EP0315833A2 - Farbfotografisches Material - Google Patents

Farbfotografisches Material Download PDF

Info

Publication number
EP0315833A2
EP0315833A2 EP88117924A EP88117924A EP0315833A2 EP 0315833 A2 EP0315833 A2 EP 0315833A2 EP 88117924 A EP88117924 A EP 88117924A EP 88117924 A EP88117924 A EP 88117924A EP 0315833 A2 EP0315833 A2 EP 0315833A2
Authority
EP
European Patent Office
Prior art keywords
silver halide
silver
sensitive
emulsion
photographic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP88117924A
Other languages
English (en)
French (fr)
Other versions
EP0315833A3 (en
Inventor
Wolfgang Dr. Schmidt
Hendrik Dr. Kokelenberg
Franz Dr. Moll
Roger Dr. Van Den Bogaert
Klaus Dr. Hoffmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agfa Gevaert AG
Original Assignee
Agfa Gevaert AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agfa Gevaert AG filed Critical Agfa Gevaert AG
Publication of EP0315833A2 publication Critical patent/EP0315833A2/de
Publication of EP0315833A3 publication Critical patent/EP0315833A3/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C7/00Multicolour photographic processes or agents therefor; Regeneration of such processing agents; Photosensitive materials for multicolour processes
    • G03C7/30Colour processes using colour-coupling substances; Materials therefor; Preparing or processing such materials
    • G03C7/392Additives
    • G03C7/39204Inorganic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/06Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein with non-macromolecular additives
    • G03C1/08Sensitivity-increasing substances

