EP0340205A2 - Ölgekühlter Verbrennungsmotor - Google Patents

Ölgekühlter Verbrennungsmotor Download PDF

Info

Publication number
EP0340205A2
EP0340205A2 EP89890103A EP89890103A EP0340205A2 EP 0340205 A2 EP0340205 A2 EP 0340205A2 EP 89890103 A EP89890103 A EP 89890103A EP 89890103 A EP89890103 A EP 89890103A EP 0340205 A2 EP0340205 A2 EP 0340205A2
Authority
EP
European Patent Office
Prior art keywords
oil
cooling
circuit
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89890103A
Other languages
English (en)
French (fr)
Other versions
EP0340205B1 (de
EP0340205A3 (en
Inventor
Assen Dipl.-Ing. Dr. Techn. Valev
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Steyr Daimler Puch AG
Original Assignee
Steyr Daimler Puch AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Steyr Daimler Puch AG filed Critical Steyr Daimler Puch AG
Publication of EP0340205A2 publication Critical patent/EP0340205A2/de
Publication of EP0340205A3 publication Critical patent/EP0340205A3/de
Application granted granted Critical
Publication of EP0340205B1 publication Critical patent/EP0340205B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P9/00Cooling having pertinent characteristics not provided for in, or of interest apart from, groups F01P1/00 - F01P7/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/12Closed-circuit lubricating systems not provided for in groups F01M1/02 - F01M1/10
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M5/00Heating, cooling, or controlling temperature of lubricant; Lubrication means facilitating engine starting
    • F01M5/002Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M5/00Heating, cooling, or controlling temperature of lubricant; Lubrication means facilitating engine starting
    • F01M5/002Cooling
    • F01M2005/004Oil-cooled engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P2003/006Liquid cooling the liquid being oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • F01P2003/027Cooling cylinders and cylinder heads in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • F01P2005/105Using two or more pumps

Definitions

  • the invention relates to an oil-cooled internal combustion engine, with an oil pan forming a common oil sump for a lubricating and a cooling oil circuit, the oil circuits having their own oil pumps and the lubricating oil circuit comprising an oil filter and an oil cooler being connected to the cooling oil circuit originating from the oil sump.
  • DE-A-35 09 095 also includes an oil-cooled internal combustion engine, in which the lubricating oil circuit is arranged in series after the cooling oil circuit, in order to be able to supply heated oil to the lubrication points even while the engine is warming up.
  • this lubricating oil circuit branches off in front of the oil cooler located in the cooling oil circuit, the lubricating oil temperature remains largely uncontrolled and a desired high-temperature cooling is impossible.
  • the oil cooler If the oil cooler is in the lubricating oil circuit, it is subject to the lubricating oil pressure and cools the lubricating oil to a temperature that is significantly below the oil sump temperature, whereby the critical engine areas, such as valve webs, nozzle seats and the like, are exposed to excessively hot cooling oil from the oil sump. If, on the other hand, the oil cooler is in the cooling oil circuit, it is pressurized with lower pressure and the critical engine areas can be cooled with cooler oil, but then the lubricating oil temperature corresponds to the oil sump temperature, which can only be brought to a useful value with a very high cooling effort because the oil sump temperature must have lower values.
  • the invention is therefore based on the object to remedy these defects and to provide an oil-cooled internal combustion engine of the type described, which is distinguished by its effective cooling and allows a functional high-temperature cooling with relatively little construction and construction effort.
  • the invention solves this problem essentially in that a secondary circuit branches off from the lubricating oil circuit after the oil cooler, which leads as an additional cooling circuit to cooling-intensive engine areas.
  • This secondary circuit is used in a simple, elegant manner, low-temperature lubricating oil for cooling the critical engine areas, so that sufficient cooling is ensured for these sensitive areas even when the normal cooling circuit is switched to high-temperature cooling.
  • the peak temperatures of the cylinder heads or other high-temperature engine parts can be reduced to the desired values, but at the same time the mean temperature increases, so that the thermal stresses decrease, the combustion conditions and fuel consumption are improved and the like.
