EP0554756B1 - Farbfotografisches Aufzeichnungsmaterial - Google Patents

Farbfotografisches Aufzeichnungsmaterial Download PDF

Info

Publication number
EP0554756B1
EP0554756B1 EP93101112A EP93101112A EP0554756B1 EP 0554756 B1 EP0554756 B1 EP 0554756B1 EP 93101112 A EP93101112 A EP 93101112A EP 93101112 A EP93101112 A EP 93101112A EP 0554756 B1 EP0554756 B1 EP 0554756B1
Authority
EP
European Patent Office
Prior art keywords
silver halide
mol
layer
halide emulsion
recording material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93101112A
Other languages
English (en)
French (fr)
Other versions
EP0554756A1 (de
Inventor
Günter Dr. Helling
Günter Dr. Renner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agfa Gevaert AG
Original Assignee
Agfa Gevaert AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agfa Gevaert AG filed Critical Agfa Gevaert AG
Publication of EP0554756A1 publication Critical patent/EP0554756A1/de
Application granted granted Critical
Publication of EP0554756B1 publication Critical patent/EP0554756B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C7/00Multicolour photographic processes or agents therefor; Regeneration of such processing agents; Photosensitive materials for multicolour processes
    • G03C7/30Colour processes using colour-coupling substances; Materials therefor; Preparing or processing such materials
    • G03C7/392Additives
    • G03C7/396Macromolecular additives