Definitions

  • the invention relates to a color photographic material whose layers applied to the support have a low iron content.
  • iron compounds can be introduced through the starting materials used to produce the emulsions, on the other hand through the technically used emulsion production and processing plants, which usually consist of stainless steels (O. Lapp in Ullmann's Encyklopadie der Technische Chemie, Verlag Chemie Weinheim (1979), Volume 18, page 428; VC Zelikman, SM Levi, Making and Coating Photographic Emulsions, Focal Press London / New York (1964), p. 19).
  • Silver halide emulsions especially if, as is customary in the production of emulsions, an excess of soluble halide salt is present, also lead to the corrosion of high-quality austenitic stainless steels, especially if the silver halide consists entirely or partially of silver chloride.
  • the iron ions have a highly damaging effect on the emulsions because the silver ions or silver halide particles can be reduced to elemental silver and lead to photographic fog.
  • Iron ions have already been described by Borginon et al., J.Photogr. Sci. 28 , 111 (1980) as a likely system for many undesirable redox reactions in photographic emulsions, since iron ions easily change from the 2 to the 3-valent state and vice versa. This makes it possible for sensitivity nuclei and latent image nuclei to be oxidized. In the first case the sensitivity of the emulsion generally decreases, in the second case the latent image is completely or partially destroyed in the period between exposure and development of the photographic material.
  • complexing agents for iron Another possibility of retaining iron ions from the redox reactions in the emulsion are complexing agents for iron.
  • complexing agents for iron are not specific for iron ions, but also complex other polyvalent ions such as e.g. Calcium ions.
  • Some gelatins contain high amounts of calcium ions, up to 4,500 ppm, so that high amounts of complexing agents have to be added, which again has photographic disadvantages.
  • the invention thus relates to a color photographic material with at least one silver halide emulsion layer with at least 60 mol% AgCl, the layers applied to the support together having an iron content of ⁇ 50 ppm, preferably ⁇ 20 ppm, in particular ⁇ 10 ppm, based on silver halide, calculated as AgNO3 have.
  • the iron content of the support is of no importance in this connection, in particular if the support is a polyethylene-coated paper, but of course the iron content of the entire material based on silver halide can also be within the specified limits.
  • the silver halide of the at least one silver halide emulsion layer preferably has a chloride content of at least 80 mol%.
  • the silver halides of all silver halide emulsion layers preferably have a chloride content of at least 60 mol%, preferably at least 80 mol%.
  • the material also contains 0 to 40 mol%, preferably 0 to 20 mol% bromide and 0 to 2 mol% iodide and is in particular iodide-free.
  • Photographic materials according to the invention are produced by using on the one hand starting materials, in particular gelatins, with the lowest iron content, and on the other hand using devices and systems which do not lead to iron contamination.
  • the light-sensitive layers of the material according to the invention contain a binder in addition to the silver halide.
  • Gelatin is preferably used as the binder. However, this can be replaced in whole or in part by other synthetic, semi-synthetic or naturally occurring polymers.
  • Synthetic gelatin substitutes are, for example, polyvinyl alcohol, poly-N-vinylpyrolidone, polyacrylamides, polyacrylic acid and their derivatives, in particular their copolymers.
  • Naturally occurring gelatin substitutes are, for example, other proteins such as albumin or casein, cellulose, sugar, starch or alginates.
  • Semi-synthetic gelatin substitutes are usually modified natural products.
  • cellulose derivatives such as hydroxyalkyl cellulose, carboxymethyl cellulose and phthalyl cellulose and gelatin derivatives which have been obtained by reaction with alkylating or acylating agents or by grafting on polymerizable monomers.
  • the binders should have a sufficient amount of functional groups so that enough resistant layers can be produced by reaction with suitable hardening agents.
  • functional groups are in particular amino groups, but also carboxyl groups, hydroxyl groups and active methylene groups.
  • the gelatin which is preferably used can be obtained by acidic or alkaline digestion.
  • the production of such gelatins is described, for example, in The Science and Technology of Gelatine, published by A.G. Ward and A. Courts, Academic Press 1977. page 295 ff.
  • the gelatin used in each case should contain the lowest possible level of photographically active impurities (inert gelatin). High viscosity, low swelling gelatins are particularly advantageous. Oxidized gelatins are also suitable.
  • the silver halide present as a light-sensitive component in the photographic material can contain chloride, bromide or iodide or mixtures thereof as the halide.
  • chloride-rich emulsions are preferred. It can be overly compact crystals, e.g. are regular cubic or octahedral or can have transitional forms.
  • platelet-shaped crystals may preferably also be present, the average ratio of diameter to thickness of which is preferably greater than 5: 1, the diameter of a grain being defined as the diameter of a circle with a circle content corresponding to the projected area of the grain.
  • the silver halide grains can also have a multi-layered grain structure, in the simplest case with an inner and an outer grain area (core / shell), the halide composition and / or other modifications such as doping of the individual grain areas being different.
  • the average grain size of the emulsions is preferably between 0.2 ⁇ m and 2.0 ⁇ m, the grain size distribution can be both homo- and heterodisperse. Homodisperse grain size distribution means that 95% of the grains do not deviate from the mean grain size by more than ⁇ 30%.
  • the emulsions can also contain organic silver salts, for example silver benzotriazolate or silver behenate.
  • Two or more kinds of silver halide emulsions, which are prepared separately, can be used as a mixture.
  • the photographic emulsions can be prepared using various methods (e.g. P. Glafkides, Chimie et Physique Photographique, Paul Montel, Paris (1967), GF Duffin, Photographic Emulsion Chemistry, The Focal Press, London (1966), VL Zelikman et al, Making and Coating Photographic Emulsion, The Focal Press, London (1966) from soluble silver salts and soluble halides.
  • various methods e.g. P. Glafkides, Chimie et Physique Photographique, Paul Montel, Paris (1967), GF Duffin, Photographic Emulsion Chemistry, The Focal Press, London (1966), VL Zelikman et al, Making and Coating Photographic Emulsion, The Focal Press, London (1966) from soluble silver salts and soluble halides.
  • the halide silver is preferably precipitated in the presence of the binder, for example the gelatin, and can be carried out in the acidic, neutral or alkaline pH range, silver halide complexing agents preferably being additionally used.
  • the latter include, for example, ammonia, thioether, imidazole, ammonium thiocyanate or excess halide.
  • the water-soluble silver salts and the halides are combined either in succession by the single-jet process or simultaneously by the double-jet process or by any combination of the two processes. Dosing with increasing inflow rates is preferred, the "critical" feed rate, at which no new germs are being produced, should not be exceeded.
  • the pAg range can vary within wide limits during the precipitation, preferably the so-called pAg-controlled method is used, in which a certain pAg value is kept constant or a defined pAg profile is traversed during the precipitation.
  • so-called inverse precipitation with an excess of silver ions is also possible.
  • the silver halide crystals can also grow through physical ripening (Ostwald ripening), in the presence of excess halide and / or silver halide complexing agent.
  • the growth of the emulsion grains can even take place predominantly by Ostwald ripening, preferably a fine-grained, so-called Lippmann emulsion, mixed with a less soluble emulsion and redissolved on the latter.
  • Salts or complexes of metals such as Cd, Zn, Pb, Tl, Bi, Ir, Rh, may also be present during the precipitation and / or physical ripening of the silver halide grains.
  • the precipitation can also be carried out in the presence of sensitizing dyes.
  • Complexing agents and / or dyes can be rendered ineffective at any time, e.g. by changing the pH or by an oxidative treatment.
  • the soluble salts are removed from the emulsion, e.g. by pasta and washing, by flakes and washing, by ultrafiltration or by ion exchangers.
  • the silver halide emulsion is generally subjected to chemical sensitization under defined conditions - pH, pAg, temperature, gelatin, silver halide and sensitizer concentration - until the optimum sensitivity and fog are reached.
  • the procedure is e.g. described by H. Frieser "The basics of photographic processes with silver halides" page 675-734, Akademische Verlagsgesellschaft (1968).
  • the chemical sensitization can take place with the addition of compounds of sulfur, selenium, tellurium and / or compounds of gold, platinum, palladium, iridium or rhodium, furthermore thiocyanate compounds, surface-active compounds such as thioethers, heterocyclic nitrogen compounds (e.g. imidazoles, azaindenes) or also spectral sensitizers (described, for example, by F. Hamer "The Cyanine Dyes and Related Compounds ", 1964, or Ullmanns Encyclopedia of Technical Chemistry, 4th Edition, Vol. 18, pp. 431 ff. And Research Disclosure No. 17643, Section III).
  • a reduction sensitization with the addition of reducing agents can be added (Tin-II salts, amines, hydrazine derivatives, aminoboranes, silanes, formamidinesulfinic acid) can be carried out by hydrogen, by low pAg (eg less than 5) and / or high pH (eg above 8).
  • the photographic emulsions may contain compounds to prevent fogging or to stabilize the photographic function during production, storage or photographic processing.
  • Azaindenes are particularly suitable, preferably tetra- and penta-azaindenes, in particular those which are substituted by hydroxyl or amino groups. Such connections are for example from Birr, Z. Wiss. Phot. 47 (1952), pp. 2-58. Salts of metals such as mercury or cadmium, aromatic sulfonic or sulfinic acids such as benzenesulfinic acid, or nitrogen-containing heterocycles such as nitrobenzimidazole, nitroindazole, (subst.) Benzotriazoles or benzothiazolium salts can also be used as antifoggants.
  • metals such as mercury or cadmium, aromatic sulfonic or sulfinic acids such as benzenesulfinic acid, or nitrogen-containing heterocycles such as nitrobenzimidazole, nitroindazole, (subst.) Benzotriazoles or benzothiazolium salts can also be used as
  • Heterocycles containing mercapto groups for example mercaptobenzthiazoles, mercaptobenzimidazoles, mercaptotetrazoles, mercaptothiadiazoles, mercapto, are particularly suitable pyrimidines, these mercaptoazoles also containing a water-solubilizing group, for example a carboxyl group or sulfo group.
  • mercaptobenzthiazoles for example mercaptobenzthiazoles, mercaptobenzimidazoles, mercaptotetrazoles, mercaptothiadiazoles, mercapto
  • mercapto are particularly suitable pyrimidines, these mercaptoazoles also containing a water-solubilizing group, for example a carboxyl group or sulfo group.
  • a water-solubilizing group for example a carboxyl group or sulfo group.
  • the stabilizers can be added to the silver halide emulsions before, during or after their ripening.
  • the compounds can also be added to other photographic layers which are assigned to a halogen silver layer.
  • the photographic emulsion layers or other hydrophilic colloid layers of the light-sensitive material produced according to the invention can contain surface-active agents for various purposes, such as coating aids, to prevent electrical charging, to improve the sliding properties, to emulsify the dispersion, to prevent adhesion and to improve the photographic characteristics (eg acceleration of development, high contrast, sensitization etc.).
  • the photographic emulsions can be spectrally sensitized using methine dyes or other dyes.
  • Particularly suitable dyes are cyanine dyes, merocyanine dyes and complex merocyanine dyes.
  • Sensitizers can be dispensed with if the intrinsic sensitivity of the silver halide is sufficient for a certain spectral range, for example the blue sensitivity of silver bromide.
  • Color photographic materials usually contain at least one red-sensitive, green-sensitive and blue-sensitive emulsion layer. These emulsion layers are assigned non-diffusing monomeric or polymeric color couplers, which can be located in the same layer or in a layer adjacent to it. Usually cyan couplers are assigned to the red-sensitive layers, purple couplers to the green-sensitive layers and yellow couplers to the blue-sensitive layers.
  • Color couplers for producing the blue-green partial color image are usually couplers of the phenol or ⁇ -naphthol type; suitable examples of this are known in the literature.
  • Color couplers for producing the yellow partial color field are usually couplers with an open-chain catomethylene grouping, in particular couplers of the ⁇ -acylacetamide type; Suitable examples of this are ⁇ -benzoylacetanilide couplers and ⁇ -pivaloylacetanilide couplers, which are also known from the literature.
  • Color coupler for generating the purple partial color image are usually 5-pyrazolone, indazolone or pyrazoloazole type couplers; Suitable examples of this are described in large numbers in the literature.
  • the color couplers can be 4-equivalent couplers, but also 2-equivalent couplers.
  • the latter are derived from the 4-equivalent couplers in that they contain a substituent in the coupling site which is split off during the coupling.
  • the 2-equivalent couplers include those that are colorless, as well as those that have an intense intrinsic color that disappears when the color is coupled or is replaced by the color of the image dye produced (mask coupler), the white couplers that react with Color developer oxidation products result in essentially colorless products.
  • the 2-equivalent couplers also include those couplers that contain a cleavable residue in the coupling point, which is released upon reaction with color developer oxidation products and thereby either directly or after one or more further groups have been cleaved from the primarily cleaved residue (eg DE-A-27 03-145, DE-A-28 55 697, DE-A-31 05 026, DE-A-33 19 428), a certain desired photographic activity unfolds, for example as a development inhibitor or accelerator.
  • Examples of such 2-equivalent couplers are the known DIR couplers as well as DAR or. FAR coupler.
  • DIR, DAR or FAR couplers Since with DIR, DAR or FAR couplers the effectiveness of the residue released during coupling is mainly desired and the color-forming properties of these couplers are less important, such DIR, DAR or FAR couplers are also suitable, which give essentially colorless products on coupling (DE-A-1 547 640).
  • the cleavable residue can also be a ballast residue, so that upon reaction with color developer oxidation products coupling products are obtained which are diffusible or at least have a weak or restricted mobility (US Pat. No. 4,420,556).
  • High molecular weight color couplers are described, for example, in DE-C-1 297 417, DE-A-24 07 569, DE-A-31 48 125, DE-A-32 17 200, DE-A-33 20 079, DE-A-33 24 932, DE-A-33 31 743, DE-A-33 400 376, EP-A-27 284, US-A-4 080 211.
  • the high molecular weight color couplers are usually produced by polymerizing ethylenically unsaturated monomeric color couplers. However, they can also be obtained by polyaddition or polycondensation.
  • the couplers or other compounds can be incorporated into silver halide emulsion layers by first preparing a solution, a dispersion or an emulsion of the compound in question and then adding it to the casting solution for the layer in question. Choosing the right one Solvents or dispersants depend on the solubility of the compound.
  • Hydrophobic compounds can also be introduced into the casting solution using high-boiling solvents, so-called oil formers. Corresponding methods are described for example in US-A-2 332 027, US-A-2 801 170, US-A-2 801 171 and EP-A-O 043 037.
  • oligomers or polymers instead of the high-boiling solvents, oligomers or polymers, so-called polymeric oil formers, can be used.
  • the compounds can also be introduced into the casting solution in the form of loaded latices.
  • anionic water-soluble compounds eg dyes
  • pickling polymers e.g. acrylic acid
  • Suitable oil formers are e.g. Alkyl phthalates, phosphoric acid esters, citric acid esters, benzoic acid esters, alkylamides, fatty acid esters and trimesic acid esters.
  • Color photographic material typically comprises at least one red-sensitive emulsion layer, at least one green-sensitive emulsion layer and at least one blue-sensitive emulsion layer on a support.
  • the order of these layers can be varied as desired. Couplers which form blue-green, purple and yellow dyes are usually incorporated into the red, green or blue-sensitive emulsion layers. However, different combinations can also be used.
  • Each of the light-sensitive layers can consist of a single layer or can also comprise two or more silver halide emulsion partial layers (DE-C-1 121 470).
  • Red-sensitive silver halide emulsion layers are often arranged closer to the support than green-sensitive silver halide emulsion layers and these are in turn closer than blue-sensitive layers, with a non-light-sensitive yellow filter layer generally being located between green-sensitive layers and blue-sensitive layers.
  • the non-light-sensitive intermediate layers which are generally arranged between layers of different spectral sensitivity, can contain agents which prevent undesired diffusion of developer oxidation products from one light-sensitive layer into another light-sensitive layer with different spectral sensitization.
  • sub-layers of the same spectral sensitization can differ with regard to their composition, in particular with regard to the type and amount of the silver halide grains.
  • the sublayer with higher sensitivity will be located further from the support than the sublayer with lower sensitivity.
  • Partial layers of the same spectral sensitization can be adjacent to one another or through other layers, e.g. separated by layers of other spectral sensitization.
  • all highly sensitive and all low-sensitive layers can be combined to form a layer package (DE-A 1 958 709, DE-A 2 530 645, DE-A 2 622 922).
  • the photographic material may further contain compounds absorbing UV light, whiteners, spacers, filter dyes, formalin scavengers and others.
  • Compounds that absorb UV light are intended on the one hand to protect the image dyes from fading by UV-rich daylight and, on the other hand, as filter dyes to absorb the UV light in daylight upon exposure and thus improve the color rendering of a film.
  • Connections of different structures are usually used for the two tasks. Examples are aryl substituted benzotriazole compounds (US-A 3 533 794), 4-thiazolidone compounds (US-A 3 314 794 and 3 352 681), benzophenone compounds (JP-A 2784/71), cinnamic acid ester compounds (US-A 3 705 805 and 3 707) 375), butadiene compounds (US-A 4 045 229) or benzoxazole compounds (US-A 3 700 455).
  • Ultraviolet absorbing couplers such as ⁇ -naphthol type cyan couplers
  • ultraviolet absorbing polymers can also be used. These ultraviolet absorbents can be fixed in a special layer by pickling.
  • Filter dyes suitable for visible light include oxonol dyes, hemioxonol dyes, styrene dyes, merocyanine dyes, cyanine dyes and azo dyes. Of these dyes, oxonol dyes, hemioxonol dyes and merocyanine dyes are used particularly advantageously.
  • Suitable whiteners are described, for example, in Research Disclosure December 1978, page 22 ff, Unit 17 643, Chapter V.
  • binder layers in particular the most distant layer from the support, but also occasionally intermediate layers, especially if they are the most distant layer from the support during manufacture, may contain photographically inert particles of inorganic or organic nature, e.g. as a matting agent or as a spacer (DE-A 3 331 542, DE-A 3 424 893, Research Disclosure December 1978, page 22 ff, Unit 17 643, Chapter XVI).
  • photographically inert particles of inorganic or organic nature e.g. as a matting agent or as a spacer (DE-A 3 331 542, DE-A 3 424 893, Research Disclosure December 1978, page 22 ff, Unit 17 643, Chapter XVI).
  • the average particle diameter of the spacers is in particular in the range from 0.2 to 10 ⁇ m.
  • the spacers are water-insoluble and can be alkali-insoluble or alkali-soluble, the alkali-soluble ones generally being removed from the photographic material in the alkaline development bath.
  • suitable polymers are polymethyl methacrylate, copolymers of acrylic acid and methyl methacrylate and hydroxypropyl methyl cellulose hexahydrophthalate.
  • binders of the material according to the invention are hardened with suitable hardeners, for example with hardeners of the epoxy type, the ethyleneimine type, the acryloyl type or the vinylsulfone type.
  • suitable hardeners for example with hardeners of the epoxy type, the ethyleneimine type, the acryloyl type or the vinylsulfone type.
  • suitable hardeners for example with hardeners of the epoxy type, the ethyleneimine type, the acryloyl type or the vinylsulfone type.
  • dizine, triazine or 1,2-dihydroquinoline series hardeners are also suitable.
  • the binders of the material according to the invention are preferably hardened with instant hardeners.
  • Immediate hardeners are understood to mean compounds which crosslink suitable binders in such a way that the hardening is completed to such an extent immediately after casting, at the latest after 24 hours, preferably at the latest after 8 hours, that no further change in the sensitometry caused by the crosslinking reaction and the swelling of the layer structure occurs .
  • Swelling is understood to mean the difference between the wet film thickness and the dry film thickness during the aqueous processing of the film (Photogr. Sci. Eng. 8 (1964), 275; Photogr. Sci. Eng. (1972), 449).
  • hardening agents that react very quickly with gelatin are e.g. to carbamoylpyridinium salts, which are able to react with free carboxyl groups of the gelatin, so that the latter react with free amino groups of the gelatin to form peptide bonds and crosslink the gelatin.
  • the materials according to the invention are processed in the usual manner according to the processes recommended for this.
  • a silver chloride emulsion is produced in a vessel made of V4A stainless steel (DIN material number 1.4571, AISI standard 316 L) according to the following procedure:
  • the emulsion is freed from excess salts by the coagulation process and adjusted to a silver content of 200 g (as AgNO 3) / kg at a gelatin concentration of 7.5% by weight with the addition of further low-iron inert bone gelatin.
  • the emulsion was chemically ripened optimally with thiosulfate and gold salts and cast on a substrate with an application of 5 g of silver (as AgNO3). After exposure for 5 sec with a tungsten lamp of 200 W. through a step wedge and development with a developer of the composition N-methyl-p-aminophenol 1.0 g Sodium sulfite anhydrous 13.0 g Hydroquinone 3.0 g Sodium carbonate anhydrous 26.0 g Potassium bromide 1.0 g dissolved in 1 liter of water a relative sensitivity of 100 is obtained with a fog of 0.16.
  • the iron content was measured by means of atomic absorption spectroscopy.
  • a silver chloride emulsion was prepared in the same way as in Example 1, but the container and all parts of the system, such as stirrers, etc., with which the emulsion comes into contact, were made from titanium (DIN material number 3.7025, AISI standard Ti Grade 2).
  • the emulsion was chemically ripened in the same way as that in Example 1 and checked photographically. A relative sensitivity of 125 was found with a fog of 0.11.
  • Example 2 In the same way as in Example 1, an iron determination was carried out in the emulsion. The iron content found was 2 ppm, based on AgNO3.
  • Example 1 The gelatin used in Example 1 was used; the emulsions were prepared in steel kettles according to Example 1.
  • the iron content of the layer package applied to the support was 85 ppm based on AgNO3.
  • a material was produced according to Example 3, but with the difference that the emulsions were produced in a device according to Example 2.
  • the iron content of the layer package applied to the carrier was 12 ppm based on AgNO3.
  • Examples 3 and 4 were processed according to the standard process for color negative paper RA 4 / AP 94.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Silver Salt Photography Or Processing Solution Therefor (AREA)