  • the secondary circuit can include external lines for surface cooling, for example the land areas of a cylinder head and / or inner lines for internal cooling, for example branch lines branching off from the main lubricating oil duct for piston cooling.
  • the outer and inner lines allow the targeted application of the additional cooling oil and ensure intensive cooling of the endangered areas, whereby the secondary circuit is not a closed circuit, but, depending on the structural conditions, is composed of various secondary and branch lines fed with cool lubricating oil can be set.
  • the lubricating oil pump is arranged downstream of the oil cooler and the branch of the secondary circuit is arranged, so that the lubricating oil pump sucks in cool oil directly from the oil cooler and quickly feeds it to the lubricating oil channels or the secondary circuit and the suction side horizontal oil cooler can be designed with little effort and thermally favorable.
  • the cooling oil pump delivers a larger amount of oil than the lubricating oil pump and the excess amount can be removed from the oil cooler and returned to the oil sump bypassing the lubricating oil circuit.
  • the result is an economical, low-cost cooling system, since the lubricating oil pump working against a high pressure only has to circulate a small amount, which small amount of lubricating oil reduces energy consumption and simplifies the oil cooler and fan.
  • the larger amount of cooling oil needs to be circulated by the cooling oil pump only with a relatively low back pressure, and the like after flowing through the cooling rooms.
  • the excess oil corresponding to the delivery difference of the two pumps is separated from the oil passing into the lubricating oil circuit and reaches the oil sump.
  • the excess oil is brought to a mixing temperature, the actual oil sump temperature, by mixing with the cooler oil flowing out of the lubrication system and from the secondary circuit.
  • the oil filter downstream of the oil cooler or a riser pipe is in the height range of the oil cooler inflow, so that even when the oil pumps are at a standstill it is impossible for the oil to flow out of the oil cooler.
  • the cooling oil circuit has a return line bypassing the cooling oil pump with a pressure and / or temperature-controlled shut-off valve, so that the cooling oil circuit can be rationally adapted to different operating states.
  • shut-off valve is connected to the pressure side of the lubricating oil pump via a control line and opens when the lubricating oil pressure drops below a limit value
  • this return line allows the cooling oil circuit to be drained quickly when the engine is at a standstill, thereby ensuring a quick and safe oil level check without affecting an oil change or the like .
  • Emptying the cooling oil circuit after switching off the engine also prevents the formation of oil carbon and the like. at points in the cooling circuit whose temperature continues to rise after the cooling fails due to possible overheating of the engine.
  • the shut-off valve can also be designed as a control valve and can be controlled as a function of at least one engine identification temperature, as a result of which it is possible to use the cooling in a targeted manner, taking into account the respective operating states.
  • An oil-cooled internal combustion engine 1 has a lubricating oil circuit 2 with a lubricating oil pump 3 and a cooling oil circuit run 4 with a cooling oil pump 5.
  • the oil pan 6 of the internal combustion engine 1 forms a common oil sump 7 for both oil circuits 2, 4, the cooling oil circuit 4 starting from the oil sump 7 and the lubricating oil circuit 2, which leads via an oil cooler 8 and an oil filter 9, to the cooling oil circuit 4.
  • a secondary circuit 10 branches off from the lubricating oil circuit 2 after the lubricating oil pump 3 and serves as an additional cooling oil circuit for cooling tricky, thermally critical engine areas, for which purpose, for example, external lines 10a with spray nozzles 11 for cooling the valve heads of the cylinder heads and inner lines 10b with spray nozzles 12 for piston cooling are provided.
  • the oil filter 9 of the lubricating oil circuit 2 is in the height range of the oil cooler inflow 8a in order to prevent the oil cooler 8 from being emptied when the pump is stopped and to be able to use the oil cooler 8 as an oil reservoir.
  • the cooling oil pump 5 sucks the cooling oil in a relatively large amount via a suction line 4a and conveys it with a low back pressure, approximately 0.5 bar, into the cooling oil circuit 4, which leads through suitable cooling jackets and channels 4b around the cylinder liners and into the cylinder heads.
