DE3833387A1 - Farbfotografisches silberhalogenidmaterial - Google Patents

Farbfotografisches silberhalogenidmaterial

Info

Publication number
DE3833387A1
DE3833387A1 DE19883833387 DE3833387A DE3833387A1 DE 3833387 A1 DE3833387 A1 DE 3833387A1 DE 19883833387 DE19883833387 DE 19883833387 DE 3833387 A DE3833387 A DE 3833387A DE 3833387 A1 DE3833387 A1 DE 3833387A1
Authority
DE
Germany
Prior art keywords
silver halide
layer
compounds
color photographic
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19883833387
Other languages
English (en)
Inventor
Peter Dr Bergthaller
Friedrich-Wilhelm Dr Kunitz
Helmut Dr Maeder
Dieter Rockser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agfa Gevaert AG
Original Assignee
Agfa Gevaert AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agfa Gevaert AG filed Critical Agfa Gevaert AG
Priority to DE19883833387 priority Critical patent/DE3833387A1/de
Priority to EP89117176A priority patent/EP0362604A3/de
Priority to JP25082689A priority patent/JPH02123351A/ja
Publication of DE3833387A1 publication Critical patent/DE3833387A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C7/00Multicolour photographic processes or agents therefor; Regeneration of such processing agents; Photosensitive materials for multicolour processes
    • G03C7/30Colour processes using colour-coupling substances; Materials therefor; Preparing or processing such materials
    • G03C7/392Additives
    • G03C7/39208Organic compounds
    • G03C7/39232Organic compounds with an oxygen-containing function
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C7/00Multicolour photographic processes or agents therefor; Regeneration of such processing agents; Photosensitive materials for multicolour processes
    • G03C7/30Colour processes using colour-coupling substances; Materials therefor; Preparing or processing such materials
    • G03C7/392Additives
    • G03C7/39208Organic compounds
    • G03C7/39212Carbocyclic
    • G03C7/39216Carbocyclic with OH groups

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Silver Salt Photography Or Processing Solution Therefor (AREA)