Abstract

Farbfotografisches Material mit wenigstens einer Silberhalogenidemulsionsschicht mit mindestens 60 Mol-% AgCl, bei dem die auf den Träger aufgebrachten Schichten zusammen einen Eisengehalt von <=50 ppm, bezogen auf Silberhalogenid, berechnet als AgNO3, aufweisen, zeigt erhöhte Empfindlichkeit und verminderten Schleier.

Description

  • Die Erfindung betrifft ein farbfotografisches Material, dessen auf den Träger aufgebrachten Schichten einen niedrigen Eisengehalt aufweisen.
  • Fotografische Materialien enthalten bisher immer einen beträchtlichen Anteil Eisenionen oder -verbindungen in den silberhalogenidhaltigen Schichten, die eine Reihe von unvorteilhaften Einflüssen auf die fotografischen Eigenschaften der Materialien haben. Die Ursachen der unerwünschten Eisenverunreinigungen in fotografischen Materialien sind vielfältiger Natur. Zum einen können Eisenverbindungen durch die zur Herstellung der Emul­sionen eingesetzten Ausgangsstoffe eingebracht werden, zum anderen durch die technisch verwendeten Emulsions­herstellungs- und -verarbeitungsanlagen, die üblicher­weise aus Edelstählen bestehen (O. Lapp in Ullmanns Encyklopädie der technischen Chemie, Verlag Chemie Weinheim (1979), Band 18, Seite 428; V.C. Zelikman, S.M. Levi, Making and Coating Photographic Emulsions, Focal Press London/New York (1964), S. 19).
  • Silberhalogenidemulsionen führen, besonders wenn, wie bei der Emulsionsherstellung üblich, ein Überschuß an löslichem Halogenidsalz vorhanden ist, zur Korrosion auch hochwertiger austenitischer Edelstähle, besonders wenn das Silberhalogenid ganz oder teilweise aus Silberchlorid besteht.
  • Die Eisenionen wirken sich in hohem Maße schädlich auf die Emulsionen aus, denn die Silberionen oder Silber­halogenidteilchen können zu elementarem Silber reduziert werden und führen zu fotografischem Schleier.
  • Eisenionen wurden bereits von Borginon et al., J.Photogr. Sci. 28, 111 (1980) als ein wahrscheinliches System für viele unerwünschte Redoxreaktionen in foto­grafischen Emulsionen bezeichnet, da Eisenionen leicht vom 2- in den 3-wertigen Zustand und umgekehrt überge­hen. Dadurch ist es möglich, daß Empfindlichkeitskeime und Latentbildkeime oxidiert werden. Im ersten Fall sinkt die Empfindlichkeit der Emulsion allgemein ab, im zweiten Fall wird das latente Bild in dem Zeitraum zwischen Belichtung und Entwicklung des fotografischen Materials ganz oder teilweise zerstört.
  • Es hat deswegen nicht an Versuchen gefehlt, fotografi­sche Emulsionen möglichst eisenfrei herzustellen. Eine bedeutende mögliche Quelle für Eisenionen ist z.B. die verwendete Gelatine, L.Xuan-Ya, J.Photogr. Sci., Vol 30, Seite 20 (1982) bestimmten z.B. in verschiedenen Gelati­nen Eisengehalte zwischen 10 und 80 ppm. W.Rong-qin et al., Phot-Gelatin Reports 1983, Seite 283, 4th IAG-­ Conference Fribourg 1983, ed. by H. Ammann-Brass et Pouradier (1985) zeigte, daß durch Eisenionen eine starke Desensibilisierung fotografischer Emulsionen auftreten kann. Bereits 5 ppm Eisenionen können die Empfindlichkeit um ca. 15 % erniedrigen. Es hat deswegen nicht an Versuchen gefehlt, zumindest aus der Gelatine Eisenionen weitgehend zu entfernen. Hochwertige Gelati­nen für fotografische Zwecke enthalten heute weniger als 5 ppm Eisen.
  • Eine weitere Möglichkeit, Eisenionen von den Redoxreak­tionen in der Emulsion zurückzuhalten sind Komplexbild­ner für Eisen. Solche Verbindungen sind jedoch nicht spezifisch für Eisenionen, sondern komplexieren auch andere mehrwertige Ionen wie z.B. Calciumionen. Manche Gelatinen enthalten hohe Mengen von Calciumionen, bis zu 4.500 ppm, so daß hohe Mengen von Komplexbildner zugesetzt werden müssen, was wieder fotografische Nach­teile mit sich bringt.
  • Es ist bisher aber nicht gelungen, fotografische Mate­rialien herzustellen, deren auf den Träger aufgebrachten Schichten einen besonders niedrigen Eisengehalt aufwei­sen, insbesondere wenn die Materialien Chloridemulsionen enthalten.
  • Gegenstand der Erfindung ist somit ein farbfotogra­fisches Material mit wenigstens einer Silberhalogenid­emulsionsschicht mit mindestens 60 Mol-% AgCl, dessen auf den Träger aufgebrachten Schichten zusammen einen Eisengehalt von ≦50 ppm, vorzugsweise ≦20 ppm, insbeson­dere ≦10 ppm, bezogen auf Silberhalogenid, berechnet als AgNO₃, aufweisen.
  • Der Eisengehalt des Trägers ist in diesem Zusammenhang ohne Bedeutung, insbesondere wenn der Träger ein poly­ethylenbeschichtetes Papier ist, jedoch kann selbstver­ständlich auch der Eisengehalt des gesamten Materials bezogen auf Silberhalogenid innerhalb der angegebenen Grenzen sein.
  • Das Silberhalogenid der wenigstens einen Silberhaloge­nidemulsionsschicht hat vorzugsweise einen Chloridanteil von mindestens 80 Mol-%. Vorzugsweise haben die Silber­halogenide aller Silberhalogenidemulsionsschichten Chlo­ridanteile von mindestens 60 Mol-%, vorzugsweise minde­stens 80 Mol-%. Das Materials enthält außerdem 0 bis 40 Mol-%, vorzugsweise 0 bis 20 Mol-% Bromid und 0 bis 2 Mol-% Iodid und ist insbesondere iodidfrei.
  • Erfindungsgemäß fotografische Materialien werden dadurch hergestellt, daß man einerseits Ausgangsstoffe, insbe­sondere Gelatinen, mit niedrigstem Eisengehalt verwen­det, zum anderen Vorrichtungen und Anlagen verwendet, die zu keiner Eisenkontamination führen.
  • Als besonders vorteilhaft für die Herstellung und Verar­beitung der erfindungsgemäßen Emulsionen hat es sich herausgestellt, wenn alle Vorrichtungen, mit denen die Emulsion in Berührung kommt, emaillierte oder kunst­stoffbeschichtete Oberflächen haben oder aus metalli­schen Werkstoffen mit einem nur geringen Eisengehalt bestehen, zum Beispiel aus Legierungen mit Nickel, Titan oder Tantal als Hauptbestandteil.
  • Die lichtempfindlichen Schichten des erfindungsgemäßen Materials enthalten außer dem Silberhalogenid ein Binde­mittel.
  • Als Bindemittel wird vorzugsweise Gelatine verwendet. Diese kann jedoch ganz oder teilweise durch andere synthetische, halbsynthetische oder auch natürlich vor­kommende Polymere ersetzt werden. Synthetische Gelatine­ersatzstoffe sind beispielsweise Polyvinylalkohol, Poly-­N-vinylpyrolidon, Polyacrylamide, Polyacrylsäure und deren Derivate, insbesondere deren Mischpolymerisate. Natürlich vorkommende Gelatineersatzstoffe sind bei­spielsweise andere Proteine wie Albumin oder Casein, Cellulose, Zucker, Stärke oder Alginate. Halbsynthe­tische Gelatineersatzstoffe sind in der Regel modifi­zierte Naturprodukte. Cellulosederivate wie Hydroxy­alkylcellulose, Carboxymethylcellulose und Phthalyl­cellulose sowie Gelatinederivate, die durch Umsetzung mit Alkylierungs- oder Acylierungsmitteln oder durch Aufpfropfung von polymerisierbaren Monomeren erhalten worden sind, sind Beispiele hierfür.
  • Die Bindemittel sollen über eine ausreichende Menge an funktionellen Gruppen verfügen, so daß durch Umsetzung mit geeigneten Härtungsmitteln genügend widerstands­fähigen Schichten erzeugt werden können. Solche funktio­nellen Gruppen sind insbesondere Aminogruppen, aber auch Carboxylgruppen, Hydroxylgruppen und aktive Methylen­gruppen.
  • Die vorzugsweise verwendete Gelatine kann durch sauren oder alkalischen Aufschluß erhalten sein. Die Herstel­lung solcher Gelatinen wird beispielsweise in The Science and Technology of Gelatine, herausgegeben von A.G. Ward und A. Courts, Academic Press 1977. Seite 295 ff beschrieben. Die jeweils eingesetzte Gelatine soll einen möglichst geringen Gehalt an fotografisch aktiven Verunreinigungen enthalten (Inertgelatine). Gelatinen mit hoher Viskosität und niedriger Quellung sind besonders vorteilhaft. In Betracht kommen auch oxidierte Gelatinen.
  • Das als lichtempfindlicher Bestandteil in dem fotogra­fischen Material befindliche Silberhalogenid kann als Halogenid Chlorid, Bromid oder Iodid bzw. Mischungen davon enthalten. Wie bereits ausgeführt, sind chlorid­reiche Emulsionen bevorzugt. Es kann sich um überweigend kompakte Kristalle handeln, die z.B. regulär kubisch oder oktaedrisch sind oder Übergangsformen aufweisen können. Vorzugsweise können aber auch plättchenförmige Kristalle vorliegen, deren durchschnittliches Verhältnis von Durchmesser zu Dicke bevorzugt größer als 5:1 ist, wobei der Durchmesser eines Kornes definiert ist als der Durchmesser eines Kreises mit einem Kreisinhalt ent­sprechend der projizierten Fläche des Kornes.
  • Die Silberhalogenidkörner können auch einen mehrfach ge­schichteten Kornaufbau aufweisen, im einfachsten Fall mit einem inneren und einem äußeren Kornbereich (core/shell), wobei die Halogenidzusammensetzung und/oder sonstige Modifizierungen, wie z.B. Dotierungen der einzelnen Kornbereiche unterschiedlich sind. Die mittlere Korngröße der Emulsionen liegt vorzugsweise zwischen 0,2 µm und 2,0 µm, die Korngrößenverteilung kann sowohl homo- als auch heterodispers sein. Homo­disperse Korngrößenverteilung bedeutet, daß 95 % der Körner nicht mehr als ± 30% von der mittleren Korngröße abweichen. Die Emulsionen können außer dem Silberhalo­genid auch organische Silbersalze enthalten, z.B. Silberbenztriazolat oder Silberbehenat.