  • the hot cooling oil leaves the engine block and partly comes back into the oil cooler 8 via a connecting line 4c and partly back into the oil sump 7 via cylinder head outlets 4d, bypassing the lubricating oil circuit 2.
  • a sprinkler line 4e for sprinkling the capsule wall can emanate from the cylinder head outlets, which sprinkler oil also returns to the oil sump 7 bypassing the lubricating oil circuit 8.
  • the cooling oil flowing back into the oil sump is cooled to a mixing temperature which corresponds to the temperature of the oil sump only by mixing with the much cooler oil flowing out of the lubrication system and from the secondary circuit 10.
  • the lubricating oil pump 3 circulates a much smaller amount of oil, about half of the cooling oil pump 5, but with a substantial amount Lich larger back pressure, for example 4.5 bar, only the amount of oil corresponding to the delivery rate of the lubricating oil pump 3 flows into the oil cooler 8 through the connecting line 4c.
  • This amount of oil can be easily cooled in the oil cooler 8 to the temperature desired for the lubricating oil, so that low-temperature lubricating oil is drawn in by the lubricating oil pump 3 through the suction line 2a from the oil cooler 8 and is conveyed into the lubricating oil circuit 2.
  • the lubricating oil pump 3 presses the lubricating oil through the oil filter 9, from which it flows into the main lubricating oil channel 2b and through this to the usual lubrication points of the engine 1.
  • a control valve 13 allows fine tuning of the lubricating oil pressure to the respective lubrication system.
  • the lubricating oil then returns from the lubrication points into the oil sump 7, where, as already mentioned, it mixes with the hot excess oil from the cooling circuit during the backflow.
  • the cool lubricating oil from the lubricating oil circuit 2 now also serves to feed the secondary circuit 10, which branches off in front of the oil filter 9.
  • a part of the secondary circuit 10 can, depending on the respective structural conditions, also be derived directly from the main lubricating oil duct 2b in the form of the branch lines 10b in order to carry out the piston cooling or another internal cooling.
  • a return line 14 which bypasses the cooling oil pump 4 and has a pressure-controlled shut-off valve 15.
  • a control line 16 connects the check valve 15 to the pressure side of the lubricating oil pump 3, so that the return line 14 is opened or closed depending on the lubricating oil pressure.
  • the shut-off valve 15 opens the return line 14 and the cooling oil from the cooling circuit 4 quickly flows back into the oil sump 7, so that the amount of oil present can be checked immediately after the engine has stopped. If the engine is ignited, the lubricating oil pressure rises again above the limit that Check valve 15 blocks the return line 14 and the cooling oil is properly pumped through the cooling oil circuit 4.
  • the check valve 15 can advantageously also depending on a characteristic engine temperature, for. B. the cylinder head temperature are operated so that the cooling is omitted below a limit temperature and a rapid warm-up of the engine is achieved. If the check valve 15 is designed as a control valve, the cooling oil circuit 4 can be specifically adapted in its cooling effect even to different operating conditions, which affects the combustion conditions, fuel consumption, signs of wear and the like. favorably influenced.
  • cooling oil and lubricating oil circuit Due to the inventive management of the cooling oil and lubricating oil circuit, wherein above all only a part of the cooling oil quantity passes into the lubricating oil circuit and cool lubricating oil of the lubricating oil circuit is used for additional cooling of thermally critical engine areas, functional high-temperature cooling of the internal combustion engine occurs in a rational manner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)
  • Lubrication Details And Ventilation Of Internal Combustion Engines (AREA)
  • Lubricants (AREA)

Abstract

Ein ölgekühlter Verbrennungsmotor (1) ist mit einer einen gemeinsamen Ölsumpf (7) für einen Schmier- und einen Kühlöl­kreislauf (2, 4) bildenden Ölwanne (6) ausgestattet, wobei die Ölkreisläufe (2, 4) eigene Ölpumpen (3, 5) aufweisen und der ein Ölfilter (9) und einen Ölkühler (8) umfassende Schmieröl­kreislauf (2) an den vom Ölsumpf (7) ausgehenden Kühlölkreis­lauf (4) anschließt.
