DE4031159A1 - Farbfotogafisches farbkupplerhaltiges aufzeichnungsmaterial - Google Patents

Farbfotogafisches farbkupplerhaltiges aufzeichnungsmaterial

Info

Publication number
DE4031159A1
DE4031159A1 DE4031159A DE4031159A DE4031159A1 DE 4031159 A1 DE4031159 A1 DE 4031159A1 DE 4031159 A DE4031159 A DE 4031159A DE 4031159 A DE4031159 A DE 4031159A DE 4031159 A1 DE4031159 A1 DE 4031159A1
Authority
DE
Germany
Prior art keywords
color
compounds
couplers
photographic
dyes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE4031159A
Other languages
English (en)
Inventor
Friedrich-Wilhelm Dipl Kunitz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agfa Gevaert AG
Original Assignee
Agfa Gevaert AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agfa Gevaert AG filed Critical Agfa Gevaert AG
Priority to DE4031159A priority Critical patent/DE4031159A1/de
Priority to US07/762,426 priority patent/US5143823A/en
Publication of DE4031159A1 publication Critical patent/DE4031159A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C7/00Multicolour photographic processes or agents therefor; Regeneration of such processing agents; Photosensitive materials for multicolour processes
    • G03C7/30Colour processes using colour-coupling substances; Materials therefor; Preparing or processing such materials
    • G03C7/305Substances liberating photographically active agents, e.g. development-inhibiting releasing couplers
    • G03C7/30511Substances liberating photographically active agents, e.g. development-inhibiting releasing couplers characterised by the releasing group
    • G03C7/305172-equivalent couplers, i.e. with a substitution on the coupling site being compulsory with the exception of halogen-substitution
    • G03C7/305352-equivalent couplers, i.e. with a substitution on the coupling site being compulsory with the exception of halogen-substitution having the coupling site not in rings of cyclic compounds

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Silver Salt Photography Or Processing Solution Therefor (AREA)