  • Es können zwei oder mehrere Arten von Silberhalogenid­emulsionen, die getrennt hergestellt werden, als Mischung verwendet werden.
  • Die fotografischen Emulsionen können nach verschiedenen Methoden (z.B. P. Glafkides, Chimie et Physique Photographique, Paul Montel, Paris (1967), G.F. Duffin, Photographic Emulsion Chemistry, The Focal Press, London (1966), V.L. Zelikman et al, Making and Coating Photo­graphic Emulsion, The Focal Press, London (1966) aus löslichen Silbersalzen und löslichen Halogeniden herge­stellt werden.
  • Die Fällung des Halogenidsilbers erfolgt bevorzugt in Gegenwart des Bindemittels, z.B. der Gelatine und kann im sauren, neutralen oder alkalischen pH-Bereich durch­geführt werden, wobei vorzugsweise Silberhalogenidkom­plexbildner zusätzlich verwendet werden. Zu letzteren gehören z.B. Ammoniak, Thioether, Imidazol, Ammonium­thiocyanat oder überschüssiges Halogenid. Die Zusammen­führung der wasserlöslichen Silbersalze und der Halo­genide erfolgt wahlweise nacheinander nach dem single-­jet- oder gleichzeitig nach dem double-jet-Verfahren oder nach beliebiger Kombination beider Verfahren. Be­vorzugt wird die Dosierung mit steigenden Zuflußraten, wobei die "kritische" Zufuhrgeschwindigkeit, bei der gerade noch keine Neukeime entstehen, nicht überschrit­ten werden sollte. Der pAg-Bereich kann während der Fällung in weiten Grenzen variieren, vorzugsweise wird das sogenannte pAg-gesteuerte Verfahren benutzt, bei dem ein bestimmter pAg-Wert konstant gehalten oder ein definiertes pAg-Profil während der Fällung durchfahren wird. Neben der bevorzugten Fällung bei Halogenidüber­schuß ist aber auch die sogenannte inverse Fällung bei Silberionenüberschluß möglich. Außer durch Fällung können die Silberhalogenidkristalle auch durch physi­kalische Reifung (Ostwaldreifung), in Gegenwart von überschüssigem Halogenid und/oder Silberhalogenidkom­plexierungsmittel wachsen. Das Wachstum der Emulsions­körner kann sogar überwiegend durch Ostwaldreifung erfolgen, wobei vorzugsweise eine feinkörnige, soge­nannte Lippmann-Emulsion, mit einer schwerer löslichen Emulsion gemischt und auf letzterer umgelöst wird.
  • Während der Fällung und/oder der physikalischen Reifung der Silberhalogenidkörner können auch Salze oder Komplexe von Metallen, wie Cd, Zn, Pb, Tl, Bi, Ir, Rh, vorhanden sein.
  • Ferner kann die Fällung auch in Gegenwart von Sensibili­sierungsfarbstoffen erfolgen. Komplexierungsmittel und/oder Farbstoffe lassen sich zu jedem beliebigen Zeitpunkt unwirksam machen, z.B. durch Änderung des pH-­Wertes oder durch eine oxidative Behandlung.
  • Nach abgeschlossener Kristallbildung oder auch schon zu einem früheren Zeitpunkt werden die löslichen Salze aus der Emulsion entfernt, z.B. durch Nudeln und Waschen, durch Flocken und Waschen, durch Ultrafiltration oder durch Ionenaustauscher.
  • Die Silberhalogenidemulsion wird im allgemeinen einer chemischen Sensibilisierung unter definierten Bedin­gungen - pH, pAg, Temperatur, Gelatine-, Silberhaloge­nid- und Sensibilisatorkonzentration - bis zum Erreichen des Empfindlichkeits- und Schleieroptimums unterworfen. Die Verfahrensweise ist z.B. bei H. Frieser "Die Grund­lagen der Photographischen Prozesse mit Silberhalo­geniden" Seite 675-734, Akademische Verlagsgesellschaft (1968) beschrieben.
  • Dabei kann die chemische Sensibilisierung unter Zusatz von Verbindungen von Schwefel, Selen, Tellur und/oder Verbindungen von Gold, Platin, palladium, Iridium oder Rhodium erfolgen, weiterhin können Thiocyanatverbindun­gen, oberflächenaktive Verbindungen, wie Thioether, heterocyclische Stickstoffverbindungen (z.B. Imidazole, Azaindene) oder auch spektrale Sensibilisatoren (beschrieben z.B. bei F. Hamer "The Cyanine Dyes and Related Compounds", 1964, bzw. Ullmanns Encyclopädie der technischen Chemie, 4. Auflage, Bd. 18, S. 431 ff. und Research Disclosure Nr. 17643, Abschnitt III) zugegeben werden. Ersatzweise oder zusätzlich kann eine Reduktionssensibilisierung unter Zugabe von Reduk­tionsmitteln (Zinn-II-Salze, Amine, Hydrazinderivate, Aminoborane, Silane, Formamidinsulfinsäure) durch Was­serstoff, durch niedrigen pAg (z.B. kleiner 5) und/oder hohen pH (z.B. über 8) durchgeführt werden.
  • Die fotografischen Emulsionen können Verbindungen zur Verhinderung der Schleierbildung oder zur Stabilisierung der fotografischen Funktion während der Produktion, der Lagerung oder der fotografischen Verarbeitung ent­halten.
  • Besonders geeignet sind Azaindene, vorzugsweise Tetra- und Pentaazaindene, insbesondere solche, die mit Hydroxyl- oder Aminogruppen substituiert sind. Derartige Verbindungen sind z.B. von Birr, Z. Wiss. Phot. 47 (1952), S. 2-58 beschrieben worden. Weiter können als Antischleiermittel Salze von Metallen wie Quecksilber oder Cadmium, aromatische Sulfon- oder Sulfinsäuren wie Benzolsulfinsäure, oder stickstoffhaltige Heterocyclen wie Nitrobenzimidazol, Nitroindazol, (subst.) Benztria­zole oder Benzthiazoliumsalze eingesetzt werden. Beson­ders geeignet sind Mercaptogruppen enthaltende Hetero­cyclen, z.B. Mercaptobenzthiazole, Mercaptobenzimid­azole, Mercaptotetrazole, Mercaptothiadiazole, Mercapto­ pyrimidine, wobei diese Mercaptoazole auch eine wasser­löslichmachende Gruppe, z.B. eine Carboxylgruppe oder Sulfogruppe, enthalten können. Weitere geeignete Ver­bindungen sind in Research Disclosure Nr. 17643 (1978), Abschnitt VI, veröffentlicht.
  • Die Stabilisatoren können den Silberhalogenidemulsionen vor, während oder nach deren Reifung zugesetzt werden. Selbstverständlich kann man die Verbindungen auch anderen fotografischen Schichten, die einer Halogensil­berschicht zugeordnet sind, zusetzen.
  • Es können auch Mischungen aus zwei oder mehreren der ge­nannten Verbindungen eingesetzt werden.
  • Die fotografischen Emulsionsschichten oder andere hydro­phile Kolloidschichten des erfindungsgemäß hergestellten lichtempfindlichen Materials können oberflächenaktive Mittel für verschiedene Zwecke enthalten, wie Überzugs­hilfen, zur Verhinderung der elektrischen Aufladung, zur Verbesserung der Gleiteigenschaften, zum Emulgieren der Dispersion, zur Verhinderung der Adhäsion und zur Ver­besserung der fotografischen Charakteristika (z.b. Ent­wicklungsbeschleunigung, hoher Kontrast, Sensibili­sierung usw.).
  • Die fotografischen Emulsionen können unter Verwendung von Methinfarbstoffen oder anderen Farbstoffen spektral sensibilisiert werden. Besonders geeignete Farbstoffe sind Cyaninfarbstoffe, Merocyaninfarbstoffe und komplexe Merocyaninfarbstoffe.
  • Auf Sensibilisatoren kann verzichtet werden, wenn für einen bestimmten Spektralbereich die Eigenempfindlich­keit des Silberhalogenids ausreichend ist, beispiels­weise die Blauempfindlichkeit von Silberbromid.
  • Farbfotografische Materialien enthalten überlicherweise mindestens je eine rotempfindliche, grünempfindliche und blauempfindliche Emulsionsschicht. Diesen Emulsions­schichten werden nicht diffundierende monomere oder po­lymere Farbkuppler zugeordnet, die sich in der gleichen Schicht oder in einer dazu benachbarten Schicht befinden können. Gewöhnlich werden den rotempfindlichen Schichten Blaugrünkuppler, den grünempfindlichen Schichten Purpur­kuppler und den blauempfindlichen Schichten Gelbkuppler zugeordnet.
  • Farbkuppler zur Erzeugung des blaugrünen Teilfarben­bildes sind in der Regel Kuppler vom Phenol- oder α-­Naphtholtyp; geeignete Beispiele hierfür sind in der Literatur bekannt.
  • Farbkuppler zur Erzeugung des gelben Teilfarbenfildes sind in der Regel Kuppler mit einer offenkettigen Kato­methylengruppierung, insbesondere Kuppler vom Typ des α-Acylacetamids; geeignete Beispiele hierfür sind α-­Benzoylacetanilidkuppler und α-Pivaloylacetanilid­kuppler, die ebenfalls aus der Literatur bekannt sind.
  • Farbkuppler zur Erzeugung des purpurnen Teilfarbenbildes sind in der Regel Kuppler vom Typ des 5-Pyrazolons, des Indazolons oder des Pyrazoloazols; geeignete Beispiele hierfür sind in der Literatur in großer Zahl beschrie­ben.