Definitions

  • the invention relates to a color photographic recording material with improved color stability.
  • Color photographic materials usually contain at least one yellow coupler, at least one purple coupler and at least one cyan coupler, from which the corresponding dyes are formed by exposure and development.
  • These dyes in particular the dyes that are constantly exposed to light, are said to have high color stability, with particular emphasis being placed on ensuring that the color stability of all three colors is as good as possible, so that there is no color distortion with a slight fading.
  • the dyes should be as pure as possible.
  • this has led to the pyrazolone couplers which have been customary to date being increasingly replaced by pyrazoloazole couplers, because the latter lead to purer purple tones than the former.
  • dyes obtained from pyrazoloazole couplers are not sufficiently light-stable in comparison with the usual dyes from yellow and cyan couplers.
  • the object of the present invention was therefore to remedy this lack of light stability.
  • this object can be achieved by adding a random or alternating copolymer of vinyl alcohol and an unsaturated carboxylic acid, in particular an unsaturated mono-, to the material in a layer closer to and in a more distant layer than the layer containing the magenta coupler.
  • Di- or tricarboxylic acid or a graft polymer of vinyl acetate on polyalkylene oxide with subsequent saponification of the acetate groups is added and these layers contain gelatin in addition to the graft or copolymer.
  • the copolymers are obtained by the joint polymerization of vinyl acetate and at least one unsaturated carboxylic acid and subsequent saponification of the acetate groups.
  • the saponification need not be quantitative, so that the copolymer still has acetate groups.
  • the copolymer can also contain other comonomers.
  • Preferred copolymers contain 50 to 98 mol% of vinyl alcohol units, 0 to 20 mol% of vinyl acetate units, 2 to 30 mol% of units of unsaturated carboxylic acids and 0 to 30 mol% of further comonomers.
  • the molecular weight M n should be at least 10,000.
  • Suitable unsaturated carboxylic acids are e.g. Acrylic acid, methacrylic acid, maleic acid, fumaric acid, crotonic acid, itaconic acid.
  • Suitable further comonomers are vinyl chloride, vinylidene chloride, acrylates and methacrylates, ethylene, propylene, styrene, styrene sulfonic acid, vinyl phosphonic acid and vinyl sulfonic acid.
  • the graft polymers are described in DE-OS 3 541 162 and can be prepared by the methods given there.
  • the saponification of the acetate groups takes place in a known manner.
  • the unsaturated carboxylic acids and the other comonomers of the graft branches are the same as the copolymers.
  • Suitable vinyl alcohol copolymers and graft polymers are:
  • Polyethylene oxide is preferred.
  • the graft polymer preferably contains 2 to 50 mol% of alkylene oxide, 50 to 98 mol% of vinyl alcohol and 0 to 20 mol% of vinyl acetate.
  • Suitable purple couplers are
  • the graft or copolymer is preferably contained in the layers immediately adjacent to the layer containing the magenta coupler.
  • Layers designed according to the invention preferably contain 0.3 to 3.0 g of graft or copolymer and 0.1 to 2.0 g of gelatin / m 2.
  • the material according to the invention is particularly preferably a material which, in the order given, has at least one blue-sensitive silver halide emulsion layer containing at least one yellow coupler, one intermediate layer, at least one green-sensitive silver halide emulsion layer containing at least one magenta coupler, one intermediate layer, at least one red-sensitive one , at least one cyan coupler-containing silver halide emulsion layer and at least contains a protective layer, characterized in that the intermediate layer between the green and red-sensitive silver halide emulsion layer and the intermediate layer between the blue and green-sensitive silver halide emulsion layer are designed in the manner according to the invention, and the magenta coupler is a pyrazoloazole coupler.
  • the support can be reflective or transparent.
  • AgBr, AgBrCl, AgBrClI and AgCl can be considered as silver halides of the color coupler-containing and the color coupler-free silver halide emulsion layers.
  • the silver halides of all light-sensitive layers preferably contain at least 80 mol% of chloride, in particular 95 to 100 mol% of chloride, 0 to 5 mol% of bromide and 0 to 1 mol% of iodide.
  • the silver halide emulsions can be directly positive-working or preferably negative-working emulsions.
  • the silver halide can be predominantly compact crystals which, for example, can have regular cubic or octahedral or transitional forms.
  • twinned, for example platelet-shaped crystals can also preferably be present, the average ratio of diameter to thickness of which is preferably at least 5: 1, the diameter of a grain being defined as the diameter of a circle with a circle content corresponding to the projected one Area of the grain.
  • the layers can also have tabular silver halide crystals in which the ratio of diameter to thickness is greater than 5: 1, for example 12: 1 to 30: 1.
  • the silver halide grains can also have a multi-layered grain structure, in the simplest case with an inner and an outer grain area (core / shell), the halide composition and / or other modifications, such as e.g. Doping of the individual grain areas are different.
  • the average grain size of the emulsions is preferably between 0.2 »m and 2.0» m, the grain size distribution can be both homo- and heterodisperse.
  • the emulsions can also contain organic silver salts, e.g. Silver benzotriazolate or silver behenate.
  • Two or more kinds of silver halide emulsions, which are prepared separately, can be used as a mixture.
  • the photographic emulsions can be prepared using various methods (e.g. P. Glafkides, Chimie et Pysique Photographique, Paul Montel, Paris (1967), GF Duffin, Photographic Emulsion Chemistry, The Focal Press, London (1966), VL Zelikman et al, Making and Coating Photographic Emulsion, The Focal Press, London (1966)) from soluble silver salts and soluble halides.
  • various methods e.g. P. Glafkides, Chimie et Pysique Photographique, Paul Montel, Paris (1967), GF Duffin, Photographic Emulsion Chemistry, The Focal Press, London (1966), VL Zelikman et al, Making and Coating Photographic Emulsion, The Focal Press, London (1966)
  • the silver halide is preferably precipitated in the presence of the binder, for example the gelatin, and can be carried out in the acidic, neutral or alkaline pH range, silver halide complexing agents preferably being additionally used.
  • the latter include, for example, ammonia, thioether, imidazole, ammonium thiocyanate or excess halide.
  • the water-soluble silver salts and the halides are combined either in succession by the single-jet process or simultaneously by the double-jet process or by any combination of the two processes. Dosing with increasing inflow rates is preferred, the "critical" feed rate, at which no new germs are being produced, should not be exceeded.
  • the pAg range can vary within wide limits during the precipitation, preferably the so-called pAg-controlled method is used, in which a certain pAg value is kept constant or a defined pAg profile is traversed during the precipitation.
  • so-called inverse precipitation with excess silver ions is also possible.
  • the silver halide crystals can also grow by physical ripening (Ostwald ripening) in the presence of excess halide and / or silver halide complexing agent.
  • the growth of the emulsion grains can even take place predominantly by Ostwald ripening, preferably a fine-grained, so-called Lippmann emulsion, mixed with a less soluble emulsion and redissolved on the latter.
  • the silver halide grains can be precipitated in the presence of "growth modifiers", which are substances which influence growth in such a way that special grain shapes and grain surfaces (for example 111 surfaces in AgCl) are formed.
  • growth modifiers are substances which influence growth in such a way that special grain shapes and grain surfaces (for example 111 surfaces in AgCl) are formed.
  • Salts or complexes of metals such as Cd, Zn, Pb, Tl, Bi, Ir, Rh, Fe, Pt, Pd, Ru or Os for doping the silver halides may also be present during the precipitation and / or physical ripening of the silver halide grains.
  • the precipitation can also be carried out in the presence of sensitizing dyes.
  • Complexing agents and / or dyes can be rendered ineffective at any time, e.g. by changing the pH or by an oxidative treatment.
  • Gelatin is preferably used as the binder. However, this can be replaced in whole or in part by other synthetic, semi-synthetic or naturally occurring polymers.
  • Synthetic gelatin substitutes are, for example, polyvinyl alcohol, poly-N-vinylpyrrolidone, polyacrylamides, polyacrylic acid and their derivatives, in particular their copolymers.
  • Naturally occurring gelatin substitutes are, for example, other proteins such as albumin or casein, cellulose, sugar, starch or alginates.
  • Semi-synthetic gelatin substitutes are usually modified natural products. Cellulose derivatives such as hydroxyalkyl cellulose, carboxymethyl cellulose and phthalyl cellulose and gelatin derivatives obtained by reaction with alkylating or acylating agents or by grafting on polymerizable monomers are examples of this.
  • the binders should have a sufficient amount of functional groups so that enough resistant layers can be produced by reaction with suitable hardening agents.
  • functional groups are in particular amino groups, but also carboxyl groups, hydroxyl groups and active methylene groups.
  • the gelatin which is preferably used can be obtained by acidic or alkaline digestion.
  • the production of such gelatins is described, for example, in The Science and Technology of Gelatine, published by A.G. Ward and A. Courts, Academic Press 1977, page 295 ff.
  • the gelatin used in each case should contain the lowest possible level of photographically active impurities (inert gelatin). High viscosity, low swelling gelatins are particularly advantageous.
  • the gelatin can be partially or completely oxidized.
  • the soluble salts are removed from the emulsion, for example by pasta and washing, by flaking and washing, by ultrafiltration or by ion exchangers.
  • the photographic emulsions may contain compounds to prevent fogging or to stabilize the photographic function during production, storage or photographic processing.
  • Azaindenes are particularly suitable, preferably tetra- and penta-azaindenes, in particular those which are substituted by hydroxyl or amino groups. Such connections are for example from Birr, Z. Wiss. Phot. 47 (1952), pp. 2-58. Salts of metals such as mercury or cadmium, aromatic sulfonic or sulfinic acids such as benzenesulfinic acid, or nitrogen-containing heterocycles such as nitrobenzimidazole, nitroindazole, (subst.) Benzotriazoles or benzothiazolium salts can also be used as antifoggants.
  • metals such as mercury or cadmium, aromatic sulfonic or sulfinic acids such as benzenesulfinic acid, or nitrogen-containing heterocycles such as nitrobenzimidazole, nitroindazole, (subst.) Benzotriazoles or benzothiazolium salts can also be used as
  • Heterocycles containing mercapto groups for example mercaptobenzthiazoles, mercaptobenzimidazoles, mercaptotetrazoles, mercaptothiadiazoles, mercaptopyrimidines, are particularly suitable, these mercaptoazoles also being able to contain a water-solubilizing group, for example a carboxyl group or sulfo group.
  • mercaptobenzthiazoles for example mercaptobenzthiazoles, mercaptobenzimidazoles, mercaptotetrazoles, mercaptothiadiazoles, mercaptopyrimidines
  • these mercaptoazoles also being able to contain a water-solubilizing group, for example a carboxyl group or sulfo group.
  • a water-solubilizing group for example a carboxyl group or sulfo group.
  • the stabilizers can be added to the silver halide emulsions before, during or after their ripening.
  • the compounds can also be added to other photographic layers which are assigned to a silver halide layer.
  • the silver halide emulsions are usually chemically ripened, for example by the action of gold compounds or compounds of divalent sulfur.
  • the photographic emulsion layers or other hydrophilic colloid layers of the light-sensitive material produced according to the invention can contain surface-active agents for various purposes, such as coating aids, to prevent electrical charging, to improve the sliding properties, to emulsify the dispersion, to prevent adhesion and to improve the photographic characteristics (eg acceleration of development, high contrast, sensitization etc.).
  • Sensitizers can be dispensed with if the intrinsic sensitivity of the silver halide is sufficient for a certain spectral range, for example the blue sensitivity of silver bromide iodides.
  • the differently sensitized emulsion layers are assigned non-diffusing monomeric or polymeric color couplers, which can be located in the same layer or in a layer adjacent to it.
  • cyan couplers are assigned to the red-sensitive layers, purple couplers to the green-sensitive layers and yellow couplers to the blue-sensitive layers.
  • Color couplers for producing the blue-green partial color image are usually couplers of the phenol or ⁇ -naphthol type.
  • couplers of the 5-pyrazolone or indazolone type can also be used as color couplers for producing the purple partial color image.
  • Color couplers for producing the yellow partial color image are generally couplers with an open-chain ketomethylene group, in particular couplers of the ⁇ -acylacetamide type; suitable examples are ⁇ -benzoylacetanilide couplers and ⁇ -pivaloylacetanilide couplers.
  • the color couplers can be 4-equivalent couplers, but also 2-equivalent couplers.
  • the latter are derived from the 4-equivalent couplers in that they contain a substituent in the coupling point, which is split off during the coupling.
  • the couplers usually contain a ballast residue to prevent diffusion within the material, i.e. both within a layer or from layer to layer, to make impossible.
  • a ballast residue instead of couplers with a ballast residue, high molecular weight couplers can also be used.
  • High molecular weight color couplers are for example in DE-C-1 297 417, DE-A-24 07 569, DE-A-31 48 125, DE-A-32 17 200, DE-A-33 20 079, DE-A-33 24 932, DE-A-33 31 743, DE-A-33 40 376, EP-A-27 284, US-A-4 080 211 .
  • the high molecular weight color couplers are usually produced by polymerizing ethylenically unsaturated monomeric color couplers. However, they can also be obtained by polyaddition or polycondensation.
  • the couplers or other compounds can be incorporated into silver halide emulsion layers by first preparing a solution, a dispersion or an emulsion of the compound in question and then adding it to the casting solution for the layer in question.
  • the selection of the suitable solvent or dispersing agent depends on the solubility of the compound.
  • Hydrophobic compounds can also be introduced into the casting solution using high-boiling solvents, so-called oil formers. Corresponding methods are described for example in US-A-2 322 027, US-A-2 801 170, US-A-2 801 171 and EP-A-0 043 037.
  • oligomers or polymers instead of the high-boiling solvents, oligomers or polymers, so-called polymeric oil formers, can be used.
  • the compounds can also be introduced into the casting solution in the form of loaded latices.
  • anionic water-soluble compounds e.g. dyes
  • pickling polymers e.g. acrylic acid
  • Suitable oil formers are e.g. Alkyl phthalates, phosphonic acid esters, phosphoric acid esters, citric acid esters, benzoic acid esters, amides, fatty acid esters, trimesic acid esters, alcohols, phenols, aniline derivatives and hydrocarbons.
  • oil formers are dibutylphthalate, dicyclohexylphthalate, di-2-ethylhexylphthalate, decylphthalate, triphenylphosphate, tricresylphosphate, 2-ethylhexyldiphenylphosphate, tricyclohexylphosphate, tri-2-ethylhexylphosphate, tridecoxyphosphate, 2-ethylhexylphosphate, tridecoxyphosphate, 2-ethylhexylphosphate, , 2-ethylhexyl p-hydroxybenzoate, diethyldodecanamide, N-tetradecylpyrrolidone, isostearyl alcohol, 2,4-di-tert-amylphenol, dioctylacetate, glycerol tributyrate, isostearyl lactate, trioctyl citrate, N, N-doxy-5-butyl-2-. -o
  • the photographic material can also contain UV light-absorbing compounds, whiteners, spacers, filter dyes, formalin scavengers, light stabilizers, antioxidants, D min dyes, additives to improve dye, coupler and white stabilization and to reduce the color fog, plasticizers (latices), Contain biocides and others.
  • Examples are aryl-substituted benzotriazole compounds (US-A-3 533 794), 4-thiazolidone compounds (US-A-3 314 794 and 3 352 681), benzophenone compounds (JP-A-2784/71), cinnamic acid ester compounds (US-A-3 705 805 and 3,707,375), butadiene compounds (US-A-4,045,229) or benzoxazole compounds (US-A-3,700,455).
  • Ultraviolet absorbing couplers such as ⁇ -naphthol type cyan couplers
  • ultraviolet absorbing polymers can also be used. These ultraviolet absorbents can be fixed in a special layer by pickling.
  • Filter dyes suitable for visible light include oxonol dyes, hemioxonol dyes, styryl dyes, merocyanine dyes, cyanine dyes and azo dyes. Of these dyes, oxonol dyes, hemioxonol dyes and merocyanine dyes are used particularly advantageously.
  • Suitable whiteners are e.g. in Research Disclosure 17,643 (Dec. 1978), Chapter V, in US-A-2,632,701, 3,269,840 and in GB-A-852,075 and 1,319,763.
  • binder layers in particular the most distant layer from the support, but also occasionally intermediate layers, especially if they are the most distant layer from the support during manufacture, may contain photographically inert particles of inorganic or organic nature, e.g. as a matting agent or as a spacer (DE-A-33 31 542, DE-A-34 24 893, Research Disclosure 17 643, (Dec. 1978), Chapter XVI).
  • photographically inert particles of inorganic or organic nature e.g. as a matting agent or as a spacer (DE-A-33 31 542, DE-A-34 24 893, Research Disclosure 17 643, (Dec. 1978), Chapter XVI).
  • the average particle diameter of the spacers is in particular in the range from 0.2 to 10 »m.
  • the spacers are water-insoluble and can be alkali-insoluble or alkali-soluble, the alkali-soluble ones generally being removed from the photographic material in the alkaline development bath.
  • suitable polymers are polymethyl methacrylate, copolymers of acrylic acid and methyl methacrylate and hydroxypropyl methyl cellulose hexahydrophthalate.
  • Additives to improve dye, coupler and whiteness stability and to reduce the color fog can belong to the following chemical substance classes: hydroquinones, 6-hydroxychromanes, 5-hydroxycoumarans, spirochromans, spiroindanes, p- Alkoxyphenols, sterically hindered phenols, gallic acid derivatives, methylenedioxybenzenes, aminophenols, sterically hindered amines, derivatives with esterified or etherified phenolic hydroxyl groups, metal complexes.
  • the layers of the photographic material can be hardened with the usual hardening agents.
  • Suitable curing agents are, for example, formaldehyde, glutaraldehyde and similar aldehyde compounds, diacetyl, cyclopentadione and similar ketone compounds, bis- (2-chloroethylurea), 2-Hydroxy-4,6-dichloro-1,3,5-triazine and other compounds containing reactive halogen (US-A-3,288,775, US-A-2,732,303, GB-A-974 723 and GB -A-1 167 207) divinyl sulfone compounds, 5-acetyl-1,3-diacryloylhexahydro-1,3,5-triazine and other compounds containing a reactive olefin bond (US-A-3 635 718, US-A-3 232 763 and GB-A-994 869); N-hydroxymethylphthalimide and other N-methylol compounds (
  • the hardening can be effected in a known manner by adding the hardening agent to the casting solution for the layer to be hardened or by the layer to be hardened is covered with a layer containing a diffusible hardening agent.
  • Immediate hardeners are understood to mean compounds which crosslink suitable binders in such a way that the hardening is completed to such an extent immediately after casting, at the latest after 24 hours, preferably at the latest after 8 hours, that no further change in the sensitometry and the swelling of the layer structure occurs as a result of the crosslinking reaction .
  • Swelling is understood to mean the difference between the wet film thickness and the dry film thickness during the aqueous processing of the film (Photogr. Sci., Eng. 8 (1964), 275; Photogr. Sci. Eng. (1972), 449).
  • hardening agents that react very quickly with gelatin are e.g. to carbamoylpyridinium salts, which are able to react with free carboxyl groups of the gelatin, so that the latter react with free amino groups of the gelatin to form peptide bonds and crosslink the gelatin.
  • the color photographic materials according to the invention are usually processed by developing, bleaching, fixing and washing or stabilizing without subsequent washing, whereby bleaching and fixing can be combined into one processing step.
  • All developer compounds which have the ability to react in the form of their oxidation product with color couplers to form azomethine or indophenol dyes can be used as the color developer compound.
  • Suitable color developer compounds are aromatic compounds of the p-phenylenediamine type containing at least one primary amino group, for example N, N-dialkyl-p-phenylenediamines such as N, N-diethyl-p-phenylenediamine, 1- (N-ethyl-N-methanesulfonamidoethyl) -3 -methyl-p-phenylenediamine and 1- (N-ethyl-N-methoxyethyl) -3-methyl-p-phenylenediamine.
  • Other useful color developers are described, for example, in J. Amer. Chem. Soc. 73 , 3106 (1951) and G. Haist, Modern Photographic Processing, 1979, John Wiley and Sons, New York, page 545 ff.
  • the material is usually bleached and fixed after color development.
  • bleaching agents for example, Fe (III) salts and Fe (III) complex salts such as ferricyanides, Dichromates, water-soluble cobalt complexes can be used.
  • Iron (III) complexes of aminopolycarboxylic acids in particular, for example, ethylenediaminetetraacetic acid, propylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, nitrilotriacetic acid, iminodiacetic acid, N-hydroxyethylethylenediaminetriacetic acid, and alkyliminodicarboxylic acids and corresponding phosphonic acids are particularly preferred.
  • Persulphates and peroxides for example hydrogen peroxide, are also suitable as bleaching agents.
  • the bleach-fixing bath or fixing bath is usually followed by washing, which is designed as countercurrent washing or consists of several tanks with their own water supply.
  • the washing can be completely replaced by a stabilizing bath, which is usually carried out in countercurrent.
  • this stabilizing bath also acts as a final bath.
  • the color photographic material according to the invention can also be subjected to a reverse development.
  • the color development is preceded by an initial development with a developer who does not form any dye with the couplers, and a diffuse second exposure or chemical fogging.
  • a color photographic recording material was produced by applying the following layers in the order given on a paper coated on both sides with polyethylene.
  • the quantities given relate to 1 m2.
  • the corresponding amounts of AgNO3 are given.
  • the layered structures were then exposed behind a graduated gray part.
  • the materials were then processed in the customary manner using the processing baths listed below.
  • the processed samples were exposed to the light of a xenon lamp normalized for daylight and exposed to 4.2 x 106 lx.h. The percentage decrease in density was then measured at an initial density of 1.5 (Table 1).