Description

Die Erfindung betrifft ein farbfotografisches Aufzeichnungsmaterial mit mindestens einer Silberhalogenidemulsionsschicht und einem Gehalt an einem nicht diffundierenden einemulgierten α-Acylacetanilid-Gelbkuppler, dessen Anilidgruppe mit einer Harnstoffgruppe substituiert ist.
Es ist bekannt, farbige fotografische Bilder durch chromogene Entwicklung herzustellen, d. h. dadurch, daß man bildmäßig belichtete Silberhalogenidemulsionsschichten in Gegenwart geeigneter Farbkuppler mittels geeigneter farbbildender Entwicklersubstanzen - sogenannter Farbentwickler - entwickelt, wobei das in Übereinstimmung mit dem Silberbild entstehende Oxidationsprodukt der Entwicklersubstanzen mit dem Farbkuppler unter Bildung eines Farbstoffbildes reagiert. Als Farbentwickler werden gewöhnlich aromatische, primäre Aminogruppen enthaltende Verbindungen, insbesondere solche vom p-Phenylendiamintyp, verwendet.
An die Farbkuppler sowie an die daraus durch chromogene Entwicklung erhaltenen Farbstoffe werden in der Praxis eine Reihe von Forderungen gestellt. So soll die Kupplungsgeschwindigkeit der Farbkuppler mit dem Oxidationsprodukt des Farbentwicklers möglichst groß sein, und es soll eine möglichst hohe maximale Farbdichte erzielt werden können. Die Farbkuppler sowie die daraus erhaltenen Farbstoffe müssen hinreichend stabil sein gegenüber Licht, erhöhter Temperatur und Feuchtigkeit. Dies gilt sowohl für frisches Material als auch für verarbeitetes Material. Beispielsweise darf der in den Bildweisen des verarbeiteten Materials noch vorhandene restliche Kuppler nicht vergilben. Außerdem sollten die Farbstoffe hinreichend beständig sein gegenüber gasförmigen, reduzierenden oder oxidierenden Agentien. Sie müssen ferner diffusionsfest in der Bildschicht verankert sein und sollen sich bei der chromogenen Entwicklung als möglichst feines Korn abscheiden. Schließlich müssen die aus den Farbkupplern bei der chromogenen Entwicklung entstehenden Farbstoffe eine günstige Absorptionskurve aufweisen mit einem Maximum, das der Farbe des jeweils gewünschten Teilbildes entspricht, und möglichst geringen Nebenabsorptionen.
Im besonderen Maß gelten die genannten Forderungen für Gelbkuppler, weil diese in farbfotografischen Aufzeichnungsmaterialien vielfach in der obersten farberzeugenden Schicht angeordnet sind und damit nicht nur besonders stark den Umwelteinflüssen ausgesetzt sind, sondern auch die darunterliegenden Schichten insbesondere hinsichtlich der Schärfe beeinflussen. Es sind daher alle Maßnahmen von Vorteil, durch die die Schichtbelastung besonders der gelbkupplerhaltigen Schicht reduziert werden kann. Aus diesem Grund ist die Verwendung von 2- Äquivalent-Gelbkupplern besonders vorteilhaft.
α-Acylacetanilid-Gelbkuppler mit einer N-Acylsulfamoylphenylgruppe sind bekannt, z. B. aus GB-A 9 09 318. Die bekannten Gelbkuppler erfüllen jedoch die an sie gerichteten Anforderungen nicht in jeder Hinsicht. Ein besonderes Problem wird zur Zeit darin gesehen, daß in manchen Verarbeitungsgängen die Anwesenheit von Benzylalkohol unabdingbar ist, um gleichmäßig hohe Farbdichten insbesondere der Gelbfarbstoffe zu erzielen. Die Anwesenheit von Benzylalkohol im Entwickler gibt jedoch leicht Anlaß zur Abscheidung von teerartigen Massen im Entwicklertank. Ein weiterer Nachteil beruht auf der leichten Oxidierbarkeit des Benzylalkohols, was eine sorgfältige Überwachung und Konstanthaltung des Entwicklerbades erfordert, um gleichmäßige Entwicklungsergebnisse zu gewährleisten. Es ist daher erwünscht, derartige Aufzeichnungsmaterialien in Abwesenheit von Benzylalkohol zu entwickeln.
Der Erfindung liegt die Aufgabe zugrunde, für ein farbfotografisches Aufzeichnungsmaterial Gelbkuppler zur Verfügung zu stellen, die sich gut in verschiedenen Ölbildnern lösen und die auch in Abwesenheit von Benzylalkohol im Entwickler mit hoher Farbausbeute zu gelben Bildfarbstoffen entwickelt werden können.
Gegenstand der Erfindung ist ein farbfotografisches Aufzeichnungsmaterial mit mindestens einer lichtempfindlichen Silberhalogenidemulsionsschicht und einem dieser zugeordneten, nicht diffundierenden α-Acylacetanilid- Gelbkuppler, an dessen Anilidgruppe sich ein Substituent mit einer N-Acylsulfamoylgruppe befindet, dadurch gekennzeichnet, daß der Gelbkuppler der folgenden Formel entspricht:
worin bedeuten:
X eine bei Farbkupplung abspaltbare Gruppe;
R₁ Alkyl;
R₂ Alkyl oder Aralkyl.
Ein durch R₁ oder R₂ dargestellter Alkylrest ist geradkettig oder verzweigt, unsubstituiert oder substituiert und enthält 1 bis 18 C-Atome. Vorzugsweise ist R₁ ein Alkylrest mit mindestens 8 C-Atomen und R₂ ein Alkylrest mit 1 bis 4 C-Atomen oder Aralkyl. Ein durch R₂ dargestellter Aralkylrest ist beispielsweise Benzyl.
Bei der durch X dargestellten, bei Farbkupplung abspaltbaren Gruppe handelt es sich beispielsweise um eine organische Gruppe, die in der Regel über ein Sauerstoff- oder Stickstoffatom an die Kupplungsstelle des Kupplermoleküls angeknüpft ist. Falls es sich bei der abspaltbaren Gruppe um eine cyclische Gruppe handelt, kann die Anknüpfung an die Kupplungsstelle des Kupplermoleküls entweder direkt über ein Atom, das Bestandteil eines Ringes ist, z. B. ein Stickstoffatom, oder indirekt über ein zwischengeschaltetes Bindeglied erfolgt sein. Derartige abspaltbare Gruppen sind in großer Zahl als Fluchtgruppen von 2-Äquivalent-Gelbkupplern bekannt.
Beispiele von über Sauerstoff angeknüpften, abspaltbaren Gruppen entsprechen der Formel
-O-R₃ ,
worin R₃ für einen acyclischen oder cyclischen organischen Rest steht, z. B. für Alkyl, Aryl, eine heterocyclische Gruppe oder Acyl, das sich beispielsweise ableitet von einer organischen Carbon- oder Sulfonsäure. Bei besonders bevorzugten abspaltbaren Gruppen dieser Art bedeutet R⁴ eine gegebenenfalls substituierte Phenylgruppe. Solche Gruppen sind beispielsweise beschrieben in US-A 34 08 194, DE-A 24 56 076.
Beispiele von über Stickstoff angeknüpften, abspaltbaren Gruppen sind in den folgenden deutschen Offenlegungsschriften (DE-A) beschrieben: 20 57 941, 21 63 812, 22 13 461, 22 19 917, 22 61 361, 22 63 875, 23 18 807, 23 29 587, 23 44 155, 23 63 675, 24 33 812, 24 41 779, 24 42 703, 25 28 638, 25 28 860, 26 37 817, 28 18 373, 28 42 063, 30 20 416, 36 26 219, 36 30 564, 36 36 824, 36 44 416.
Hierbei handelt es sich durchweg um 5- oder 6gliedrige heterocyclische Ringe, die über ein Ringstickstoffatom mit der Kupplungsstelle des Kupplers verbunden sind. Die heterocyclischen Ringe enthalten vielfach benachbart zu dem die Bindung an das Kupplermolekül vermittelnden Stickstoffatom aktivierende Gruppen, z. B. Carbonyl- oder Sulfonylgruppen oder Doppelbindungen.
Beispiele für bei Farbkupplung abspaltbare Gruppen X (Fluchtgruppen) sind im folgenden angegeben.
Fluchtgruppen
Beispiele für erfindungsgemäße Gelbkuppler sind im folgenden aufgeführt:
Die Herstellung der erfindungsgemäßen Gelbkuppler wird nachstehend am Beispiel des Gelbkupplers Y-2 erläutert.
Herstellung des Gelbkupplers Y-2 Stufe 1 2-Cetyloxy-5-sulfamoyl-(phenoxy-carbanilid)
412 g (1 mol) 2-Cetyloxy-5-sulfamoyl-anilin werden in 1000 ml trockenem Acetonitril angeschlammt. Bei Raumtemperatur werden innerhalb von 30 min 90 g (0,57 mol) Chlorameisensäurephenylester hinzugetropft. Nun wird die Temperatur bis zum Sieden des Acetanitrils gesteigert.
Aus einem Tropftrichter werden nochmals 90 g (0,57 mol) Chlorameisensäurephenylester innerhalb von ca. 30 min hinzugetropft. Dabei geht das Festprodukt in Lösung. Es wird HCl-Gas frei. Nach 2stündigem Kochen am Rückfluß wird die heiße Lösung filtriert und dann auf Raumtemperatur abgekühlt. Das farblose Kristallisat wird abgesaugt und 3mal mit Acetonitril gewaschen. Nach dem Trocknen an der Luft werden 446 g (84% d. Th.) 2-Cetyloxy- 5-sulfamoyl-(phenoxycarbanilid) mit einem Fp. von 110°C erhalten.
Stufe 2 2-Cetyloxy-5-(N-propionylsulfamoyl)-phenoxycarbanilid
261,5 g (0,5 mol) einer Lösung von 2-Cetyloxy-5-sulfamoyl- phenoxycarbanilid (Stufe 1) in 500 ml Acetonitril (trocken) wird zum Sieden erhitzt. Aus einem Tropftrichter werden innerhalb von 30 min 54,3 ml (0,625 mol) Propionsäurechlorid hinzugetropft. Die Reaktionslösung wird 10 h am Rückfluß gekocht. Dabei entweicht HCl-Gas. Nach beendeter Reaktion wird auf Raumtemperatur gekühlt, abgesaugt und mit kaltem Acetonitril gewaschen. Das lufttrockene Rohprodukt wird aus Alkohol umkristallisiert. Es resultieren farblose Kristalle vom Fp. 126°C. Die Ausbeute beträgt 270 g (92% d. Th.).
Stufe 3 Stammkuppler zu Y-2
268,5 g (1 mol) Pivaloylacet-(2-chlor-5-amino-anilid), 569,1 g (1,02 mol) 2-Cetyloxy-5-(N-propionylsulfamoyl)- phenoxycarbanilid und 34,5 ml (0,25 mol) Triethylamin werden in 2000 ml Dimethylacetamid gelöst und 1 h unter Rühren auf 100°C erhitzt. Danach wird die Lösung auf Raumtemperatur gekühlt, in 5 l Wasser ausgerührt und 5 N HCl auf einen pH-Wert von 3 gestellt. Das zähe Öl wird in Ethylacetat aufgenommen. Die Ethylacetatphase wird 2mal mit Wasser gewaschen und dann über Natriumsulfat getrocknet. Nach Abdestillieren des Ethylacetats wird der Rückstand aus Ethanol umkristallisiert. Es werden 410 g (54% d. Th.) an rein weißen Kristallen vom Fp. 154°C erhalten.
Stufe 4
190,6 g (0,25 mol) des Stammkupplers (Stufe 3) werden in 400 ml Dichlormethan angeschlammt. Bei Raumtemperatur werden 20,5 ml (0,25 mol) Sulfurylchloride hinzugetropft. Es wird 1 h bei Raumtemperatur nachgerührt, dann wid das Dichlormethan im Vakuum restlos abdestilliert. Der Rückstand wird aus Alkohol unter Zusatz von A-Kohle umkristallisiert. Die Ausbeute an farblosen Kristallen beträgt 139 g (70% d. Th.) vom Fp. 132°C.
Stufe 5 Gelbkuppler Y-2
  • a) 21,5 g Imidazol-2-carbonsäureanilid werden in 65 ml Ethanol angeschlammt. Hierzu werden 29,4 ml Tetramethylguanidin hinzugegeben.
  • b) 79,7 g des chlorierten Stammkupplers (Stufe 4) werden in Ethanol heiß gelöst.
Die heiße Lösung b) wird zur Anschlammung a) hinzugetropft. Durch gelegentliche Kühlung wird dafür gesorgt, daß die Temperatur der Reaktionsmischung +40°C nicht überschreitet. Es wird 1 h bei Temperaturen zwischen +30°C und +40°C nachgerührt. Die Reaktionslösung wird filtriert und dann auf eine Mischung von 200 ml Wasser, 100 g Eis und 20 ml konzentriertem HCl ausgerührt. Das ölige Produkt wird in Essigester aufgenommen. Die organische Phase wird 2mal mit Wasser ausgeschüttelt und dann mit Natriumsulfat getrocknet.