  • Bei den Farbkupplern kann es sich um 4-Äquivalentkupp­ler, aber auch um 2-Äquivalentkuppler handeln. Letztere leiten sich von den 4-Äquivalentkupplern dadurch ab, daß sie in der Kupplungsstelle einen Substituenten enthal­ten, der bei der Kupplung abgespalten wird. Zu den 2-­Äquivalentkupplern sind solche zu rechnen, die farblos sind, als auch solche, die eine intensive Eigenfarbe aufweisen, die bei der Farbkupplung verschwindet bzw. durch die Farbe des erzeugten Bildfarbstoffes ersetzt wird (Maskenkuppler), die Weißkuppler, die bei Reaktion mit Farbentwickleroxidationsprodukten im wesentlichen farblose Produkte ergeben. Zu den 2-Äquivalentkupplern sind ferner solche Kuppler zu rechnen, die in der Kupplungsstelle einen abspaltbaren Rest enthalten, der bei Reaktion mit Farbentwickleroxidationsprodukten in Freiheit gesetzt wird und dabei entweder direkt oder nachdem aus dem primär abgespaltenen Rest eine oder mehrere weitere Gruppen abgespalten worden sind (z.B. DE-A-27 03-145, DE-A-28 55 697, DE-A-31 05 026, DE-A-­33 19 428), eine bestimmte erwünschte fotografische Wirksamkeit entfaltet, z.B. als Entwicklungsinhibitor oder -accelerator. Beispiele für solche 2-Äquivalent­kuppler sind die bekannten DIR-Kuppler wie auch DAR-bzw. FAR-Kuppler.
  • Da bei den DIR-, DAR- bzw. FAR-Kupplern hauptsächlich die Wirksamkeit des bei der Kupplung freigesetzten Restes erwünscht ist und es weniger auf die farb­bildenden Eigenschaften dieser Kuppler ankommt, sind auch solche DIR-, DAR- bzw. FAR-Kuppler geeignet, die bei der Kupplung im wesentlichen farblose Produkte ergeben (DE-A-1 547 640).
  • Der abgespaltbare Rest kann auch ein Ballastrest sein, so daß bei der Reaktion mit Farbentwickleroxidations­produkten Kupplungsprodukte erhalten werden, die diffusionsfähig sind oder zumindest eine schwache bzw. eingeschränkte Beweglichkeit aufweisen (US-A-­4 420 556).
  • Hochmolekulare Farbkuppler sind beispielsweise in DE-C-­1 297 417, DE-A-24 07 569, DE-A-31 48 125, DE-A-­32 17 200, DE-A-33 20 079, DE-A-33 24 932, DE-A-­33 31 743, DE-A-33 400 376, EP-A-27 284, US-A-4 080 211 beschrieben. Die hochmolekularen Farbkuppler werden in der Regel durch Polymerisation von ethylenisch unge­sättigten monomeren Farbkupplern hergestellt. Sie können aber auch durch Polyaddition oder Polykondensation er­halten werden.
  • Die Einarbeitung der Kuppler oder anderer Verbindungen in Silberhalogindemulsionsschichten kann in der Weise erfolgen, daß zunächst von der betreffenden Verbindung eine Lösung, eine Dispersion oder eine Emulsion herge­stellt und dann der Gießlösung für die betreffende Schicht zugefügt wird. Die Auswahl des geeigneten Lösungs- oder Dispersionsmittel hängt von der jeweiligen Löslichkeit der Verbindung ab.
  • Methoden zum Einbringen von in Wasser in wesentlichen unlöslichen Verbindungen durch Mahlverfahren sind beispielsweise in DE-A-2 609 741 und DE-A-2 609 742 beschrieben.
  • Hydrophobe Verbindungen können auch unter Verwendung von hochsiedenden Lösungsmitteln, sogenannten Ölbildnern, in die Gießlösung eingebracht werden. Entsprechende Methoden sind beispielsweise in US-A-2 332 027, US-A-­2 801 170, US-A-2 801 171 und EP-A-O 043 037 be­schrieben.
  • Anstelle der hochsiedenden Lösungsmitteln können Oligomere oder Polymere, sogenannte polymere Ölbildner Verwendung finden.
  • Die Verbindungen können auch in Form beladener Latices in die Gießlösung eingebracht werden. Verwiesen wird beispielsweise auf DE-A-2 541 230, DE-A-2 541 274, DE-A-­2 835 856, EP-A-O 014 921, EP-A-O 069 671, EP-A-­O 130 115, US-A-4 291 113.
  • Die diffusionsfeste Einlagerung anionischer wasser­löslicher Verbindungen (z.B. von Farbstoffen) kann auch mit Hilfe von kationischen Polymeren, sogenannten Beiz­polymeren erfolgen.
  • Geeignete Ölbildner sind z.B. Phthalsäurealkylester, Phosphorsäureester, Citronensäureester, Benzoesäure­ester, Alkylamide, Fettsäureester und Trimesinsäure­ester.
  • Farbfotografisches Material umfaßt typischerweise min­destens eine rotempfindliche Emulsionsschicht, min­destens eine grünempfindliche Emulsionsschicht und mindestens eine blauempfindliche Emulsionsschicht auf Träger. Die Reihenfolge dieser Schichten kann je nach Wunsch variiert werden. Gewöhnlich werden blaugrüne, purpurfarbene und gelbe Farbstoffe bildende Kuppler in die rot-, grün- bzw. blauempfindlichen Emulsions­schichten eingearbeitet. Es können jedoch auch unter­schiedliche Kombinationen verwendet werden.
  • Jede der lichtempfindlichen Schichten kann aus einer einzigen Schicht bestehen oder auch zwei oder mehr Sil­berhalogenidemulsionsteilschichten umfassen (DE-C-­1 121 470). Dabei sind rotempfindliche Silberhalogenid­emulsionsschichten dem Schichtträger häufig näher ange­ordnet als grünempfindliche Silberhalogenidemulsions­schichten und diese wiederum näher als blauempfindliche, wobei sich im allgemeinen zwischen grünempfindlichen Schichten und blauempfindlichen Schichten eine nicht lichtempfindliche gelbe Filterschicht befindet.
  • Bei geeignet geringer Eigenempfindlichkeit der grün-bzw. rotempfindlichen Schichten kann man unter Verzicht auf die Gelbfilterschicht andere Schichtanordnungen wählen, bei denen auf dem Träger z.B. die blauempfindlichen, dann die rotempfindlichen und schließlich die grünem­pfindlichen Schichten folgen.
  • Die in der Regel zwischen Schichten unterschiedlicher Sprektralempfindlichkeit angeordneten nicht licht­empfindlichen Zwischenschichten können Mittel enthalten, die eine unerwünschte Diffusion von Entwickler­oxidationsprodukten aus einer lichtempfindlichen in eine andere lichtempfindliche Schicht mit unterschiedlicher spektraler Sensibilisierung verhindern.
  • Liegen mehrere Teilschichten gleicher spektraler Sensi­bilisierung vor, so können sich diese hinsichtlich ihrer Zusammensetzung, insbesondere was Art und Menge der Sil­berhalogenidkörnchen betrifft unterscheiden. Im allge­meinen wird die Teilschicht mit höherer Empfindlichkeit von Träger entfernter angeordnet sein als die Teil­schicht mit geringerer Empfindlichkeit. Teilschichten gleicher spektraler Sensibilisierung können zueinander benachbart oder durch andere Schichten, z.B. durch Schichten anderer spektraler Sensibilisierung getrennt sein. So können z.B. alle hochempfindlichen und all niedrigempfindlichen Schichten jeweils zu einem Schicht­paket zusammengefaßt sein (DE-A 1 958 709, DE-A 2 530 645, DE-A 2 622 922).
  • Das fotografische Material kann weiterhin UV-Licht ab­sorbierende Verbindungen, Weißtöner, Abstandshalter, Filterfarbstoffe, Formalinfänger und anderes enthalten.
  • UV-Licht absorbierende Verbindungen sollen einerseits die bildfarbstoffe vor dem Ausbleichen durch UV-reiches Tageslicht schützen und andererseits als Filterfarb­stoffe das UV-Licht im Tageslicht bei der Belichtung absorbieren und so die Farbwiedergabe eines Films ver­bessern. Überlicherweise werden für die beiden Aufgaben Verbindungen unterschiedlicher Struktur eingesetzt. Bei­spiele sind arylsubstituierte Benzotriazolverbindungen (US-A 3 533 794), 4-Thiazolidonverbindungen (US-A 3 314 794 und 3 352 681), Benzophenonverbindungen (JP-A 2784/71), Zimtsäureesterverbindungen (US-A 3 705 805 und 3 707 375), Butadienverbindungen (US-A 4 045 229) oder Benzoxazolverbindungen (US-A 3 700 455).
  • Es können auch ultraviolettabsorbierende Kuppler (wie Blaugrünkuppler des α-Naphtholtyps) und ultraviolettab­sorbierende Polymere verwendet werden. Diese Ultravio­lettabsorbentien können durch Beizen in einer speziellen Schicht fixiert sein.
  • Für sichtbares Licht geeignete Filterfarbstoffe umfassen Oxonolfarbstoffe, Hemioxonolfarbstoffe, Styrolfarb­stoffe, Merocyaninfarbstoffe, Cyaninfarbstoffe und Azo­farbstoffe. Von diesen Farbstoffen werden Oxonolfarb­stoffe, Hemioxonolfarbstoffe und Merocyaninfarbstoffe besonders vorteilhaft verwendet.
  • Geeignete Weißtöner sind z.B. in Research Disclosure Dezember 1978, Seite 22 ff, Referat 17 643, Kapitel V beschrieben.
  • Bestimmte Bindemittelschichten, insbesondere die vom Träger am weitesten entfernte Schicht, aber auch ge­legentlich Zwischenschichten, insbesondere, wenn sie während der Herstellung die vom Träger am weitesten entfernte Schicht darstellen, können fotografisch inerte Teilchen anorganischer oder organischer Natur enthalten, z.B. als Mattierungsmittel oder als Abstandshalter (DE-­A 3 331 542, DE-A 3 424 893, Research Disclosure Dezember 1978, Seite 22 ff, Referat 17 643, Kapitel XVI).
  • Der mittlere Teilchendurchmesser der Abstandshalter liegt insbesondere im Bereich von 0,2 bis 10 µm. Die Ab­standshalter sind wasserunlöslich und können alkaliun­löslich oder alkalilöslich sein, wobei die alkalilös­lichen im allgemeinen im alkalischen Entwicklungsbad aus dem fotografischen Material entfernt werden. Beispiele für geeignete Polymere sind Polymethylmethacrylat, Co­polymere aus Acrylsäure und Methylmethacrylat sowie Hydroxypropylmethylcellulosehexahydrophthalat.
  • Die Bindemittel des erfindungsgemäßen Materials, insbe­sondere wenn als Bindemittel Gelatine eingesetzt wird, werden mit geeigneten Härtern gehärtet, beispielsweise mit Härtern des Epoxidtyps, des Ethylenimintyps, des Acryloyltyps oder des Vinylsulfontyps. Ebenso eignen sich Härter der Diazin-, Triazin- oder 1,2-Dihydrochi­nolin-Reihe.