Description

  • Die Erfindung betrifft ein farbfotografisches Aufzeichnungsmaterial mit einer verbesserten Farbstabilität.
  • Farbfotografische Materialien enthalten üblicherweise wenigstens einen Gelbkuppler, wenigstens einen Purpurkuppler und wenigstens einen Blaugrünkuppler, aus denen durch Belichtung und Entwicklung die entsprechenden Farbstoffe entstehen. Diese Farbstoffe, insbesondere die Farbstoffe, die dem Licht ständig ausgesetzt sind, sollen eine hohe Farbstabilität aufweisen, wobei besonderer Wert darauf gelegt wird, daß die Farbstabilität von allen drei Farben möglichst gleich gut ist, damit bei einem geringfügigen Verblassen keine Farbverfälschung eintritt.
  • Gleichzeitig sollen aber die Farbstoffe möglichst farbrein sein. Für den Purpurbereich hat dies dazu geführt, daß die bisher gebräuchlichen Pyrazolonkuppler zunehmend von Pyrazoloazolkupplern ersetzt werden, weil letztere zu reineren Purpurtonen führen als erstere. Die aus Pyrazoloazolkupplern erhaltenen Farbstoffe sind jedoch im Vergleich zu den üblichen Farbstoffen aus Gelb- und Blaugrünkupplern nicht ausreichend lichtstabil.
  • Aufgabe der vorliegenden Erfindung war daher, diese mangelnde Lichtstabilität zu beheben.
  • Es wurde nun gefunden, daß diese Aufgabe dadurch gelöst werden kann, daß dem Material in einer näher und in einer entfernter zur Lichtquelle angeordneten Schicht als die den Purpurkuppler enthaltenden Schicht ein statistisches oder alternierendes Copolymerisat aus Vinylalkohol und einer ungesättigten Carbonsäure, insbesondere einer ungesättigten Mono-, Di-oder Tricarbonsäure oder ein Pfropfpolymerisat von Vinylacetat auf Polyalkylenoxid mit anschließender Verseifung der Acetatgruppen zugesetzt wird und diese Schichten außer dem Pfropf- oder Copolymerisat Gelatine enthalten.
  • Die Copolymerisate werden durch gemeinsame Polymerisation von Vinylacetat und wenigstens einer ungesättigten Carbonsäure und anschließende Verseifung der Acetatgruppen erhalten. Die Verseifung muß nicht quantitativ sein, so daß das Copolymerisat noch Acetatgruppen aufweist. Das Copolymerisat kann darüber hinaus weitere Comonomere enthalten.
  • Bevorzugte Copolymere enthalten 50 bis 98 Mol-% Vinylalkoholeinheiten, 0 bis 20 Mol-% Vinylacetateinheiten, 2 bis 30 Mol-% Einheiten ungesättigter Carbonsäuren und 0 bis 30 Mol-% weitere Comonomere.
  • Das Molekulargewicht Mn soll wenigstens 10.000 betragen.
  • Geeignete ungesättigte Carbonsäuren sind z.B. Acrylsäure, Methacrylsäure, Maleinsäure, Fumarsäure, Crotonsäure, Itaconsäure. Geeignete weitere Comonomere sind Vinylchlorid, Vinylidenchlorid, Acrylate und Methacrylate, Ethylen, Propylen, Styrol, Styrolsulfonsäure, Vinylphosphonsäure und Vinylsulfonsäure.
  • Die Pfropfpolymeren sind in DE-OS 3 541 162 beschrieben und können nach den dort angegebenen Methoden hergestellt werden. Die Verseifung der Acetatgruppen erfolgt auf bekanntem Weg.
  • Die Pfropfpolymere haben vorzugsweise folgende Struktur
    Figure imgb0001

    wobei
  • R₃
    Wasserstoff oder C₁-C₂-Alkyl, vorzugsweise Wasserstoff,
    n
    20-1000, vorzugsweise 40-500,
    m
    1-300, vorzugsweise 2-100, wobei n > m gilt, und
    Z
    ein Copolymer aus 50 bis 100 Mol-% Vinylalkohol, 0 bis 20 Mol-% Vinylacetat, 0 bis 30 Mol-% ungesättigten Carbonsäuren und 0 bis 30 Mol-% weiteren Comonomeren ist.
  • Die ungesättigten Carbonsäuren und die weiteren Comonomere der Pfropfäste sind die gleichen der Copolymerisate.
  • Beispiele für geeignete Vinylalkoholco- und -pfropfpolymere sind:
    Figure imgb0002
    Figure imgb0003
    Figure imgb0004
    Figure imgb0005
    Figure imgb0006
    Figure imgb0007
  • Das Polyalkylenoxid entspricht vorzugsweise der Formel
    Figure imgb0008

    worin
  • R₁
    Methyl oder Ethyl und
    n
    20 bis 2.000 bedeuten.
  • Bevorzugt ist Polyethylenoxid.
  • Das Pfropfpolymerisat enthält vorzugsweise 2 bis 50 Mol-% Alkylenoxid, 50 bis 98 Mol-% Vinylalkohol und 0 bis 20 Mol-% Vinylacetat.
  • Bevorzugte Pyrazoloazolkuppler sind Pyrazolotriazolkuppler, insbesondere solche, die der Formel
    Figure imgb0009

    entsprechen, worin
  • R₁
    Wasserstof, Halogen, Alkyl, Aryl, eine heterocyclische Gruppe, Cyan, Alkoxy, Acyloxy, Carbamoyloxy, Acylamino oder ein Polymerrest,
    X
    Wasserstoff oder eine Abspaltgruppe,