Um eine rationelle und funktionstüchtige Hochtemperaturkühlung zu erreichen, zweigt vom Schmierölkreislauf (2) nach dem Ölkühler (8) ein Nebenkreislauf (10) ab, der als zusätzlicher Kühlkreislauf zu kühlungsintensiven Motorbereichen führt.

Description

  • Die Erfindung bezieht sich auf einen ölgekühlten Verbrennungs­motor, mit einer einen gemeinsamen Ölsumpf für einen Schmier- und einen Kühlölkreislauf bildenden Ölwanne, wobei die Ölkreis­läufe eigene Ölpumpen aufweisen und der ein Ölfilter und einen Ölkühler umfassende Schmierölkreislauf an den vom Ölsumpf ausgehenden Kühlölkreislauf angeschlossen ist.
  • Gemäß der DE-A-28 10 980 wurde für ölgekühlte Verbrennungsmo­toren, bei denen Öl nicht nur zur Schmierung, sondern auch zur Kühlung Verwendung findet, bereits vorgeschlagen, den Kühlöl­kreislauf in Serie dem Schmierölkreis nachzuordnen, wodurch allerdings das Kühlöl eine recht hohe Anfangstemperatur besitzt und zur Wärmeabfuhr eine gesteigerte Kühlölmenge erforderlich ist. Darüber hinaus muß die gesamte Kühl- und Schmierölmenge über Ölkühler und -filter umgewälzt werden, was einen beträcht­lichen Bauaufwand und Leistungsbedarf mit sich bringt. Wegen der bestehenden Verkokungsgefahr ist außerdem eine zusätzliche Wasserkühlung für die heißesten Motorbereiche unvermeidlich.
  • Die DE-A-35 09 095 hat weiters einen ölgekühlten Verbrennungs­motor zum Inhalt, bei dem der Schmierölkreislauf dem Kühlöl­kreislauf in Reihe nachgeordnet ist, um schon während des Motorwarmlaufens angewärmtes Öl den Schmierstellen zuführen zu können. Da dieser Schmierölkreislauf aber vor dem im Kühlöl­kreislauf sitzenden Ölkühler abzweigt, bleibt die Schmieröltem­peratur weitgehend unkontrolliert und eine erwünschte Hochtem­peraturkühlung ist unmöglich.
  • Wie die DE-A-36 18 794 zeigt, ist es auch schon bekannt, ölgekühlte Verbrennungsmotoren mit parallel geschalteten Schmier- und Kühlölkreisläufen auszustatten. welche Kreisläufe jeweils von einem gemeinsamen Ölsumpf ausgehen und eigene, mit unterschiedlichem Förderdruck arbeitende Ölpumpen aufweisen.
  • Befindet sich dabei der Ölkühler im Schmierölkreislauf, unter­liegt er dem Schmieröldruck und kühlt das Schmieröl auf eine wesentlich unter der Ölsumpftemperatur liegende Temperatur, wobei die kritischen Motorbereiche, wie Ventilstege, Düsensitze u.dgl., mit zu heißem Kühlöl aus dem Ölsumpf beaufschlagt werden. Liegt der Ölkühler hingegen im Kühlölkreis, wird er mit geringerem Druck ölbeaufschlagt und die kritischen Motorberei­che können mit kühlerem Öl gekühlt werden, doch entspricht dann die Schmieröltemperatur wiederum der Ölsumpftemperatur, die nur mit sehr hohem Kühlaufwand auf einen brauchbaren Wert zu bringen ist, weil die Ölsumpftemperatur niedrigere Werte haben muß. Das Ziel einer Hochtemperaturkühlung kann daher so nicht erreicht werden, da der Zylinderkopf im extremen Fall mit Öl, dessen Temperatur der Sumpföltemperatur entspricht, zu kühlen ist und mit Rücksicht auf die kritischen Zylinderkopfstellen die Sumpföltemperatur keine für eine Hochtemperaturkühlung genügend niedrige Werte erreichen kann. Die funktionsmäßig vor­teilhaftere Anordnung des Ölkühlers im Schmierölkreis verlangt wiederum wegen des hohen Druckniveaus eine teure und auch wärmetechnisch ungünstige Formgebung. Ein weiterer Nachteil der bekannten ölgekühlten Verbrennungsmotoren liegt in der Öl­standskontrolle, die sich nur schwer durchführen läßt. Gibt es keine speziellen Einrichtungen, sickert die Kühlölmenge bei stehendem Motor langsam durch die Kühlölpumpe hindurch und zurück in den Ölsumpf, so daß eine Ölstandskontrolle einen langen Motorstillstand voraussetzt. Sind Einrichtungen, wie Rückschlagventile, in den Öldruckkanälen vorgesehen, wird der Ölabfluß zwar für eine Ölstandskontrolle verhindert, aber zusätzlich auch in unerwünschter Weise beim Ölwechseln.