Unter Wasserstrahlvakuum wird das Ethylacetat restlos abgedampft. Der Rückstand wird aus der 3fachen Menge Ethanol umkristallisiert. Die Ausbeute an farblosem Kuppler beträgt 18,3 g (20% d. Th.). Die Kristalle weisen einen Schmelzpunkt von 119-120°C auf.
Die erfindungsgemäßen Gelbkuppler zeichnen sich vor allem durch eine ausgezeichnete Löslichkeit und geringe Kristallisationstendenz in organischen Lösungsmitteln, insbesondere in mit Wasser nicht mischbaren Lösungsmitteln mit hohem Siedepunkt, wie z. B. Trikresylphosphat- Isomerengemisch oder Dibutylphthalat aus. Dies wirkt sich günstig im Hinblick auf eine geringere Schichtbelastung aus.
Außerdem besitzen sie eine hervorragende Diffusionsfestigkeit in fotografischen Schichten, sowohl beim Gießvorgang als auch während der fotografischen Verarbeitung. Ein weiterer Vorteil der erfindungsgemäßen Gelbkuppler besteht darin, daß sie sich leicht auf Latices ausfällen lassen und in dieser Form in die fotografischen Schichten eingebracht werden können.
Ein weiterer Vorteil der erfindungsgemäßen Gelbkuppler ist ihre hohe Stabilität gegenüber Feuchtigkeit und Wärme sowie auch die Stabilität der aus ihnen hergestellten gelben Farbstoffe gegenüber Wärme, Feuchtigkeit und Lichteinstrahlung.
Ein weiterer Vorteil schließlich besteht darin, daß die erfindungsgemäßen Gelbkuppler auch bei Verarbeitung in Abwesenheit von Benzylalkohol befriedigende sensitometrische Ergebnisse liefern, ohne daß hierbei eine Einbuße an Farbdichte in Kauf genommen werden muß.
Des weiteren zeichnen sich die erfindungsgemäßen Gelbkuppler durch günstige sensitometrische Eigenschaften aus, insbesondere hohe Empfindlichkeit sowie steile Gradation und hohe Farbdichte der gelben Bildfarbstoffe.
Die erfindungsgemäßen Gelbkuppler eignen sich für jede Art von farbfotografischen Aufzeichnungsmaterialien.
Beispiele für farbfotografische Materialien sind Farbnegativfilme, Farbumkehrfilme, Farbpositivfilme, farbfotografisches Papier.
Geeignete Träger zur Herstellung farbfotografischer Materialien sind z. B. Filme und Folien von halbsynthetischen und synthetischen Polymeren, wie Cellulosenitrat, Celluloseacetat, Cellulosebutyrat, Polystyrol, Polyvinylchlorid, Polyethylenterephthalat und Polycarbonat und mit einer Barytschicht oder α-Olefinpolymerschicht (z. B. Polyethylen) laminiertes Papier. Diese Träger können mit Farbstoffen und Pigmenten, beispielsweise Titandioxid, gefärbt sein. Sie können auch zum Zwecke der Abschirmung von Licht schwarz gefärbt sein. Die Oberfläche des Trägers wird im allgemeinen einer Behandlung unterzogen, um die Adhäsion der fotografischen Emulsionsschicht zu verbessern, beispielsweise einer Corona-Entladung mit nachfolgendem Antrag einer Substratschicht.
Die farbfotografischen Materialien enthalten üblicherweise mindestens je eine rotempfindliche, grünempfindliche und blauempfindliche Silberhalogenidemulsionsschicht sowie gegebenenfalls Zwischenschichten und Schutzschichten.
Wesentliche Bestandteile der fotografischen Emulsionsschichten sind Bindemittel, Silberhalogenidkörnchen und Farbkuppler.
Als Bindemittel wird vorzugsweise Gelatine verwendet. Diese kann jedoch ganz oder teilweise durch andere synthetische, halbsynthetische oder auch natürlich vorkommende Polymere ersetzt werden. Synthetische Gelatineersatzstoffe sind beispielsweise Polyvinylalkohol, Poly-N- vinylpyrrolidon, Polyacrylamide, Polyacrylsäure und deren Derivate, insbesondere deren Mischpolymerisate. Natürlich vorkommende Gelatineersatzstoffe sind beispielsweise andere Proteine wie Albumin oder Casein, Cellulose, Zucker, Stärke oder Alginate. Halbsynthetische Gelatineersatzstoffe sind in der Regel modifizierte Naturprodukte. Cellulosederivate wie Hydroxyalkylcellulose, Carboxymethylcellulose und Phthalylcellulose sowie Gelatinederivate, die durch Umsetzung mit Alkylierungs- oder Acylierungsmitteln oder durch Aufpfropfung von polymerisierbaren Monomeren erhalten worden sind, sind Beispiele hierfür.
Die Bindemittel sollen über eine ausreichende Menge an funktionellen Gruppen verfügen, so daß durch Umsetzung mit geeigneten Härtungsmitteln genügend widerstandsfähige Schichten erzeugt werden können. Solche funktionellen Gruppen sind insbesondere Aminogruppen, aber auch Carboxylgruppen, Hydroxylgruppen und aktive Methylengruppen.
Die vorzugsweise verwendete Gelatine kann durch sauren oder alkalischen Aufschluß erhalten sein. Es kann auch oxidierte Gelatine verwendet werden. Die Herstellung solcher Gelatinen wird beispielsweise in The Science and Technology of Gelatine, herausgegeben von A. G. Ward und A. Courts, Academic Press 1977, Seite 295 ff., beschrieben. Die jeweils eingesetzte Gelatine soll einen möglichst geringen Gehalt an fotografisch aktiven Verunreinigungen enthalten (Inertgelatine). Gelatinen mit hoher Viskosität und niedriger Quellung sind besonders vorteilhaft.
Das als lichtempfindlicher Bestandteil in dem fotografischen Material befindliche Silberhalogenid kann als Halogenid Chlorid, Bromid oder Iodid bzw. Mischungen davon enthalten. Beispielsweise kann der Halogenidanteil wenigstens einer Schicht zu 0 bis 15 mol-% aus Iodid, zu 0 bis 100 mol-% aus Chlorid und zu 0 bis 100 mol-% aus Bromid bestehen. Im Falle von Farbnegativ- und Farbumkehrfilmen werden üblicherweise Silberbromidiodidemulsionen, im Falle von Farbnegativ- und Farbumkehrpapier üblicherweise Silberchloridbromidemulsionen mit hohem Chloridanteil bis zu reinen Silberchloridemulsionen verwendet. Es kann sich um überwiegend kompakte Kristalle handeln, die z. B. regulär kubisch oder oktaedrisch sind oder Übergangsformen aufweisen können. Vorzugsweise können aber auch plättchenförmige Kristalle vorliegen, deren durchschnittliches Verhältnis von Durchmesser zu Dicke bevorzugt wenigstens 5 : 1 ist, wobei der Durchmesser eines Kornes definiert ist als der Durchmesser eines Kreises mit einem Kreisinhalt entsprechend der projizierten Fläche des Kornes. Die Schichten können aber auch tafelförmige Silberhalogenidkristalle aufweisen, bei denen das Verhältnis von Durchmesser zu Dicke wesentlich größer als 5 : 1 ist, z. B. 12 : 1 bis 30 : 1.
Die Silberhalogenidkörner können auch einen mehrfach geschichteten Kornaufbau aufweisen, im einfachsten Fall mit einem inneren und einem äußeren Kornbereich (core/ shell), wobei die Halogenidzusammensetzung und/oder sonstige Modifizierungen, wie z. B. Dotierungen der einzelnen Kornbereiche, unterschiedlich sind. Die mittlere Korngröße der Emulsionen liegt vorzugsweise zwischen 0,2 µm und 2,0 µm, die Korngrößenverteilung kann sowohl homo- als auch heterodispers sein. Homodisperse Korngrößenverteilung bedeutet, daß 95% der Körner nicht mehr als ±30% von der mittleren Korngröße abweichen. Die Emulsionen können neben dem Silberhalogenid auch organische Silbersalze enthalten, z. B. Silberbenztriazolat oder Silberbehenat.
Es können zwei oder mehrere Arten von Silberhalogenidemulsionen, die getrennt hergestellt werden, als Mischung verwendet werden.
Die fotografischen Emulsionen können nach verschiedenen Methoden [z. G. P. Glafkides, Chimie et Physique Photographique, Paul Montel, Paris (1967); G. F. Duffin, Photographic Emulsion Chemistry, The Focal Press, London (1966); V. L. Zelikman et al., Making and Coating Photographic Emulsion, The Focal Press, London (1966)] aus löslichen Silbersalzen und löslichen Halogeniden hergestellt werden.
Die Fällung des Silberhalogenids erfolgt bevorzugt in Gegenwart des Bindemittels, z. B. der Gelatine, und kann im sauren, neutralen oder alkalischen pH-Bereich durchgeführt werden, wobei vorzugsweise Silberhalogenidkomplexbildner zusätzlich verwendet werden. Zu letzteren gehören z. B. Ammoniak, Thioether, Imidazol, Ammoniumthiocyanat oder überschüssiges Halogenid. Die Zusammenführung der wasserlöslichen Silbersalze und der Halogenide erfolgt wahlweise nacheinander nach dem single- jet- oder gleichzeitig nach dem double-jet-Verfahren oder nach beliebiger Kombination beider Verfahren. Bevorzugt wird die Dosierung mit steigenden Zuflußraten, wobei die "kritische" Zufuhrgeschwindigkeit, bei der gerade noch keine Neukeime entstehen, nicht überschritten werden sollte. Der pAg-Bereich kann während der Fällung in weiten Grenzen variieren, vorzugsweise wird das sogenannte pAg-gesteuerte Verfahren benutzt, bei dem ein bestimmter pAg-Wert konstant gehalten oder ein definiertes pAg-Profil während der Fällung durchfahren wird. Neben der bevorzugten Fällung bei Halogenidüberschuß ist aber auch die sogenannte inverse Fällung bei Silberionenüberschuß möglich. Außer durch Fällung können die Silberhalogenidkristalle auch durch physikalische Reifung (Ostwaldreifung) in Gegenwart von überschüssigem Halogenid und/oder Silberhalogenidkomplexierungsmittel wachsen. Das Wachsstum der Emulsionskörner kann sogar überwiegend durch Ostwaldreifung erfolgen, wobei vorzugsweise eine feinkörnige, sogenannte Lippmann-Emulsion mit einer schwerer löslichen Emulsion gemischt und auf letzterer umgelöst wird.
Während der Fällung und/oder der physikalischen Reifung der Silberhalogenidkörner können auch Salze oder Komplexe von Metallen, wie Cd, Zn, Pb, Tl, Bi, Ir, Rh, Fe, vorhanden sein.
Ferner kann die Fällung auch in Gegenwart von Sensibilisierungsfarbstoffen erfolgen. Komplexierungsmittel und/oder Farbstoffe lassen sich zu jedem beliebigen Zeitpunkt unwirksam machen, z. B. durch Änderung des pH- Wertes oder durch eine oxidative Behandlung.
Nach abgeschlossener Kristallbildung oder auch schon zu einem früheren Zeitpunkt werden die löslichen Salze aus der Emulsion entfernt, z. B. durch Nudeln und Waschen, durch Flocken und Waschen, durch Ultrafiltration oder durch Ionenaustauscher.
Die Silberhalogenidemulsion wird im allgemeinen einer chemischen Sensibilisierung unter definierten Bedingungen - pH, pAg, Temperatur, Gelatine-, Silberhalogenid- und Sensibilisatorkonzentration - bis zum Erreichen des Empfindlichkeits- und Schleieroptimums unterworfen. Die Verfahrensweise ist z. B. bei H. Frieser, "Die Grundlagen der Photographischen Prozesse mit Silberhalogeniden", Seiten 675-734, Akademische Verlagsgesellschaft (1968), beschrieben.