  • Vorzugsweise werden die Bindemittel des erfindungsgemä­ßen materials mit Soforthärtern gehärtet.
  • Unter Soforthärtern werden Verbindungen verstanden, die geeignete Bindemittel so vernetzen, daß unmittelbar nach Beguß, spätestens nach 24 Stunden, vorzugsweise spätestens nach 8 Stunden die Härtung so weit abge­schlossen ist, daß keine weitere durch die Vernetzungs­reaktion bedingte Änderung der Sensitometrie und der Quellung des Schichtverbandes auftritt. Unter Quellung wird die Differenz von Naßschichtdicke und Trocken­schichtdicke bei der wäßrigen Verarbeitung des Films verstanden (Photogr. Sci. Eng. 8 (1964), 275; Photogr. Sci. Eng. (1972), 449).
  • Bei diesen mit Gelatine sehr schnell reagierenden Här­tungsmitteln handelt es sich z.B. um Carbamoylpyri­diniumsalze, die mit freien Carboxylgruppen der Gelatine zu reagieren vermögen, so daß letztere mit freien Amino­gruppen der Gelatine unter Ausbildung von Peptidbin­dungen und Vernetzung der Gelatine reagieren.
  • Geeignete Beispiele für Soforthärter sind z.B. Verbin­dungen der allgemeinen Formeln
    • (a)
      Figure imgb0001
      worin
      R₁ Alkyl, Aryl oder Aralkyl bedeutet,
      R₂ die gleiche Bedeutung wir R₁ hat oder Alkylen, Arylen, Aralkylen oder Alkaralkylen bedeutet, wobei die zweite Bindung mit einer Gruppe der Formel
      Figure imgb0002
      verknüpft ist, oder
      R₁ und R₂ zusammen die zur Vervollständigung eines gegebenenfalls substituierten heterocyclischen Ringes, beispielsweise eines Piperidin-, Pipe­razin- oder Morpholinringes erforderlichen Atome bedeuten, wobei der Ring z.B. durch C₁-­C₃-Alkyl oder Halogen substituiert sein kann,
      R₃ für Wasserstoff, Alkyl, Aryl, Alkoxy, -NR₄-COR₅, -(CH₂)m-NR₈R₉, -(CH₂)n-CONR₁₃R₁₄ oder
      Figure imgb0003
      oder ein Brückenglied oder eine direkte Bindung an eine Polymerkette steht, wobei
      R₄, R₆, R₇, R₉, R₁₄, R₁₅, R₁₇, R₁₈, und R₁₉ Wasserstoff oder C₁-C₄-Alkyl,
      R₅ Wasserstoff, C₁-C₄-Alkyl oder NR₆R₇,
      R₈ -COR₁₀
      R₁₀ NR₁₁R₁₂
      R₁₁ C₁-C₄-Alkyl oder Aryl, insbesondere Phenyl,
      R₁₂ Wasserstoff, C₁-C₄-Alkyl oder Aryl, insbeson­dere Phenyl,
      R₁₃ Wasserstoff, C₁-C₄-Alkyl oder Aryl, insbeson­dere Phenyl,
      R₁₆ Wasserstoff, C₁-C₄-Alkyl, COR₁₈ oder CONHR₁₉,
      m eine Zahl 1 bis 3
      n eine Zahl 0 bis 3
      p eine Zahl 2 bis 3 und
      Y O oder NR₁₇ bedeuten oder
      R₁₃ und R₁₄ gemeinsam die zur Vervollständigung eines gegebenenfalls substituierten hetero­cyclischen Ringes, beispielsweise eines Piperidin-, Piperazin- oder Morpholinringes erforderlichen Atome darstellen, wobei der Ring z.B. durch C₁-C₃-Alkyl oder Halogen substituiert sein kann,
      Z die zur Vervollständigung eines 5- oder 6-­gliedrigen aromatischen heterocyclischen Ringes, gegebenenfalls mit anelliertem Ben­zolring, erforderlichen C-Atome und
      X ein Anion bedeuten, das entfällt, wenn bereits eine anionische Gruppe mit dem übrigen Molekül verknüpft ist;
    • (b)
      Figure imgb0004
      worin
      R₁, R₂, R₃ und X die für Formel (a) angegebene Bedeutung besitzen.
  • Selbstverständlich ist darauf zu achten, daß alle Kom­ponenten des fotografischen Materials eisenfrei oder ausreichend eisenarm sind. Dies gilt insbesondere für die Bindemittel.
  • Die erfindungsgemäßen Materialien, seien es Colornega­tiv-, Colordirektpositiv- oder Colorumkehrmaterialien werden nach den dafür empfohlenen Prozessen in üblicher Weise verarbeitet.
  • Beispiel 1 (Vergleichsbeispiel)
  • Es wird eine Silberchloridemulsion in einem Gefäß aus V4A-Edelstahl (DIN-Werkstoffnummer 1.4571, AISI-Norm 316 L) nach folgendem Verfahren hergestellt:
  • In 4 l einer 9 gew.-%igen Lösung einer eisenarmen iner­ten Knochengelatine (≦5 ppm Fe), die 25 g NaCl und 0,5 g 1,8-Dihydroxy-3,6-dithiaoctan enthält, wird unter kräf­tigem Rühren bei 45°C je 10 l einer 2,5 n AgNO₃- und einer 2,5 n NaCl-Lösung nach dem double-jet-Verfahren in 55 Minuten einlaufen gelassen, wobei die Einlaufge­schwindigkeit am Ende 10 mal so groß ist wie zu Beginn. Der pCl-Wert wird bei 0,95, der pH-Wert wird mit Sal­petersäure bei 4,0 gehalten. Die erhaltene Emulsion hat eine durchschnittliche Korngröße (Durchmeser der volu­mengleichen Kugel) von 0,8 µm.
  • Die Emulsion wird nach dem Koagulationsverfahren von überschüssigen Salzen befreit und unter Zugabe von weiterer eisenarmer inerter Knochengelatine auf einen Silbergehalt von 200 g (als AgNO₃)/kg bei einer Gela­tinekonzentration von 7,5 Gew.-% eingestellt.
  • Die Emulsion wurde optimal mit Thiosulfat und Goldsalzen chemisch gereift und auf einem Schichtträger mit einem Auftrag von 5 g Silber (als AgNO₃) vergossen. Nach Belichtung für 5 sec mit einer Wolframlampe von 200 W durch einen Stufenkeil und Entwicklung mit einem Ent­wickler der Zusammensetzung
    N-Methyl-p-aminophenol 1,0 g
    Natriumsulfit wasserfrei 13,0 g
    Hydrochinon 3,0 g
    Natriumcarbonat wasserfrei 26,0 g
    Kaliumbromid 1,0 g
    gelöst in 1 l Wasser
    wird einer relative Empfindlichkeit von 100 bei einem Schleier von 0,16 erhalten.
  • Gleichzeitig wurde der Eisengehalt mittels Atomabsorp­tionsspektroskopie gemessen. Es wurde ein Eisengehalt von 150 ppm Fe, bezogen auf AgNO₃, in der Emulsion be­stimmt.
  • Beispiel 2 (erfindungsgemäß
  • Es wurde eine Silberchloridemulsion in gleicher Weise wie in Beispiel 1 hergestellt, jedoch wurden der Behäl­ter und alle Anlagenteile wie Rührer usw., mit denen die Emulsion in Berührung kommt, aus Titan (DIN Werkstoff­nummer 3.7025, AISI-Norm Ti Grade 2) angefertigt.
  • Die Emulsion wurde in gleicher Weise wie die in Beispiel 1 chemisch gereift und fotografisch geprüft. Es wurde eine relative Empfindlichkeit von 125 bei einem Schleier von 0,11 gefunden.
  • In gleicher Weise wie in Beispiel 1 wurde eine Eisenbe­stimmung in der Emulsion durchgeführt. Der gefundene Eisengehalt betrug 2 ppm, bezogen auf AgNO₃.
  • Beispiel 3 (Vergleich)
  • Ein Schichtträger aus beidseitig mit Polyethylen be­schichtetem Papier wurde mit folgenden Schichten ver­sehen. Die Mengenangaben beziehen sich auf 1 m².
    • 1. Eine Substratschicht aus 200 mg Gelatine mit KNO₃- und Chromalaunzusatz.
    • 2. Eine Haftschicht aus 320 mg Gelatine.
    • 3. Eine blauempfindliche Silberbromidchloridemulsions­schicht (99 mol-% Chlorid) aus 600 mg AgNO₃ mit 1600 mg Gelatine, 1,0 mmol Gelbkuppler, 27,7 mg 2,5-Dioctylhydrochinon und 650 mg Trikresylphosphat.
      Die Emulsion wurde durch Doppeleinlauf mit einer Korngröße von 0,8 µm hergestellt, in der üblichen Weise geflockt, gewaschen und mit Gelatine redis­pergiert. Das Gewichtsverhältnis Gelatine-Silber (als AgNO₃) betrug 0,5. Die Emulsion wurde anschließend mit 60 µmol Thiosulfat pro mol Ag zur optimalen Empfindlichkeit gereift, für den blauen Spektralbereich sensibilisiert und stabilisiert.
    • 4. Eine Zwischenschicht aus 1200 mg Gelatine, 80 mg 2,5-Dioctylhydrochinon und 100 mg Trikresylphos­phat.
    • 5. Eine grünempfindliche Silberbromidchloridemulsions­schicht (99 mol-% Chlorid) aus 530 mg AgNO₃ mit 750 mg Gelatine, 0,625 mmol Purpurkuppler, 118 mg α-(3-t-Butyl-4-hydroxyphenoxy)-myristinsäureethyl­ester, 43 mg 2,5-Dioctylhydrochinon, 343 mg Dibu­tylphthalat und 43 mg Trikresylphosphat.
    • 6. Eine Zwischenschicht aus 1550 mg Gelatine, 285 mg eines UV-Absorbers der Formel
      Figure imgb0005
      80 mg Dioctylhydrochinon und 650 mg Trikresylphos­phat.
    • 7. Eine rotempfindliche Silberbromidchloridemulsions­schicht (99 mol-% Chlorid) aus 400 mg AgNO₃ mit 1470 mg Gelatine, 0,780 mmol Blaugrünkuppler, 285 mg Dibutylphthalat und 122 mg Trikresylphos­phat.
    • 8. Eine Schutzschicht aus 1200 mg Gelatine, 134 mg eines UV-Absorbers gemäß 6. Schicht und 240 mg Tri­kresylphosphat.
    • 9. Eine Härtungsschicht aus 400 mg Gelatine une 400 mg Härtungsmittel der Formel
      Figure imgb0006
  • Als Farbkuppler wurden folgende Verbindungen verwendet:
    Figure imgb0007
    Figure imgb0008
  • Es wurde die in Beispiel 1 verwendete Gelatine einge­setzt; die Emulsionen waren in Stahlkesseln gemäß Bei­spiel 1 hergestellt worden. Der Eisengehalt des auf den Träger aufgebrachten Schichtpaketes betrug 85 ppm bezogen auf AgNO₃.
  • Beispiel 4
  • Es wurde ein Material gemäß Beispiel 3 hergestellt, jedoch mit dem Unterschied, daß die Emulsionen in einer Vorrichtung nach Beispiel 2 hergestellt wurden. Der Eisengehalt des auf den Träger aufgebrachten Schicht­paketes betrug 12 ppm bezogen auf AgNO₃.
  • Beispiel 5
  • Die Materialien der Beispiele 3 und 4 wurden nach dem Standardprozeß für Colornegativpapier RA 4/AP 94 ver­arbeitet.
  • Für die einzelnen Farbschichten wurden folgende Ergebnisse erhalten (E = rel. Empfindlichkeit, S = Schleier)
    Gelb Purpur Blaugrün
    E S E S E S
    Bsp. 3 110 0,16 100 0,09 100 0,08
    Bsp. 4 114 0,10 106 0,08 108 0,07