  • Neben den rein ölgekühlten Motoren gibt es nach der DE-A-18 07 639 auch schon ein Schmier- und Kühlsystem, bei dem zusätzlich zur üblichen Kühlanlage des Motors eine vom Schmierölkreislauf hinter dessen Kühler abzweigende Kühlstrecke zur speziellen Kolbenkühlung vorgesehen ist, welche Kühlstrecke allerdings nur in Abhängigkeit vom Schmieröldruck öffnet und ausschließ­ lich als Ergänzung einer üblichen anderen Motorkühleinrichtung dienen kann, was einen entsprechenden Mehraufwand bedeutet.
  • Der Erfindung liegt daher die Aufgabe zugrunde, diese Mängel zu beseitigen und einen ölgekühlten Verbrennungsmotor der eingangs geschilderten Art zu schaffen, der sich durch seine wirkungs­volle Kühlung auszeichnet und mit verhältnismäßig geringem Bau- und Konstruktionsaufwand eine funktionstüchtige Hochtemperatur­kühlung erlaubt.
  • Die Erfindung löst diese Aufgabe im wesentlichen dadurch, daß vom Schmierölkreislauf nach dem Ölkühler ein Nebenkreislauf abzweigt, der als zusätzlicher Kühlkreislauf zu kühlungsinten­siven Motorbereichen führt. Durch diesen Nebenkreislauf wird auf einfache, elegante Weise Schmieröl niedriger Temperatur zur Kühlung der kritischen Motorbereiche herangezogen, so daß für diese heiklen Stellen auch dann eine ausreichende Kühlung gewährleistet wird, wenn der normale Kühlkreislauf auf eine Hochtemperaturkühlung abgestellt ist. Die Spitzentemperaturen der Zylinderköpfe oder anderer hochtemperaturbelasteter Motor­teile können auf die gewünschten Werte abgesenkt werden, wobei jedoch gleichzeitig die mittlere Temperatur ansteigt, so daß die Wärmespannungen abnehmen, die Verbrennungsverhältnisse und der Kraftstoffverbrauch verbessert werden u. dgl..
  • Um die heiklen Motorbereiche ausreichend zu kühlen, kann der Nebenkreislauf Außenleitungen zur Oberflächenkühlung, bei­spielsweise der Stegbereiche eines Zylinderkopfes und/oder Innenleitungen zur Innenkühlung, beispielsweise vom Haupt­-schmierölkanal abzweigende Stichleitungen zur Kolbenkühlung, umfassen. Die Außen- und Innenleitungen ermöglichen das geziel­te Aufbringen des zusätzlichen Kühlöls und gewährleisten die intensive Kühlung der gefährdeten Bereiche, wobei der Neben­kreislauf kein in sich geschlossener Kreislauf ist, sondern je nach den konstruktiven Gegebenheiten aus verschiedenen, mit kühlem Schmieröl gespeisten Neben- und Stichleitungen zusammen­ gesetzt sein kann.