Dabei kann die chemische Sensibilisierung unter Zusatz von Verbindungen von Schwefel, Selen, Tellur und/oder Verbindungen der Metalle der VIII. Nebengruppe des Periodensystems (z. B. Gold, Platin, Palladium, Iridium) erfolgen, weiterhin können Thiocyanatverbindungen, oberflächenaktive Verbindungen, wie Thioether, heterocyclische Stickstoffverbindungen (z. B. Imidazole, Azaindene) oder auch spektrale Sensibilisatoren [beschrieben z. B. bei F. Hamer, "The Cyanine Dyes and Related Compounds", 1964, bzw. Ullmanns Encyclopädie der technischen Chemie, 4. Auflage, Bd. 18, S. 431 ff., und Research Disclosure 17 643 (Dez. 1978), Kapitel III] zugegeben werden. Ersatzweise oder zusätzlich kann eine Reduktionssensibilisierung unter Zugabe von Reduktionsmitteln (Zinn-II- Salze, Amine, Hydrazinderivate, Aminoborane, Silane, Formamidinsulfinsäure) durch Wasserstoff, durch niedrigen pAg (z. B. kleiner 5) und/oder hohen pH (z. B. über 8) durchgeführt werden.
Die fotografischen Emulsionen können Verbindungen zur Verhinderung der Schleierbildung oder zur Stabilisierung der fotografischen Funktion während der Produktion, der Lagerung oder der fotografischen Verarbeitung enthalten.
Besonders geeignet sind Azaindene, vorzugsweise Tetra- und Pentaazaindene, insbesondere solche, die mit Hydroxyl- oder Aminogruppen substituiert sind. Derartige Verbindungen sind z. B. von Birr, Z. Wiss. Phot. 47 (1952), S. 2-58, beschrieben worden. Weiter können als Antischleiermittel Salze von Metallen wie Quecksilber oder Cadmium, aromatische Sulfon- oder Sulfinsäuren wie Benzolsulfinsäure oder stickstoffhaltige Meterocyclen wie Nitrobenzimidazol, Nitroindazol, gegebenenfalls substituierte Benztriazole oder Benzthiazoliumsalze eingesetzt werden. Besonders geeignet sind Mercaptogruppen enthaltende Heterocyclen, z. B. Mercaptobenzthiazole, Mercaptobenzimidazole, Mercaptotetrazole, Mercaptothiadiazole, Mercaptopyrimidine, wobei diese Mercaptoazole auch eine wasserlöslichmachende Gruppe, z. B. eine Carboxylgruppe oder Sulfogruppe, enthalten können. Weitere geeignete Verbindungen sind in Research Disclosure 17 643 (Dez. 1978), Kapitel VI, veröffentlicht.
Die Stabilisatoren können den Silberhalogenidemulsionen vor, während oder nach deren Reifung zugesetzt werden. Selbstverständlich kann man die Verbindungen auch anderen fotografischen Schichten, die einer Halogensilberschicht zugeordnet sind, zusetzen.
Es können auch Mischungen aus zwei oder mehreren der genannten Verbindungen eingesetzt werden.
Die fotografischen Emulsionsschichten oder andere hydrophile Kolloidschichten des erfindungsgemäß hergestellten lichtempfindlichen Materials können oberflächenaktive Mittel für verschiedene Zwecke enthalten, wie Überzugshilfen zur Verhinderung der elektrischen Aufladung, zur Verbesserung der Gleiteigenschaften, zum Emulgieren der Dispersion, zur Verhinderung der Adhäsion und zur Verbesserung der fotografischen Charakteristika (z. B. Entwicklungsbeschleunigung, hoher Kontrast, Sensibilisierung usw.). Neben natürlichen oberflächenaktiven Verbindungen, z. B. Saponin, finden hauptsächlich synthetische oberflächenaktive Verbindungen (Tenside) Verwendung: nicht-ionische Tenside, z. B. Alkylenoxidverbindungen, Glycerinverbindungen oder Glycidolverbindungen, kationische Tenside, z. B. höhere Alkylamine, quartäre Ammoniumsalze, Pyridinverbindungen und andere heterocyclische Verbindungen, Sulfoniumverbindungen oder Phosphoniumverbindungen, anionische Tenside, enthaltend eine Säuregruppe, z. B. Carbonsäure-, Sulfonsäure-, eine Phosphorsäure-, Schwefelsäureester- oder Phosphorsäureestergruppe, ampholytische Tenside, z. B. Aminosäure- und Aminosulfonsäureverbindungen sowie Schwefel- oder Phosphorsäureester eines Aminoalkohols.
Die fotografischen Emulsionen können unter Verwendung von Methinfarbstoffen oder anderen Farbstoffen spektral sensibilisiert werden. Besonders geeignete Farbstoffe sind Cyaninfarbstoffe, Merocyaninfarbstoffe und komplexe Merocyaninfarbstoffe.
Eine Übersicht über die als Spektralsensibilisatoren geeigneten Polymethinfarbstoffe, deren geeignete Kombinationen und supersensibilisierend wirkenden Kombinationen enthält Research Disclosure 17 643 (Dez. 1978), Kapitel IV.
Die Silberhalogenidemulsionsschichten mit den erfindungsgemäßen Gelbkupplern enthalten beispielsweise als Blausensibilisatoren symmetrische oder asymmetrische Benzimidazo-, Oxa-, Thia- oder Selenacyanine mit mindestens einer Sulfoalkylgruppe am heterocyclischen Stickstoff und gegebenenfalls weiteren Substituenten am aromatischen Kern sowie Apomerocyanine mit einer Rhodaningruppe.
Als Beispiele seien, insbesondere für Negativ- und Umkehrfilm, die nachfolgend aufgeführten Blausensibilisatoren BS genannt, die jeweils einzeln oder in Kombination untereinander eingesetzt werden können.
Auf spektrale Sensibilisatoren kann im Fall der erfindungsgemäßen Gelbkuppler auch verzichtet werden, wenn das verwendete Silberhalogenid aufgrund seiner Empfindlichkeit für blaues Licht ausreichend ist.
Den unterschiedlich sensibilisierten Emulsionsschichten werden nicht diffundierende monomere oder polymere Farbkuppler zugeordnet, die sich in der gleichen Schicht oder in einer dazu benachbarten Schicht befinden können. Gewöhnlich werden den rotempfindlichen Schichten Blaugrünkuppler, den grünempfindlichen Schichten Purpurkuppler und den blauempfindlichen Schichten Gelbkuppler zugeordnet.
Farbkuppler zur Erzeugung des blaugrünen Teilfarbenbildes sind in der Regel Kuppler vom Phenol- oder α- Naphtholtyp; geeignete Beispiele hierfür sind
Farbkuppler zur Erzeugung des purpurnen Teilfarbenbildes sind in der Regel Kuppler vom Typ des 5-Pyrazolons, des Indazolons oder der Pyrazoloazole; geeignete Beispiele hierfür sind
Bei den Farbkupplern kann es sich um 4-Äquivalentkuppler, aber auch um 2-Äquivalentkuppler handeln. Letztere leiten sich von den 4-Äquivalentkupplern dadurch ab, daß sie in der Kupplungsstelle einen Substituenten enthalten, der bei der Kupplung abgespalten wird. Zu den 2- Äquivalentkupplern sind solche zu rechnen, die farblos sind, als auch solche, die eine intensive Eigenfarbe aufweisen, die bei der Farbkupplung verschwindet bzw. durch die Farbe des erzeugten Bildfarbstoffes ersetzt wird (Maskenkuppler), und die Weißkuppler, die bei Reaktion mit Farbentwickleroxidationsprodukten im wesentlichen farblose Produkte ergeben. Zu den 2-Äquivalentkupplern sind ferner solche Kuppler zu rechnen, die in der Kupplungsstelle einen abspaltbaren Rest enthalten, der bei Reaktion mit Farbentwickleroxidationsprodukten in Freiheit gesetzt wird und dabei entweder direkt oder nachdem aus dem primär abgespaltenen Rest eine oder mehrere weitere Gruppen abgespalten worden sind (z. B. DE-A 27 03 145, DE-A 28 55 697, DE-A 31 05 026, DE-A 33 19 428), eine bestimmte erwünschte fotografische Wirksamkeit entfaltet, z. B. als Entwicklungsinhibitor oder -accelerator. Beispiele für solche 2-Äquivalentkuppler sind die bekannten DIR-Kuppler wie auch DAR- bzw. FAR-Kuppler.
Beispiele für Weißkuppler sind:
DIR-Kuppler, die Entwicklungsinhibitoren vom Azoltyp, z. B. Triazole und Benzotriazole freisetzen, sind in DE- A-24 14 006, 26 10 546, 26 59 417, 27 54 281, 28 42 063, 36 26 219, 36 30 564, 36 36 824, 36 44 416 beschrieben. Weitere Vorteile für die Farbwiedergabe, d. h. Farbtrennung und Farbreinheit, und für die Detailwiedergabe, d. h. Schärfe und Körnigkeit, sind mit solchen DIR- Kupplern zu erzielen, die z. B. den Entwicklungsinhibitor nicht unmittelbar als Folge der Kupplung mit einem oxidierten Farbentwickler abspalten, sondern erst nach einer weiteren Folgereaktion, die beispielsweise mit einer Zeitsteuergruppe erreicht wird. Beispiele dafür sind in DE-A-28 55 697, 32 99 671, 38 18 231, 35 18 797, in EP-A-01 57 146 und 02 04 175, in US-A-41 46 396 und 44 38 393 sowie in GB-A-20 72 363 beschrieben.
DIR-Kuppler, die einen Entwicklungsinhibitor freisetzen, der im Entwicklerbad zu im wesentlichen fotografisch unwirksamen Produkten zersetzt wird, sind beispielsweise in DE-A-32 09 486 und in EP-A-01 67 168 und 02 19 713 beschrieben. Mit dieser Maßnahme wird eine störungsfreie Entwicklung und Verarbeitungskonstanz erreicht.
Bei Einsatz von DIR-Kupplern, insbesondere von solchen, die einen gut diffundierbaren Entwicklungsinhibitor abspalten, lassen sich durch geeignete Maßnahmen bei der optischen Sensibilisierung Verbesserungen der Farbwiedergabe, z. B. eine differenziertere Farbwiedergabe, erzielen, wie beispielsweise in EP-A-0 115 304, 0 167 173, GB-A-21 65 058, DE-A-37 00 419 und US-A- 47 07 436 beschrieben.
Die DIR-Kuppler können in einem mehrschichtigen fotografischen Material den unterschiedlichsten Schichten zugesetzt werden, z. B. auch lichtunempfindlichen oder Zwischenschichten. Vorzugsweise werden sie jedoch den lichtempfindlichen Silberhalogenidemulsionsschichten zugesetzt, wobei die charakteristischen Eigenschaften der Silberhalogenidemulsion, z. B. deren Iodgehalt, die Struktur der Silberhalogenidkörner oder deren Korngrößenverteilung von Einfluß auf die erzielten fotografischen Eigenschaften sind. Der Einfluß der freigesetzten Inhibitoren kann beispielsweise durch den Einbau einer Inhibitorfängerschicht gemäß DE-A-24 31 223 begrenzt werden. Aus Gründen der Reaktivität oder Stabilität kann es vorteilhaft sein, einen DIR-Kuppler einzusetzen, der in der jeweiligen Schicht, in der er eingebracht ist, eine von der in dieser Schicht zu erzeugenden Farbe abweichende Farbe bei der Kupplung bildet.
Zur Steigerung der Empfindlichkeit, des Kontrastes und der maximalen Dichte können vor allem DAR- bzw. FAR-Kuppler eingesetzt werden, die einen Entwicklungsbeschleuniger oder ein Schleiermittel abspalten. Verbindungen dieser Art sind beispielsweise in DE-A-25 34 466, 32 09 110, 33 33 355, 34 10 616, 34 29 545, 34 41 823, in EP-A-0 089 834, 0 110 511, 0 118 087, 0 147 765 und in US-A-4 618 572 und 46 56 123 beschrieben.
Als Beispiel für den Einsatz von BAR-Kuppler (Bleach Accelerator Releasing Coupler) wird auf EP-A-193 389 verwiesen.