    einer der Reste Z₁ und Z₂ ein Stickstoffatom und der andere -CR₂-bedeuten und
    R₂
    die gleiche Bedeutung wie R₁ hat, wobei einer der Reste R₁ und R₂ eine Ballastgruppe ist oder durch eine Ballastgruppe substituiert ist, wobei die Ballastgruppe auch ein Polymerrest sein kann.
  • Geeignete Purpurkuppler sind
    Figure imgb0010
    Figure imgb0011
    Figure imgb0012
    Figure imgb0013
    Figure imgb0014
    Figure imgb0015
    Figure imgb0016
    Figure imgb0017
    Figure imgb0018
    Figure imgb0019
    Figure imgb0020
    Figure imgb0021
    Figure imgb0022
    Figure imgb0023
    Figure imgb0024
  • Vorzugsweise ist das Pfropf- bzw. Copolymerisat in den der den Purpurkuppler enthaltenen Schicht unmittelbar benachbarten Schichten enthalten.
  • Bevorzugt enthalten erfindungsgemäß ausgestaltete Schichten 0,3 bis 3,0 g Pfropf- beziehungsweise Copolymerisat und 0,1 bis 2,0 g Gelatine/m².
  • Besonders bevorzugt handelt es sich bei dem erfindungsgemäßen Material um ein Material, das in der angegebenen Reihenfolge auf einem Träger wenigstens eine blauempfindliche, wenigstens einen Gelbkuppler enthaltende Silberhalogenidemulsionsschicht, eine Zwischenschicht, wenigstens eine grünempfindliche, wenigstens einen Purpurkuppler enthaltende Silberhalogenidemulsionsschicht, eine Zwischenschicht, wenigstens eine rotempfindliche, wenigstens einen Blaugrünkuppler enthaltende Silberhalogenidemulsionsschicht und wenigstens eine Schutzschicht enthält, dadurch gekennzeichnet, daß die Zwischenschicht zwischen der grün- und der rotempfindlichen Silberhalogenidemulsionsschicht und die Zwischenschicht zwischen der blau- und der grünempfindlichen Silberhalogenidemulsionsschicht in der erfindungsgemäßen Weise ausgestaltet sind, und der Purpurkuppler ein Pyrazoloazolkuppler ist.
  • Der Träger kann reflektierend oder transparent sein.
  • Als Silberhalogenide der farbkupplerhaltigen und der farbkupplerfreien Silberhalogenidemulsionsschichten kommen AgBr, AgBrCl, AgBrClI und AgCl in Betracht.
  • Vorzugsweise enthalten die Silberhalogenide aller lichtempfindlichen Schichten einschließlich der erfindungsgemäßen Zwischenschichten wenigstens 80 Mol-% Chlorid, insbesondere 95 bis 100 Mol-% Chlorid, 0 bis 5 Mol-% Bromid und 0 bis 1 Mol-% Iodid. Die Silberhalogenidemulsionen können direkt positiv arbeitende oder vorzugsweise negativ arbeitende Emulsionen sein.
  • Bei dem Silberhalogenid kann es sich um überwiegend kompakte Kristalle handeln, die z.B. regulär kubisch oder oktaedrisch sind ober Übergangsformen aufweisen können. Vorzugsweise können aber auch verzwillingte, z.B. plättchenförmige Kristalle vorliegen, deren durchschnittliches Verhältnis von Durchmesser zu Dicke bevorzugt wenigstens 5:1 ist, wobei der Durchmesser eines Kornes definiert ist als der Durchmesser eines Kreises mit einem Kreisinhalt entsprechend der projizierten Fläche des Kornes. Die Schichten können aber auch tafelförmige Silberhalogenidkristalle aufweisen, bei denen das Verhältnis von Durchmesser zu Dicke größer als 5:1 ist, z.B. 12:1 bis 30:1.
  • Die Silberhalogenidkörner können auch einen mehrfach geschichteten Kornaufbau aufweisen, im einfachsten Fall mit einem inneren und einem äußeren Kornbereich (core/shell), wobei die Halogenidzusammensetzung und/oder sonstige Modifizierungen, wie z.B. Dotierungen der einzelnen Kornbereiche unterschiedlich sind. Die mittlere Korngröße der Emulsionen liegt vorzugsweise zwischen 0,2 »m und 2,0 »m, die Korngrößenverteilung kann sowohl homo- als auch heterodispers sein. Die Emulsionen können außer dem Silberhalogenid auch organische Silbersalze enthalten, z.B. Silberbenztriazolat oder Silberbehenat.
  • Es können zwei oder mehrere Arten von Silberhalogenidemulsionen, die getrennt hergestellt werden, als Mischung verwendet werden.
  • Die fotografischen Emulsionen können nach verschiedenen Methoden (z.B. P. Glafkides, Chimie et Pysique Photographique, Paul Montel, Paris (1967), G.F. Duffin, Photographic Emulsion Chemistry, The Focal Press, London (1966), V.L. Zelikman et al, Making and Coating Photographic Emulsion, The Focal Press, London (1966)) aus löslichen Silbersalzen und löslichen Halogeniden hergestellt werden.
  • Die Fällung des Silberhalogenids erfolgt bevorzugt in Gegenwart des Bindemittels, z.B. der Gelatine und kann im sauren, neutralen oder alkalischen pH-Bereich durchgeführt werden, wobei vorzugsweise Silberhalogenidkomplexbildner zusätzlich verwendet werden. Zu letzteren gehören z.B. Ammoniak, Thioether, Imidazol, Ammoniumthiocyanat oder überschüssiges Halogenid. Die Zusammenführung der wasserlöslichen Silbersalze und der Halogenide erfolgt wahlweise nacheinander nach dem single-jet- oder gleichzeitig nach dem double-jet-Verfahren oder nach beliebiger Kombination beider Verfahren. Bevorzugt wird die Dosierung mit steigenden Zuflußraten, wobei die "kritische" Zufuhrgeschwindigkeit, bei der gerade noch keine Neukeime entstehen, nicht überschritten werden sollte. Der pAg-Bereich kann während der Fällung in weiten Grenzen variieren, vorzugsweise wird das sogenannte pAg-gesteuerte Verfahren benutzt, bei dem ein bestimmter pAg-Wert konstant gehalten oder ein definiertes pAg-Profil während der Fällung durchfahren wird. Neben der bevorzugten Fällung bei Halogenidüberschuß ist aber auch die sogenannte inverse Fällung bei Silberionenüberschuß möglich. Außer durch Fällung können die Silberhalogenidkristalle auch durch physikalische Reifung (Ostwaldreifung), in Gegenwart von überschüssigem Halogenid und/oder Silberhalogenidkomplexierungsmittel wachsen. Das Wachstum der Emulsionskörner kann sogar überwiegend durch Ostwaldreifung erfolgen, wobei vorzugsweise eine feinkörnige, sogenannte Lippmann-Emulsion, mit einer schwerer löslichen Emulsion gemischt und auf letzterer umgelöst wird.
  • Die Fällung der Silberhalogenidkörner kann in Gegenwart von "growth modifiern" erfolgen, das sind Substanzen, die das Wachstum derart beeinflussen, daß besondere Kornformen und Kornoberflächen (z.B. 111-Oberflächen bei AgCl) entstehen.
  • Während der Fällung und/oder physikalischen Reifung der Silberhalogenidkörner können auch Salze oder Komplexe von Metallen wie Cd, Zn, Pb, Tl, Bi, Ir, Rh, Fe, Pt, Pd, Ru oder Os zur Dotierung der Silberhalogenide vorhanden sein.
  • Ferner kann die Fällung auch in Gegenwart von Sensibilisierungsfarbstoffen erfolgen. Komplexierungsmittel und/oder Farbstoffe lassen sich zu jedem beliebigen Zeitpunkt unwirksam machen, z.B. durch Änderung des pH-Wertes oder durch eine oxidative Behandlung.
  • Als Bindemittel wird vorzugsweise Gelatine verwendet. Diese kann jedoch ganz oder teilweise durch andere synthetische, halbsynthetische oder auch natürlich vorkommende Polymere ersetzt werden. Synthetische Gelatineersatzstoffe sind beispielsweise Polyvinylalkohol, Poly-N-vinylpyrrolidon, Polyacrylamide, Polyacrylsäure und deren Derivate, insbesondere deren Mischpolymerisate. Natürlich vorkommende Gelatineersatzstoffe sind beispielsweise andere Proteine wie Albumin oder Casein, Cellulose, Zucker, Stärke oder Alginate. Halbsynthetische Gelatineersatzstoffe sind in der Regel modifizierte Naturprodukte. Cellulosederivate wie Hydroxyalkylcellulose, Carboxymethylcellulose und Phthalylcellulose sowie Gelatinederivate, die durch Umsetzung mit Alkylierungs- oder Acylierungsmitteln oder durch Aufpfropfung von polymerisierbaren Monomeren erhalten worden sind, sind Beispiele hierfür.
  • Die Bindemittel sollen über eine ausreichende Menge an funktionellen Gruppen verfügen, so daß durch Umsetzung mit geeigneten Härtungsmitteln genügend widerstandsfähige Schichten erzeugt werden können. Solche funktionellen Gruppen sind insbesondere Aminogruppen, aber auch Carboxylgruppen, Hydroxylgruppen und aktive Methylengruppen.
  • Die vorzugsweise verwendete Gelatine kann durch sauren oder alkalischen Aufschluß erhalten sein. Die Herstellung solcher Gelatinen wird beispielsweise in The Science and Technology of Gelatine, herausgegeben von A.G. Ward und A. Courts, Academic Press 1977, Seite 295 ff beschrieben. Die jeweils eingesetzte Gelatine soll einen möglichst geringen Gehalt an fotografisch aktiven Verunreinigungen enthalten (Inertgelatine). Gelatinen mit hoher Viskosität und niedriger Quellung sind besonders vorteilhaft. Die Gelatine kann teilweise oder ganz oxidiert sein.
  • Nach abgeschlossener Kristallbildung oder auch schon zu einem früheren Zeitpunkt werden die löslichen Salze aus der Emulsion entfernt, z.B. durch Nudeln und Waschen, durch Flocken und Waschen, durch Ultrafiltration oder durch Ionenaustauscher.
  • Die fotografischen Emulsionen können Verbindungen zur Verhinderung der Schleierbildung oder zur Stabilisierung der fotografischen Funktion während der Produktion, der Lagerung oder der fotografischen Verarbeitung enthalten.
  • Besonders geeignet sind Azaindene, vorzugsweise Tetra- und Pentaazaindene, insbesondere solche, die mit Hydroxyl- oder Aminogruppen substituiert sind. Derartige Verbindungen sind z.B. von Birr, Z. Wiss. Phot. 47 (1952), S. 2-58 beschrieben worden. Weiter können als Antischleiermittel Salze von Metallen wie Quecksilber oder Cadmium, aromatische Sulfon- oder Sulfinsäuren wie Benzolsulfinsäure, oder stickstoffhaltige Heterocyclen wie Nitrobenzimidazol, Nitroindazol, (subst.) Benztriazole oder Benzthiazoliumsalze eingesetzt werden. Besonders geeignet sind Mercaptogruppen enthaltende Heterocyclen, z.B. Mercaptobenzthiazole, Mercaptobenzimidazole, Mercaptotetrazole, Mercaptothiadiazole, Mercaptopyrimidine, wobei diese Mercaptoazole auch eine wasserlöslichmachende Gruppe, z.B. eine Carboxylgruppe oder Sulfogruppe, enthalten können. Weitere geeignete Verbindungen sind in Research Disclosure Nr. 17643 (1978), Abschnitt VI, veröffentlicht.
  • Die Stabilisatoren können den Silberhalogenidemulsionen vor, während oder nach deren Reifung zugesetzt werden. Selbstverständlich kann man die Verbindungen auch anderen fotografischen Schichten, die einer Silberhalogenidschicht zugeordnet sind, zusetzen.
  • Es können auch Mischungen aus zwei oder mehreren der genannten Verbindungen eingesetzt werden.
  • Die Silberhalogenidemulsionen werden üblicherweise chemisch gereift, beispielsweise durch Einwirkung von Goldverbindungen oder Verbindungen des zweiwertigen Schwefels.
