EP0313949B1 - Farbfotografisches Silberhalogenidmaterial - Google Patents

Farbfotografisches Silberhalogenidmaterial Download PDF

Info

Publication number
EP0313949B1
EP0313949B1 EP88117222A EP88117222A EP0313949B1 EP 0313949 B1 EP0313949 B1 EP 0313949B1 EP 88117222 A EP88117222 A EP 88117222A EP 88117222 A EP88117222 A EP 88117222A EP 0313949 B1 EP0313949 B1 EP 0313949B1
Authority
EP
European Patent Office
Prior art keywords
silver halide
mol
sensitive
layer
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88117222A
Other languages
English (en)
French (fr)
Other versions
EP0313949A1 (de
Inventor
Bruno Dr. Mücke
Franz Dr. Moll
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agfa Gevaert AG
Original Assignee
Agfa Gevaert AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agfa Gevaert AG filed Critical Agfa Gevaert AG
Publication of EP0313949A1 publication Critical patent/EP0313949A1/de
Application granted granted Critical
Publication of EP0313949B1 publication Critical patent/EP0313949B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/06Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein with non-macromolecular additives
    • G03C1/08Sensitivity-increasing substances
    • G03C1/09Noble metals or mercury; Salts or compounds thereof; Sulfur, selenium or tellurium, or compounds thereof, e.g. for chemical sensitising