Description

Die Erfindung betrifft ein farbfotografisches Silberhalogenidmaterial mit einem reflektierenden Träger und mindestens einer blauempfindlichen Silberhalogenidemulsionsschicht, deren Silberhalogenidemulsion zu wenigstens 80 Mol-.% aus Silberchlorid besteht, das sich durch eine steilere Gradation Gamma 1 und verminderten Schleier auszeichnet.
Farbfotografisches Silberhalogenidmaterial mit einem reflektierenden Träger (Colorpapier), auf dem mit Hilfe des Negativs die Abzüge gemacht werden, enthält üblicherweise wenigstens eine blauempfindliche Silberhalogenidemulsions­ schicht mit wenigstens einem Gelbkuppler, wenigstens eine grünempfindliche Silberhalogenidemulsions­ schicht mit wenigstens einem Purpurkuppler und wenigstens eine rotempfindliche Silberhalogenidemulsionsschicht mit wenigstens einem Blaugrünkuppler. Als Emulsionen für Colorpapier werden mehr und mehr solche mit sehr großem Silberchloridanteil eingesetzt, da diese überwiegende Anteile an Silberbromid aufweisen, wesentlich schneller entwickeln lassen.
Der Prozeß für die herkömmlichen Materialien ist auf eine Entwicklungszeit von 195 Sekunden, der Entwicklungsprozeß (RA-4-Prozeß) für die hochchloridhaltigen Emulsionen auf 45 Sekunden eingestellt.
Nachteilig ist jedoch, daß die hochchloridhaltigen Emulsionen insbesondere im gelben Bereich eine Erhöhung des Schleiers und eine Verflachung der Lichtergradation (Gamma 1) bewirken.
Aufgabe der Erfindung war es daher, Maßnahmen zu finden, diese Nachteile zu beseitigen und so die Vorteile der Chloridemulsionen besser ausnutzen zu können.
Es wurde nun gefunden, daß diese Aufgabe durch den Zusatz bestimmter organischer Säuren gelöst werden kann.
Gegenstand der Erfindung ist daher das eingangs genannte Material, das in der wenigstens einen blauempfindlichen Silberhalogenidemulsionsschicht mit einem Silberchloridgehalt von wenigstens 80 Mol-.% neben einem Gelbkuppler wenigstens eine Verbindung der Formel:
X-LOH (I)
enthält, worin
X-OH
oder ein weiter substituiertes Stickstoffatom, vorzugsweise der Formel:
L ein Brückenglied mit 2 oder 3 Kohlenstoffatomen und
die Verbindung wenigstens eine Säuregruppe enthält, beispielsweise eine Sulfonsäuregruppe, vorzugsweise aber eine Carbonsäuregruppe.
Die OH-Gruppen können Bestandteil von Carbonsäuregruppen sein.
R₁ ist insbesondere ein gegebenenfalls substituierter C₁-C₄-Alkylrest oder zusammen mit R₂ und einem Kohlenstoffatom des Brückengliedes die restlichen Glieder eines heteroaromatischen Ringes mit 5 bis 10 C-Atomen, der weiter substituiert sein kann, z. B. durch Sulfonsäure- oder Carbonsäuregruppen.
R₂ ist insbesondere Wasserstoff, ein gegebenenfalls substituierter Alkylrest oder zusammen mit einem Kohlenstoffatom des Brückengliedes die restlichen Glieder eines heteroatomischen Ringes.
Vorzugsweise bedeutet R₁ den Rest -CH₂-COOH.
Geeignete Brückenglieder sind beispielsweise:
worin
R₃ zusammen mit dem Stickstoffatom der doppelt gebundene Rest eines gegebenenfalls substituierten heteroaromatischen 5- oder 6-Rings und
R₄, R₅, R₆ den doppelt gebundenen Rest eines aromatischen oder heteroaromatischen 6- bis 10gliedrigen Ringsystems, das gegebenenfalls weiter substituiert ist.
Geeignete Verbindungen sind:
Die Verbindungen der Formel I werden in einer Menge von 10-5 bis 10-1 µMol/Mol Silberhalogenid der betreffenden Schicht, vorzugsweise von 10-3 bis 10-2 µMol/Mol Silber­ halogenid eingesetzt.
Vorzugsweise enthalten alle lichtempfindlichen Silberhalogenidemulsions­ schichten Silberhalogenide mit mindestens 80 Mol.-% AgCl, vorzugsweise mindestens 95 Mol.-% AgCl.
Geeignete reflektierende Träger sind vorzugsweise mit einer Barytschicht oder α-Olefinpolymerschicht (z. B. Polyethylen) laminiertes Papier.
Die farbfotografischen Materialien enthalten üblicherweise mindestens je eine rotempfindliche, grünempfindliche und blauempfindliche Silberhalogenidemulsions­ schicht sowie gegebenenfalls Zwischenschichten und Schutzschichten.
Wesentliche Bestandteile der fotografischen Emulsionsschichten sind Bindemittel, Silberhalogenidkörnchen und Farbkuppler.
Als Bindemittel wird vorzugsweise Gelatine verwendet. Diese kann jedoch ganz oder teilweise durch andere synthetische, halbsynthetische oder auch natürlich vorkommende Polymere ersetzt werden. Synthetische Gelatineersatzstoffe sind beispielsweise Polyvinylalkohol, Poly- N-vinylpyrrolidon, Polyacrylamide, Polyacrylsäure und deren Derivate, insbesondere deren Mischpolymerisate. Natürlich vorkommende Gelatineersatzstoffe sind beispielsweise andere Proteine wie Albumin oder Casein, Cellulose, Zucker, Stärke oder Alginate. Halbsynthetische Gelatineersatzstoffe sind in der Regel modifizierte Naturprodukte. Cellulosederivate wie Hydroxy­ alkylcellulose, Carboxymethylcellulose und Phthalylcellulose sowie Gelatinederivate, die durch Umsetzung mit Alkylierungs- oder Acylierungsmittel oder durch Aufpfropfung von polymerisierbaren Monomeren erhalten worden sind, sind Beispiele hierfür.
Die Bindemittel sollen über eine ausreichende Menge an funktionellen Gruppen verfügen, so daß durch Umsetzung mit geeigneten Härtungsmitteln genügend widerstandsfähige Schichten erzeugt werden können. Solche funktio­ nellen Gruppen sind insbesondere Aminogruppen, aber auch Carboxylgruppen, Hydroxylgruppen und aktive Methylen­ gruppen.
Die vorzugsweise verwendete Gelatine kann durch sauren oder alkalischen Aufschluß erhalten sein. Es kann auch oxidierte Gelatine verwendet werden. Die Herstellung solcher Gelatinen wird beispielsweise in The Science and Technology of Gelatine, herausgegeben von A. G. Ward und A. Courts, Academic Press 1977, Seite 295 ff beschrieben. Die jeweils eingesetzte Gelatine soll einen möglichst geringen Gehalt an fotografisch aktiven Verunreinigungen enthalten (Inertgelatine). Gelatinen mit hoher Viskosität und niedriger Quellung sind besonders vorteilhaft.
Die Emulsionen enthalten, wie beschrieben, mindestens 80 Mol-%, vorzugsweise mindestens 95 Mol-% AgCl und außerdem 0 bis 20 Mol-% AgBr und 0 bis 5 Mol-% AgI, vorzugsweise 0 bis 5 Mol-% AgBr und 0 bis 1 Mol-% AgI.
Es kann sich um überwiegend kompakte Kristalle handeln, die z. B. regulär kubisch oder oktaedrisch sind oder Übergangsformen aufweisen können. Vorzugsweise können aber auch plättchenförmige Kristalle vorliegen, deren durchschnittliches Verhältnis von Durchmesser zu Dicke bevorzugt wenigstens 5 : 1 ist, wobei der Durchmesser eines Kornes definiert ist als der Durchmesser eines Kreises mit einem Kreisinhalt entsprechend der projizierten Fläche des Kornes. Die Schichten können aber auch tafelförmige Silberhalogenidkristalle aufweisen, bei denen das Verhältnis von Durchmesser zu Dicke wesentlich größer als 5 : 1 ist, z. B. 12 : 1 bis 30 : 1.
Die Silberhalogenidkörner können auch einen mehrfach geschichteten Kornaufbau aufweisen, im einfachsten Fall mit einem inneren und einem äußeren Kornbereich (core/ shell), wobei die Halogenidzusammensetzung und/oder sonstige Modifizierungen, wie z. B. Dotierungen der einzelnen Kornbereiche unterschiedlich sind. Die mittlere Korngröße der Emulsionen liegt vorzugsweise zwischen 0,2 µm und 2,0 µm, die Korngrößenverteilung kann sowohl homo- als auch heterodispers sein. Homodisperse Korngrößenverteilung bedeutet, daß 95% der Körner nicht mehr als ±30% von der mittleren Korngröße abweichen. Die Emulsionen können neben dem Silberhalogenid auch organische Silbersalze enthalten, z. B. Silberbenztriazolat oder Silberbehenat.
Es können zwei oder mehrere Arten von Silberhalogenidemulsionen, die getrennt hergestellt werden, als Mischung verwendet werden.
Die fotografischen Emulsionen können nach verschiedenen Methoden (z. B. Glafkides, Chimie et Physique Photographique, Paul Montel, Paris (1967), G. F. Duffin, Photographic Emulsion Chemistry, The Focal Press, London (1966), V. L. Zelikman et al, Making and Coating Photographic Emulsion, The Focal Press, London (1966) aus löslichen Silbersalzen und löslichen Halogeniden hergestellt werden.