  • Die fotografischen Emulsionsschichten oder andere hydrophile Kolloidschichten des erfindungsgemäß hergestellten lichtempfindlichen Materials können oberflächenaktive Mittel für verschiedene Zwecke enthalten, wie Überzugshilfen, zur Verhinderung der elektrischen Aufladung, zur Verbesserung der Gleiteigenschaften, zum Emulgieren der Dispersion, zur Verhinderung der Adhäsion und zur Verbesserung der fotografischen Charakteristika (z.B. Entwicklungsbeschleunigung, hoher Kontrast, Sensibilisierung usw.).
  • Geeignete Sensibilisierungsfarbstoffe sind Cyaninfarbstoffe, insbesondere der folgenden Klassen:
    • 1. Rotsensibilisatoren
         Dicarbocyanine mit Naphthothiazol oder Benzthiazol als basischen Endgruppen, die in 5- und/oder 6-Stellung durch Halogen, Methyl, Methoxy substituiert sein können sowie 9.11-alkylen-verbrückte, insbesondere 9.11-Neopentylenthiadicarbocyanine mit Alkyl- oder Sulfoalkylsubstituenten am Stickstoff.
    • 2. Grünsensibilisatoren
         9-Ethyloxacarbocyanine, die in 5-Stellung durch Chlor oder Phenyl substituiert sind und am Stickstoff der Benzoxazolgruppen Alkyl- oder Sulfoalkylreste, vorzugsweise Sulfoalkylsubstituenten tragen.
    • 3. Blausensibilisatoren
         Methincyanine mit Benzoxazol, Benzthiazol, Benzselenazol, Naphthoxazol, Naphthothiazol als basischen Endgruppen, die in 5- und/oder 6-Stellung durch Halogen, Methyl, Methoxy substituiert sein können und mindestens eine, vorzugsweise zwei, Sulfoalkylsubstituenten am Stickstoff tragen. Ferner Apomerocyanine mit einer Rhodaningruppe.
  • Auf Sensibilisatoren kann verzichtet werden, wenn für einen bestimmten Spektralbereich die Eigenempfindlichkeit des Silberhalogenids ausreichend ist, beispielsweise die Blauempfindlichkeit von Silberbromidiodiden.
  • Den unterschiedlich sensibilisierten Emulsionsschichten werden nicht diffundierende monomere oder polymere Farbkuppler zugeordnet, die sich in der gleichen Schicht oder in einer dazu benachbarten Schicht befinden können. Gewöhnlich werden den rotempfindlichen Schichten Blaugrünkuppler, den grünempfindlichen Schichten Purpurkuppler und den blauempfindlichen Schichten Gelbkuppler zugeordnet.
  • Farbkuppler zur Erzeugung des blaugrünen Teilfarbenbildes sind in der Regel Kuppler vom Phenol- oder α-Naphtholtyp.
  • Als Farbkuppler zur Erzeugung des purpurnen Teilfarbenbildes können zusätzlich zu den erfindungsgemäß verlangten Pyrazoloazolkupplern noch Kuppler vom Typ des 5-Pyrazolons oder des Indazolons eingesetzt werden.
  • Farbkuppler zur Erzeugung des gelben Teilfarbenbildes sind in der Regel Kuppler mit einer offenkettigen Ketomethylengruppierung, insbesondere Kuppler vom Typ des α-Acylacetamids; geeignete Beispiele hierfür sind α-Benzoylacetanilidkuppler und α-Pivaloylacetanilidkuppler.
  • Bei den Farbkupplern kann es sich um 4-Äquivalentkuppler, aber auch um 2-Äquivalentkuppler handeln. Letztere leiten sich von den 4-Äquivalentkupplern dadurch ab, daß sie in der Kupplungsstelle einen Substituenten enthalten, der bei der Kupplung abgespalten wird.
  • Die Kuppler enthalten üblicherweise einen Ballastrest, um eine Diffusion innerhalb des Materials, d.h. sowohl innerhalb einer Schicht oder von Schicht zu Schicht, unmöglich zu machen. Anstelle von Kupplern mit einem Ballastrest können auch hochmolekulare Kuppler eingesetzt werden.
  • Geeignete Farbkuppler bzw. Literaturstellen, in denen solche beschrieben sind, finden sich in Research Disclosure 17 643 (1978), Kapitel VII.
  • Hochmolekulare Farbkuppler sind beispielsweise in DE-C-1 297 417, DE-A-24 07 569, DE-A-31 48 125, DE-A-32 17 200, DE-A-33 20 079, DE-A-33 24 932, DE-A-33 31 743, DE-A-33 40 376, EP-A-27 284, US-A-4 080 211 beschrieben. Die hochmolekularen Farbkuppler werden in der Regel durch Polymerisation von ethylenisch ungesättigten monomeren Farbkupplern hergestellt. Sie können aber auch durch Polyaddition oder Polykondensation erhalten werden.
  • Die Einarbeitung der Kuppler oder anderer Verbindungen in Silberhalogenidemulsionsschichten kann in der Weise erfolgen, daß zunächst von der betreffenden Verbindung eine Lösung, eine Dispersion oder eine Emulsion hergestellt und dann der Gießlösung für die betreffende Schicht zugefügt wird. Die Auswahl des geeigneten Lösungs- oder Dispersionsmittels hängt von der jeweiligen Löslichkeit der Verbindung ab.
  • Methoden zum Einbringen von in Wasser im wesentlichen unlöslichen Verbindungen durch Mahlverfahren sind beispielsweise in DE-A-26 09 741 und DE-A-26 09 742 beschrieben.
  • Hydrophobe Verbindungen können auch unter Verwendung von hochsiedenden Lösungsmitteln, sogenannten Ölbildnern, in die Gießlösung eingebracht werden. Entsprechende Methoden sind beispielsweise in US-A-2 322 027, US-A-2 801 170, US-A-2 801 171 und EP-A-0 043 037 beschrieben.
  • Anstelle der hochsiedenden Lösungsmittel können Oligomere oder Polymere, sogenannte polymere Ölbildner Verwendung finden.
  • Die Verbindungen können auch in Form beladener Latices in die Gießlösung eingebracht werden. Verwiesen wird beispielsweise auf DE-A-25 41 230, DE-A-25 41 274, DE-A-28 35 856, EP-A-0 014 921, EP-A-0 069 671, EP-A-0 130 115, US-A-4 291 113.
  • Die diffusionsfeste Einlagerung anionischer wasserlöslicher Verbindungen (z.B. von Farbstoffen) kann auch mit Hilfe von kationischen Polymeren, sogenannten Beizenpolymeren erfolgen.
  • Geeignete Ölbildner sind z.B. Phthalsäurealkylester, Phosphonsäureester, Phosphorsäureester, Citronensäureester, Benzoesäureester, Amide, Fettsäureester, Trimesinsäureester, Alkohole, Phenole, Anilinderivate und Kohlenwasserstoffe.
  • Beispiele für geeignete Ölbildner sind Dibutylphthalat, Dicyclohexylphthalat, Di-2-ethylhexylphthalat, Decylphthalat, Triphenylphosphat, Tricresylphosphat, 2-Ethylhexyldiphenylphosphat, Tricyclohexylphosphat, Tri-2-ethylhexylphosphat, Tridecylphosphat, Tributoxyethylphosphat, Trichlorpropylphosphat, Di-2-ethylhexylphenylphosphat, 2-Ethylhexylbenzoat, Dodecylbenzoat, 2-Ethylhexyl-p-hydroxybenzoat, Diethyldodecanamid, N-Tetradecylpyrrolidon, Isostearylalkohol, 2,4-Di-tert.-amylphenol, Dioctylacetat, Glycerintributyrat, Isostearyllactat, Trioctylcitrat, N,N-Dibutyl-2-butoxy-5-tert.-octylanilin, Paraffin, Dodecylbenzol und Diisopropylnaphthalin.
  • Das fotografische Material kann weiterhin UV-Licht absorbierende Verbindungen, Weißtöner, Abstandshalter, Filterfarbstoffe, Formalinfänger, Lichtschutzmittel, Antioxidantien, DMin-Farbstoffe, Zusätze zur Verbesserung der Farbstoff-, Kuppler- und Weißenstabilisierung sowie zur Verringerung des Farbschleiers, Weichmacher (Latices), Biocide und anderes enthalten.
  • UV-Licht absorbierende Verbindungen sollen einerseits die Bildfarbstoffe vor dem Ausbleichen durch UV-reiches Tageslicht schützen und andererseits als Filterfarbstoffe das UV-Licht im Tageslicht bei der Belichtung absorbieren und so die Farbwiedergabe eines Films verbessern. Üblicherweise werden für die beiden Aufgaben Verbindungen unterschiedlicher Struktur eingesetzt. Beispiele sind arylsubstituierte Benzotriazolverbindungen (US-A-3 533 794), 4-Thiazolidonverbindungen (US-A-3 314 794 und 3 352 681), Benzophenonverbindungen (JP-A-2784/71), Zimtsäureesterverbindungen (US-A-3 705 805 und 3 707 375), Butadienverbindungen (US-A-4 045 229) oder Benzoxazolverbindungen (US-A-3 700 455).
  • Es können auch ultraviolettabsorbierende Kuppler (wie Blaugrünkuppler des α-Naphtholtyps) und ultraviolettabsorbierende Polymere verwendet werden. Diese Ultraviolettabsorbentien können durch Beizen in einer speziellen Schicht fixiert sein.
  • Für sichtbares Licht geeignete Filterfarbstoffe umfassen Oxonolfarbstoffe, Hemioxonolfarbstoffe, Styrylfarbstoffe, Merocyaninfarbstoffe, Cyaninfarbstoffe und Azofarbstoffe. Von diesen Farbstoffen werden Oxonolfarbstoffe, Hemioxonolfarbstoffe und Merocyaninfarbstoffe besonders vorteilhaft verwendet.
  • Geeignete Weißtöner sind z.B. in Research Disclosure 17 643 (Dez. 1978), Kapitel V, in US-A-2 632 701, 3 269 840 und in GB-A-852 075 und 1 319 763 beschrieben.
  • Bestimmte Bindemittelschichten, insbesondere die vom Träger am weitesten entfernte Schicht, aber auch gelegentlich Zwischenschichten, insbesondere, wenn sie während der Herstellung die vom Träger am weitesten entfernte Schicht darstellen, können fotografisch inerte Teilchen anorganischer oder organischer Natur enthalten, z.B. als Mattierungsmittel oder als Abstandshalter (DE-A-33 31 542, DE-A-34 24 893, Research Disclosure 17 643, (Dez. 1978), Kapitel XVI).
  • Der mittlere Teilchendurchmesser der Abstandshalter liegt insbesondere im Bereich von 0,2 bis 10 »m. Die Abstandshalter sind wasserunlöslich und können alkaliunlöslich oder alkalilöslich sein, wobei die alkalilöslichen im allgemeinen im alkalischen Entwicklungsbad aus dem fotografischen Material entfernt werden. Beispiele für geeignete Polymere sind Polymethylmethacrylat, Copolymere aus Acrylsäure und Methylmethacrylat sowie Hydroxypropylmethylcellulosehexahydrophthalat.
  • Zusätze zur Verbesserung der Farbstoff-, Kuppler- und Weißenstabilität sowie zur Verringerung des Farbschleiers (Research Disclosure 17 643/1978, Kapitel VII) können den folgenden chemischen Stoffklassen angehören: Hydrochinone, 6-Hydroxychromane, 5-Hydroxycumarane, Spirochromane, Spiroindane, p-Alkoxyphenole, sterisch gehinderte Phenole, Gallussäurederivate, Methylendioxybenzole, Aminophenole, sterisch gehinderte Amine, Derivate mit veresterten oder veretherten phenolischen Hydroxylgruppen, Metallkomplexe.
  • Verbindungen, die sowohl eine sterisch gehinderte Amin-Partialstruktur als auch eine sterisch gehinderte Phenol-Partialstruktur in einem Molekül aufweisen (US-A-4 268 593), sind besonders wirksam zur Verhinderung der Beeinträchtigung (Verschlechterung bzw. Abbau) von gelben Farbbildern als Folge der Entwicklung von Wärme, Feuchtigkeit und Licht. Um die Beeinträchtigung (Verschlechterung bzw. den Abbau) von purpurroten Farbbildern, insbesondere ihre Beeinträchtigung (Verschlechterung bzw. Abbau) als Folge der Einwirkung von Licht, zu verhindern, sind Spiroindane (JP-A-159 644/81) und Chromane, die durch Hydrochinondiether oder -monoether substituiert sind (JP-A-89 835/80) besonders wirksam.