Claims (7)

1. Farbfotografisches Material mit mindestens einer rotempfindlichen, mindestens einen Blau-Grün-­Kuppler enthaltenden, mit mindestens einer grün­empfindlichen, mindestens einen Purpurkuppler enthaltenden und mit mindestens einer blauempfind­lichen, mindestens einen Gelbkuppler enthaltenden Silberhalogenidemulsionsschicht wobei wenigstens eine Silberhalogenidemulsionsschicht ein Silber­halogenid mit mindestens 60 Mol-% AgCl enthält, dadurch gekennzeichnet, daß die auf den Träger aufgebrachten Schichten zusammen einen Eisengehalt von ≦50 ppm, bezogen auf Silberhalogenid, berechnet als AgNO₃, aufweisen.
2. Fotografisches Material nach Anspruch 1, dadurch gekennzeichnet, daß der Eisengehalt ≦20 ppm ist.
3. Fotografisches Material nach Anspruch 1, dadurch gekennzeichnet, daß der Eisengehalt ≦10 ppm ist.
4. Fotografisches Material nach Anspruch 1, dadurch gekennzeichnet, daß das Silberhalogenid der wenig­stens einen Silberhalogenidemulsionsschicht zu mindestens 80 Mol-% aus Silberchlorid bestehen.
5. Fotografisches Material nach Anspruch 1, dadurch gekennzeichnet, daß die Silberhalogenide aller Silberhalogenidemulsionsschichten zu mindestens 60 Mol-% aus Silberchlorid bestehen.
6. Fotografisches Material nach Anspruch 5, dadurch gekennzeichnet, daß die Silberhalogenide aller Silberhalogenidemulsionsschichten zu mindestens 80 Mol-% aus Silberchlorid bestehen.
7. Fotografisches material nach Anspruch 1, dadurch gekennzeichnet, daß der Träger polyethylenbeschich­tetes Papier ist.
EP88117924A 1987-11-07 1988-10-27 Colour-photographic material Withdrawn EP0315833A3 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3737963 1987-11-07
DE3737963 1987-11-07
DE3827847 1988-08-17
DE19883827847 DE3827847A1 (de) 1987-11-07 1988-08-17 Fotografisches material