Es kann vorteilhaft sein, die Wirkung einer aus einem Kuppler abgespaltenen fotografisch wirksamen Gruppe dadurch zu modifizieren, daß eine intermolekulare Reaktion dieser Gruppe nach ihrer Freisetzung mit einer anderen Gruppe gemäß DE-A-35 06 805 eintritt.
Beispiele für DIR-Kuppler sind:
Beispiele für DAR-Kuppler
Da bei den DIR-, DAR- bzw. FAR-Kupplern hauptsächlich die Wirksamkeit des bei der Kupplung freigesetzten Restes erwünscht ist und es weniger auf die farbbildenden Eigenschaften dieser Kuppler ankommt, sind auch solche DIR-, DAR- bzw. FAR-Kuppler geeignet, die bei der Kupplung im wesentlichen farblose Produkte ergeben (DE- A-15 47 640).
Der abspaltbare Rest kann auch ein Ballastrest sein, so daß bei der Reaktion mit Farbentwickleroxidationsprodukten Kupplungsprodukte erhalten werden, die diffusionsfähig sind oder zumindest eine schwache bzw. eingeschränkte Beweglichkeit aufweisen (US-A-4 420 556).
Das Material kann weiterhin von Kupplern verschiedene Verbindungen enthalten, die beispielsweise einen Entwicklungsinhibitor, einen Entwicklungsbeschleuniger, einen Bleichbeschleuniger, einen Entwickler, ein Silberhalogenidlösungsmittel, ein Schleiermittel oder ein Antischleiermittel in Freiheit setzen können, beispielsweise sogenannte DIR-Hydrochinone und andere Verbindungen, wie sie beispielsweise in US-A-46 36 546, 43 45 024, 46 84 604 und in DE-A-31 45 640, 25 15 213, 24 47 079 und in EP-A-198 438 beschrieben sind. Diese Verbindungen erfüllen die gleiche Funktion wie die DIR-, DAR- oder FAR-Kuppler, außer daß sie keine Kupplungsprodukte bilden.
Hochmolekulare Farbkuppler sind beispielsweise in DE-C- 12 97 417, DE-A-24 07 569, DE-A-31 48 125, DE-A- 32 17 200, DE-A-33 20 079, DE-A-33 24 932, DE-A- 33 31 743, DE-A-33 40 376, EP-A-27 284, US-A-40 80 211 beschrieben. Die hochmolekularen Farbkuppler werden in der Regel durch Polymerisation von ethylenisch ungesättigten monomeren Farbkupplern hergestellt. Sie können aber auch durch Polyaddition oder Polykondensation erhalten werden.
Die Einarbeitung der Kuppler oder anderer Verbindungen in Silberhalogenidemulsionsschichten kann in der Weise erfolgen, daß zunächst von der betreffenden Verbindung eine Lösung, eine Dispersion oder eine Emulsion hergestellt und dann der Gießlösung für die betreffende Schicht zugefügt wird. Die Auswahl des geeigneten Lösungs- oder Dispersionsmittels hängt von der jeweiligen Löslichkeit der Verbindung ab.
Methoden zum Einbringen von in Wasser im wesentlichen unlöslichen Verbindungen durch Mahlverfahren sind beispielsweise in DE-A-26 09 741 und DE-A-26 09 742 beschrieben.
Hydrophobe Verbindungen können auch unter Verwendung von hochsiedenden Lösungsmitteln, sogenannten Ölbildnern, in die Gießlösung eingebracht werden. Entsprechende Methoden sind beispielsweise in US-A-23 22 027, US-A- 28 01 170, US-A-28 01 171 und EP-A-0 043 037 beschrieben.
Anstelle der hochsiedenden Lösungsmittel können Oligomere oder Polymere, sogenannte polymere Ölbildner Verwendung finden.
Die Verbindungen können auch in Form beladener Latices in die Gießlösung eingebracht werden. Verwiesen wird beispielsweise auf DE-A-25 41 230, DE-A-25 41 274, DE-A- 28 35 856, EP-A-0 014 921, EP-A-0 069 671, EP-A- 0 130 115, US-A-42 91 113.
Die diffusionsfeste Einlagerung anionischer wasserlöslicher Verbindungen (z. B. von Farbstoffen) kann auch mit Hilfe von kationischen Polymeren, sogenannten Beizenpolymeren erfolgen.
Geeignete Ölbildner sind z. B. Phthalsäurealkylester, Phosphonsäureester, Phosphorsäureester, Citronensäureester, Benzoesäureester, Amide, Fettsäureester, Trimesinsäureester, Alkohole, Phenole, Anilinderivate und Kohlenwasserstoffe.
Beispiele für geeignete Ölbildner sind Dibutylphthalat, Dicyclohexylphthalat, Di-2-ethylhexylphthalat, Decylphthalat, Triphenylphosphat, Tricresylphosphat, 2-Ethyl­ hexyldiphenylphosphat, Tricyclohexylphosphat, Tri-2- ethylhexylphosphat, Tridecylphosphat, Tributoxyethylphosphat, Trichlorpropylphosphat, Di-2-ethylhexylphenylphosphat, 2-Ethylhexylbenzoat, Dodecylbenzoat, 2- Ethylhexyl-p-hydroxybenzoat, Diethyldodecanamid, N- Tetradecylpyrrolidon, Isostearylalkohol, 2,4-Di-t- amylphenol, Dioctylacelat, Glycerintributyrat, Isostearyllactat, Trioctylcitrat, N,N-Dibutyl-2-butoxy-5- t-octylanilin, Paraffin, Dodecylbenzol und Diisopropylnaphthalin.
Jede der unterschiedlich sensibilisierten, lichtempfindlichen Schichten kann aus einer einzigen Schicht bestehen oder auch zwei oder mehr Silberhalogenidemulsionsteilschichten umfassen (DE-C-11 21 470). Dabei sind rotempfindliche Silberhalogenidemulsionsschichten dem Schichtträger häufig näher angeordnet als grünempfindliche Silberhalogenidemulsionsschichten und diese wiederum näher als blauempfindliche, wobei sich im allgemeinen zwischen grünempfindlichen Schichten und blauempfindlichen Schichten eine nicht lichtempfindliche gelbe Filterschicht befindet.
Bei geeignet geringer Eigenempfindlichkeit der grün- bzw. rotempfindlichen Schichten kann man unter Verzicht auf die Gelbfilterschicht andere Schichtanordnungen wählen, bei denen auf den Träger z. B. die blauempfindlichen, dann die rotempfindlichen und schließlich die grünempfindlichen Schichten folgen.
Die in der Regel zwischen Schichten unterschiedlicher Spektralempfindlichkeit angeordneten nicht lichtempfindlichen Zwischenschichten können Mittel enthalten, die eine unerwünschte Diffusion von Entwickleroxidationsprodukten aus einer lichtempfindlichen in eine andere lichtempfindliche Schicht mit unterschiedlicher spektraler Sensibilisierung verhindern.
Geeignete Mittel, die auch Scavenger oder EOP-Fänger genannt werden, werden in Research Disclosure 17 643 (Dez. 1978), Kapitel VII, 17 842 (Feb. 1979) und 18 716 (Nov. 1979), Seite 650 sowie in EP-A-0 069 070, 0 098 072, 0 124 877, 0 125 522 beschrieben.
Beispiele für besonders geeignete Verbindungen sind:
Liegen mehrere Teilschichten gleicher spektraler Sensibilisierung vor, so können sich diese hinsichtlich ihrer Zusammensetzung, insbesondere was Art und Menge der Silberhalogenidkörnchen, betrifft unterscheiden. Im allgemeinen wird die Teilschicht mit höherer Empfindlichkeit vom Träger entfernter angeordnet sein als die Teilschicht mit geringerer Empfindlichkeit. Teilschichten gleicher spektraler Sensibilisierung können zueinander benachbart oder durch andere Schichten, z. B. durch Schichten anderer spektraler Sensibilisierung getrennt sein. So können z. B. alle hochempfindlichen und alle niedrigempfindlichen Schichten jeweils zu einem Schichtpaket zusammengefaßt sein (DE-A-19 58 709, DE-A- 25 30 645, DE-A-26 22 922).
Das fotografische Material kann weiterhin UV-Licht absorbierende Verbindungen, Weißtöner, Abstandshalter, Filterfarbstoffe, Formalinfänger, Lichtschutzmittel, Antioxidantien, DMin-Farbstoffe, Zusätze zur Verbesserung der Farbstoff-, Kuppler- und Weißenstabilisierung sowie zur Verringerung des Farbschleiers, Weichmacher (Latices), Biocide und anderes enthalten.
UV-Licht absorbierende Verbindungen sollen einerseits die Bildfarbstoffe vor dem Ausbleichen durch UV-reiches Tageslicht schützen und andererseits als Filterfarbstoffe das UV-Licht im Tageslicht bei der Belichtung absorbieren und so die Farbwiedergabe eines Films verbessern. Üblicherweise werden für die beiden Aufgaben Verbindungen unterschiedlicher Struktur eingesetzt. Beispiele sind arylsubstituierte Benzotriazolverbindungen (US-A-35 33 794), 4-Thiazolidonverbindungen (US- A-33 14 794 und 33 52 681), Benzophenonverbindungen (JP- A-2784/71), Zimtsäureesterverbindungen (US-A-37 05 805 und 37 07 375), Butadienverbindungen (US-A-40 45 229) oder Benzoxazolverbindungen (US-A-37 00 455).
Beispiele besonders geeigneter Verbindungen sind
Es können auch ultraviolettabsorbierende Kuppler (wie Blaugrünkuppler des α-Naphtholtyps) und ultraviolettabsorbierende Polymere verwendet werden. Diese Ultraviolettabsorbentien können durch Beizen in einer speziellen Schicht fixiert sein.
Für sichbares Licht geeignete Filterfarbstoffe umfassen Oxonolfarbstoffe, Hemioxonolfarbstoffe, Styrylfarbstoffe, Merocyaninfarbstoffe, Cyaninfarbstoffe und Azofarbstoffe. Von diesen Farbstoffen werden Oxonolfarbstoffe, Hemioxonolfarbstoffe und Merocyaninfarbstoffe besonders vorteilhaft verwendet.
Geeignete Weißtöner sind z. B. in Research Disclosure 17 643 (Dez. 1978), Kapitel V, in US-A-26 32 701, 32 69 840 und in GB-A-8 52 075 und 13 19 763 beschrieben.
Bestimmte Bindemittelschichten, insbesondere die vom Träger am weitesten entfernte Schicht, aber auch gelegentlich Zwischenschichten, insbesondere, wenn sie während der Herstellung die vom Träger am weitesten entfernte Schicht darstellen, können fotografisch inerte Teilchen anorganischer oder organischer Natur enthalten, z. B. als Mattierungsmittel oder als Abstandshalter (DE-A-33 31 542, DE-A-34 24 893, Research Disclosure 17 643, (Dez. 1978), Kapitel XVI).
Der mittlere Teilchendurchmesser der Abstandshalter liegt insbesondere im Bereich von 0,2 bis 10 µm. Die Abstandshalter sind wasserunlöslich und können alkaliunlöslich oder alkalilöslich sein, wobei die alkalilöslichen im allgemeinen im alkalischen Entwicklungsbad aus dem fotografischen Material entfernt werden. Beispiele für geeignete Polymere sind Polymethylmethacrylat, Copolymere aus Acrylsäure und Methylmethacrylat sowie Hydroxypropylmethylcellulosehexahydrophthalat.
Geeignete Formalinfänger sind z. B.
Zusätze zur Verbesserung der Farbstoff-, Kuppler- und Weißenstabilität sowie zur Verringerung des Farbschleiers (Research Disclosure 17 643 (Dez. 1978), Kapitel VII), können den folgenden chemischen Stoffklassen angehören: Hydrochinone, 6-Hydroxychromane, 5-Hydroxycumarane, Spirochromane, Spiroindane, p-Alkoxyphenole, sterische gehinderte Phenole, Gallussäurederivate, Methylendioxybenzole, Aminophenole, sterisch gehinderte Amine, Derivate mit veresterten oder verätherten phenolischen Hydroxylgruppen, Metallkomplexe.