  • Die Schichten des fotografischen Materials können mit den üblichen Härtungsmitteln gehärtet werden. Geeignete Härtungsmittel sind z.B. Formaldehyd, Glutaraldehyd und ähnliche Aldehydverbindungen, Diacetyl, Cyclopentadion und ähnliche Ketonverbindungen, Bis-(2-chlorethylharnstoff), 2-Hydroxy-4,6-dichlor-1,3,5-triazin und andere Verbindungen, die reaktives Halogen enthalten (US-A-3 288 775, US-A-2 732 303, GB-A-974 723 und GB-A-1 167 207) Divinylsulfonverbindungen, 5-Acetyl-1,3-diacryloylhexahydro-1,3,5-triazin und andere Verbindungen, die eine reaktive Olefinbindung enthalten (US-A-3 635 718, US-A-3 232 763 und GB-A-994 869); N-Hydroxymethylphthalimid und andere N-Methylolverbindungen (US-A-2 732 316 und US-A-2 586 168); Isocyanate (US-A-3 103 437); Aziridinverbindungen (US-A-3 017 280 und US-A-2 983 611); Säurederivate (US-A-2 725 294 und US-A-2 725 295); Verbindungen vom Carbodiimidtyp (US-A-3 100 704); Carbamoylpyridiniumsalze (DE-A-22 25 230 und DE-A-24 39 551); Carbamoyloxypyridiniumverbindungen (DE-A-24 08 814); Verbindungen mit einer Phosphor-Halogen-Bindung (JP-A-113 929/83); N-Carbonyloximid-Verbindungen (JP-A-43353/81); N-Sulfonyloximido-Verbindungen (US-A-4 111 926), Dihydrochinolinverbindungen (US-A-4 013 468), 2-Sulfonyloxypyridiniumsalze (JP-A-110 762/81), Formamidiniumsalze (EP-A-0 162 308), Verbindungen mit zwei oder mehr N-Acyloximino-Gruppen (US-A-4 052 373), Epoxyverbindungen (US-A-3 091 537), Verbindungen von Isoxazoltyp (US-A-3 321 313 und US-A-3 543 292); Halogencarboxyaldehyde, wie Mucochlorsäure; Dioxanderivate, wie Dihydroxydioxan und Di-chlordioxan; und anorganische Härter, wie Chromalaun und Zirkonsulfat.
  • Die Härtung kann in bekannter Weise dadurch bewirkt werden, daß das Härtungsmittel der Gießlösung für die zu härtende Schicht zugesetzt wird, oder dadurch, daß die zu härtende Schicht mit einer Schicht überschichtet wird, die ein diffusionsfähiges Härtungsmittel enthält.
  • Unter den aufgeführten Klassen gibt es langsam wirkende und schnell wirkende Härtungsmittel sowie sogenannte Soforthärter, die besonders vorteilhaft sind. Unter Soforthärtern werden Verbindungen verstanden, die geeignete Bindemittel so vernetzen, daß unmittelbar nach Beguß, spätestens nach 24 Stunden, vorzugsweise spätestens nach 8 Stunden die Härtung so weit abgeschlossen ist, daß keine weitere durch die Vernetzungsreaktion bedingte Änderung der Sensitometrie und der Quellung des Schichtverbandes auftritt. Unter Quellung wird die Differenz von Naßschichtdicke und Trockenschichtdicke bei der wäßrigen Verarbeitung des Films verstanden (Photogr. Sci., Eng. 8 (1964), 275; Photogr. Sci. Eng. (1972), 449).
  • Bei diesen mit Gelatine sehr schnell reagierenden Härtungsmitteln handelt es sich z.B. um Carbamoylpyridiniumsalze, die mit freien Carboxylgruppen der Gelatine zu reagieren vermögen, so daß letztere mit freien Aminogruppen der Gelatine unter Ausbildung von Peptidbindungen und Vernetzung der Gelatine reagieren.
  • Es gibt diffusionsfähige Härtungsmittel, die auf alle Schichten innerhalb eines Schichtverbandes in gleicher Weise härtend wirken. Es gibt aber auch schichtbegrenzt wirkende, nicht diffundierende, niedermolekulare und hochmolekulare Härter. Mit ihnen kann man einzelne Schichten, z.B. die Schutzschicht besonders stark vernetzen. Dies ist wichtig, wenn man die Silberhalogenid-Schicht wegen der Silberdeckkrafterhöhung wenig härtet und mit der Schutzschicht die mechanischen Eigenschaften verbessern muß (EP-A 0 114 699).
  • Die erfindungsgemäßen farbfotografischen Materialien werden üblicherweise durch Entwickeln, Bleichen, Fixieren und Wässern oder Stabilisieren ohne nachfolgende Wässerung verareitet, wobei Bleichen und Fixieren zu einem Verarbeitungsschritt zusammengefaßt sein können. Als Farbentwicklerverbindung lassen sich sämtliche Entwicklerverbindungen verwenden, die die Fähigkeit besitzen, in Form ihres Oxidationsproduktes mit Farbkupplern zu Azomethin- bzw. Indophenolfarbstoffen zu reagieren. Geeignete Farbentwicklerverbindungen sind aromatische, mindestens eine primäre Aminogruppe enthaltende Verbindungen vom p-Phenylendiamintyp, beispielsweise N,N-Dialkyl-p-phenylendiamine wie N,N-Diethyl-p-phenylendiamin, 1-(N-Ethyl-N-methansulfonamidoethyl)-3-methyl-p-phenylendiamin und 1-(N-Ethyl-N-methoxyethyl)-3-methyl-p-phenylendiamin. Weitere brauchbare Farbentwickler sind beispielsweise in J. Amer. Chem. Soc. 73, 3106 (1951) und G. Haist, Modern Photographic Processing, 1979, John Wiley and Sons, New York, Seite 545 ff. beschrieben.
  • Nach der Farbentwicklung kann ein saures Stoppbad oder eine Wässerung folgen.
  • Üblicherweise wird das Material nach der Farbentwicklung gebleicht und fixiert. Als Bleichmittel können z.B. Fe(III)-Salze und Fe(III)-Komplexsalze wie Ferricyanide, Dichromate, wasserlösliche Kobaltkomplexe verwendet werden. Besonders bevorzugt sind Eisen-(III)-Komplexe von Aminopolycarbonsäuren, insbesondere z.B. von Ethylendiamintetraessigsäure, Propylendiamintetraessigsäure, Diethylentriaminpentaessigsäure, Nitrilotriessigsäure, Iminodiessigsäure, N-Hydroxyethyl-ethylendiamintriessigsäure, Alkyliminodicarbonsäuren und von entsprechenden Phosphonsäuren. Geeignete als Bleichmittel sind weiterhin Persulfate und Peroxide, z.B. Wasserstoffperoxid.
  • Auf das Bleichfixierbad oder Fixierbad folgt meist eine Wässerung, die als Gegenstromwässerung ausgeführt ist oder aus mehreren Tanks mit eigener Wasserzufuhr besteht.
  • Günstige Ergebnisse können bei Verwendung eines darauf folgenden Schlußbades, das keinen oder nur wenig Formaldehyd enthält, erhalten werden.
  • Die Wässerung kann aber durch ein Stabilisierbad vollständig ersetzt werden, das üblicherweise im Gegenstrom geführt wird. Dieses Stabilisierbad übernimmt bei Formaldehydzusatz auch die Funktion eines Schlußbades.
  • Das erfindungsgemäße farbfotografische Material kann auch einer Umkehrentwicklung unterworfen werden. Dabei gehen der Farbentwicklung eine Erstentwicklung mit einem Entwickler, der mit den Kupplern keinen Farbstoff bildet, und eine diffuse Zweitbelichtung oder eine chemische Verschleierung voraus.
  • Beispiel
  • Ein farbfotografisches Aufzeichnungsmaterial wurde hergestellt, indem auf ein beidseitig mit Polyethylen beschichtetes Papier die folgenden Schichten in der angegebenen Reihenfolge aufgetragen wurden. Die Mengenangaben beziehen sich jeweils auf 1 m². Für den Silberhalogenidauftrag werden die entsprechenden Mengen AgNO₃ angegeben.
  • Schichtaufbau 1 (Vergleich)
    • 1. Schicht (Substratschicht)
         0,2 g Gelatine
    • 2. Schicht (blauempfindliche Schicht)
         blauempfindliche Silberhalogenidemulsion (99,5 Mol-% Chlorid, 0,5 Mol-% Bromid, mittlerer Korndurchmesser 0,78 »m) aus 0,50 g AgNO₃ mit
         1,38 g Gelatine
         0,60 g Gelbkuppler Y-1
         0,48 g Trikresylphosphat (TKP)
    • 3. Schicht (Zwischenschicht)
         1,18 g Gelatine
         0,08 g 2,5-Dioctylhydrochinon
         0,08 g Dibutylphthalat (DBP)
    • 4. Schicht (grünempfindliche Schicht)
         grünsensibilisierte Silberhalogenidemulsion (99,5 Mol-% Chlorid, 0,5 Mol-% Bromid, mittlerer Korndurchmesser 0,37 »m) aus 0,40 g AgNO₃ mit
         1,02 g Gelatine
         0,37 g Purpurkuppler M-1
         0,40 g DBP
    • 5. Schicht (Zwischenschicht)
         1,20 g Gelatine
         0,66 g UV-Absorber der Formel
      Figure imgb0025
         0,052 g 2,5-Dioctylhydrochinon
         0,36 g TKP
    • 6. Schicht (rotempfindliche Schicht)
         rotsensibilisierte Silberhalogenidemulsion (99,5 Mol-% Chlorid, 0,5 Mol-% Bromid, mittlerer Korndurchmesser 0,35 »m) aus 0,28 g AgNO₃ mit
         0,84 g Gelatine
         0,39 g Blaugrünkuppler C-1
         0,39 g TKP
    • 7. Schicht (UV-Schutzschicht)
         0,65 g Gelatine
         0,21 g UV-Absorber wie in 5. Schicht
         0,11 g TKP
    • 8. Schicht (Schutzschicht)
         0,65 g Gelatine
         0,39 g Härtungsmittel der Formel
      Figure imgb0026
      Figure imgb0027
      Figure imgb0028
    Schichtaufbau 2 (Vergleich)
  • wie Schichtaufbau 1 aber mit folgenden Änderungen
  • Schicht 3
    0,59 g Gelatine
    1,77 g Polyvinylalkohol
  • Schichtaufbau 3 Vergleich
  • wie Schichtaufbau 1 aber mit folgenden Änderungen
  • Schicht 3
    0,59 g Gelatine
    1,77 g Polyvinylalkohol
    Schicht 5
    0,59 g Gelatine
    1,77 g Polyvinylalkohol
  • Schichtaufbau 4 (Vergleich)
  • wie Schichtaufbau 1 aber mit folgenden Änderungen
  • Schicht 3
    0,59 g Gelatine
    1,77 g Polymer P 1
  • Schichtaufbau 5 (Vergleich)
  • wie Schichtaufbau 1 aber mit folgenden Änderungen
  • Schicht 5
    0,59 g Gelatine
    1,77 g Polymer P 1
  • Schichtaufbau 6 (erfindungsgemäß)
  • wie Schichtaufbau 1 aber mit folgenden Änderungen
  • Schicht 3
    0,59 g Gelatine
    1,77 g Polymer P 1
    Schicht 5
    0,59 g Gelatine
    1,77 g Polymer P 1
  • Schichtaufbau 7 (erfindungsgemäß)
  • wie Schichtaufbau 1 aber mit folgenden Änderungen
  • Schicht 3
    0,82 g Gelatine
    1,14 g Polymer P 3
    Schicht 5
    0,82 g Gelatine
    1,14 g Polymer P 3
  • Schichtaufbau 8 (erfindungsgemäß)
  • wie Schichtaufbau 1 aber mit folgenden Änderungen
  • Schicht 2
    1,12 g Gelatine
    1,18 g Polymer P 3
    Schicht 5
    0,82 g Gelatine
    1,14 g Polymer P 3
  • Schichtaufbau 9 (erfindungsgemäß)
  • wie Schichtaufbau 1 aber mit folgenden Änderungen
  • Schicht 2
    1,12 g Gelatine
    1,18 g Polymer P 4
    Schicht 6
    0,84 g Gelatine
    1,02 g Polymer P 4
  • Schichtaufbau 10 (erfindungsgemäß)
  • wie Schichtaufbau 1 aber mit folgenden Änderungen
  • Schicht 3
    0,82 g Gelatine
    1,14 g Polymer P 3
    Schicht 7
    0,65 g Gelatine
    0,65 g Polymer P 3
  • Schichtaufbau 11 (erfindungsgemäß)
  • wie Schichtaufbau 1 aber mit folgenden Änderungen
  • Schicht 3
    0,94 g Gelatine
    1,12 g Polymer P 1
    Schicht 5
    0,82 g Gelatine
    1,14 g Polymer P 5
  • Die Schichtaufbauten wurden anschließend hinter einem graduierten Grauteil belichtet. Danach wurden die Materialien mit den nachfolgend aufgeführten Verarbeitungsbädern in der üblichen Weise verarbeitet.
  • Die verarbeiteten Proben wurden dem Licht einer für Tageslicht normierten Xenonlampe ausgesetzt und mit 4,2 x 10⁶ lx.h belichtet. Danach wurde die prozentuale Dichteabnahme bei einer Ausgangsdichte von 1,5 gemessen (Tabelle 1).
  • Außerdem wurden die Schichtaufbauten bei schräg einfallendem Licht betrachtet und die Schichten hinsichtlich ihres Glanzes visuell beurteilt (Tabelle 1).
  • Aus der Tabelle 1 ist ersichtlich, daß durch die Verwendung der erfindungsgemäßen Polymeren in je einer Schicht oberhalb und unterhalb der den Purpur-Farbstoff enthaltenden Schicht, die Lichtstabilität des Purpur-Farbstoffs deutlich verbessert wird und die gute Transparenz der Schichten erhalten bleibt.
    • a) Farbentwickler - 45 s - 35°C
      Figure imgb0029
      auffüllen mit Wasser auf 1000 ml; pH 10,0
    • b) Bleichfixierbad - 45 s - 35°C
      Figure imgb0030
      auffüllen mit Wasser auf 1000 ml; pH 5,5
    • c) Wässern - 2 min - 35°C
    • d) Trocknen
    Figure imgb0031