Definitions

  • the invention relates to a silver halide color photographic material which is chemically sensitized in a special way, in particular to a color negative paper which contains in at least one layer a silver halide emulsion which consists essentially of silver chloride.
  • the object of the invention was to provide a color photographic silver halide material which has sufficient sensitivity in combination with a steep gradation in all color layers, at least one color layer containing a silver halide emulsion which consists essentially of silver chloride.
  • the silver halide emulsion consisting essentially of silver chloride is subjected to gold / sulfur ripening, in which a compound of the formula ## STR7 ## is used as the gold compound corresponds to what R1, R2 and R3 independently of one another are hydrogen or alkyl and X ⁇ is an anion, in particular halide, preferably chloride, is used.
  • the invention therefore relates to a color photographic silver halide material with at least one blue-sensitive one sensitive layer, which is associated with a yellow coupler, at least one green-sensitive layer, which is associated with a purple coupler, and at least one red-sensitive layer, which is associated with a cyan coupler, at least one layer containing a silver halide emulsion with 95 to 100 mol% of chloride, which with a Combination of at least one sulfur ripening body and at least one compound of the formula wherein R1, R2 and R3 independently of one another are hydrogen or alkyl and X ⁇ is an anion, has matured optimally.
  • the silver halide emulsion ripened according to the invention is in particular the blue-sensitized emulsion. All emulsions preferably consist of 95 to 100 mol% of chloride. The emulsions also contain 0 to 5 mol% of bromide, iodide and rhodanide, individually or in combination, these halides and pseudohalides being preferably used in particular in the following amounts: 0.01 to 0.5 mol% of iodide, 0.02 to 5 mol% bromide and 0.02 to 5 mol% rhodanide.
  • Compounds capable of forming silver sulfide generally come as sulfur ripening bodies, e.g. Thiosulfate, thiourea, thiosemicarbazide and thiocarbamide, in question.
  • sulfur ripening bodies e.g. Thiosulfate, thiourea, thiosemicarbazide and thiocarbamide, in question.
  • 0.5 to 20 ⁇ g / g Ag are used.
  • Thiosulfate is preferred.
  • R1 and R2 are preferably methyl, R3 is hydrogen.
  • the gold compound used is in particular 0.5 to 20 ⁇ g / g Ag, particularly preferably 1 to 10 ⁇ g / g Ag.
  • the emulsions are iridium-doped, the amount of iridium being 0.01 to 0.5 ⁇ g / g Ag.
  • the emulsion ripened according to the invention shows the desired steep gradation both in the threshold area and in the shoulder area without loss of sensitivity.
  • the silver halide can be predominantly compact crystals which are, for example, regularly cubic or octahedral or can have transitional forms.
  • platelet-shaped crystals can also preferably be present, the average ratio of diameter to thickness of which is preferably less than 8: 1, the diameter of a grain being defined as the diameter of a circle with a circle content corresponding to the projected area of the grain.
  • the layers can also have tabular silver halide crystals in which the ratio of diameter to thickness is greater than 8: 1.
  • the silver halide grains can also have a multi-layered grain structure, in the simplest case with an inner and an outer grain area (core / shell), the halide composition and / or other modifications, such as e.g. Doping of the individual grain areas are different.
  • the average grain size of the emulsions is preferably between 0.2 ⁇ m and 2.0 ⁇ m, the grain size distribution can be both homo- and heterodisperse.
  • the emulsions can also contain organic silver salts, e.g. Silver benzotriazolate or silver behenate.
  • Two or more kinds of silver halide emulsions, which are prepared separately, can be used as a mixture.
  • the photographic emulsions can be prepared using various methods (e.g. P. Glafkides, Chimie et Physique Photographique, Paul Montel, Paris (1967), GF Duffin, Photographic Emulsion Chemistry, The Focal Press, London (1966), VL Zelikman et al, Making and Coating Photographic Emulsion, The Focal Press, London (1966) from soluble silver salts and soluble halides.
  • various methods e.g. P. Glafkides, Chimie et Physique Photographique, Paul Montel, Paris (1967), GF Duffin, Photographic Emulsion Chemistry, The Focal Press, London (1966), VL Zelikman et al, Making and Coating Photographic Emulsion, The Focal Press, London (1966) from soluble silver salts and soluble halides.
  • the silver halide is preferably precipitated in the presence of the binder, for example the gelatin, and can be carried out in the acidic, neutral or alkaline pH range, silver halide complexing agents preferably being additionally used.
  • the latter include, for example, ammonia, thioether, imidazole, ammonium thiocyanate or excess halide.
  • the water-soluble silver salts and the halides are combined either in succession by the single-jet process or simultaneously by the double-jet process or by any combination of the two processes. Dosing with increasing inflow rates is preferred, the "critical" feed rate, at which no new germs are being produced, should not be exceeded.
  • the pAg range can vary within wide limits during the precipitation, preferably the so-called pAg-controlled method is used, in which a certain pAg value is kept constant or a defined pAg profile is traversed during the precipitation.
  • so-called inverse precipitation with an excess of silver ions is also possible.
  • the silver halide crystals can also grow through physical ripening (Ostwald ripening), in the presence of excess halide and / or silver halide complexing agent. The growth of the emulsion grains can even take place predominantly by Ostwald ripening, a fine-grained, so-called Lippmann emulsion preferably being mixed with a less soluble emulsion and being redissolved on the latter.
  • Salts or complexes of metals such as Cd, Zn, Pb, Tl, Bi, Ir, Rh, Fe can also be present during the precipitation and / or physical ripening of the silver halide grains.
  • the precipitation can also be carried out in the presence of sensitizing dyes.
  • Complexing agents and / or dyes can be rendered ineffective at any time, e.g. by changing the pH or by an oxidative treatment.
  • Gelatin is preferably used as the binder. However, this can be replaced in whole or in part by other synthetic, semi-synthetic or naturally occurring polymers.
  • Synthetic gelatin substitutes are, for example, polyvinyl alcohol, poly-N-vinylpyrolidone, polyacrylamides, polyacrylic acid and their derivatives, in particular their copolymers.
  • Naturally occurring gelatin substitutes are, for example, other proteins such as albumin or casein, cellulose, sugar, starch or alginates.
  • Semi-synthetic gelatin substitutes are usually modified natural products.
  • cellulose derivatives such as hydroxyalkyl cellulose, carboxymethyl cellulose and phthalyl cellulose and gelatin derivatives which have been obtained by reaction with alkylating or acylating agents or by grafting on polymerizable monomers.
  • the binders should have a sufficient amount of functional groups so that enough resistant layers can be produced by reaction with suitable hardening agents.
  • functional groups are in particular amino groups, but also carboxyl groups, hydroxyl groups and active methylene groups.
  • the gelatin which is preferably used can be obtained by acidic or alkaline digestion.
  • the gelatin can be oxidized.
  • the production of such gelatins is described, for example, in The Science and Technology of Gelatine, published by A.G. Ward and A. Courts, Academic Press 1977, page 295 ff.
  • the gelatin used in each case should contain the lowest possible level of photographically active impurities (inert gelatin). High viscosity, low swelling gelatins are particularly advantageous.
  • the soluble salts are removed from the emulsion, e.g. by pasta and washing, by flakes and washing, by ultrafiltration or by ion exchangers.
  • the photographic emulsions may contain compounds to prevent fogging or to stabilize the photographic function during production, storage or photographic processing.
  • Azaindenes are particularly suitable, preferably tetra- and penta-azaindenes, in particular those which are substituted by hydroxyl or amino groups. Such connections are e.g. B. von Birr, Z. Wiss. Phot. 47 (1952), pp. 2-58. Salts of metals such as mercury or cadmium, aromatic sulfonic or sulfinic acids such as benzenesulfinic acid, or nitrogen-containing heterocycles such as nitrobenzimidazole, nitroindazole, (subst.) Benzotriazoles can also be used as antifoggants or benzothiazolium salts can be used.
  • metals such as mercury or cadmium, aromatic sulfonic or sulfinic acids such as benzenesulfinic acid, or nitrogen-containing heterocycles such as nitrobenzimidazole, nitroindazole, (subst.)
  • Benzotriazoles can also be used
  • Heterocycles containing mercapto groups for example mercaptobenzthiazoles, mercaptobenzimidazoles, mercaptotetrazoles, mercaptothiadiazoles, mercaptopyrimidines, are particularly suitable, these mercaptoazoles also being able to contain a water-solubilizing group, for example a carboxyl group or sulfo group.
  • mercaptobenzthiazoles for example mercaptobenzthiazoles, mercaptobenzimidazoles, mercaptotetrazoles, mercaptothiadiazoles, mercaptopyrimidines
  • these mercaptoazoles also being able to contain a water-solubilizing group, for example a carboxyl group or sulfo group.
  • a water-solubilizing group for example a carboxyl group or sulfo group.
  • the stabilizers can be added to the silver halide emulsions before, during or after their ripening.
  • the compounds can also be added to other photographic layers which are assigned to a halogen silver layer.
  • the photographic emulsion layers or other hydrophilic colloid layers of the light-sensitive material produced according to the invention can contain surface-active agents for various purposes, such as coating aids, to prevent electrical charging, to improve the sliding properties, to emulsify the dispersion, to prevent adhesion and to improve the photographic characteristics (eg acceleration of development, high contrast, sensitization etc.).
  • the photographic emulsions can be spectral using methine dyes or other dyes be sensitized.
  • Particularly suitable dyes are cyanine dyes, merocyanine dyes and complex merocyanine dyes.
  • Sensitizers can be dispensed with if the intrinsic sensitivity of the silver halide is sufficient for a certain spectral range, for example the blue sensitivity of silver bromide.
  • Color photographic materials usually contain at least one red-sensitive, green-sensitive and blue-sensitive emulsion layer. These emulsion layers are assigned non-diffusing monomeric or polymeric color couplers, which can be located in the same layer or in a layer adjacent to it. Usually cyan couplers are assigned to the red-sensitive layers, purple couplers to the green-sensitive layers and yellow couplers to the blue-sensitive layers.
  • Color couplers for generating the blue-green partial color image are usually couplers of the phenol or ⁇ -naphthol type; suitable examples of this are known in the literature.