Verbindungen, die sowohl eine sterisch gehinderte Amin- Partialstruktur als auch eine sterisch gehinderte Phenol-Partialstruktur in einem Molekül aufweisen (US- A-42 68 593), sind besonders wirksam zur Verhinderung der Beeinträchtigung von gelben Farbbildern als Folge der Entwicklung von Wärme, Feuchtigkeit und Licht. Um die Beeinträchtigung von purpurroten Farbbildern, insbesondere ihre Beeinträchtigung als Folge der Einwirkung von Licht, zu verhindern, sind Spiroindane (JP-A- 159 644/81) und Chromane, die durch Hydrochinondiether oder -monoether substituiert sind (JP-A-89 835/80) besonders wirksam.
Beispiele besonders geeigneter Verbindungen sind:
sowie die als EOP-Fänger aufgeführten Verbindungen.
Die Schichten des fotografischen Materials können mit den üblichen Härtungsmitteln gehärtet werden. Geeignete Härtungsmittel sind z. B. Formaldehyd, Glutaraldehyd und ähnliche Aldehydverbindungen, Diacetyl, Cyclopentadion und ähnliche Ketonverbindungen, Bis-(2-chlorethylharnstoff), 2-Hydroxy-4,6-dichlor-1,3,5-triazin und andere Verbindungen, die reaktives Halogen enthalten (US-A- 32 88 775, US-A-27 32 303, GB-A-9 74 723 und GB-A- 11 67 207), Divinylsulfonverbindungen, 5-Acetyl-1,3-di­ acryloylhexahydro-1,3,5-triazin und andere Verbindungen, die eine reaktive Olefinbindung enthalten (US-A- 36 35 718, US-A-32 32 763 und GB-A-994 869); N-Hydroxy­ methylphthalimid und andere N-Methylolverbindungen (US- A-27 32 316 und US-A-25 86 168); Isocyanate (US-A- 31 03 437); Aziridinverbindungen (US-A-30 17 280 und US- A-29 83 611); Säurederivate (US-A-27 25 294 und US-A- 27 25 295); Verbindungen vom Carbodiimidtyp (US-A- 31 00 704); Carbamoylpyridiniumsalze (DE-A-22 25 230 und DE-A-24 39 551); Carbamoyloxypyridiniumverbindungen (DE- A-24 08 814); Verbindungen mit einer Phosphor-Halogen- Bindung (JP-A-113 929/83); N-Carbonyloximid-Verbindungen (JP-A-43 353/81); N-Sulfonyloximido-Verbindungen (US-A- 41 11 926), Dihydrochinolinverbindungen (US-A- 40 13 468), 2-Sulfonyloxypyridiniumsalze (JP-A- 110 762/81), Formamidiniumsalze (EP-A-0 162 308), Verbindungen mit zwei oder mehr N-Acyloximino-Gruppen (US- A-40 52 373), Epoxyverbindungen (US-A-30 91 537), Verbindungen vom Isoxazoltyp (US-A-33 21 313 und US-A-35 43 292); Halogencarboxyaldehyde, wie Mucochlorsäure; Dioxanderivate, wie Dihydroxydioxan und Di-chlordioxan; und anorganische Härter, wie Chromalaun und Zirkonsulfat.
Die Härtung kann in bekannter Weise dadurch bewirkt werden, daß das Härtungsmittel der Gießlösung für die zu härtende Schicht zugesetzt wird, oder dadurch, daß die zu härtende Schicht mit einer Schicht überschichtet wird, die ein diffusionsfähiges Härtungsmittel enthält.
Unter den aufgeführten Klassen gibt es langsam wirkende und schnell wirkende Härtungsmittel sowie sogenannte Soforthärter, die besonders vorteilhaft sind. Unter Soforthärtern werden Verbindungen verstanden, die geeignete Bindemittel so vernetzen, daß unmittelbar nach Beguß, spätestens nach 24 Stunden, vorzugsweise spätestens nach 8 Stunden die Härtung so weit abgeschlossen ist, daß keine weitere durch die Vernetzungsreaktion bedingte Änderung der Sensitometrie und der Quellung des Schichtverbandes auftritt. Unter Quellung wird die Differenz von Naßschichtdicke und Trockenschichtdicke bei der wäßrigen Verarbeitung des Films verstanden (Photogr. Sci., Eng. 8 (1964), 275; Photogr. Sci. Eng. (1972), 449).
Bei diesen mit Gelatine sehr schnell reagierenden Härtungsmitteln handelt es sich z. B. um Carbamoylpyridiniumsalze, die mit freien Carboxylgruppen der Gelatine zu reagieren vermögen, so daß letztere mit freien Aminogruppen der Gelatine unter Ausbildung von Peptidbindungen und Vernetzung der Gelatine reagieren.
Geeignete Beispiele für Soforthärter sind z. B. Verbindungen der allgemeinen Formeln
worin
R¹ Alkyl, Aryl oder Aralkyl bedeutet,
R² die gleiche Bedeutung wie R¹ hat oder Alkylen, Arylen, Aralkylen oder Alkaralkylen bedeutet, wobei die zweite Bindung mit einer Gruppe der Formel
verknüpft ist, oder
R¹ und R² zusammen die zur Vervollständigung eines gegebenenfalls substituierten heterocyclischen Ringes, beispielsweise eines Piperidin-, Piperazin- oder Morpholinringes erforderlichen Atome bedeuten, wobei der Ring z. B. durch C₁- C₃-Alkyl oder Halogen substituiert sein kann,
R³ für Wasserstoff, Alkyl, Aryl, Alkoxy,
-NR⁴-COR⁵, -(CH₂)m-NR⁸R⁹, -(CH₂)n-CONR¹³R¹⁴ oder
oder ein Brückenglied oder eine direkte Bindung an eine Polymerkette steht, wobei
R⁴, R⁶, R⁷, R⁹, R¹⁴, R¹⁵, R¹⁷, R¹⁸ und R¹⁹ Wasserstoff oder C₁-C₄-Alkyl,
R⁵ Wasserstoff, C₁-C₄-Alkyl oder NR⁶R⁷,
R⁸ -COR¹⁰,
R¹⁰ NR¹¹R¹²,
R¹¹ C₁-C₄-Alkyl oder Aryl, insbesondere Phenyl,
R¹² Wasserstoff, C₁-C₄-Alkyl oder Aryl, insbesondere Phenyl,
R¹³ Wasserstoff, C₁-C₄-Alkyl oder Aryl, insbesondere Phenyl,
R¹⁶ Wasserstoff, C₁-C₄-Alkyl, -COR¹⁸ oder -CONHR¹⁹,
m eine Zahl 1 bis 3,
n eine Zahl 0 bis 3,
p eine Zahl 2 bis 3 und,
y O oder NR¹⁷ bedeuten oder
R¹³ und R¹⁴ gemeinsam die zur Vervollständigung eines gegebenenfalls substituierten heterocyclischen Ringes, beispielsweise eines Piperidin-, Piperazin- oder Morpholinringes erforderlichen Atome darstellen, wobei der Ring z. B. durch C₁-C₃-Alkyl oder Halogen substituiert sein kann,
Z die zur Vervollständigung eines 5- oder 6 gliedrigen aromatischen heterocyclischen Ringes, gegebenenfalls mit anelliertem Benzolring, erforderlichen C-Atome und
X⊖ ein Anion bedeuten, das entfällt, wenn bereits eine anionische Gruppe mit dem übrigen Molekül verknüpft ist;
worin
R¹, R², R³ und X⊖ die für Formel (a) angegebene Bedeutung besitzen.
Es gibt diffusionsfähige Härtungsmittel, die auf alle Schichten innerhalb eines Schichtverbandes in gleicher Weise härtend wirken. Es gibt aber auch schichtbegrenzt wirkende, nicht diffundierende, niedermolekulare und hochmolekulare Härter. Mit ihnen kann man einzelne Schichten, z. B. die Schutzschicht besonders stark vernetzen. Dies ist wichtig, wenn man die Silberhalogenid-Schicht wegen der Silberdeckkrafterhöhung wenig härtet und mit der Schutzschicht die mechanischen Eigenschaften verbessern muß (EP-A-0 114 699).
Farbfotografische Negativmaterialien werden üblicherweise durch Entwickeln, Bleichen, Fixieren und Wässern oder durch Entwickeln, Bleichen, Fixieren und Stabilisieren ohne nachfolgende Wässerung verarbeitet, wobei Bleichen und Fixieren zu einem Verarbeitungsschritt zusammengefaßt sein können. Als Farbentwicklerverbindung lassen sich sämtliche Entwicklerverbindungen verwenden, die die Fähigkeit besitzen, in Form ihres Oxidationsproduktes mit Farbkupplern zu Azomethin- bzw. Indophenolfarbstoffen zu reagieren. Geeignete Farbentwicklerverbindungen sind aromatische, mindestens eine primäre Aminogruppe enthaltende Verbindungen vom p-Phenylendiamintyp, beispielsweise N,N-Dialkyl-p-phenylendiamine wie N,N- Diethyl-p-phenylendiamin, 1-(N-Ethyl-N-methansulfon­ amidoethyl)-3-methyl-p-phenylendiamin, 1-(N-Ethyl-N- hydroxyethyl)-3-methyl-p-phenylendiamin und 1-(N-Ethyl- N-methoxyethyl)-3-methyl-p-phenylendiamin. Weitere brauchbare Farbentwickler sind beispielsweise in J. Amer. Chem. Soc. 73, 3106 (1951) und G. Haist, Modern Photographic Processing, 1979, John Wiley and Sons, New York, Seite 545 ff. beschrieben.
Nach der Farbentwicklung kann ein saures Stoppbad oder eine Wässerung folgen.
Üblicherweise wird das Material unmittelbar nach der Farbentwicklung gebleicht und fixiert. Als Bleichmittel können z. B. Fe(III)-Salze und Fe(III)-Komplexsalze wie Ferricyanide, Dichromate, wasserlösliche Kobaltkomplexe verwendet werden. Besonders bevorzugt sind Eisen-(III)-Komplexe von Aminopolycarbonsäuren, insbesondere z. B. von Ethylendiamintetraessigsäure, Propylendiamintetraessigsäure, Diethylentriaminpentaessigsäure, Nitrilotriessigsäure, Iminodiessigsäure, N-Hydroxy­ ethyl-ethylendiamintriessigsäure, Alkyliminodicarbonsäuren und von entsprechenden Phosphonsäuren. Geeignete als Bleichmittel sind weiterhin Persulfate und Peroxide, z. B. Wasserstoffperoxid.
Auf das Bleichfixierbad oder Fixierbad folgt meist eine Wässerung, die als Gegenstromwässerung ausgeführt ist oder aus mehreren Tanks mit eigener Wasserzufuhr besteht.
Günstige Ergebnisse können bei Verwendung eines darauf folgenden Schlußbades, das keinen oder nur wenig Formaldehyd enthält, erhalten werden.
Die Wässerung kann aber durch ein Stabilisierbad vollständig ersetzt werden, das üblicherweise im Gegenstrom geführt wird. Dieses Stabilisierbad übernimmt bei Formaldehydzusatz auch die Funktion eines Schlußbades.
Bei Farbumkehrmaterialien erfolgt zunächst eine Entwicklung mit einem Schwarz-Weiß-Entwickler, dessen Oxidationsprodukt nicht zur Reaktion mit den Farbkupplern befähigt ist. Es schließt sich eine diffuse Zweitbelichtung und dann Entwicklung mit einem Farbentwickler, Bleichen und Fixieren an.
Beispiel
7,3 g des erfindungsgemäßen Gelbkupplers Y-2 wurden in 15 ml Essigester, 5 ml Dibutylphthalat und 5 ml einer 10%igen wäßrigen Lösung des Natriumsalzes einer C₁₂- Alkylnaphthylsulfonsäure gelöst und bei 60°C in 150 ml 7,5%iger wäßriger Gelatinelösung emulgiert. Dem fertigen Emulgat wurde 126 ml einer Silberbromidchloridemulsion (90 Mol-% AgBr), mit einem Silbergehalt der 6,8 g AgNO₃ entspricht, zugesetzt. Diese Gießlösung wurde bei 40°C mit einem Auftrag von 1,5 g AgNO₃ pro m² auf ein polyethylenbeschichtetes Papier aufgegossen.
Die Proben wurden hinter einem Graustufenkeil belichtet, in dem nachstehend angegebenen Farbentwickler einmal mit und einmal ohne Benzylalkohol entwickelt und anschließend bleichfixiert, gewässert und getrocknet.
Farbentwickler
Benzylalkohol|15 ml
Kaliumcarbonat 30 g
Kaliumbromid 0,5 g
Hydroxylaminsulfat 2 g
Natriumsulfit 2 g
Diethylentriamin 1 g
N-Ethyl-N-β-methansulfonamidoethyl-3-methyl-4-aminoanilinsulfat 4,5 g
auffüllen mit Wasser auf 1 l
Bleichfixierbad
Ammoniumthiosulfat (70%)|150 ml
Natriumsulfat 5 g
Na[Fe (EDTA)] 40 g
EDTA 4 g
auffüllen mit Wasser auf 1 l
Die verarbeiteten Proben zeigten die in der folgenden Tabelle aufgeführten sensitometrischen Unterschiede bezüglich Empfindlichkeit, wobei E1-E2 die Differenz der Empfindlichkeiten angibt, die mit (E1) bzw. ohne (E2) Benzylalkohol erhalten wurden, und D1 und D2 die mit (D1) bzw. ohne (D2) Benzylalkohol erhaltenen maximalen Farbdichten.
Tabelle
Das Beispiel zeigt, daß die Gelbkuppler gemäß der Erfindung hervorragend konstante Farbdichten und außerdem im wesentlichen konstante Empfindlichkeit ergeben, gleich ob im Farbentwickler Benzylalkohol anwesend ist oder nicht.