Claims (7)

  1. Farbfotografisches Aufzeichnungsmaterial mit einem Träger, wenigstens einer lichtempfindlichen Silberhalogenidemulsionsschicht, die einen Pyrazoloazolpurpurkuppler enthält, und wenigstens einer weiteren Schicht, die näher zur Lichtquelle und wenigstens einer weiteren Schicht, die entfernter zur Lichtquelle angeordnet ist als die den Pyrazoloazolpurpurkuppler enthaltende Silberhalogenidemulsionsschicht, dadurch gekennzeichnet, daß diese weiteren Schichten Gelatine sowie ein statistisches oder alternierendes Copolymerisat aus Vinylalkohol und einer ungesättigten Carbonsäure oder ein Pfropfpolymerisat von Vinylacetat auf Polyalkylenoxid mit anschließender Verseifung der Acetatgruppen enthalten.
  2. Farbfotografisches Aufzeichnungsmaterial nach Anspruch 1, dadurch gekennzeichnet, daß das Copolymer 50 bis 98 Mol-% Vinylakoholeinheiten, 0 bis 20 Mol-% Vinylacetateinheiten, 2 bis 30 Mol-% Einheiten ungesättigter Carbonsäuren und 0 bis 30 Mol-% weitere Comonomere enthält und ein Molekulargewicht Mn von wenigstens 10.000 aufweist.
  3. Farbfotografisches Aufzeichnungsmaterial nach Anspruch 1, dadurch gekennzeichnet, daß der Pyrazoloazolkuppler der Formel
    Figure imgb0032
    entspricht, worin
    R₁   Wasserstoff, Halogen, Alkyl, Aryl, eine heterocyclische Gruppe, Cyan, Alkoxy, Acyloxy, Carbamoyloxy, Acylamino oder ein Polymerrest,
    X   Wasserstoff oder eine Abspaltgruppe,
    einer der Reste Z₁ und Z₂ ein Stickstoffatom und der andere -CR₂- bedeuten und
    R₂   die gleiche Bedeutung wie R₁ hat, wobei einer der Reste R₁ und R₂ eine Ballastgruppe ist oder durch eine Ballastgruppe substituiert ist, wobei die Ballastgrupp auch ein Polymerrest sein kann.
  4. Farbfotografisches Aufzeichnungsmaterial nach Anspruch 1, dadurch gekennzeichnet, daß das Pfropfpolymerisat 2 bis 50 Mol-% Alkylenoxid, 50 bis 98 Mol-% Vinylalkohol und 0 bis 20 Mol-% Vinylacetat enthält.
  5. Farbfotografisches Aufzeichnungsmaterial nach Anspruch 1, dadurch gekennzeichnet, daß die weiteren Schichten jeweils 0,3 bis 3,0 g Pfropf- beziehungsweise Copolymerisat und 0,1 bis 2,0 g Gelatine/m² enthalten.
  6. Farbfotografisches Aufzeichnungsmaterial, das in der angegebenen Reihenfolge auf einem reflektierenden Träger wenigstens eine blauempfindliche, wenigstens einen Gelbkuppler enthaltende Silberhalogenidemulsionsschicht, eine Zwischenschicht, wenigstens eine grünempfindliche, wenigstens einen Purpurkuppler enthaltende Silberhalogenidemulsionsschicht, eine Zwischenschicht, wenigstens eine rotempfindliche, wenigstens einen Blaugrünkuppler enthaltende Silberhalogenidemulsionsschicht und wenigstens eine Schutzschicht enthält, dadurch gekennzeichnet, daß die Zwischenschicht zwischen der grün- und der rotempfindlichen Silberhalogenidemulsionsschicht und die Zwischenschicht zwischen der blau- und der grünempfindlichen Silberhalogenidemulsionsschicht Gelatine sowie ein statistisches oder alternierendes Copolymerisat aus Vinylalkohol und einer ungesättigten Carbonsäure oder ein Pfropfpolymerisat von Vinylacetat auf Polyalkylenoxid mit anschließender Verseifung der Acetatgruppen enthalten, und der Purpurkuppler ein Pyrazoloazolkuppler ist.
  7. Farbfotografisches Aufzeichnungsmaterial nach Anspruch 6, dadurch gekennzeichnet, daß die Silberhalogenidemulsionen der Silberhalogenidemulsionsschichten zu wenigstens 80 Mol-% aus Silberchlorid bestehen.
EP93101112A 1992-02-07 1993-01-26 Farbfotografisches Aufzeichnungsmaterial Expired - Lifetime EP0554756B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4203532A DE4203532A1 (de) 1992-02-07 1992-02-07 Farbfotografisches aufzeichnungsmaterial
DE4203532 1992-02-07

