25 3 Erfindung 101 99 101 75 28 - Wie man sieht, zeigt das erfindungsgemäße Material bei gleicher Empfindlichkeit mit niedrigerer Silbermenge eine verbesserte Schärfe.
Claims (5)
- Farbfotografisches Silberhalogenidmaterial vom Negativtyp, dadurch gekennzeichnet, daß wenigstens eine Silberhalogenidemulsionsschicht eine Verbindung der FormelA einen Ballastrest,B den Rest einer Verbindung, die bei der Entwicklung unter Abspaltung von (T1)m-(COUP-D)-T2)n reagiert,T1 und T2 Zeitsteuerglieder, die bei der Entwicklung abgespalten werden können,m, n 0 oder 1,COUP den Rest eines 4-Äquivalent-Kupplers undD eine silberaffine Gruppe bedeuten.
- Farbfotografisches Silberhalogenidmaterial nach Anspruch 1 worin D den Formeln IIa bis IIe entspricht:Z1 die restlichen Glieder zur Vervollständigung eines vorzugsweise 5- oder 6-gliedrigen Ringes, der wenigstens ein weiteres Heteroatom wie ein Stick stoff- oder Schwefelatom enthält,Z2 die restlichen Glieder zur Vervollständigung eines vorzugsweise 5- oder 6-gliedrigen Ringes,Y -S-, -NR-, -O-,R einen aliphatischen, aromatischen oder heterocyclischen Rest undR1, R2 H, einen aliphatischen, aromatischen oder heterocyclischen Rest oder gemeinsam die restlichen Gliedereines 5- oder 6-gliedrigen Ringesbedeuten.
- Farbfotografisches Silberhalogenidmaterial nach Anspruch 1, wobei A-B der Rest eines 2-Äquivalentkupplers ist, der an die Kupplungsstelle gebunden den Rest (T1)m-(COUP-D)-(T2)n enthält, der über die silberaffine Gruppe D mit B verknüpft ist, wobei COUP-D keinen diffusionsfest-machenden Ballastrest enthält.
- Farbfotografisches Silberhalogenidmaterial nach Anspruch 1, wobei die Verbindung der Formel I in einer Menge von 0,0005 bis 0,05 mmol/m2 fotografisches Material eingesetzt wird.
- Farbfotografisches Silberhalogenidmaterial nach Anspruch 1, das wenigstens zwei rotempfindliche, blaugrünkuppelnde Silberhalogenidemulsionsschichten unterschiedlicher Empfindlichkeit, wenigstens zwei grünempfindliche, purpurkuppelnde Silberhalogenidemulsionsschichten unterschiedlicher Empfindlichkeit und wenigstens zwei blauempfindliche, gelbkuppelnde Silberhalogenidemulsionsschichten unterschiedlicher Empfindlichkeit enthält, wobei wenigstens eine hochempfindliche Silberhalogenidemulsionsschicht eine Verbindung der Formel I enthält.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4338104 | 1993-11-08 | ||
DE4338104A DE4338104A1 (de) | 1993-11-08 | 1993-11-08 | Farbfotografisches Aufzeichnungsmaterial |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0652474A1 EP0652474A1 (de) | 1995-05-10 |
EP0652474B1 true EP0652474B1 (de) | 1996-10-02 |
Family
ID=6502078
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP94116952A Expired - Lifetime EP0652474B1 (de) | 1993-11-08 | 1994-10-26 | Farbfotografisches Aufzeichnungsmaterial |
Country Status (4)
Country | Link |
---|---|
US (1) | US5441857A (de) |
EP (1) | EP0652474B1 (de) |
JP (1) | JPH07181646A (de) |
DE (2) | DE4338104A1 (de) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19538620C2 (de) * | 1995-10-17 | 2001-09-13 | Agfa Gevaert Ag | Farbfotografisches Aufzeichnungsmaterial |
DE19733524A1 (de) * | 1997-08-02 | 1999-02-04 | Agfa Gevaert Ag | Farbnegativfilm |
US6054257A (en) * | 1998-01-29 | 2000-04-25 | Eastman Kodak Company | Photographic element containing particular coupler and inhibitor releasing coupler |
US20060148858A1 (en) * | 2002-05-24 | 2006-07-06 | Tsuyoshi Maekawa | 1, 2-Azole derivatives with hypoglycemic and hypolipidemic activity |
EP1671958B1 (de) * | 2004-09-27 | 2011-07-13 | FUJIFILM Corporation | Verfahren zur Herstellung von Amidverbindungen |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB524557A (en) * | 1938-10-26 | 1940-08-08 | Kodak Ltd | Improvements in and relating to photographic materials and the processing thereof |
US2353754A (en) * | 1942-11-07 | 1944-07-18 | Eastman Kodak Co | Color photography using metallic salt coupler compounds |
US2412700A (en) * | 1944-06-10 | 1946-12-17 | Eastman Kodak Co | Thioglycolic amides |
BE589419A (de) * | 1959-04-06 | |||
US4338393A (en) * | 1980-02-26 | 1982-07-06 | Eastman Kodak Company | Heterocyclic magenta dye-forming couplers |