  • Color couplers for producing the yellow partial color image are generally couplers with an open-chain catomethylene grouping, in particular couplers of the ⁇ -acylacetamide type; Suitable examples are ⁇ -benzoylacetanilide couplers and ⁇ -pivaloylacetanilide couplers, which are also known from the literature.
  • Color couplers for producing the purple partial color image are generally couplers of the 5-pyrazolone, indazolone or pyrazoloazole type; Suitable examples of this are described in large numbers in the literature.
  • the color couplers can be 4-equivalent couplers, but also 2-equivalent couplers.
  • the latter are derived from the 4-equivalent couplers in that they contain a substituent in the coupling site which is split off during the coupling.
  • the 2-equivalent couplers include those that are colorless, as well as those that have an intense intrinsic color that disappears when the color is coupled or is replaced by the color of the image dye produced (mask coupler), the white couplers that react with Color developer oxidation products result in essentially colorless products.
  • the 2-equivalent couplers also include those couplers that contain a cleavable residue in the coupling point, which is released upon reaction with color developer oxidation products and thereby either directly or after one or more further groups have been cleaved from the primarily cleaved residue (eg DE-A-27 03-145, DE-A-28 55 697, DE-A-31 05 026, DE-A-33 19 428), a certain desired photographic activity unfolds, for example as a development inhibitor or accelerator.
  • Examples of such 2-equivalent couplers are the known DIR couplers as well as DAR or. FAR coupler.
  • DIR, DAR or FAR couplers Since with DIR, DAR or FAR couplers the effectiveness of the residue released during coupling is mainly desired and the color-forming properties of these couplers are less important, such DIR, DAR or FAR couplers are also suitable, which give essentially colorless products on coupling (DE-A-1 547 640).
  • the cleavable residue can also be a ballast residue, so that upon reaction with color developer oxidation products coupling products are obtained which are diffusible or at least have a weak or restricted mobility (US Pat. No. 4,420,556).
  • High molecular weight color couplers are described, for example, in DE-C-1 297 417, DE-A-24 07 569, DE-A-31 48 125, DE-A-32 17 200, DE-A-33 20 079, DE-A-33 24 932, DE-A-33 31 743, DE-A-33 40 376, EP-A-27 284, US-A-4 080 211.
  • the high molecular weight color couplers are usually produced by polymerizing ethylenically unsaturated monomeric color couplers. However, they can also be obtained by polyaddition or polycondensation.
  • the couplers or other compounds can be incorporated into silver halide emulsion layers by first preparing a solution, a dispersion or an emulsion of the compound in question and then adding it to the casting solution for the layer in question. Choosing the right one Solvents or dispersants depend on the solubility of the compound.
  • Hydrophobic compounds can also be introduced into the casting solution using high-boiling solvents, so-called oil formers. Corresponding methods are described for example in US-A-2 322 027, US-A-2 801 170, US-A-2 801 171 and EP-A-0 043 037.
  • oligomers or polymers instead of the high-boiling solvents, oligomers or polymers, so-called polymeric oil formers, can be used.
  • the compounds can also be introduced into the casting solution in the form of loaded latices.
  • anionic water-soluble compounds eg dyes
  • pickling polymers e.g. acrylic acid
  • Suitable oil formers are e.g. Alkyl phthalates, phosphoric acid esters, citric acid esters, benzoic acid esters, alkylamides, fatty acid esters and trimesic acid esters.
  • Color photographic material typically comprises at least one red-sensitive emulsion layer, at least one green-sensitive emulsion layer and at least one blue-sensitive emulsion layer on a support.
  • the order of these layers can be varied as desired. Couplers which form blue-green, purple and yellow dyes are usually incorporated into the red, green or blue-sensitive emulsion layers. However, different combinations can also be used.
  • Each of the photosensitive layers can consist of a single layer or also comprise two or more silver halide emulsion partial layers (DE-C-1 121 470). Red-sensitive silver halide emulsion layers are often arranged closer to the layer support than green-sensitive silver halide emulsion layers and these are in turn closer than blue-sensitive layers, a non-light-sensitive yellow filter layer generally being located between green-sensitive layers and blue-sensitive layers.
  • the non-light-sensitive intermediate layers which are generally arranged between layers of different spectral sensitivity, can contain agents which prevent undesired diffusion of developer oxidation products from one light-sensitive layer into another light-sensitive layer with different spectral sensitization.
  • sub-layers of the same spectral sensitization can differ with regard to their composition, in particular with regard to the type and amount of the silver halide grains.
  • the sublayer with higher sensitivity will be located further from the support than the sublayer with lower sensitivity.
  • Partial layers of the same spectral sensitization can be adjacent to one another or through other layers, e.g. separated by layers of other spectral sensitization.
  • all highly sensitive and all low-sensitive layers can be combined to form a layer package (DE-A 1 958 709, DE-A 2 530 645, DE-A 2 622 922).
  • the photographic material may further contain compounds absorbing UV light, whiteners, spacers, filter dyes, formalin scavengers and others.
  • Compounds that absorb UV light are intended on the one hand to protect the image dyes from fading by UV-rich daylight and, on the other hand, as filter dyes to absorb the UV light in daylight upon exposure and thus improve the color rendering of a film.
  • Connections of different structures are usually used for the two tasks. Examples are aryl substituted benzotriazole compounds (US-A 3 533 794), 4-thiazolidone compounds (US-A 3 314 794 and 3 352 681), benzophenone compounds (JP-A 2784/71), cinnamic acid ester compounds (US-A 3 705 805 and 3 707) 375), butadiene compounds (US-A 4 045 229) or benzoxazole compounds (US-A 3 700 455).
  • Ultraviolet absorbing couplers such as ⁇ -naphthol type cyan couplers
  • ultraviolet absorbing polymers can also be used. These ultraviolet absorbents can be fixed in a special layer by pickling.
  • Filter dyes suitable for visible light include oxonol dyes, hemioxonol dyes, styrene dyes, merocyanine dyes, cyanine dyes and azo dyes. Of these dyes, oxonol dyes, hemioxonol dyes and merocyanine dyes are used particularly advantageously.
  • Suitable whiteners are described, for example, in Research Disclosure December 1978, page 22 ff, Unit 17 643, Chapter V.
  • binder layers in particular the most distant layer from the support, but also occasionally intermediate layers, especially if they are the most distant layer from the support during manufacture, may contain photographically inert particles of inorganic or organic nature, e.g. as a matting agent or as a spacer (DE-A 3 331 542, DE-A 3 424 893, Research Disclosure December 1978, page 22 ff, Unit 17 643, Chapter XVI).
  • photographically inert particles of inorganic or organic nature e.g. as a matting agent or as a spacer (DE-A 3 331 542, DE-A 3 424 893, Research Disclosure December 1978, page 22 ff, Unit 17 643, Chapter XVI).
  • the average particle diameter of the spacers is in particular in the range from 0.2 to 10 ⁇ m.
  • the spacers are water-insoluble and can be alkali-insoluble or alkali-soluble, the alkali-soluble ones generally being removed from the photographic material in the alkaline development bath.
  • suitable polymers are polymethyl methacrylate, copolymers of acrylic acid and methyl methacrylate and hydroxypropyl methyl cellulose hexahydrophthalate.
  • binders of the material according to the invention are hardened with suitable hardeners, for example with hardeners of the epoxy type, the ethyleneium type, the acryloyl type or the vinylsulfone type.
  • suitable hardeners for example with hardeners of the epoxy type, the ethyleneium type, the acryloyl type or the vinylsulfone type.
  • suitable hardeners for example with hardeners of the epoxy type, the ethyleneium type, the acryloyl type or the vinylsulfone type.
  • dizine, triazine or 1,2-dihydroquinoline series hardeners are also suitable.
  • the binders of the material according to the invention are preferably hardened with instant hardeners.
  • Immediate hardeners are understood to mean compounds which crosslink suitable binders in such a way that the hardening is completed to such an extent immediately after casting, at the latest after 24 hours, preferably at the latest after 8 hours, that no further change in the sensitometry caused by the crosslinking reaction and the swelling of the layer structure occurs .
  • Swelling is understood to mean the difference between the wet film thickness and the dry film thickness during the aqueous processing of the film (Photogr. Sci. Eng. 8 (1964), 275; Photogr. Sci. Eng. (1972), 449).
  • hardening agents that react very quickly with gelatin are e.g. to carbamoylpyridinium salts, which are able to react with free carboxyl groups of the gelatin, so that the latter react with free amino groups of the gelatin to form peptide bonds and crosslink the gelatin.
  • Suitable examples of instant hardeners are, for example, compounds of the general formulas wherein
  • R1 denotes alkyl, aryl or aralkyl
  • R2 has the same meaning as R1 or means alkylene, arylene, aralkylene or alkaralkylene, the second bond having a group of the formula is linked, or
  • R1 and R2 together represent the atoms necessary to complete an optionally substituted heterocyclic ring, e.g. a piperidine, piperazine or morpholine ring, the ring e.g. can be substituted by C1-C3-alkyl or halogen,
  • R3 for hydrogen, alkyl, aryl, alkoxy, -NR4-COR5, - (CH2) m -NR8R9, - (CH2) n -CONR13R14 or or a bridge link or a direct bond to a polymer chain, wherein
  • R5 is hydrogen, C1-C4-alkyl or NR6R7,
  • R11 C1-C4 alkyl or aryl, especially phenyl
  • R12 is hydrogen, C1-C4 alkyl or aryl, especially phenyl,
  • R13 is hydrogen, C1-C4 alkyl or aryl, especially phenyl,
  • R13 and R14 together represent the atoms necessary to complete an optionally substituted heterocyclic ring, for example a piperidine, piperazine or morpholine ring, which ring can be substituted by C1-C3-alkyl or halogen, for example,
  • X ⁇ is an anion which is omitted if an anionic group is already linked to the rest of the molecule;
  • R1, R2, R3 and X ⁇ have the meaning given for formula (a).
  • the materials according to the invention are processed in the usual manner according to the processes recommended for this.
  • the processing was carried out according to the Ektacolor RA-4 process with the chemicals recommended for it (manufacturer Kodak).
  • the following table shows the sensitometric data from which, with somewhat improved sensitivity, almost unchanged veil, the steeper gradation in the threshold and shoulder area (G1, G2) emerges.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Silver Salt Photography Or Processing Solution Therefor (AREA)