Publications (2)

Publication Number Publication Date
EP0554756A1 EP0554756A1 (de) 1993-08-11
EP0554756B1 true EP0554756B1 (de) 1995-03-01

Family

ID=6451170

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93101112A Expired - Lifetime EP0554756B1 (de) 1992-02-07 1993-01-26 Farbfotografisches Aufzeichnungsmaterial

Country Status (4)

Country Link
US (1) US5330886A (de)
EP (1) EP0554756B1 (de)
JP (1) JPH0643613A (de)
DE (2) DE4203532A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0664487B1 (de) * 1993-12-08 1998-07-29 Fuji Photo Film Co., Ltd. Lichtempfindliches Silberhalogenidmaterial enthaltend eine lichtempfindliche polymerisierbare Schicht und eine Deckschicht, die Polyvinylalkohol mit sauren Gruppen oder einem Salz davon enthält
DE4438004A1 (de) * 1994-10-25 1996-05-02 Agfa Gevaert Ag Farbfotografisches Silberhalogenidmaterial

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB542704A (en) * 1940-07-19 1942-01-23 Eastman Kodak Co Improvements relating to photographic emulsions
DD114691A1 (de) * 1974-05-09 1975-08-12
DE3630165C2 (de) * 1985-09-04 1998-04-23 Fuji Photo Film Co Ltd Photographisches, lichtempfindliches Material
JP2630410B2 (ja) * 1988-01-12 1997-07-16 富士写真フイルム株式会社 ハロゲン化銀カラー感光材料
EP0382443A3 (de) * 1989-02-06 1991-05-08 Konica Corporation Photographisches lichtempfindliches Silberhalogenidmaterial
EP0391373B1 (de) * 1989-04-04 1996-07-24 Fuji Photo Film Co., Ltd. Farbfotografisches lichtempfindliches Silberhalogenidmaterial

Also Published As

Publication number Publication date
DE4203532A1 (de) 1993-08-12
JPH0643613A (ja) 1994-02-18
US5330886A (en) 1994-07-19
DE59300091D1 (de) 1995-04-06
EP0554756A1 (de) 1993-08-11

Similar Documents

Publication Publication Date Title
EP0358071B1 (de) Fotografisches Aufzeichnungsmaterial
EP0464409B1 (de) Farbfotografisches Aufzeichnungsmaterial
DE3830522A1 (de) Fotografisches aufzeichnungsmaterial
EP0607801B1 (de) Farbfotografisches Aufzeichnungsmaterial
EP0515873B1 (de) Farbfotografisches Aufzeichnungsmaterial
EP0351588B1 (de) Farbfotografisches Aufzeichnungsmaterial
EP0370226B1 (de) Fotografisches Silberhalogenidmaterial und Verfahren zu seiner Verarbeitung
EP0554756B1 (de) Farbfotografisches Aufzeichnungsmaterial
EP0546416B1 (de) Farbfotografisches Aufzeichnungsmaterial
EP0377889B1 (de) Silberhalogenidaufzeichnungsmaterial
EP0413204A2 (de) Farbfotografisches Silberhalogenidmaterial
EP0607800A1 (de) Farbfotografisches Aufzeichnungsmaterial
EP0447656A1 (de) Farbfotografisches Silberhalogenidmaterial und seine Entwicklung
EP0550907B1 (de) Fotografisches Aufzeichnungsmaterial
EP0369235B1 (de) Fotografisches Aufzeichnungsmaterial
EP0377181A2 (de) Farbfotografisches Material
EP0363820A2 (de) Farbfotografisches Silberhalogenidmaterial
EP0616256B1 (de) Farbfotografisches Aufzeichnungsmaterial
EP0653678B1 (de) Verarbeitung eines farbfotografischen Silberhalogenidmaterials
EP0564909B1 (de) Verfahren zur Herstellung eines fotografischen Bildes
EP0504692B1 (de) Farbfotografischer Umkehrfilm
EP0355568B1 (de) Herstellung einer Silberhalogenidemulsion
DE3833387A1 (de) Farbfotografisches silberhalogenidmaterial
EP0709731A2 (de) Farbfotografisches Silberhalogenidmaterial
DE3835077A1 (de) Farbfotografisches aufzeichnungsmaterial

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB IT NL

17P Request for examination filed

Effective date: 19931102

17Q First examination report despatched

Effective date: 19940706

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT NL

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950227

REF Corresponds to:

Ref document number: 59300091

Country of ref document: DE

Date of ref document: 19950406

ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19990131

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19990203

Year of fee payment: 7

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 19990827

REG Reference to a national code

Ref country code: FR

Ref legal event code: D6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000131

BERE Be: lapsed

Owner name: AGFA-GEVAERT A.G.

Effective date: 20000131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000801

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20000801

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010112

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010117

Year of fee payment: 9

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020126

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020930

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20021212

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050126