Claims (3)

1. Farbfotografisches Aufzeichnungsmaterial mit mindestens einer lichtempfindlichen Silberhalogenidemulsionsschicht und einem dieser zugeordneten nicht diffundierenden α-Acylacetanilid-Gelbkuppler, an dessen Anilidgruppe sich ein Substituent mit einer N-Acylsulfamoylgruppe befindet, dadurch gekennzeichnet, daß der Gelbkuppler der folgenden Formel entspricht. worin bedeuten
X eine bei Farbkupplung abspaltbare Gruppe;
R₁ Alkyl;
R₂ Alkyl oder Aralkyl.
2. Aufzeichnungsmaterial nach Anspruch 1, dadurch gekennzeichnet, daß R₁ für Alkyl mit mindestens 8 C-Atomen steht.
3. Aufzeichnungsmaterial nach Anspruch 2, dadurch gekennzeichnet, daß R₂ für Alkyl mit mindestens 1 bis 4 C-Atomen steht.
DE4031159A 1990-10-03 1990-10-03 Farbfotogafisches farbkupplerhaltiges aufzeichnungsmaterial Withdrawn DE4031159A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE4031159A DE4031159A1 (de) 1990-10-03 1990-10-03 Farbfotogafisches farbkupplerhaltiges aufzeichnungsmaterial
US07/762,426 US5143823A (en) 1990-10-03 1991-09-19 Color photographic recording material containing color couplers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE4031159A DE4031159A1 (de) 1990-10-03 1990-10-03 Farbfotogafisches farbkupplerhaltiges aufzeichnungsmaterial