Description

  • Die Erfindung betrifft ein auf besondere Weise chemisch sensibilisiertes farbfotografisches Silberhalogenidmaterial, insbesondere ein Colornegativpapier, das in wenigstens einer Schicht eine Silberhalogenidemulsion enthält, die im wesentlichen aus Silberchlorid besteht.
  • Es ist bekannt, Silberhalogenidemulsionen einer kombinierten Schwefel/Goldreifung zu unterwerfen (z.B. DE-A-22 63 910), wobei Gold in Form anorganischer Goldsalze eingesetzt wird. Im Falle von Silberhalogenidemulsionen, die im wesentlichen aus Silberchlorid bestehen, führt dies zu Emulsionen, die zwar eine ausreichende Empfindlichkeit haben, aber nur eine flache Gradation zeigen. Übliche Möglichkeiten, die Gradation aufzusteilen, beispielsweise eine Rhodiumdotierung, führen zu Empfindlichkeitsverlusten, die insbesondere bei der blausensibilisierten Schicht eines Colornegativpapiers, die als üblicherweise unterste Schicht gegenüber den grün- und rotsensibilisierten Schichten in der Empfindlichkeit ohnehin benachteiligt ist, nicht akzeptiert werden können.
  • Aufgabe der Erfindung war es, ein farbfotografisches Silberhalogenidmaterial bereitzustellen, das eine ausreichende Empfindlichkeit in Kombination mit einer steilen Gradation in allen Farbschichten aufweist, wobei wenigstens eine Farbschicht eine Silberhalogenidemulsion enthält, die im wesentlichen aus Silberchlorid besteht.
  • Es wurde nun gefunden, daß man diese Aufgabe lösen kann, wenn man die im wesentlichen aus Silberchlorid bestehende Silberhalogenidemulsion einer Gold/Schwefelreifung unterwirft, bei der als Goldverbindung eine Verbindung, die der Formel
    Figure imgb0001
    entspricht, worin
    R₁, R₂ und R₃ unabhängig voneinander Wasserstoff oder Alkyl und X ein Anion, insbesondere Halogenid, vorzugsweise Chlorid, bedeuten, eingesetzt wird.
  • Gegenstand der Erfindung ist daher ein farbfotografisches Silberhalogenidmaterial mit wenigstens einer blauempfindlichen empfindlichen Schicht, der ein Gelbkuppler zugeordnet ist, wenigstens einer grünempfindlichen Schicht, der ein Purpurkuppler zugeordnet ist und wenigstens einer rotempfindlichen Schicht, der ein Blaugrünkuppler zugeordnet ist, wobei wenigstens eine Schicht eine Silberhalogenidemulsion mit 95 bis 100 Mol-% Chlorid enthält, die mit einer Kombination aus wenigstens einem Schwefelreifkörper und wenigstens einer Verbindung der Formel
    Figure imgb0002
    worin R₁, R₂ und R₃ unabhängig voneinander Wasserstoff oder Alkyl und X ein Anion bedeuten, optimal gereift ist.
  • Die erfindungsgemäß gereifte Silberhalogenidemulsion ist insbesondere die blausensibilisierte Emulsion. Vorzugsweise bestehen alle Emulsionen aus 95 bis 100 Mol-% Chlorid. Die Emulsionen enthalten weiterhin 0 bis 5 Mol-% Bromid, Iodid und Rhodanid, einzeln oder in Kombination, wobei diese Halogenide und Pseudohalogenide im einzelnen vorzugsweise in folgenden Mengen eingesetzt werden: 0,01 bis 0,5 Mol-% Iodid, 0,02 bis 5 Mol-% Bromid und 0,02 bis 5 Mol-% Rhodanid.
  • Als Schwefelreifkörper kommen im allgemeinen zur Silbersulfidbildung befähigte Verbindungen z.B. Thiosulfat, Thioharnstoff, Thiosemicarbazid und Thiocarbamid, in Frage. Es kommen vorzugsweise 0,5 bis 20 µg/g Ag zur Anwendung. Thiosulfat ist bevorzugt.
  • In der vorstehenden Formel stehen R₁ und R₂ vorzugsweise für Methyl, R₃ für Wasserstoff. An Goldverbindung werden insbesondere 0,5 bis 20 µg/g Ag, besonders bevorzugt 1 bis 10 µg/g Ag, eingesetzt.
  • In einer weiter bevorzugten Auführungsform werden die Emulsionen iridiumdotiert, wobei die Iridiummenge 0,01 bis 0,5 µg/g Ag beträgt.
  • Die erfindungsgemäß gereifte Emulsion zeigt ohne Empfindlichkeitsverlust die gewünschte steile Gradation sowohl im Schwellen- wie im Schulterbereich.
  • Bei dem Silberhalogenid kann es sich um überwiegend kompakte Kristalle handeln, die z.B. regulär kubisch oder oktaedrisch sind oder Übergangsformen aufweisen können. Vorzugsweise können aber auch plättchenförmige Kristalle vorliegen, deren durchschnittliches Verhältnis von Durchmesser zu Dicke bevorzugt kleiner als 8: 1 ist, wobei der Durchmesser eines Kornes definiert ist als der Durchmesser eines Kreises mit einem Kreisinhalt entsprechend der projizierten Fläche des Kornes. Die Schichten können aber auch tafelförmige Silberhalogenidkristalle aufweisen, bei denen das Verhältnis von Durchmesser zu Dicke größer als 8: 1 ist.
  • Die Silberhalogenidkörner können auch einen mehrfach geschichteten Kornaufbau aufweisen, im einfachsten Fall mit einem inneren und einem äußeren Kornbereich (core/shell), wobei die Halogenidzusammensetzung und/oder sonstige Modifizierungen, wie z.B. Dotierungen der einzelnen Kornbereiche unterschiedlich sind. Die mittlere Korngröße der Emulsionen liegt vorzugsweise zwischen 0,2 µm und 2,0 µm, die Korngrößenverteilung kann sowohl homo- als auch heterodispers sein. Die Emulsionen können außer dem Silberhalogenid auch organische Silbersalze enthalten, z.B. Silberbenztriazolat oder Silberbehenat.
  • Es können zwei oder mehrere Arten von Silberhalogenidemulsionen, die getrennt hergestellt werden, als Mischung verwendet werden.
  • Die fotografischen Emulsionen können nach verschiedenen Methoden (z.B. P. Glafkides, Chimie et Physique Photographique, Paul Montel, Paris (1967), G.F. Duffin, Photographic Emulsion Chemistry, The Focal Press, London (1966), V.L. Zelikman et al, Making and Coating Photographic Emulsion, The Focal Press, London (1966) aus löslichen Silbersalzen und löslichen Halogeniden hergestellt werden.
  • Die Fällung des Silberhalogenids erfolgt bevorzugt in Gegenwart des Bindemittels, z.B. der Gelatine und kann im sauren, neutralen oder alkalischen pH-Bereich durchgeführt werden, wobei vorzugsweise Silberhalogenidkomplexbildner zusätzlich verwendet werden. Zu letzteren gehören z.B. Ammoniak, Thioether, Imidazol, Ammoniumthiocyanat oder überschüssiges Halogenid. Die Zusammenführung der wasserlöslichen Silbersalze und der Halogenide erfolgt wahlweise nacheinander nach dem single-jet- oder gleichzeitig nach dem double-jet-Verfahren oder nach beliebiger Kombination beider Verfahren. Bevorzugt wird die Dosierung mit steigenden Zuflußraten, wobei die "kritische" Zufuhrgeschwindigkeit, bei der gerade noch keine Neukeime entstehen, nicht überschritten werden sollte. Der pAg-Bereich kann während der Fällung in weiten Grenzen variieren, vorzugsweise wird das sogenannte pAg-gesteuerte Verfahren benutzt, bei dem ein bestimmter pAg-Wert konstant gehalten oder ein definiertes pAg-Profil während der Fällung durchfahren wird. Neben der bevorzugten Fällung bei Halogenidüberschuß ist aber auch die sogenannte inverse Fällung bei Silberionenüberschluß möglich. Außer durch Fällung können die Silberhalogenidkristalle auch durch physikalische Reifung (Ostwaldreifung), in Gegenwart von überschüssigem Halogenid und/oder Silberhalogenidkomplexierungsmittel wachsen. Das Wachstum der Emulsionskörner kann sogar überwiegend durch Ostwaldreifung erfolgen, wobei vorzugsweise eine feinkörnige, sogenannte Lippmann-Emulsion, mit einer schwerer löslichen Emulsion gemischt und auf letzterer umgelöst wird.
  • Während der Fällung und/oder der physikalischen Reifung der Silberhalogenidkörner können auch Salze oder Komplexe von Metallen, wie Cd, Zn, Pb, Tl, Bi, Ir, Rh, Fe vorhanden sein.
  • Ferner kann die Fällung auch in Gegenwart von Sensibilisierungsfarbstoffen erfolgen. Komplexierungsmittel und/oder Farbstoffe lassen sich zu jedem beliebigen Zeitpunkt unwirksam machen, z.B. durch Änderung des pH-Wertes oder durch eine oxidative Behandlung.
  • Als Bindemittel wird vorzugsweise Gelatine verwendet. Diese kann jedoch ganz oder teilweise durch andere synthetische, halbsynthetische oder auch natürlich vorkommende Polymere ersetzt werden. Synthetische Gelatineersatzstoffe sind beispielsweise Polyvinylalkohol, Poly-N-vinylpyrolidon, Polyacrylamide, Polyacrylsäure und deren Derivate, insbesondere deren Mischpolymerisate. Natürlich vorkommende Gelatineersatzstoffe sind beispielsweise andere Proteine wie Albumin oder Casein, Cellulose, Zucker, Stärke oder Alginate. Halbsynthetische Gelatineersatzstoffe sind in der Regel modifizierte Naturprodukte. Cellulosederivate wie Hydroxyalkylcellulose, Carboxymethylcellulose und Phthalylcellulose sowie Gelatinederivate, die durch Umsetzung mit Alkylierungs- oder Acylierungsmitteln oder durch Aufpfropfung von polymerisierbaren Monomeren erhalten worden sind, sind Beispiele hierfür.
  • Die Bindemittel sollen über eine ausreichende Menge an funktionellen Gruppen verfügen, so daß durch Umsetzung mit geeigneten Härtungsmitteln genügend widerstandsfähigen Schichten erzeugt werden können. Solche funktionellen Gruppen sind insbesondere Aminogruppen, aber auch Carboxylgruppen, Hydroxylgruppen und aktive Methylengruppen.
  • Die vorzugsweise verwendete Gelatine kann durch sauren oder alkalischen Aufschluß erhalten sein. Die Gelatine kann oxidiert sein. Die Herstellung solcher Gelatinen wird beispielsweise in The Science and Technology of Gelatine, herausgegeben von A.G. Ward und A. Courts, Academic Press 1977, Seite 295 ff beschrieben. Die jeweils eingesetzte Gelatine soll einen möglichst geringen Gehalt an fotografisch aktiven Verunreinigungen enthalten (Inertgelatine). Gelatinen mit hoher Viskosität und niedriger Quellung sind besonders vorteilhaft.