  • Günstige Druck- und Strömungsverhältnisse ergeben sich, wenn erfindungsgemäß die Schmierölpumpe dem Ölkühler nach- und der Abzweigung des Nebenkreislaufes vorgeordnet ist, so daß die Schmierölpumpe kühles Öl direkt aus dem Ölkühler ansaugt und auf kurzem Wege den Schmierölkanälen bzw. dem Nebenkreislauf zufördert und sich der saugseitig liegende Ölkühler aufwandsarm und wärmetechnisch günstig ausgestalten läßt.
  • Gemäß einer besonders vorteilhaften Weiterbildung der Erfindung fördert die Kühlölpumpe eine größere Ölmenge als die Schmieröl­pumpe und die Überschußmenge ist vor dem Ölkühler ab- und unter Umgehung des Schmierölkreises in den Ölsumpf zurückleitbar. Es ergibt sich eine wirtschaftliche, aufwandsarme Kühlanlage, da die gegen einen hohen Druck arbeitende Schmierölpumpe nur eine geringere Fördermenge umwälzen muß, welche geringe Schmieröl­menge den Energieverbrauch senkt und Vereinfachungen des Ölkühlers und -lüfters mit sich bringt. Die größere Kühlölmenge braucht von der Kühlölpumpe nur mit verhältnismäßig geringem Gegendruck umgewälzt zu werden, wobei nach dem Durchströmen der Kühlräume u.dgl. das der Förderdifferenz der beiden Pumpen entsprechende Überschußöl vom in den Schmierölkreislauf über­gehenden Öl abgesondert wird und in den Ölsumpf gelangt. Das Überschußöl wird dabei durch Vermischen mit dem kühleren, vom Schmiersystem und vom Nebenkreislauf her abfließenden Öl auf eine Mischtemperatur, die eigentliche Ölsumpftemperatur, gebracht.
  • Um den Ölkühler gleichzeitig auch als Ölvorratsbehälter verwen­den zu können, liegt erfindungsgemäß das dem Ölkühler nach­geordnete Ölfilter bzw. ein Steigrohr im Höhenbereich des Ölkühlerzuflusses, so daß auch bei stillstehenden Ölpumpen ein Ausfließen des Öls aus dem Ölkühler unmöglich ist.
  • Gemäß einer besonders vorteilhaften Ausgestaltung der Erfindung weist der Kühlölkreislauf eine die Kühlölpumpe umgehende Rückleitung mit einem druck- und/oder temperaturgesteuerten Sperrventil auf, so daß sich der Kühlölkreislauf rationell an unterschiedliche Betriebszustände anpassen läßt.
  • Ist das Sperrventil über eine Steuerleitung mit der Druckseite der Schmierölpumpe verbunden und öffnet bei Absinken des Schmieröldruckes unter einen Grenzwert, erlaubt diese Rücklei­tung das rasche Entleeren des Kühlölkreislaufes bei Motorstill­stand und gewährleistet dadurch eine rasche, sichere Ölstands­kontrolle, ohne einen Ölwechsel od. dgl. zu beeinträchtigen. Das Entleeren des Kühlölkreislaufes nach dem Abstellen des Motors verhindert außerdem die Bildung von Ölkohle u.dgl. an Stellen des Kühlkreislaufes, deren Temperatur nach dem Ausfall der Kühlung durch ein mögliches Überhitzen des Motors weiter ansteigt.
  • Ist das Sperrventil in Abhängigkeit von einer Motorkenntempera­tur, z. B. der Zylinderkopftemperatur betätigbar und schließt erst bei Ansteigen dieser Temperatur über einen Grenzwert, wird der Motor während des Start- und Warmlaufvorganges ohne Kühlung betrieben und es kommt zu einem sehr raschen Erreichen der Betriebstemperatur, was Vorteile hinsichtlich der Emissionen des Kraftstoffverbrauches, des Verschleißes u.dgl. ergibt.