Publications (1)

Publication Number Publication Date
DE4031159A1 true DE4031159A1 (de) 1992-04-09

Family

ID=6415430

Family Applications (1)

Application Number Title Priority Date Filing Date
DE4031159A Withdrawn DE4031159A1 (de) 1990-10-03 1990-10-03 Farbfotogafisches farbkupplerhaltiges aufzeichnungsmaterial

Country Status (2)

Country Link
US (1) US5143823A (de)
DE (1) DE4031159A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0586974B1 (de) * 1992-09-08 1998-12-09 Agfa-Gevaert Ag Farbfotografisches Silberhalogenidmaterial

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5674249A (en) * 1979-11-21 1981-06-19 Konishiroku Photo Ind Co Ltd Silver halide color photographic material
JPS59177557A (ja) * 1983-03-28 1984-10-08 Fuji Photo Film Co Ltd ハロゲン化銀カラ−写真感光材料
DE3441525A1 (de) * 1984-11-14 1986-05-15 Agfa-Gevaert Ag, 5090 Leverkusen Farbfotografisches farbkupplerhaltiges aufzeichnungsmaterial

Also Published As

Publication number Publication date
US5143823A (en) 1992-09-01

Similar Documents

Publication Publication Date Title
EP0358071B1 (de) Fotografisches Aufzeichnungsmaterial
EP0464409B1 (de) Farbfotografisches Aufzeichnungsmaterial
DE3830522A1 (de) Fotografisches aufzeichnungsmaterial
DE4039022A1 (de) Farbfotografisches aufzeichnungsmaterial
EP0351588B1 (de) Farbfotografisches Aufzeichnungsmaterial
EP0652474B1 (de) Farbfotografisches Aufzeichnungsmaterial
EP0413204A2 (de) Farbfotografisches Silberhalogenidmaterial
DE4009181A1 (de) Farbfotografisches silberhalogenidmaterial und seine entwicklung
EP0369235B1 (de) Fotografisches Aufzeichnungsmaterial
EP0377181A2 (de) Farbfotografisches Material
DE4444258A1 (de) Fotografisches Aufzeichnungsmaterial
DE3835467A1 (de) Farbfotografisches silberhalogenidmaterial
EP0616256B1 (de) Farbfotografisches Aufzeichnungsmaterial
DE3838467C2 (de) Fotografisches Aufzeichnungsmaterial
EP0697624B1 (de) Farbphotographisches Aufzeichnungsmaterial
DE4031159A1 (de) Farbfotogafisches farbkupplerhaltiges aufzeichnungsmaterial
DE4027373A1 (de) Farbfotografisches farbkupplerhaltiges aufzeichnungsmaterial
EP0722117B1 (de) Farbfotografisches Silberhalogenidmaterial
DE4008067A1 (de) Farbfotografisches aufzeichnungsmaterial zur herstellung farbiger aufsichtsbilder
DE4310703A1 (de) Farbfotografisches Aufzeichnungsmaterial zur Herstellung farbiger Bilder
DE3931629A1 (de) Silberhalogenidemulsion und fotografisches material
DE3806629A1 (de) Verfahren zur erzeugung von colorbildern
EP0447657B1 (de) Fotografisches Aufzeichnungsmaterial
EP0699956B1 (de) Farbfotografisches Silberhalogenidmaterial
EP0550907A1 (de) Fotografisches Aufzeichnungsmaterial

Legal Events

Date Code Title Description
8130 Withdrawal