  • Nach abgeschlossener Kristallbildung oder auch schon zu einem früheren Zeitpunkt werden die löslichen Salze aus der Emulsion entfernt, z.B. durch Nudeln und Waschen, durch Flocken und Waschen, durch Ultrafiltration oder durch Ionenaustauscher.
  • Die fotografischen Emulsionen können Verbindungen zur Verhinderung der Schleierbildung oder zur Stabilisierung der fotografischen Funktion während der Produktion, der Lagerung oder der fotografischen Verarbeitung enthalten.
  • Besonders geeignet sind Azaindene, vorzugsweise Tetra- und Pentaazaindene, insbesondere solche, die mit Hydroxyl- oder Aminogruppen substituiert sind. Derartige Verbindungen sind z. B. von Birr, Z. Wiss. Phot. 47 (1952), S. 2-58 beschrieben worden. Weiter können als Antischleiermittel Salze von Metallen wie Quecksilber oder Cadmium, aromatische Sulfon- oder Sulfinsäuren wie Benzolsulfinsäure, oder stickstoffhaltige Heterocyclen wie Nitrobenzimidazol, Nitroindazol, (subst.) Benztriazole oder Benzthiazoliumsalze eingesetzt werden. Besonders geeignet sind Mercaptogruppen enthaltende Heterocyclen, z.B. Mercaptobenzthiazole, Mercaptobenzimidazole, Mercaptotetrazole, Mercaptothiadiazole, Mercaptopyrimidine, wobei diese Mercaptoazole auch eine wasserlöslichmachende Gruppe, z.B. eine Carboxylgruppe oder Sulfogruppe, enthalten können. Weitere geeignete Verbindungen sind in Research Disclosure Nr. 17643 (1978), Abschnitt VI, veröffentlicht.
  • Die Stabilisatoren können den Silberhalogenidemulsionen vor, während oder nach deren Reifung zugesetzt werden. Selbstverständlich kann man die Verbindungen auch anderen fotografischen Schichten, die einer Halogensilberschicht zugeordnet sind, zusetzen.
  • Es können auch Mischungen aus zwei oder mehreren der genannten Verbindungen eingesetzt werden.
  • Die fotografischen Emulsionsschichten oder andere hydrophile Kolloidschichten des erfindungsgemäß hergestellten lichtempfindlichen Materials können oberflächenaktive Mittel für verschiedene Zwecke enthalten, wie Überzugshilfen, zur Verhinderung der elektrischen Aufladung, zur Verbesserung der Gleiteigenschaften, zum Emulgieren der Dispersion, zur Verhinderung der Adhäsion und zur Verbesserung der fotografischen Charakteristika (z.B. Entwicklungsbeschleunigung, hoher Kontrast, Sensibilisierung usw.).
  • Die fotografischen Emulsionen können unter Verwendung von Methinfarbstoffen oder anderen Farbstoffen spektral sensibilisiert werden. Besonders geeignete Farbstoffe sind Cyaninfarbstoffe, Merocyaninfarbstoffe und komplexe Merocyaninfarbstoffe.
  • Auf Sensibilisatoren kann verzichtet werden, wenn für einen bestimmten Spektralbereich die Eigenempfindlichkeit des Silberhalogenids ausreichend ist, beispielsweise die Blauempfindlichkeit von Silberbromid.
  • Farbfotografische Materialien enthalten überlicherweise mindestens je eine rotempfindliche, grünempfindliche und blauempfindliche Emulsionsschicht. Diesen Emulsionsschichten werden nicht diffundierende monomere oder polymere Farbkuppler zugeordnet, die sich in der gleichen Schicht oder in einer dazu benachbarten Schicht befinden können. Gewöhnlich werden den rotempfindlichen Schichten Blaugrünkuppler, den grünempfindlichen Schichten Purpurkuppler und den blauempfindlichen Schichten Gelbkuppler zugeordnet.
  • Farbkuppler zur Erzeugung des blaugrünen Teilfarbenbildes sind in der Regel Kuppler vom Phenol- oder α-Naphtholtyp; geeignete Beispiele hierfür sind in der Literatur bekannt.
  • Farbkuppler zur Erzeugung des gelben Teilfarbenbildes sind in der Regel Kuppler mit einer offenkettigen Katomethylengruppierung, insbesondere Kuppler vom Typ des α-Acylacetamids; geeignete Beispiele hierfür sind α-Benzoylacetanilidkuppler und α-Pivaloylacetanilidkuppler, die ebenfalls aus der Literatur bekannt sind.
  • Farbkuppler zur Erzeugung des purpurnen Teilfarbenbildes sind in der Regel Kuppler vom Typ des 5-Pyrazolons, des Indazolons oder des Pyrazoloazols; geeignete Beispiele hierfür sind in der Literatur in großer Zahl beschrieben.
  • Bei den Farbkupplern kann es sich um 4-Äquivalentkuppler, aber auch um 2-Äquivalentkuppler handeln. Letztere leiten sich von den 4-Äquivalentkupplern dadurch ab, daß sie in der Kupplungsstelle einen Substituenten enthalten, der bei der Kupplung abgespalten wird. Zu den 2-Äquivalentkupplern sind solche zu rechnen, die farblos sind, als auch solche, die eine intensive Eigenfarbe aufweisen, die bei der Farbkupplung verschwindet bzw. durch die Farbe des erzeugten Bildfarbstoffes ersetzt wird (Maskenkuppler), die Weißkuppler, die bei Reaktion mit Farbentwickleroxidationsprodukten im wesentlichen farblose Produkte ergeben. Zu den 2-Äquivalentkupplern sind ferner solche Kuppler zu rechnen, die in der Kupplungsstelle einen abspaltbaren Rest enthalten, der bei Reaktion mit Farbentwickleroxidationsprodukten in Freiheit gesetzt wird und dabei entweder direkt oder nachdem aus dem primär abgespaltenen Rest eine oder mehrere weitere Gruppen abgespalten worden sind (z.B. DE-A-27 03-145, DE-A-28 55 697, DE-A-31 05 026, DE-A-33 19 428), eine bestimmte erwünschte fotografische Wirksamkeit entfaltet, z.B. als Entwicklungsinhibitor oder -accelerator. Beispiele für solche 2-Äquivalentkuppler sind die bekannten DIR-Kuppler wie auch DAR-bzw. FAR-Kuppler.
  • Da bei den DIR-, DAR- bzw. FAR-Kupplern hauptsächlich die Wirksamkeit des bei der Kupplung freigesetzten Restes erwünscht ist und es weniger auf die farbbildenden Eigenschaften dieser Kuppler ankommt, sind auch solche DIR-, DAR- bzw. FAR-Kuppler geeignet, die bei der Kupplung im wesentlichen farblose Produkte ergeben (DE-A-1 547 640).
  • Der abgespaltbare Rest kann auch ein Ballastrest sein, so daß bei der Reaktion mit Farbentwickleroxidationsprodukten Kupplungsprodukte erhalten werden, die diffusionsfähig sind oder zumindest eine schwache bzw. eingeschränkte Beweglichkeit aufweisen (US-A-4 420 556).
  • Hochmolekulare Farbkuppler sind beispielsweise in DE-C-1 297 417, DE-A-24 07 569, DE-A-31 48 125, DE-A-32 17 200, DE-A-33 20 079, DE-A-33 24 932, DE-A-33 31 743, DE-A-33 40 376, EP-A-27 284, US-A-4 080 211 beschrieben. Die hochmolekularen Farbkuppler werden in der Regel durch Polymerisation von ethylenisch ungesättigten monomeren Farbkupplern hergestellt. Sie können aber auch durch Polyaddition oder Polykondensation erhalten werden.
  • Die Einarbeitung der Kuppler oder anderer Verbindungen in Silberhalogindemulsionsschichten kann in der Weise erfolgen, daß zunächst von der betreffenden Verbindung eine Lösung, eine Dispersion oder eine Emulsion hergestellt und dann der Gießlösung für die betreffende Schicht zugefügt wird. Die Auswahl des geeigneten Lösungs- oder Dispersionsmittel hängt von der jeweiligen Löslichkeit der Verbindung ab.
  • Methoden zum Einbringen von in Wasser im wesentlichen unlöslichen Verbindungen durch Mahlverfahren sind beispielsweise in DE-A-2 609 741 und DE-A-2 609 742 beschrieben.
  • Hydrophobe Verbindungen können auch unter Verwendung von hochsiedenden Lösungsmitteln, sogenannten Ölbildnern, in die Gießlösung eingebracht werden. Entsprechende Methoden sind beispielsweise in US-A-2 322 027, US-A-2 801 170, US-A-2 801 171 und EP-A-0 043 037 beschrieben.
  • Anstelle der hochsiedenden Lösungsmitteln können Oligomere oder Polymere, sogenannte polymere Ölbildner Verwendung finden.
  • Die Verbindungen können auch in Form beladener Latices in die Gießlösung eingebracht werden. Verwiesen wird beispielsweise auf DE-A-2 541 230, DE-A-2 541 274, DE-A-2 835 856, EP-A-0 014 921, EP-A-0 069 671, EP-A-0 130 115, US-A-4 291 113.
  • Die diffusionsfeste Einlagerung anionischer wasserlöslicher Verbindungen (z.B. von Farbstoffen) kann auch mit Hilfe von kationischen Polymeren, sogenannten Beizpolymeren erfolgen.
  • Geeignete Ölbildner sind z.B. Phthalsäurealkylester, Phosphorsäureester, Citronensäureester, Benzoesäureester, Alkylamide, Fettsäureester und Trimesinsäureester.
  • Farbfotografisches Material umfaßt typischerweise mindestens eine rotempfindliche Emulsionsschicht, mindestens eine grünempfindliche Emulsionsschicht und mindestens eine blauempfindliche Emulsionsschicht auf Träger. Die Reihenfolge dieser Schichten kann je nach Wunsch variiert werden. Gewöhnlich werden blaugrüne, purpurfarbene und gelbe Farbstoffe bildende Kuppler in die rot-, grün- bzw. blauempfindlichen Emulsionsschichten eingearbeitet. Es können jedoch auch unterschiedliche Kombinationen verwendet werden.
  • Jede der lichtempfindlichen Schichten kann aus einer einzigen Schicht bestehen oder auch zwei oder mehr Silberhalogenidemulsionsteilschichten umfassen (DE-C- 1 121 470). Dabei sind rotempfindliche Silberhalogenidemulsionsschichten dem Schichtträger häufig näher angeordnet als grünempfindliche Silberhalogenidemulsionsschichten und diese wiederum näher als blauempfindliche, wobei sich im allgemeinen zwischen grünempfindlichen Schichten und blauempfindlichen Schichten eine nicht lichtempfindliche gelbe Filterschicht befindet.