  • Erfindungsgemäß kann das Sperrventil auch als Regelventil ausgebildet und in Abhängigkeit von zumindest einer Motorkenn­temperatur ansteuerbar sein, wodurch ein gezielter, die jewei­ligen Betriebszustände berücksichtigender Einsatz der Kühlung möglich wird.
  • In der Zeichnung ist ein erfindungsgemäßer Verbrennungsmotor an Hand eines Anlagenschemas näher veranschaulicht.
  • Ein ölgekühlter Verbrennungsmotor 1 weist einen Schmieröl­kreislauf 2 mit einer Schmierölpumpe 3 und einen Kühlölkreis­ lauf 4 mit einer Kühlölpumpe 5 auf. Die Ölwanne 6 des Verbren­nungsmotors 1 bildet einen gemeinsamen Ölsumpf 7 für beide Ölkreisläufe 2, 4, wobei der Kühlölkreislauf 4 vom Ölsumpf 7 ausgeht und der Schmierölkreislauf 2, der über einen Ölkühler 8 und ein Ölfilter 9 führt, an den Kühlölkreislauf 4 angeschlos­sen ist. Vom Schmierölkreislauf 2 zweigt nach der Schmierölpum­pe 3 ein Nebenkreislauf 10 ab, der als zusätzlicher Kühlöl­kreislauf zum Kühlen heikler, wärmetechnisch kritischer Motor­bereiche dient, wozu beispielsweise Außenleitungen 10a mit Spritzdüsen 11 zur Ventilstegkühlung der Zylinderköpfe und Innenleitungen 10b mit Spritzdüsen 12 zur Kolbenkühlung vorge­sehen sind. Das Ölfilter 9 des Schmierölkreislaufes 2 liegt im Höhenbereich des Ölkühlerzuflusses 8a, um ein Entleeren des Ölkühlers 8 bei Pumpenstillstand zu verhindern und den Ölkühler 8 als Ölvorratsbehälter verwenden zu können.
  • Die Kühlölpumpe 5 saugt das Kühlöl über eine Saugleitung 4a in verhältnismäßig großer Menge an und fördert es mit geringem Gegendruck, etwa 0,5 bar, in den Kühlölkreislauf 4, der durch geeignete Kühlmäntel und -kanäle 4b um die Zylinderlaufbüchsen und in die Zylinderköpfe führt. Das heiße Kühlöl verläßt den Motorblock und gelangt teilweise über eine Anschlußleitung 4c in den Ölkühler 8 und teilweise über Zylinderkopfauslässe 4d unter Umgehung des Schmierölkreislaufes 2 direkt in den Ölsumpf 7 zurück. Ist ein gekapselter Motor 1 vorhanden, kann eine Berieselungsleitung 4e zur Berieselung der Kapselwandung von den Zylinderkopfauslässen ausgehen, welches Berieselungsöl ebenfalls unter Umgehung des Schmierölkreislaufes 8 in den Ölsumpf 7 zurückgelangt. Das in den Ölsumpf zurückfließende Kühlöl wird nur durch Vermischen mit dem wesentlich kühleren, vom Schmiersystem und vom Nebenkreislauf 10 abfließenden Öl auf eine Mischtemperatur gekühlt, die der Temperatur des Ölsumpfes entspricht.
  • Die Schmierölpumpe 3 wälzt eine wesentlich geringere Ölmenge, etwa die Hälfte der Kühlölpumpe 5 um, jedoch mit einem wesent­ lich größeren Gegendruck, beispielsweise 4,5 bar, wobei durch die Anschlußleitung 4c lediglich die der Förderleistung der Schmierölpumpe 3 entsprechende Ölmenge in den Ölkühler 8 fließt. Diese Ölmenge läßt sich im Ölkühler 8 schwierigkeitslos auf die für das Schmieröl gewünschte Temperatur kühlen, so daß von der Schmierölpumpe 3 durch die Saugleitung 2a vom Ölkühler 8 niedertemperiertes Schmieröl angesaugt und in den Schmieröl­kreislauf 2 gefördert wird. Die Schmierölpumpe 3 drückt das Schmieröl durch das Ölfilter 9, von dem es in den Hauptschmier­ölkanal 2b und über diesen den üblichen Schmierstellen des Motors 1 zuströmt. Ein Regelventil 13 erlaubt dabei die Feinab­stimmung des Schmieröldruckes auf das jeweilige Schmiersystem. Von den Schmierstellen gelangt dann das Schmieröl zurück in den Ölsumpf 7, wobei es sich während des Rückströmens, wie bereits erwähnt, mit dem heißen Überschußöl aus dem Kühlkreis ver­mischt. Das kühle Schmieröl aus dem Schmierölkreislauf 2 dient nun außerdem zum Speisen des Nebenkreislaufes 10, der vor dem Ölfilter 9 abzweigt.