Publications (2)

Publication Number Publication Date
EP0315833A2 true EP0315833A2 (de) 1989-05-17
EP0315833A3 EP0315833A3 (en) 1990-06-20

Family

ID=25861599

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88117924A Withdrawn EP0315833A3 (en) 1987-11-07 1988-10-27 Colour-photographic material

Country Status (3)

Country Link
EP (1) EP0315833A3 (de)
JP (1) JPH01150128A (de)
DE (1) DE3827847A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0476604A1 (de) * 1990-09-18 1992-03-25 Fuji Photo Film Co., Ltd. Farbphotographisches Silberhalogenidmaterial
EP0554027A1 (de) * 1992-01-28 1993-08-04 Konica Corporation Photographisches, lichtempfindliches Silberhalogenidmaterial und Verfahren zu seiner Verarbeitung
US5553304A (en) * 1992-01-17 1996-09-03 Westinghouse Electric Corporation Method for generating and executing complex operating procedures

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2777949B2 (ja) 1992-04-03 1998-07-23 富士写真フイルム株式会社 ハロゲン化銀カラー写真感光材料

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0244184A2 (de) * 1986-04-26 1987-11-04 Konica Corporation Lichtempfindliches photographisches Silberhalogenidmaterial
DE3714505A1 (de) * 1986-05-02 1987-11-05 Fuji Photo Film Co Ltd Photographisches silberhalogenidmaterial

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0244184A2 (de) * 1986-04-26 1987-11-04 Konica Corporation Lichtempfindliches photographisches Silberhalogenidmaterial
DE3714505A1 (de) * 1986-05-02 1987-11-05 Fuji Photo Film Co Ltd Photographisches silberhalogenidmaterial

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PHOT. GELATIN REPORTS *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0476604A1 (de) * 1990-09-18 1992-03-25 Fuji Photo Film Co., Ltd. Farbphotographisches Silberhalogenidmaterial
US5378594A (en) * 1990-09-18 1995-01-03 Fuji Photo Film Co., Ltd. Silver halide color photographic material
US5553304A (en) * 1992-01-17 1996-09-03 Westinghouse Electric Corporation Method for generating and executing complex operating procedures
EP0554027A1 (de) * 1992-01-28 1993-08-04 Konica Corporation Photographisches, lichtempfindliches Silberhalogenidmaterial und Verfahren zu seiner Verarbeitung

Also Published As

Publication number Publication date
DE3827847A1 (de) 1989-05-18
EP0315833A3 (en) 1990-06-20
JPH01150128A (ja) 1989-06-13

Similar Documents

Publication Publication Date Title
EP0313949B1 (de) Farbfotografisches Silberhalogenidmaterial
EP0320776B1 (de) Farbfotografisches Silberhalogenidmaterial
EP0358071B1 (de) Fotografisches Aufzeichnungsmaterial
EP0317886B1 (de) Gradationsvariables SW-Papier
EP0464409B1 (de) Farbfotografisches Aufzeichnungsmaterial
EP0537545B1 (de) Fotografisches Silberhalogenidmaterial
EP0517053B1 (de) Fotografische Silberhalogenidemulsion
EP0317885B1 (de) Gradationsvariables SW-Papier
EP0370226B1 (de) Fotografisches Silberhalogenidmaterial und Verfahren zu seiner Verarbeitung
EP0315833A2 (de) Farbfotografisches Material
EP0447656A1 (de) Farbfotografisches Silberhalogenidmaterial und seine Entwicklung
EP0377889B1 (de) Silberhalogenidaufzeichnungsmaterial
EP0413204A2 (de) Farbfotografisches Silberhalogenidmaterial
EP0322648A2 (de) Farbfotografisches Aufzeichnungsmaterial und Verfahren zur Herstellung einer fotografischen Silberhalogenidemulsion
EP0377181A2 (de) Farbfotografisches Material
EP0345553B1 (de) Fotografisches Aufzeichnungsmaterial
DE3737962A1 (de) Fotografisches material
EP0369235B1 (de) Fotografisches Aufzeichnungsmaterial
EP0363820A2 (de) Farbfotografisches Silberhalogenidmaterial
EP0401610B1 (de) Farbfotografisches Silberhalogenidmaterial
EP0312892B1 (de) Fotografisches Material
EP0330948A2 (de) Verfahren zur Erzeugung von Colorbildern
EP0312837A2 (de) Waschwasserfreies fotografisches Verarbeitungsverfahren und für dieses Verfahren benutztes Stabilisierbad
EP0564910B1 (de) Farbfotografisches Aufzeichnungsmaterial
DE4344164A1 (de) Fotografische Silberhalogenidemulsion

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19881027

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE CH DE FR GB IT LI NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE CH DE FR GB IT LI NL

17Q First examination report despatched

Effective date: 19920527

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19920921