  • Bei geeignet geringer Eigenempfindlichkeit der grün-bzw. rotempfindlichen Schichten kann man unter Verzicht auf die Gelbfilterschicht andere Schichtanordnungen wählen, bei denen auf dem Träger z.B. die blauempfindlichen, dann die rotempfindlichen und schließlich die grünempfindlichen Schichten folgen.
  • Die in der Regel zwischen Schichten unterschiedlicher Sprektralempfindlichkeit angeordneten nicht lichtempfindlichen Zwischenschichten können Mittel enthalten, die eine unerwünschte Diffusion von Entwickleroxidationsprodukten aus einer lichtempfindlichen in eine andere lichtempfindliche Schicht mit unterschiedlicher spektraler Sensibilisierung verhindern.
  • Liegen mehrere Teilschichten gleicher spektraler Sensibilisierung vor, so können sich diese hinsichtlich ihrer Zusammensetzung, insbesondere was Art und Menge der Silberhalogenidkörnchen betrifft unterscheiden. Im allgemeinen wird die Teilschicht mit höherer Empfindlichkeit von Träger entfernter angeordnet sein als die Teilschicht mit geringerer Empfindlichkeit. Teilschichten gleicher spektraler Sensibilisierung können zueinander benachbart oder durch andere Schichten, z.B. durch Schichten anderer spektraler Sensibilisierung getrennt sein. So können z.B. alle hochempfindlichen und all niedrigempfindlichen Schichten jeweils zu einem Schichtpaket zusammengefaßt sein (DE-A 1 958 709, DE-A 2 530 645, DE-A 2 622 922).
  • Das fotografische Material kann weiterhin UV-Licht absorbierende Verbindungen, Weißtöner, Abstandshalter, Filterfarbstoffe, Formalinfänger und anderes enthalten.
  • UV-Licht absorbierende Verbindungen sollen einerseits die Bildfarbstoffe vor dem Ausbleichen durch UV-reiches Tageslicht schützen und andererseits als Filterfarbstoffe das UV-Licht im Tageslicht bei der Belichtung absorbieren und so die Farbwiedergabe eines Films verbessern. Üblicherweise werden für die beiden Aufgaben Verbindungen unterschiedlicher Struktur eingesetzt. Beispiele sind arylsubstituierte Benzotriazolverbindungen (US-A 3 533 794), 4-Thiazolidonverbindungen (US-A 3 314 794 und 3 352 681), Benzophenonverbindungen (JP-A 2784/71), Zimtsäureesterverbindungen (US-A 3 705 805 und 3 707 375), Butadienverbindungen (US-A 4 045 229) oder Benzoxazolverbindungen (US-A 3 700 455).
  • Es können auch ultraviolettabsorbierende Kuppler (wie Blaugrünkuppler des α-Naphtholtyps) und ultraviolettabsorbierende Polymere verwendet werden. Diese Ultraviolettabsorbentien können durch Beizen in einer speziellen Schicht fixiert sein.
  • Für sichtbares Licht geeignete Filterfarbstoffe umfassen Oxonolfarbstoffe, Hemioxonolfarbstoffe, Styrolfarbstoffe, Merocyaninfarbstoffe, Cyaninfarbstoffe und Azofarbstoffe. Von diesen Farbstoffen werden Oxonolfarbstoffe, Hemioxonolfarbstoffe und Merocyaninfarbstoffe besonders vorteilhaft verwendet.
  • Geeignete Weißtöner sind z.B. in Research Disclosure Dezember 1978, Seite 22 ff, Referat 17 643, Kapitel V beschrieben.
  • Bestimmte Bindemittelschichten, insbesondere die vom Träger am weitesten entfernte Schicht, aber auch gelegentlich Zwischenschichten, insbesondere, wenn sie während der Herstellung die vom Träger am weitesten entfernte Schicht darstellen, können fotografisch inerte Teilchen anorganischer oder organischer Natur enthalten, z.B. als Mattierungsmittel oder als Abstandshalter (DE-A 3 331 542, DE-A 3 424 893, Research Disclosure Dezember 1978, Seite 22 ff, Referat 17 643, Kapitel XVI).
  • Der mittlere Teilchendurchmesser der Abstandshalter liegt insbesondere im Bereich von 0,2 bis 10 µm. Die Abstandshalter sind wasserunlöslich und können alkaliunlöslich oder alkalilöslich sein, wobei die alkalilöslichen im allgemeinen im alkalischen Entwicklungsbad aus dem fotografischen Material entfernt werden. Beispiele für geeignete Polymere sind Polymethylmethacrylat, Copolymere aus Acrylsäure und Methylmethacrylat sowie Hydroxypropylmethylcellulosehexahydrophthalat.
  • Die Bindemittel des erfindungsgemäßen Materials, insbesondere wenn als Bindemittel Gelatine eingesetzt wird, werden mit geeigneten Härtern gehärtet, beispielsweise mit Härtern des Epoxidtyps, des Ethyleniumtyps, des Acryloyltyps oder des Vinylsulfontyps. Ebenso eignen sich Härter der Diazin-, Triazin- oder 1,2-Dihydrochinolin-Reihe.
  • Vorzugsweise werden die Bindemittel des erfindungsgemäßen Materials mit Soforthärtern gehärtet.
  • Unter Soforthärtern werden Verbindungen verstanden, die geeignete Bindemittel so vernetzen, daß unmittelbar nach Beguß, spätestens nach 24 Stunden, vorzugsweise spätestens nach 8 Stunden die Härtung so weit abgeschlossen ist, daß keine weitere durch die Vernetzungsreaktion bedingte Änderung der Sensitometrie und der Quellung des Schichtverbandes auftritt. Unter Quellung wird die Differenz von Naßschichtdicke und Trockenschichtdicke bei der wäßrigen Verarbeitung des Films verstanden (Photogr. Sci. Eng. 8 (1964), 275; Photogr. Sci. Eng. (1972), 449).
  • Bei diesen mit Gelatine sehr schnell reagierenden Härtungsmitteln handelt es sich z.B. um Carbamoylpyridiniumsalze, die mit freien Carboxylgruppen der Gelatine zu reagieren vermögen, so daß letztere mit freien Aminogruppen der Gelatine unter Ausbildung von Peptidbindungen und Vernetzung der Gelatine reagieren.
  • Geeignete Beispiele für Soforthärter sind z.B. Verbindungen der allgemeinen Formeln
    Figure imgb0003
    worin
  • R₁ Alkyl, Aryl oder Aralkyl bedeutet,
  • R₂ die gleiche Bedeutung wie R₁ hat oder Alkylen, Arylen, Aralkylen oder Alkaralkylen bedeutet, wobei die zweite Bindung mit einer Gruppe der Formel
    Figure imgb0004
    verknüpft ist, oder
  • R₁ und R₂ zusammen die zur Vervollständigung eines gegebenenfalls substituierten heterocyclischen Ringes, beispielsweise eines Piperidin-, Piperazin- oder Morpholinringes erforderlichen Atome bedeuten, wobei der ring z.B. durch C₁-C₃-Alkyl oder Halogen substituiert sein kann,
  • R₃ für Wasserstoff, Alkyl, Aryl, Alkoxy, -NR₄-COR₅,-(CH₂)m-NR₈R₉,-(CH₂)n-CONR₁₃R₁₄ oder
    Figure imgb0005
    oder ein Brückenglied oder eine direkte Bindung an eine Polymerkette steht, wobei
  • R₄, R₆, R₇, R₉, R₁₄, R₁₅, R₁₇, R₁₈, und R₁₉
    Wasserstoff oder C₁-C₄-Alkyl,
  • R₅  Wasserstoff, C₁-C₄-Alkyl oder NR₆R₇,
  • R₈ -COR₁₀
  • R₁₀ NR₁₁R₁₂
  • R₁₁ C₁-C₄-Alkyl oder Aryl, insbesondere Phenyl,
  • R₁₂ Wasserstoff, C₁-C₄-Alkyl oder Aryl, insbesondere Phenyl,
  • R₁₃ Wasserstoff, C₁-C₄-Alkyl oder Aryl, insbesondere Phenyl,
  • R₁₆ Wasserstoff, C₁-C₄-Alkyl, COR₁₈ oder CONHR₁₉,
  • m
    eine Zahl 1 bis 3
    n
    eine Zahl 0 bis 3
    p
    eine Zahl 2 bis 3 und
    Y
    0 oder NR₁₇ bedeuten oder
  • R₁₃ und R₁₄ gemeinsam die zur Vervollständigung eines gegebenenfalls substituierten heterocyclischen Ringes, beispielsweise eines Piperidin-, Piperazin- oder Morpholinringes erforderlichen Atome darstellen, wobei der Ring z.B. durch C₁-C₃-Alkyl oder Halogen substituiert sein kann,
  • Z die zur Vervollständigung eines 5- oder 6-gliedrigen aromatischen heterocyclischen Ringes, gegebenenfalls mit anelliertem Benzolring, erforderlichen C-Atome und
  • X ein Anion bedeuten, das entfällt, wenn bereits eine anionische Gruppe mit dem übrigen Molekül verknüpft ist;
    Figure imgb0006
    worin
  • R₁, R₂, R₃ und X die für Formel (a) angegebene Bedeutung besitzen.
  • Die erfindungsgemäßen Materialien, seien es Colornegativ- oder Colorumkehrfilme, Colornegativ- oder Colorumkehrpapier oder Direktpositivmaterialien, werden nach den dafür empfohlenen Prozessen in üblicher Weise verarbeitet.
  • Herstellung von Goldrhodanin
  • 1,28 g Dimethylrhodanin der Formel
    Figure imgb0007
    werden in 400 ml Methanol gelöst. Die Lösung wird mit Wasser auf 800 ml verdünnt und auf 15°C abgekühlt. Zu dieser Lösung gibt man 2 ml einer 40 gew.-%igen wäßrigen Lösung von AuCl₃·HCl unter Rühren, filtriert den Niederschlag ab, wäscht ihn einmal mit Methanol und zweimal mit 15°C-kaltem Wasser und trocknet ihn bei Raumtemperatur im Exsiccator über Silicagel.
  • Emulsionsherstellung
  • Im Doppeleinlauf werden bei konstantem pAG von 7,7 AgNO₃ als 3-molar wäßrige Lösung einerseits und eine wäßrige Lösung des gewünschten Halogenids bzw. der gewünschten Halogenide andererseits unter Rühren in ein Reaktionsgefäß bei 50°C eingetragen. Der Halogenid-Lösung wird Na₂IrCl₆ zugesetzt. Die jeweils eingesetzten Halogenidzusammensetzungen sind den nachfolgenden Tabellen zu entnehmen, wobei Bromid als KBr, Iodid als KI, Chlorid als KCl und Rhodanid als KSCN eingesetzt werden.
    Figure imgb0008
  • Beispiel 1
  • Ein Schichtträger aus beidseitig mit Polyethylen beschichtetem Papier wurde mit folgenden Schichten versehen. Die Mengenangaben beziehen sich auf 1 m².
    • 1. Eine Substratschicht aus 200 mg Gelatine mit KNO₃- und Chromalaunzusatz.
    • 2. Eine Haftschicht aus 320 mg Gelatine.
    • 3. Eine blauempfindliche Silberbromidchloridemulsionsschicht (99 mol-% Chlorid) aus 450 mg AgNO₃ mit 1600 mg Gelatine, 1,0 mmol Gelbkuppler, 27,7 mg 2,5-Dioctylhydrochinon und 650 mg Trikresylphosphat.