JPS57111536A (en) * | 1980-12-27 | 1982-07-12 | Konishiroku Photo Ind Co Ltd | Color photographic sensitive silver halide material |
JPS58162949A (ja) * | 1982-03-20 | 1983-09-27 | Konishiroku Photo Ind Co Ltd | ハロゲン化銀カラ−写真感光材料 |
JPS59172640A (ja) * | 1983-03-22 | 1984-09-29 | Fuji Photo Film Co Ltd | ハロゲン化銀写真感光材料 |
DE3830512A1 (de) * | 1988-09-08 | 1990-03-15 | Agfa Gevaert Ag | Fotografisches aufzeichnungsmaterial |
EP0377181A3 (de) * | 1989-01-04 | 1991-06-12 | Agfa-Gevaert AG | Farbfotografisches Material |
-
1993
- 1993-11-08 DE DE4338104A patent/DE4338104A1/de not_active Withdrawn
-
1994
- 1994-10-26 DE DE59400767T patent/DE59400767D1/de not_active Expired - Fee Related
- 1994-10-26 EP EP94116952A patent/EP0652474B1/de not_active Expired - Lifetime
- 1994-10-27 US US08/329,847 patent/US5441857A/en not_active Expired - Fee Related
- 1994-11-04 JP JP6293629A patent/JPH07181646A/ja active Pending
Also Published As
Publication number | Publication date |
---|---|
DE4338104A1 (de) | 1995-05-11 |
JPH07181646A (ja) | 1995-07-21 |
DE59400767D1 (de) | 1996-11-07 |
US5441857A (en) | 1995-08-15 |
EP0652474A1 (de) | 1995-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0358071B1 (de) | Fotografisches Aufzeichnungsmaterial | |
EP0358073B1 (de) | Fotografisches Aufzeichnungsmaterial | |
DE4020058A1 (de) | Farbfotografisches aufzeichnungsmaterial | |
EP0351588B1 (de) | Farbfotografisches Aufzeichnungsmaterial | |
EP0652474B1 (de) | Farbfotografisches Aufzeichnungsmaterial | |
EP0515873B1 (de) | Farbfotografisches Aufzeichnungsmaterial | |
EP0697624B1 (de) | Farbphotographisches Aufzeichnungsmaterial | |
EP0413204A2 (de) | Farbfotografisches Silberhalogenidmaterial | |
EP0369235B1 (de) | Fotografisches Aufzeichnungsmaterial | |
EP0616256B1 (de) | Farbfotografisches Aufzeichnungsmaterial | |
EP0377181A2 (de) | Farbfotografisches Material | |
EP0363820A2 (de) | Farbfotografisches Silberhalogenidmaterial | |
EP0722117B1 (de) | Farbfotografisches Silberhalogenidmaterial | |
DE3838467C2 (de) | Fotografisches Aufzeichnungsmaterial | |
EP0437818B1 (de) | Farbfotografisches Aufzeichnungsmaterial | |
EP0709731A2 (de) | Farbfotografisches Silberhalogenidmaterial | |
DE4027373A1 (de) | Farbfotografisches farbkupplerhaltiges aufzeichnungsmaterial | |
DE4212795A1 (de) | Fotografisches Aufzeichnungsmaterial | |
EP0447657B1 (de) | Fotografisches Aufzeichnungsmaterial | |
EP0703493A1 (de) | Farbfotografisches Silberhalogenidmaterial | |
DE4008067A1 (de) | Farbfotografisches aufzeichnungsmaterial zur herstellung farbiger aufsichtsbilder | |
DE4031159A1 (de) | Farbfotogafisches farbkupplerhaltiges aufzeichnungsmaterial | |
DE3833387A1 (de) | Farbfotografisches silberhalogenidmaterial | |
DE4416308A1 (de) | Fotografisches Aufzeichnungsmaterial | |
DE4006791A1 (de) | Farbfotografisches aufzeichnungsmaterial |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE DE FR GB NL |
|
17P | Request for examination filed |
Effective date: 19950606 |
|
17Q | First examination report despatched |
Effective date: 19951102 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE FR GB NL |
|
REF | Corresponds to: |
Ref document number: 59400767 Country of ref document: DE Date of ref document: 19961107 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19961122 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19991025 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19991026 Year of fee payment: 6 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 746 Effective date: 20000629 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: D6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20001031 |
|
BERE | Be: lapsed |
Owner name: AGFA-GEVAERT A.G. Effective date: 20001031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010501 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20010501 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20020813 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20020823 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031026 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20031026 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040630 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20040927 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060503 |