Die Fällung des Silberhalogenids erfolgt bevorzugt in Gegenwart des Bindemittels, z. B. der Gelatine und kann im sauren, neutralen oder alkalischen pH-Bereich durchgeführt werden, wobei vorzugsweise Silberhalogenidkomplexbildner zusätzlich verwendet werden. Zu letzteren gehören z. B. Ammoniak, Thioether, Imidazol, Ammonium­ thiocyanat oder überschüssiges Halogenid. Die Zusammenführung der wasserlöslichen Silbersalze und der Halogenide erfolgt wahlweise nacheinander nach dem single-jet- oder gleichzeitig nach dem double-jet-Verfahren oder nach beliebiger Kombination beider Verfahren. Bevorzugt wird die Dosierung mit steigenden Zuflußraten, wobei die "kritische" Zufuhrgeschwindigkeit, bei der gerade noch keine Neukeime entstehen, nicht überschritten werden sollte. Der pAg-Bereich kann während der Fällung in weiten Grenzen variieren, vorzugsweise wird das sogenannte pAg-gesteuerte Verfahren benutzt, bei dem ein bestimmter pAg-Wert konstant gehalten oder ein definiertes pAg-Profil während der Fällung durchfahren wird. Neben der bevorzugten Fällung bei Halogenidüberschuß ist aber auch die sogenannte inverse Fällung bei Silberionenüberschuß möglich. Außer durch Fällung können die Silberhalogenidkristalle auch durch physikalische Reifung (Ostwaldreifung), in Gegenwart von überschüssigem Halogenid und/oder Silberhalogenidkomplexierungsmittel wachsen. Das Wachstum der Emulsionskörner kann sogar überwiegend durch Ostwaldreifung erfolgen, wobei vorzugsweise eine feinkörnige, sogenannte Lippmann-Emulsion, mit einer schwerer löslichen Emulsion gemischt und auf letzterer umgelöst wird.
Während der Fällung und/oder der physikalischen Reifung der Silberhalogenidkörner können auch Salze oder Komplexe von Metallen, wie Cd, Zn, Pb, Tl, Bi, Ir, Rh, Fe vorhanden sein.
Ferner kann die Fällung auch in Gegenwart von Sensibilisierungsfarbstoffen erfolgen. Komplexierungsmittel und/oder Farbstoffe lassen sich zu jedem beliebigen Zeitpunkt unwirksam machen, z. B. durch Änderung des pH-Wertes oder durch eine oxidative Behandlung.
Nach abgeschlossener Kristallbildung oder auch schon zu einem früheren Zeitpunkt werden die löslichen Salze aus der Emulsion entfernt, z. B. durch Nudeln und Waschen, durch Flocken und Waschen, durch Ultrafiltration oder durch Ionenaustauscher.
Die Silberhalogenidemulsion wird im allgemeinen einer chemischen Sensibilisierung unter definierten Bedingungen - pH, pAg, Temperatur, Gelatine-, Silberhalogenid- und Sensibilisatorkonzentration - bis zum Erreichen des Empfindlichkeits- und Schleieroptimums unterworfen. Die Verfahrensweise ist z. B. bei H. Frieser "Die Grundlagen der Photographischen Prozesse mit Silberhalogeniden" Seite 675-734, Akademische Verlagsgesellschaft (1968) beschrieben.
Dabei kann die chemische Sensibilisierung unter Zusatz von Verbindungen von Schwefel, Selen, Tellur und/oder Metallverbindungen von z. B. Gold, Platin, Palladium, Iridium erfolgen, weiterhin können Thiocyanatverbindungen, oberflächenaktive Verbindungen, wie Thioether, heterocyclische Stickstoffverbindungen (z. B. Imidazole, Azaindene) oder auch spektrale Sensibilisatoren (beschrieben z. B. bei F. Hamer "The Cyanine Dyes and Related Compounds", 1964, bzw. Ullmanns Encyclopädie der technischen Chemie, 4. Auflage, Bd. 18, S. 431 ff. und Reserach Disclosure Nr. 17 643, Abschnitt III) zugegeben werden. Ersatzweise oder zusätzlich kann eine Reduktions­ sensibilisierung unter Zugabe von Reduktionsmitteln (Zinn-II-Salze, Amine, Hydrazinderivate, Aminoborane, Silane, Formamidinsulfinsäure) durch Wasserstoff, durch niedrigen pAg (z. B. kleiner 5) und/oder hohen pH (z. B. über 8) durchgeführt werden.
Die fotografischen Emulsionen können Verbindungen zur Verhinderung der Schleierbildung oder zur Stabilisierung der fotografischen Funktion während der Produktion, der Lagerung oder der fotografischen Verarbeitung enthal­ ten.
Besonders geeignet sind Azaindene, vorzugsweise Tetra- und Pentaazaindene, insbesondere solche, die mit Hydroxyl- oder Aminogruppen substituiert sind. Derartige Verbindungen sind z. B. von Birr, Z. Wiss. Phot. 47 (1952), S. 2-58 beschrieben worden. Weiter können als Antischleiermittel Salze von Metallen wie Quecksilber oder Cadmium, aromatische Sulfon- oder Sulfinsäuren wie Benzolsulfinsäure, oder stickstoffhaltige Heterocyclen wie Nitrobenzimidazol, Nitroindazol, gegebenenfalls substituierte Benztriazole oder Benzthiazoliumsalze eingesetzt werden. Besonders geeignet sind Mercaptogruppen enthaltende Heterocyclen, z. B. Mercaptobenzthiazole, Mercatobenzimidazole, Mercaptotetrazole, Mercaptothiadiazole, Mercaptopyrimidine, wobei diese Mercaptoazole auch eine wasserlöslichmachende Gruppe, z. B. eine Carboxylgruppe oder Sulfongruppe, enthalten können. Weitere geeignete Verbindungen sind in Research Disclosure Nr. 17 643 (1978), Abschnitt VI, veröffentlicht.
Die Stabilisatoren können den Silberhalogenidemulsionen vor, während oder nach deren Reifung zugesetzt werden. Selbstverständlich kann man die Verbindungen auch anderen fotografischen Schichten, die einer Halogensilberschicht zugeordnet sind, zusetzen.
Es können auch Mischungen aus zwei oder mehreren der genannten Verbindungen eingesetzt werden.
Die fotografischen Emulsionsschichten oder andere hydrophile Kolloidschichten des erfindungsgemäß hergestellten lichtempfindlichen Materials können oberflächenaktive Mittel für verschiedene Zwecke enthalten, wie Überzugshilfen, zur Verhinderung der elektrischen Aufladung, zur Verbesserung der Gleiteigenschaften, zum Emulgieren der Dispersion, zur Verhinderung der Adhäsion und zur Verbesserung der fotografischen Charakteristika (z. B. Ent­ wicklungsbeschleunigung, hoher Kontrast, Sensibilisierung usw.). Neben natürlichen oberflächenaktiven Verbin­ dungen, z. B. Saponin, finden hauptsächlich synthetische oberflächenaktive Verbindungen (Tenside) Verwendung: nicht-ionische Tenside, z. B. Alkylenoxidverbindungen, Glycerinverbindungen oder Glycidolverbindungen, kationische Tenside, z. B. höhere Alkylamine, quartäre Ammoniumsalze, Pyridinverbindungen und andere heterocyclische Verbindungen, Sulfoniumverbindungen oder Phosphoniumverbindungen, anionische Tenside, enthaltend eine Säuregruppe, z. B. Carbonsäure-, Sulfonsäure-, eine Phosphorsäure-, Schwefelsäureester- oder Phosphorsäureestergruppe, ampholytische Tenside, z. B. Aminosäure- und Aminosulfonsäureverbindungen sowie Schwefel- oder Phosphorsäureester eines Aminoalkohols.
Die fotografischen Emulsionen können unter Verwendung von Methinfarbstoffen oder anderen Farbstoffen spektral sensibilisiert werden. Besonders geeignete Farbstoffe sind Cyaninfarbstoffe, Merocyaninfarbstoffe und komplexe Merocyaninfarbstoffe.
Eine Übersicht über die als Spektralsensibilisatoren geeigneten Polymethinfarbstoffe, deren geeignete Kombinationen und supersensibilsierend wirkenden Kombinationen enthält Research Disclosure 17 643/1978 in Abteilung IV.
Insbesondere sind die folgenden Farbstoffe - geordnet nach Spektralgebieten - geeignet:
  • 1. als Rotsensibilisatoren
    9-Ethylcarbocyanine mit Benzthiazol, Benzselenazol oder Naphthothiazol als basische Endgruppen, die in 5- und/oder 6-Stellung durch Halogen, Methyl, Methoxy, Carbalkoxy, Aryl substituiert sein können sowie 9-Ethyl-naphthoxathia- bzw. -selencarbocyanine und 9-Ethyl-naphthothiaoxa- bzw. -benz­ imidazocarboxyanine, vorausgesetzt, daß die Farbstoffe mindestens eine Sulfoalkylgruppe am heterocyclischen Stickstoff tragen.
  • 2. als Grünsensibilisatoren
    9-Ethylcarbocyanine mit Benzoxazol, Naphthoxazol oder einem Benzoxazol und einem Benzthiazol als basische Endgruppen sowie Benzimidazocarbocyanine, die ebenfalls weiter substituiert sein können und ebenfalls mindestens eine Sulfoalkylgruppe am heterocyclischen Stickstoff enthalten müssen.
  • 3. als Blausensibilisatoren
    symmetrische oder asymmetrische Benzimidazo-, Oxa-, Thia- oder Selenacyanine mit mindestens einer Sulfoalkylgruppe am heterocyclischen Stickstoff und gegebenenfalls weiteren Substituenten am aromatischen Kern, sowie Apomerocyanine mit einer Rhoda­ ningruppe.
Den unterschiedlich sensibilisierten Emulsionsschichten werden nicht diffundierende monomere oder polymere Farbkuppler zugeordnet, die sich in der gleichen Schicht oder in einer dazu benachbarten Schicht befinden können. Gewöhnlich werden den rotempfindlichen Schichten Blau­ grünkuppler, den grünempfindlichen Schichten Purpurkuppler und den blauempfindlichen Schichten Gelbkuppler zugeordnet.
Farbkuppler zur Erzeugung des blaugrünen Teilfarbenbildes sind in der Regel Kuppler vom Phenol- oder α- Naphtholtyp; geeignete Beispiele hierfür sind:
Farbkuppler zur Erzeugung des purpurnen Teilfarbenbildes sind in der Regel Kuppler vom Typ des 5-Pyrazolons, des Indazolons oder der Pyrazoloazole; geeignete Beispiele hierfür sind:
Farbkuppler zur Erzeugung des gelben Teilfarbenbildes sind in der Regel Kuppler mit einer offenkettigen Keto­ methylengruppierung, insbesondere Kuppler vom Typ des α-Acylacetamids; geeignete Beispiele hierfür sind a- Benzoylacetanilidkuppler und α-Pivaloylacetanilidkuppler der Formeln:
Bei den Farbkupplern kann es sich um 4-Äquivalentkuppler, aber auch um 2-Äquivalentkuppler handeln. Letztere leiten sich von den 4-Äquivalentkupplern dadurch ab, daß sie in der Kupplungsstelle einen Substituenten enthalten, der bei der Kupplung abgespalten wird. Zu den 2- Äquivalentkupplern sind solche zu rechnen, die farblos sind, als auch solche, die eine intensive Eigenfarbe aufweisen, die bei der Farbkupplung verschwindet bzw. durch die Farbe des erzeugten Bildfarbstoffes ersetzt wird (Maskenkuppler), und die Weißkuppler, die bei Reaktion mit Farbentwickleroxidationsprodukten im wesentlichen farblose Produkte ergeben. Zu den 2-Äquivalentkupplern sind ferner solche Kuppler zu rechnen, die in der Kupplungsstelle einen abspaltbaren Rest enthalten, der bei Reaktion mit Farbentwickleroxidationsprodukten in Freiheit gesetzt wird und dabei entweder direkt oder nachdem aus dem primär abgespaltenen Rest eine oder mehrere weitere Gruppen abgespalten worden sind (z. B. DE-A-27 03 145, DE-A-28 55 697, DE-A-31 05 026, DE-A- 33 19 428), eine bestimmte erwünschte fotografische Wirksamkeit entfaltet, z. B. als Entwicklungsinhibitor oder -accelerator. Beispiele für solche 2-Äquivalentkuppler sind die bekannten DIR-Kuppler wie auch DAR- bzw. FAR-Kuppler.
Beispiele für Weißkuppler sind:
Beispiel für Maskenkuppler sind:
DIR-Kuppler, die Entwicklungsinhibitoren vom Azoltyp, z. B. Triazole und Benzotriazole freisetzen, sind in DE- A-24 14 006, 26 10 546, 26 59 417, 27 54 281, 27 26 180, 36 26 219, 36 30 564, 36 36 824, 36 44 416 und 28 42 063 beschrieben. Weitere Vorteile für die Farbwiedergabe, d. h., Farbtrennung und Farbreinheit, und für die Detail­ wiedergabe, d. h., Schärfe und Körnigkeit, sind mit solchen DIR-Kupplern zu erzielen, die z. B. den Entwicklungsinhibitor nicht unmittelbar als Folge der Kupplung mit einem oxidierten Farbentwickler abspalten, sondern erst nach einer weiteren Folgereaktion, die beispielsweise mit einer Zeitsteuergruppe erreicht wird. Beispielsweise mit einer Zeitsteuergruppe erreicht wird. Beispiele dafür sind in DE-A-28 55 697, 32 99 671, 38 18 231, 35 18 797, in EP-A-1 57 146 und 2 04 175, in US-A- 41 46 396 und 44 38 393 sowie in GB-A-20 72 363 be­ schrieben.
DIR-Kuppler, die einen Entwicklungsinhibitor freisetzen, der im Entwicklerbad zu im wesentlichen fotografisch unwirksamen Produkten zersetzt wird, sind beispielsweise in DE-A-32 09 486 und in EP-A-1 67 168 und 2 19 713 beschrieben. Mit dieser Maßnahme wird eine störungsfreie Entwicklung und Verarbeitungskonstanz erreicht.
Bei Einsatz von DIR-Kupplern, insbesondere von solchen, die einen gut diffundierbaren Entwicklungsinhibitor abspalten, lassen sich durch geeignete Maßnahmen bei der optischen Sensibilisierung Verbesserungen der Farbwiedergabe, z. B. eine differenziertere Farbwiedergabe, erzielen, wie beispielsweise in EP-A-1 15 304, 1 67 173, GB-A-21 65 058, DE-A-37 00 419 und US-A-47 07 436 be­ schrieben.
Die DIR-Kuppler können in einem mehrschichtigen fotografischen Material den unterschiedlichsten Schichten zugesetzt werden, z. B. auch lichtunempfindlichen oder Zwischenschichten. Vorzugsweise werden sie jedoch den lichtempfindlichen Silberhalogenidemulsionsschichten zugesetzt, wobei die charakteristischen Eigenschaften der Silberhalogenidemulsion, z. B. deren Iodidgehalt, die Struktur der Silberhalogenidkörner oder deren Korn­ größenverteilung von Einfluß auf die erzielten fotografischen Eigenschaften sind. Der Einfluß der freigesetzten Inhibitoren kann beispielsweise durch den Einbau einer Inhibitorfängerschicht gemäß DE-A-24 31 223 begrenzt werden. Aus Gründen der Reaktivität oder Stabilität kann es vorteilhaft sein, einen DIR-Kuppler einzu­ setzen, der in der jeweiligen Schicht, in der er eingebracht ist, eine von der in dieser Schicht zu erzeugenden Farbe abweichende Farbe bei der Kupplung bildet.
Zur Steigerung der Empfindlichkeit, des Kontrastes und der maximalen Dichte können vor allem DAR- bzw. FAR-Kuppler eingesetzt werden, die einen Entwicklungsbeschleuniger oder ein Schleiermittel abspalten. Verbindungen dieser Art sind beispielsweise in DE-A-25 34 466, 32 09 110, 33 33 355, 34 10 616, 34 29 545, 34 41 823, in EP-A-89 834, 1 10 511, 1 18 087, 1 47 765 und in US-A- 46 18 572 und 46 56 123 beschrieben.
Als Beispiel für den Einsatz von BAR-Kuppler (Bleach Accelerator Releasing Coupler) wird auf EP-A-1 93 389 verwiesen.
Es kann vorteilhaft sein, die Wirkung einer aus einem Kuppler abgespaltenen fotografisch wirksamen Gruppe dadurch zu modifizieren, daß eine intermolekulare Reaktion dieser Gruppe nach ihrer Freisetzung mit einer anderen Gruppe gemäß DE-A-35 06 805 eintritt.
Beispiele für DIR-Kuppler sind:
Beispiele für DAR-Kuppler:
Da bei den DIR-, DAR- bzw. FAR-Kupplern hauptsächlich die Wirksamkeit des bei der Kupplung freigesetzten Restes erwünscht ist und es weniger auf die farbbildenden Eigenschaften dieser Kuppler ankommt, sind auch solche DIR-, DAR- bzw. FAR-Kuppler geeignet, die bei der Kupplung im wesentlichen farblose Produkte ergeben (DE- A-15 47 640).
Der abspaltbare Rest kann auch ein Ballastrest sein, so daß bei der Reaktion mit Farbentwickleroxidationsprodukten Kupplungsprodukte erhalten werden, die diffusionsfähig sind oder zumindest eine schwache bzw. eingeschränkte Beweglichkeit aufweisen (US-A-44 20 556).
Das Material kann weiterhin von Kupplern verschiedene Verbindungen enthalten, die beispielsweise einen Ent­ wicklungsinhibitor, einen Entwicklungsbeschleuniger, einen Bleichbeschleuniger, einen Entwickler, ein Silberhalogenidlösungsmittel, ein Schleiermittel oder ein Antischleiermittel in Freiheit setzen können, beispielsweise sogenannte DIR-Hydrochinone und andere Verbindungen, wie sie beispielsweise in US-A-46 36 546, 34 45 024, 46 84 604 und in DE-A-31 45 640, 25 15 213, 24 47 079 und in EP-A-1 98 438 beschrieben sind. Diese Verbindungen erfüllen die gleiche Funktion wie die DIR-, DAR- oder FAR-Kuppler, außer daß sie keine Kupplungsprodukte bilden.
Hochmolekulare Farbkuppler sind beispielsweise in DE-C- 12 97 417, DE-A-24 07 569, DE-A-31 48 125, DE-A- 32 17 200, DE-A-33 20 079, DE-A-33 24 932, DE-A- 33 31 743, DE-A-33 40 376, EP-A-27 284, US-A-40 80 211 beschrieben. Die hochmolekularen Farbkuppler werden in der Regel durch Polymerisation von ethylenisch ungesättigten monomeren Farbkupplern hergestellt. Sie können aber auch durch Polyaddition oder Polykondensation erhalten werden.
Die Einarbeitung der Kuppler oder anderer Verbindungen in Silberhalogenidemulsionsschichten kann in der Weise erfolgen, daß zunächst von der betreffenden Verbindung eine Lösung, eine Dispersion oder eine Emulsion hergestellt und dann der Gießlösung für die betreffende Schicht zugefügt wird. Die Auswahl des geeigneten Lösungs- oder Dispersionsmittel hängt von der jeweiligen Löslichkeit der Verbindung ab.
Methoden zum Einbringen von in Wasser im wesentlichen unlöslichen Verbindungen durch Mahlverfahren sind beispielsweise in DE-A-26 09 741 und DE-A-26 09 742 beschrieben.
Hydrophobe Verbindungen können auch unter Verwendung von hochsiedenden Lösungsmitteln, sogenannten Ölbildnern, in die Gießlösung eingebracht werden. Entsprechende Methoden sind beispielsweise in US-A-23 22 027, US-A- 28 01 170, US-A-28 01 171 und EP-A-00 43 037 beschrie­ ben.
Anstelle hochsiedenden Lösungsmitteln können Oligomere oder Polymere, sogenannte polymere Ölbildner Verwendung finden.
Die Verbindungen können auch in Form beladener Latices in die Gießlösung eingebracht werden. Verwiesen wird beispielsweise auf DE-A-25 41 230, DE-A-25 41 230, DE-A-25 41 274, DE-A- 28 35 856, EP-A-00 14 921, EP-A-00 69 671, EP-A- 01 30 115, US-A-42 91 113.
Die diffusionsfeste Einlagerung anionischer wasserlöslicher Verbindungen (z. B. von Farbstoffen) kann auch mit Hilfe von kationischen Polymeren, sogenannten Beizenpolymeren erfolgen.
Geeignete Ölbildner sind z. B. Phthalsäurealkylester, Phosphorsäureester, Phosphorsäureester, Citronensäureester, Benzoesäureester, Amide, Fettsäureester, Trimesinsäureester, Alkohole, Phenole, Anilinderivate und Kohlenwasserstoffe.