      Die Emulsion wurde durch Doppeleinlauf mit einer mittleren Korngröße von 0,8 µm hergestellt, in der üblichen Weise geflockt, gewaschen und mit Gelatine redispergiert. Das Gewichtsverhältnis Gelatine-Silber (als AgNO₃) betrug 0,5. Die Emulsion wurde anschließend mit 15 µmol Thiosulfat und 1 µmol Goldthiosulfat pro mol Ag zur optimalen Empfindlichkeit gereift, für den blauen Spektralbereich sensibilisiert und stabilisiert.
    • 4. Eine Zwischenschicht aus 1200 mg Gelatine, 80 mg 2,5-Dioctylhydrochinon und 100 mg Trikresylphosphat.
    • 5. Eine grünempfindliche Silberbromidchloridemulsionsschicht (99 mol-% Chlorid) aus 530 mg AgNO₃ mit 750 mg Gelatine, 0,625 mmol Purpurkuppler, 118 mg α-(3-t-Butyl-4-hydroxyphenoxy)-myristinsäureethylester, 43 mg 2,5-Dioctylhydrochinon, 343 mg Dibutylphthalat und 43 mg Trikresylphosphat (mittlere Korngröße 0,4 µm, Reifung: 20 µmol Thiosulfat + 5 µmol Goldthiosulfat pro mol Ag).
    • 6. Eine Zwischenschicht aus 1550 mg Gelatine, 285 mg eines UV-Absorbers der Formel
      Figure imgb0009
      80 mg Dioctylhydrochinon und 650 mg Trikresylphosphat.
    • 7. Eine rotempfindliche Silberbromidchloridemulsionsschicht (99 mol-% Chlorid) aus 400 mg AgNO₃ mit 1470 mg Gelatine, 0,780 mmol Blaugrünkuppler, 285 mg Dibutylphthalat und 122 mg Trikresylphosphat (mittlere Korngröße 0,3 µm, Reifung: 20 µmol Thiosulfat + 8 µmol Goldthiosulfat pro mol Ag).
    • 8. Eine Schutzschicht aus 1200 mg Gelatine, 134 mg eines UV-Absorbers gemäß 6. Schicht und 240 mg Trikresylphosphat.
    • 9. Eine Härtungsschicht aus 400 mg Gelatine und 400 mg Härtungsmittel der Formel
    Figure imgb0010
  • Als Farbkuppler wurden folgende Verbindungen verwendet:
    Gelbkuppler:
    Figure imgb0011
    Purpurkuppler:
    Figure imgb0012
    Blaugrünkuppler:
    Figure imgb0013
  • Das so erhaltene Material wurde mit Probe 1 bezeichnet.
  • Ein weiteres Material wurde in analoger Weise hergestellt, jedoch mit dem Unterschied, daß die Reifung der blauempfindlichen Emulsion mit 15 µmol Thiosulfat und 7 µmol Goldverbindung der Formel
    Figure imgb0014
    die Reifung der grünempfindlichen Emulsion mit 20 µmol Thiosulfat und 15 µmol Goldrhodanin und die Reifung der rotempfindlichen Emulsion mit 20 µmol Thiosulfat und 18 µmol Goldrhodanin erfolgte (Probe 2).
  • Die Verarbeitung erfolgte nach dem Ektacolor-RA-4-Prozeß mit den dafür empfohlenen Chemikalien (Hersteller Kodak).
  • Die folgende Tabelle gibt die sensitometrischen Daten wieder, aus denen bei etwas verbesserter Empfindlichkeit, nahezu unverändertem Schleier vor allem die steilere Gradation im Schwellen- und Schulterbereich (G₁, G₂) hervorgeht.
    Figure imgb0015

Claims (7)

1. Farbfotografisches Silberhalogenidmaterial mit wenigstens einer blauempfindlichen Schicht, der ein Gelbkuppler zugeordnet ist, wenigstens einer grünempfindlichen Schicht, der ein Purpurkuppler zugeordnet ist und wenigstens einer rotempfindlichen Schicht, der ein Blaugrünkuppler zugeordnet ist, wobei wenigstens eine Schicht eine Silberhalogenidemulsion mit 95 bis 100 Mol-% Chlorid enthält, die mit einer Kombination aus wenigstens einem Schwefelreifkörper und wenigstens einer Verbindung der Formel
Figure imgb0016
worin R₁, R₂ und R₃ unabhängig voneinander Wasserstoff oder Alkyl und X ein Anion bedeuten, optimal gereift ist.
2. Farbfotografisches Material nach Anspruch 1, bei dem die blauempfindliche Schicht oder blauempfindlichen Schichten mit einem Schwefelreifkörper und einer Goldverbindung gemäß Anspruch 1 optimal gereift ist.
3. Farbfotografisches Material nach Anspruch 1, wobei die Silberhalogenidemulsion mit 95 bis 100 Mol-% Chlorid iridiumdotiert ist.
4. Farbfotografisches Material nach Anspruch 1, bei dem alle Emulsionen aus 95 bis 100 Mol-% Chlorid bestehen.
5. Farbfotografisches Material nach Anspruch 1, bei dem die im wesentlichen aus Chlorid bestehende Silberhalogenidemulsion 0,01 bis 0,5 Mol-% Iodid oder 0,02 bis 5 Mol-% Bromid oder 0,02 bis 5 Mol-% Rhodanid enthält.
6. Farbfotografisches Material nach Anspruch 1, bei dem der Schwefelreifkörper in einer Menge von 0,5 bis 20 µg/g Ag und die Goldverbindung in einer Menge von 0,5 bis 20 µg/g Ag eingesetzt werden.
7. Farbfotografisches Material nach Anspruch 1, bei dem als Schwefelreifkörper Thiosulfat und als Goldverbindung eine Verbindung mit R₁, R₂ = Methyl, R₃ = Wasserstoff und X = Chlorid eingesetzt werden.
EP88117222A 1987-10-28 1988-10-17 Farbfotografisches Silberhalogenidmaterial Expired - Lifetime EP0313949B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3736410 1987-10-28
DE19873736410 DE3736410A1 (de) 1987-10-28 1987-10-28 Farbfotografisches silberhalogenidmaterial

Publications (2)

Publication Number Publication Date
EP0313949A1 EP0313949A1 (de) 1989-05-03
EP0313949B1 true EP0313949B1 (de) 1991-03-13

Family

ID=6339212

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88117222A Expired - Lifetime EP0313949B1 (de) 1987-10-28 1988-10-17 Farbfotografisches Silberhalogenidmaterial

Country Status (4)

Country Link
US (1) US4906558A (de)
EP (1) EP0313949B1 (de)
JP (1) JPH01147537A (de)
DE (2) DE3736410A1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3744004A1 (de) * 1987-12-24 1989-07-06 Agfa Gevaert Ag Farbfotografisches aufzeichnungsmaterial und verfahren zur herstellung einer fotografischen silberhalogenidemulsion
EP0446899A1 (de) * 1990-03-16 1991-09-18 Konica Corporation Photographisches Silberhalogenidmaterial
JPH0468337A (ja) * 1990-07-09 1992-03-04 Konica Corp ハロゲン化銀写真乳剤
US5220030A (en) * 1990-11-16 1993-06-15 Eastman Kodak Company Photographic silver halide material comprising gold compound
US5049485A (en) * 1990-11-16 1991-09-17 Eastman Kodak Company Photographic silver halide material comprising gold compound
JP2700737B2 (ja) * 1991-11-22 1998-01-21 富士写真フイルム株式会社 ハロゲン化銀カラー写真感光材料およびカラー写真画像形成法
JPH05127290A (ja) * 1991-11-06 1993-05-25 Konica Corp ハロゲン化銀写真乳剤およびそれを用いたハロゲン化銀写真感光材料
JP2844029B2 (ja) * 1991-11-08 1999-01-06 富士写真フイルム株式会社 撮影用ハロゲン化銀カラー写真感光材料の処理方法
US5252455A (en) * 1992-03-04 1993-10-12 Eastman Kodak Company Photographic silver halide material comprising gold (I) complexes comprising sulfur- and/or selenium-substituted macrocyclic polyether ligands
US5462843A (en) * 1992-04-06 1995-10-31 Agfa-Gevaert Ag Recording material for color photography
JPH06130532A (ja) * 1992-10-14 1994-05-13 Konica Corp ハロゲン化銀写真感光材料
US5429919A (en) * 1993-09-30 1995-07-04 Eastman Kodak Company Silver halide photographic elements with increased contrast
US5491058A (en) 1994-08-09 1996-02-13 Eastman Kodak Company Film for duplicating silver images in radiographic films
US5620841A (en) * 1995-07-31 1997-04-15 Eastman Kodak Company Photographic element containing new gold(I) compounds
JP4887201B2 (ja) 2007-04-13 2012-02-29 富士フイルム株式会社 ハロゲン化銀写真感光材料及びこれを用いた画像形成方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2642361A (en) * 1949-07-20 1953-06-16 Eastman Kodak Co Photographic silver halide emulsions sensitized with water-insoluble gold compounds
US3442653A (en) * 1964-02-10 1969-05-06 Eastman Kodak Co Sensitized silver halide systems with activated nonlabile selenium compounds

Also Published As

Publication number Publication date
US4906558A (en) 1990-03-06
DE3736410A1 (de) 1989-05-11
JPH01147537A (ja) 1989-06-09
DE3862011D1 (de) 1991-04-18
EP0313949A1 (de) 1989-05-03

Similar Documents

Publication Publication Date Title
EP0313949B1 (de) Farbfotografisches Silberhalogenidmaterial
EP0320776B1 (de) Farbfotografisches Silberhalogenidmaterial
EP0358071B1 (de) Fotografisches Aufzeichnungsmaterial
EP0317886B1 (de) Gradationsvariables SW-Papier
EP0464409B1 (de) Farbfotografisches Aufzeichnungsmaterial
EP0517053B1 (de) Fotografische Silberhalogenidemulsion
EP0537545B1 (de) Fotografisches Silberhalogenidmaterial
DE3830522A1 (de) Fotografisches aufzeichnungsmaterial
EP0370226B1 (de) Fotografisches Silberhalogenidmaterial und Verfahren zu seiner Verarbeitung
EP0317885B1 (de) Gradationsvariables SW-Papier
EP0329016B1 (de) Farbfotografisches Aufzeichnungsmaterial
EP0351588A2 (de) Farbfotografisches Aufzeichnungsmaterial
EP0447656A1 (de) Farbfotografisches Silberhalogenidmaterial und seine Entwicklung
EP0401610B1 (de) Farbfotografisches Silberhalogenidmaterial
EP0322648A2 (de) Farbfotografisches Aufzeichnungsmaterial und Verfahren zur Herstellung einer fotografischen Silberhalogenidemulsion
EP0363820A2 (de) Farbfotografisches Silberhalogenidmaterial
EP0369235B1 (de) Fotografisches Aufzeichnungsmaterial
EP0315833A2 (de) Farbfotografisches Material
EP0345514A2 (de) Farbfotografisches Silberhalogenidmaterial
DE3737962A1 (de) Fotografisches material
EP0377181A2 (de) Farbfotografisches Material
EP0312892B1 (de) Fotografisches Material
EP0312837A2 (de) Waschwasserfreies fotografisches Verarbeitungsverfahren und für dieses Verfahren benutztes Stabilisierbad
EP0330948A2 (de) Verfahren zur Erzeugung von Colorbildern
DE4344164A1 (de) Fotografische Silberhalogenidemulsion

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19881017

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB NL

17Q First examination report despatched

Effective date: 19900817

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB NL

REF Corresponds to:

Ref document number: 3862011

Country of ref document: DE

Date of ref document: 19910418

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19911031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
BERE Be: lapsed

Owner name: AGFA-GEVAERT A.G.

Effective date: 19911031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19920501

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19920630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19920701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19921017

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19921017