Beispiele für geeignete Ölbildner sind Dibutylphthalat, Dicyclohexylphthalat, Di-2-ethylhexylphthalat, Decyl­ phthalat, Triphenylphosphat, Tricresylphosphat, 2-Ethyl­ hexyldiphenylphosphat, Tricyclohexylphosphat, Tri-2- ethylhexylphosphat, Tridecylphosphat, Tributoxyethyl­ phosphat, Trichlorpropylphosphat, Di-2-ethylhexylphe­ nylphosphat, 2-Ethylhexylbenzoat, Dodecylbenzoat, 2- Ethylhexyl-p-hydroxybenzoat, Diethyldodecanamid, N- Tetradecylpyrrolidon, Isostearylalkohol, 2,4-Di-tert.- amylphenol, Dioctylacelat, Glycerinintributyrat, Iso­ stearyllactat, Trioctylcitrat, N,N-Dibutyl-2-butoxy-5- tert.-octylanilin, Paraffin, Dodecylbenzol und Diiso­ propylnaphthalin.
Jede der unterschiedlich sensibilierten, lichtempfindlichen Schichten kann aus einer einzigen Schicht bestehen oder auch zwei oder mehr Silberhalogenidemulsions­ teilschichten umfassen (DE-C-11 21 470). Dabei sind rotempfindliche Silberhalogenidemulsionsschichten dem Schichtträger häufig näher angeordnet als grünempfindliche Silberhalogenidemulsionsschichten und diese wiederum näher als blauempfindliche, wobei sich im allgemeinen zwischen grünempfindlichen Schichten und blauempfindlichen Schichten eine nicht lichtempfindliche gelbe Filterschicht befindet.
Bei geeigneter geringer Eigenempfindlichkeit der grün- bzw. rotempfindlichen Schichten kann man unter Verzicht auf die Gelbfilterschicht andere Schichtanordnungen wählen, bei denen auf den Träger z. B. die blauempfindlichen, dann die rotempfindlichen und schließlich die grünempfindlichen Schichten folgen.
Die in der Regel zwischen Schichten unterschiedlicher Spektralempfindlichkeit angeordneten nicht lichtempfindlichen Zwischenschichten können Mittel enthalten, die eine unerwünschte Diffusion von Entwickler­ oxidationsprodukten aus einer lichtempfindlichen in eine andere lichtempfindliche Schicht mit unterschiedlicher spektraler Sensibilisierung verhindern.
Geeignete Mittel, die auch Scavenger oder EOP-Fänger genannt werden, werden in Research Disclosure 17 643 (Dez. 1978), Kapitel VII, 17 842/1979, Seite 94-97 und 18 716/1979, Seite 650 sowie in EP-A-69 070, 98 072, 1 24 877, 1 25 522 und in US-A-4 63 226 beschrieben.
Beispiele für besonders geeignete Verbindungen sind:
Liegen mehrere Teilschichten gleicher spektraler Sensibilisierung vor, so können sich diese hinsichtlich ihrer Zusammensetzung, insbesondere was Art und Menge der Silberhalogenidkörnchen betrifft, unterscheiden. Im allgemeinen wird die Teilschicht mit höherer Empfindlichkeit von Träger entfernter angeordnet sein als die Teilschicht mit geringerer Empfindlichkeit. Teilschichten gleicher spektraler Sensibilisierung können zueinander benachbart oder durch andere Schichten, z. B. durch Schichten anderer spektraler Sensibilisierung getrennt sein. So können z. B. alle hochempfindlichen und alle niedrigempfindlichen Schichten jeweils zu einem Schichtpaket zusammengefaßt sein (DE-A-19 58 709, DE-A- 25 30 645, DE-A-26 22 922).
Das fotografische Material kann weiterhin UV-Licht absorbierende Verbindungen, Weißtöner, Abstandshalter, Filterfarbstoffe, Formalinfänger, Lichtschutzmittel, Antioxidantien, D Min -Farbstoffe, Zusätze zur Verbesserung der Farbstoff-, Kuppler- und Weißenstabilisierung sowie zur Verringerung des Farbschleiers, Weichmacher (Lactices), Biocide und anderes enthalten.
UV-Licht absorbierende Verbindungen sollen einerseits die Bildfarbstoffe vor dem Ausbleichen durch UV-reines Tageslicht schützen und andererseits als Filterfarbstoffe das UV-Licht im Tageslicht bei der Belichtung absorbieren und so die Farbwiedergabe eines Films verbessern. Üblicherweise werden für die beiden Aufgaben Verbindungen unterschiedlicher Struktur eingesetzt. Beispiele sind arylsubstituierte Benzotriazolverbindungen (US-A-35 33 794), 4-Thiazolidonverbindungen (US- A-33 14 794 und 33 52 681), Benzophenonverbindungen (JP- A-2 784/71), Zimtsäureesterverbindungen (US-A-37 05 805 und 37 07 375), Butadienverbindungen (US-A-40 45 229) oder Benzoxazolverbindungen (US-A-37 00 455).
Beispiele besonders geeigneter Verbindungen sind:
Es können auch ultraviolettabsorbierende Kuppler (wie Blaugrünkuppler des α-Naphtholtyps) und ultraviolettabsorbierende Polymere verwendet werden. Diese Ultraviolettabsorbentien können durch Beizen in einer speziellen Schicht fixiert sein.
Für sichtbares Licht geeignete Filterfarbstoffe umfassen Oxonolfarbstoffe, Hemioxonolfarbstoffe, Styrylfarbstoffe, Merocyaninfarbstoffe, Cyaninfarbstoffe und Azo­ farbstoffe. Von diesen Farbstoffen werden Oxonolfarbstoffe, Hemioxonolfarbstoffe und Merocyaninfarbstoffe besonders vorteilhaft verwendet.
Geeignete Weißtöner sind z. B. in Research Disclosure 17 643 (Dez. 1978), Kapitel V, in US-A-26 32 701, 32 69 840 und in GB-A-8 52 075 und 13 19 763 beschrieben.
Bestimmte Bindemittelschichten, insbesondere die vom Träger am weitesten entfernte Schicht, aber auch gelegentlich Zwischenschichten, insbesondere, wenn sie während der Herstellung die vom Träger am weitesten entfernte Schicht darstellen, können fotografisch inerte Teilchen anorganischer oder organischer Natur enthalten, z. B. als Mattierungsmittel oder als Abstandshalter (DE-A-33 31 542, DE-A- 34 24 893, Research Disclosure 17 643, (Dez. 1978), Kapitel XVI).
Der mittlere Teilchendurchmesser der Abstandshalter liegt insbesondere im Bereich von 0,2 bis 10 µm. Die Abstandshalter sind wasserunlöslich und können alkaliunlöslich oder alkalilöslich sein, wobei die alkalilöslichen im allgemeinen im alkalischen Entwicklungsbad aus dem fotografischen Material entfernt werden. Beispiele für geeignete Polymere sind Polymethylmethacrylat, Copolymere aus Acrylsäure und Methylmethacrylat sowie Hydroxypropylmethylcellulosehexahydrophthalat.
Geeignete Formalinfänger sind z. B.:
Zusätze zur Verbesserung der Farbstoff-, Kuppler- und Weißenstabilität sowie zur Verringerung des Farbschleiers (Research Disclosure 17 643/1978, Kapitel VII) können den folgenden chemischen Stoffklassen angehören: Hydrochinone, 6-Hydroxychromane, 5-Hydroxycumarane, Spirochromane, Spiroidane, p-Alkoxyphenole, sterische gehinderte Phenole, Gallussäurederivate, Methylendioxybenzole, Aminophenole, sterisch gehinderte Amine, Derivate mit veresterten oder verätherten phenolischen Hydroxylgruppen, Metallkomplexe.
Verbindungen, die sowohl eine sterisch gehinderte Amin- Partialstruktur als auch eine sterisch gehinderte Phenol-Partialstruktur in einem Molekül aufweisen (US- A-42 68 593), sind besonders wirksam zur Verhinderung der Beeinträchtigung (Verschlechterung bzw. Abbau) von gelben Farbbildern als Folge der Entwicklung von Wärme, Feuchtigkeit und Licht. Um die Beeinträchtigung (Verschlechterung bzw. den Abbau) von purpurroten Farbbildern, insbesondere ihre Beeinträchtigung (Verschlechterung bzw. Abbau) als Folge der Einwirkung von Licht, zu verhindern, sind Spiroindane (JP-A-1 59 644/81) und Chromane, die durch Hydrochinondiether oder -monoether substituiert sind (JP-A-89 835/80) besonders wirksam.
Beispiele besonders geeigneter Verbindungen sind:
sowie die als EOP-Fänger aufgeführten Verbindungen.
Die Schichten des fotografischen Materials können mit den üblichen Härtungsmitteln gehärtet werden. Geeignete Härtungsmittel sind z. B. Formaldehyd, Glutaraldehyd und ähnliche Aldehydverbindungen, Diacetyl, Cyclopentadion und ähnliche Ketonverbindungen, Bis-(2-chlroethylharnstoff), 2-Hydroxy-4,6-dichlor-1,3,5-triazin und andere Verbindungen, die reaktives Halogen enthalten (US-A- 32 88 775, US-A-27 32 303, GB-A-9 74 723 und GB-A- 11 67 207) Divinylsulfonverbindungen, 5-Acetyl-1,3-di­ acryloylhexahydro-1,3,5-triazin und andere Verbindungen, die eine reaktive Olefinverbindung enthalten (US-A- 36 35 718, US-A-2 32 763 und GB-A-9 94 869); N-Hydroxy­ methylphthalimid und andere N-Methylolverbindungen (US-A-27 32 316 und US-A-25 86 168); Isocyanate (US-A- 31 03 437); Aziridinverbindungen (US-A-30 17 280 und US-A-29 83 611); Säurederivate (US-A-27 25 294 und US-A- 27 25 295); Verbindungen vom Carbodiimidtyp (US-A- 31 00 704); Carbamoylpyridinsalze (DE-A-22 25 230 und DE-A-24 39 551); Carbamoyloxypyridiniumverbindungen (DE-A-24 08 814); Verbindungen mit einer Phosphor-Halogen- Bindung (JP-A-1 13 929/83); N-Carbonyloximid-Verbindungen (JP-A-43 353/81); N-Sulfonyloximido-Verbindungen (US-A-41 11 926); Dihydrochinolinverbindungen (US-A-40 13 468), 2-Sulfonyloxypyridiniumsalze (JP-A- 1 10 762/81), Formamidiniumsalze (EP-A-01 62 308), Verbindungen mit zwei oder mehr N-Acyloxyimino-Gruppen (US- A-40 52 373), Epoxyverbindungen (US-A-30 91 537), Verbindungen vom Isoxazoltyp (US-A-33 21 313 und US-A- 35 43 292); Halogencarboxyaldehyde, wie Mucochlorsäure; Dioxanderivate, wie Dihydroxydioxan und Di-chlordioxan; und anorganische Härter, wie Chromalaun und Zirkon­ sulfat.
Die Härtung kann in bekannter Weise dadurch bewirkt werden, daß das Härtungsmittel der Gießlösung für die zu härtende Schicht zugesetzt wird, oder dadurch, daß die zu härtende Schicht mit einer Schicht überschichtet wird, die ein diffusionsfähiges Härtungsmittel enthält.
Unter den aufgeführten Klassen gibt es langsam wirkende und schnell wirkende Härtungsmittel sowie sogenannte Soforthärter, die besonders vorteilhaft sind. Unter Soforthärtern werden Verbindungen verstanden, die geeignete Bindemittel so vernetzen, daß unmittelbar nach Beguß, spätestens nach 24 Stunden, vorzugsweise spätestens nach 8 Stunden die Härtung so weit abgeschlossen ist, daß keine weitere durch die Vernetzungsreaktion bedingte Änderung der Sensitometrie und der Quellung des Schichtverbandes auftritt. Unter Quellung wird die Differenz von Naßschichtdicke und Trockenschichtdicke bei der wäßrigen Verarbeitung des Films verstanden (Photogr. Sci., Eng. 8 (1964), 275; Photogr. Sci. Eng. (1972), 449).
Bei diesen mit Gelatine sehr schnell reagierenden Härtungsmitteln handelt es sich z. B. um Carbamoylpyridiniumsalze, die mit freien Carboxylgruppen der Gelatine zu reagieren vermögen, so daß letztere mit freien Aminogruppen der Gelatine unter Ausbildung von Peptidbindungen und Vernetzung der Gelatine reagieren.
Geeignete Beispiele für Soforthärter sind z. B. Verbindungen der allgemeinen Formeln:
worin
R₁ Alkyl, Aryl oder Aralkyl bedeutet,
R₂ die gleiche Bedeutung wie R₁ hat oder Alkylen, Arylen, Aralkylen oder Alkaralkylen bedeutet, wobei die zweite Bindung mit einer Gruppe der Formel:
verknüpft ist, oder
R₁ und R₂ zusammen die zur Vervollständigung eines gegebenenfalls substituierten heterocyclischen Ringes, beispielsweise eines Piperidin-, Piperazin- oder Morpholinringes erforderlichen Atome bedeuten, wobei der Ring z. B. durch C₁-C₃-Alkyl oder Halogen substituiert sein kann,
R₃ für Wasserstoff, Alkyl, Aryl, Alkoxy,
oder ein Brückenglied oder eine direkte Bindung an eine Polymerkette steht, wobei
R₄, R₆, R₇, R₉, R₁₄, R₁₅, R₁₇, R₁₈, und R₁₉ Wasserstoff oder C₁-C₄-Alkyl,
R₅ Wasserstoff, C₁-C₄-Alkyl oder NR₆R₇,
R₈ -COR₁₀
R₁₀ NR₁₁R₁₂
R₁₁ C₁-C₄-Alkyl oder Aryl, insbesondere Phenyl,
R₁₂ Wasserstoff, C₁-C₄-Alkyl oder Aryl, insbesondere Phenyl,
R₁₃ Wasserstoff, C₁-C₄-Alkyl oder Aryl, insbesondere Phenyl,
R₁₆ Wasserstoff, C₁-C₄-Alkyl, COR₁₈ oder CONHR₁₉,
m eine Zahl 1 bis 3
n eine Zahl 0 bis 3
p eine Zahl 2 bis 3 und
Y O oder NR₁₇ bedeuten oder
R₁₃ und R₁₄ gemeinsam die zur Vervollständigung eines gegebenenfalls substituierten heterocyclischen Ringes, beispielsweise eines Piperidin-, Piperazin- oder Morpholinringes erforderlichen Atome darstellen, wobei der Ring z. B. durch C₁-C₃-Alkyl oder Halogen substituiert sein kann,
Z die zur Vervollständigung eines 5- oder 6gliedrigen aromatischen heterocyclischen Ringes, gegebenenfalls mit anelliertem Benzolring, erforderlichen C-Atome und
X⊖ ein Anion bedeuten, das entfällt, wenn bereits eine anionische Gruppe mit dem übrigen Molekül verknüpft ist;
worin
R₁, R₂, R₃ und X⊖ die für Formel (a) angegebene Bedeutung besitzen.
Es gibt diffusionsfähige Härtungsmittel, die auf alle Schichten innerhalb eines Schichtverbandes in gleicher Weise härtend wirken. Es gibt aber auch schichtbegrenzt wirkende, nicht diffundierende, niedermolekulare und hochmolekulare Härter. Mit ihnen kann man einzelnen Schichten, z. B. die Schutzschicht besonders stark vernetzen. Dies ist wichtig, wenn man die Silberhalogenid-Schicht wegen der Silberdeckkrafterhöhung wenig härtet und mit der Schutzschicht die mechanischen Eigenschaften verbessern muß (EP-A 01 14 699).
Farbfotografische Negativmaterialien werden üblicherweise durch Entwickeln, Bleichen, Fixieren und Wässern oder durch Entwickeln, Bleichen, Fixieren und Stabilisieren ohne nachfolgende Wässerung verarbeitet, wobei Bleichen und Fixieren zu einem Verarbeitungsschritt zusammengefaßt sein können. Als Farbentwicklerverbindung lassen sich sämtliche Entwicklerverbindungen verwenden, die die Fähigkeit besitzen, in Form ihres Oxidationsproduktes mit Farbkupplern zu Azomethin- bzw. Indophenolfarbstoffen zu reagieren. Geeignete Farbentwicklerverbindungen sind aromatische, mindestens eine primäre Aminogruppe enthaltende Verbindungen vom p-Phenylendiamintyp, beispielsweise N,N-Dialkyl-p-phenylendiamine wie N,N- Diethyl-p-phenylendiamin, 1-(N-Ethyl-N-methansulfon­ amidoetzyl)-3-methyl-p-phenylendiamin, 1-(N-Ethyl-N- hydroxyethyl)-3-methyl-p-phenylendiamin und 1-(N-Ethyl- N-methoxyethyl)-3-methyl-p-phenylendiamin. Weitere brauchbare Farbentwickler sind beispielsweise in J. Amer. Chem. Soc. 73, 3106 (1951) und G. Haist, Modern Photographic Processing, 1979, John Wiley and Sons, New York, Seite 545 ff. beschrieben.
Nach der Farbentwicklung kann ein saures Stoppbad oder eine Wässerung folgen.
Üblicherweise wird das Material unmittelbar nach der Farbentwicklung gebleicht und fixiert. Als Bleichmittel können z. B. Fe(III)-Salze und Fe(III)-Komplexsalze wie Ferricyanide, Dichromate, wasserlösliche Kobaltkomplexe verwendet werden. Besonders bevorzugt sind Eisen-(III)-Komplexe von Aminopolycarbonsäuren, insbesondere z. B. von Ethylendiamintetraessigsäure, Propylen­ diamintetraessigsäure, Diethylentriaminpentaessigsäure, Nitrilotriessigsäure, Iminodiessigsäure, N-Hydroxy­ ethyl-ethylendiamintriessigsäure, Alkyliminodicarbonsäuren und von entsprechenden Phosphonsäuren. Geeignete als Bleichmittel sind weiterhin Persulfate und Peroxide, z. B. Wasserstoffperoxid.
Auf das Bleichfixierbad oder Fixierbad folgt meist eine Wässerung, die als Gegenstromwässerung ausgeführt ist oder aus mehreren Tanks mit eigener Wasserzufuhr be­ steht.
Günstige Ergebnisse können bei Verwendung eines darauf folgenden Schlußbades, das keinen oder nur wenig Formaldehyd enthält, erhalten werden.
Die Wässerung kann aber durch ein Stabilisierbad vollständig ersetzt werden, das üblicherweise im Gegenstrom geführt wird. Dieses Stabilisierbad übernimmt bei Formaldehydzusatz auch die Funktion eines Schlußbades.
Beispiel
Ein farbfotografisches Aufzeichnungsmaterial wurde hergestellt, indem auf einen Schichtträger aus beidseitg mit Polyethylen beschichtetem Papier die folgenden Schichten in der angegebenen Reihenfolge aufgetragen wurden. Die Mengenangaben beziehen sich jeweils auf 1 m². Für den Silberhalogenidauftrag werden die entsprechenden Mengen AgNO₃ angegeben.
Schichtaufbau 1
  • 1. Schicht (Substratschicht):
    0,2 g Gelatine
  • 2. Schicht (blauempfindliche Schicht):
    blauempfindliche Silberhalogenidemulsion (99,5 Mol.-% Chlorid, 0,5 Mol.-% Bromid, mittlerer Korndurchmesser 0,8 µm) aus 0,63 g AgNO₃ mit:
    1,38 g Gelatine
    0,95 g Gelbkuppler GB 9
    0,2 g Weißkuppler W 4
    0,29 g Trikresylphosphat (TKP)
  • 3. Schicht (Schutzschicht):
    1,1 g Gelatine
    0,06 g 2,5-Dioctylhydrochinon
    0,06 g Dibutylphthalat (DBP)
  • 4. Schicht (grünempfindliche Schicht):
    grünsensibilisierte Silberhalogenidemulsion (99,5 Mol.-% Chlorid, 0,5 Mol.-% Bromid, mittlerer Korndurchmesser 0,6 µm) aus 0,45 g AgNO₃ mit:
    1,08 g Gelatine
    0,41 g Purpurkuppler PP 3
    0,08 g 2,5-Dioctylhydrochinon
    0,5 g DBP
    0,04 g TKP
  • 5. Schicht (UV-Schutzschicht):
    1,15 g Gelatine
    0,6 g UV-Absorber der Formel: 0,045g 2,5-Dioctylhydrochinon
    0,04 g TKP
  • 6. Schicht (rotempfindliche Schicht):
    rotsensibilisierte Silberhalogenidemulsion [99,5 Mol.-% Chlorid, 0,5 Mol.-% Bromid, mittlerer Korndurchmesser 0,5 µm) aus 0,3 g AgNO₃ mit:
    0,75 g Gelatine
    0,36 g Blaugrünkuppler BG 24
    0,36 g TKP
  • 7. Schicht (UV-Schutzschicht):
    0,35 g Gelatine
    0,15 g UV-Absorber wie 5. Schicht
    0,2 g TKP
  • 8. Schicht (Schutzschicht):
    0,9 g Gelatine
    0,3 g Härtungsmittel der Formel:
Schichtaufbauten 2 bis 9
Wie Schichtaufbau 1, jedoch zusätzlich mit einer Verbindung der Formel I (gemäß blauempfindlicher Schicht) nach folgender Tabelle.
Von den Proben wurden Schleier und Gradation G 1 (Lichtergradation) frisch und nach 24stündigem Digerieren der Gießlösungen bei 40°C bestimmt. Die Verarbeitung erfolgte nach dem RA-4-Prozeß.
Die Tabelle zeigt, daß der Zusatz der erfindungsgemäßen Substanzen einen wesentlich geringeren Schleieranstieg nach 24stündigem Digerieren bewirkt sowie einen geringeren Abfall der Lichtergradation (Schwellengradation G 1).

Claims (6)

1. Farbfotografisches Silberhalogenidmaterial mit einem reflektierenden Träger und mindestens einer blauempfindlichen Silberhalogenidemulsionsschicht, deren Silberhalogenidemulsion zu wenigstens 80 Mol.-% aus Silberchlorid besteht und die einen Gelbkuppler enthält, dadurch gekennzeichnet, daß sie außerdem wenigstens eine Verbindung der Formel (I): X-L-OH (I)enthält, worin
X eine OH-Gruppe oder ein weiter substituiertes Stickstoffatom und
L ein Brückenglied mit 2 oder 3 Kohlenstoffatomen bedeutet und
die Verbindung wenigstens eine Säuregruppe enthält.
2. Farbfotografisches Silberhalogenidmaterial nach Anspruch 1, dadurch gekennzeichnet, daß R₁ einen gegebenenfalls substituierten C₁-C₄-Alkylrest oder zusammen mit R₂ und einem Kohlenstoffatom des Brückengliedes die restlichen Glieder eines heteroaromatischen Ringes mit 5 bis 10 C-Atomen, der weiter substituiert sein kann,
R₂ Wasserstoff, einen gegebenenfalls substituierten Alkylrest oder zusammen mit einem Kohlenstoffatom des Brückengliedes die restlichen Glieder eines heteroatomischen Ringes,
R₃ zusammen mit dem Stickstoffatom der doppelt gebundene Rest eines gegebenenfalls substituierten heteroaromatischen 5- oder 6-Rings und
R₄, R₅, R₆ den doppelt gebundenen Rest eines aromatischen oder heteroaromatischen 6- bis 10gliedrigen Ringsystems, das gegebenenfalls weiter substituiert ist, bedeuten.
3. Farbfotografisches Silberhalogenidmaterial nach Anspruch 1, dadurch gekennzeichnet, daß die Verbindung der Formel I in einer Menge von 10-5 bis 10-1 µMol/Mol Silberhalogenid eingesetzt wird.
4. Farbfotografisches Silberhalogenidmaterial nach Anspruch 1 mit einem reflektierenden Träger, wenigstens einer blauempfindlichen Schicht, der ein Gelbkuppler zugeordnet ist, wenigstens einer grün­ empfindlichen Schicht, der ein Purpurkuppler zugeordnet ist und wenigstens einer rotempfindlichen Schicht, der ein Blaugrünkuppler zugeordnet ist.
5. Farbfotografisches Silberhalogenidmaterial nach Anspruch 4, dadurch gekennzeichnet, daß alle lichtempfindlichen Silberhalogenidemulsionsschichten Silberhalogenide mit mindestens 80 Mol.-% AgCl ent­ halten.
6. Farbfotografisches Silberhalogenidmaterial nach Anspruch 4, dadurch gekennzeichnet, daß alle lichtempfindlichen Silberhalogenidemulsionsschichten Silberhalogenide mit mindestens 95 Mol.-% AgCl enthalten.
DE19883833387 1988-10-01 1988-10-01 Farbfotografisches silberhalogenidmaterial Withdrawn DE3833387A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE19883833387 DE3833387A1 (de) 1988-10-01 1988-10-01 Farbfotografisches silberhalogenidmaterial
EP89117176A EP0362604A3 (en) 1988-10-01 1989-09-16 Silver halide colour-photographic material
JP25082689A JPH02123351A (ja) 1988-10-01 1989-09-28 カラー写真ハロゲン化銀材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19883833387 DE3833387A1 (de) 1988-10-01 1988-10-01 Farbfotografisches silberhalogenidmaterial

Publications (1)

Publication Number Publication Date
DE3833387A1 true DE3833387A1 (de) 1990-04-05

Family

ID=6364151

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19883833387 Withdrawn DE3833387A1 (de) 1988-10-01 1988-10-01 Farbfotografisches silberhalogenidmaterial

Country Status (3)

Country Link
EP (1) EP0362604A3 (de)
JP (1) JPH02123351A (de)
DE (1) DE3833387A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4320444A1 (de) * 1993-06-21 1994-12-22 Agfa Gevaert Ag Farbfotografisches Aufzeichnungsmaterial

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3223699A1 (de) * 1982-06-25 1983-12-29 Agfa-Gevaert Ag, 5090 Leverkusen Lichtempfindliches fotografisches silberhalogenid-aufzeichnungsmaterial
JPS59133544A (ja) * 1983-01-20 1984-07-31 Fuji Photo Film Co Ltd ハロゲン化銀カラ−写真感光材料
JPH0827516B2 (ja) * 1986-04-22 1996-03-21 コニカ株式会社 ハロゲン化銀カラ−写真感光材料の処理方法

Also Published As

Publication number Publication date
JPH02123351A (ja) 1990-05-10
EP0362604A2 (de) 1990-04-11
EP0362604A3 (en) 1990-07-11

Similar Documents

Publication Publication Date Title
EP0358071B1 (de) Fotografisches Aufzeichnungsmaterial
EP0464409B1 (de) Farbfotografisches Aufzeichnungsmaterial
DE3830522A1 (de) Fotografisches aufzeichnungsmaterial
EP0607801B1 (de) Farbfotografisches Aufzeichnungsmaterial
EP0351588B1 (de) Farbfotografisches Aufzeichnungsmaterial
EP0515873B1 (de) Farbfotografisches Aufzeichnungsmaterial
EP0413204A2 (de) Farbfotografisches Silberhalogenidmaterial
EP0377889B1 (de) Silberhalogenidaufzeichnungsmaterial
EP0447656A1 (de) Farbfotografisches Silberhalogenidmaterial und seine Entwicklung
EP0377181A2 (de) Farbfotografisches Material
EP0369235B1 (de) Fotografisches Aufzeichnungsmaterial
EP0616256B1 (de) Farbfotografisches Aufzeichnungsmaterial
EP0550907B1 (de) Fotografisches Aufzeichnungsmaterial
EP0363820A2 (de) Farbfotografisches Silberhalogenidmaterial
DE3838467C2 (de) Fotografisches Aufzeichnungsmaterial
EP0554756B1 (de) Farbfotografisches Aufzeichnungsmaterial
EP0546416A1 (de) Farbfotografisches Aufzeichnungsmaterial
DE3833387A1 (de) Farbfotografisches silberhalogenidmaterial
EP0564909B1 (de) Verfahren zur Herstellung eines fotografischen Bildes
DE3931629A1 (de) Silberhalogenidemulsion und fotografisches material
EP0447657B1 (de) Fotografisches Aufzeichnungsmaterial
EP0504692B1 (de) Farbfotografischer Umkehrfilm
DE4214196A1 (de) Farbfotografisches silberhalogenidmaterial
EP0709731A2 (de) Farbfotografisches Silberhalogenidmaterial
DE4227749A1 (de) Fotografisches Silberhalogenidmaterial

Legal Events

Date Code Title Description
8130 Withdrawal
8165 Unexamined publication of following application revoked