  • Ein Teil des Nebenkreislaufes 10 läßt sich, den jeweiligen baulichen Gegebenheiten entsprechend, auch direkt vom Haupt­schmierölkanal 2b in Form der Stichleitungen 10b ableiten, um die Kolbenkühlung oder eine andere Innenkühlung durchzuführen.
  • Um eine zuverlässige Ölkontrolle sicherzustellen, gibt es eine die Kühlölpumpe 4 umgehende Rückleitung 14, die ein druckge­steuertes Sperrventil 15 aufweist. Eine Steuerleitung 16 verbindet das Sperrventil 15 mit der Druckseite der Schmieröl­pumpe 3, so daß die Rückleitung 14 in Abhängigkeit vom Schmier­öldruck geöffnet oder geschlossen wird. Sobald daher der Motor stillsteht und der Schmieröldruck unter einen bestimmten Grenzwert absinkt, öffnet das Sperrventil 15 die Rückleitung 14 und das Kühlöl aus dem Kühlkreislauf 4 strömt rasch in den Ölsumpf 7 zurück, so daß unmittelbar nach Motorstillstand die vorhandene Ölmenge kontrollierbar ist. Wird der Motor gezündet, steigt der Schmieröldruck wieder über den Grenzwert an, das Sperrventil 15 sperrt die Rückleitung 14 und das Kühlöl wird ordnungsgemäß durch den Kühlölkreislauf 4 gepumpt.
  • Das Sperrventil 15 kann vorteilhafterweise auch in Abhängigkeit von einer charakteristischen Motortemperatur, z. B. der Zylin­derkopftemperatur betätigt werden, so daß unter einer Grenztem­peratur die Kühlung unterbleibt und ein rasches Warmlaufen des Motors erreicht wird. Ist das Sperrventil 15 dabei als Regel­ventil ausgebildet, läßt sich der Kühlölkreislauf 4 in seiner Kühlwirkung sogar an unterschiedliche Betriebszustände gezielt anpassen, was die Verbrennungsverhältnisse, den Kraftstoffver­brauch, Verschleißerscheinungen u.dgl. günstig beeinflußt.
  • Durch die erfindungsgemäße Führung des Kühlöl- und Schmieröl­kreislaufes, wobei vor allem nur ein Teil der Kühlölmenge in den Schmierölkreislauf übergeht und kühles Schmieröl des Schmierölkreislaufes für eine zusätzliche Kühlung wärme­technisch kritischer Motorbereiche verwendet wird, kommt es auf rationelle Weise zu einer funktionstüchtigen Hochtemperatur­kühlung des Verbrennungsmotors.

Claims (9)

1. Ölgekühlter Verbrennungsmotor (1), mit einer einen gemein­samen Ölsumpf (7) für einen Schmier- und einen Kühlölkreislauf (2, 4) bildenden Ölwanne (6), wobei die Ölkreisläufe (2, 4) eigene Ölpumpen (3, 5) aufweisen und der ein Ölfilter (9) und einen Ölkühler (8) umfassende Schmierölkreislauf (2) an den vom Ölsumpf (7) ausgehenden Kühlölkreislauf (4) angeschlossen ist, dadurch gekennzeichnet, daß vom Schmierölkreislauf (2) nach dem Ölkühler (8) ein Nebenkreislauf (10) abzweigt, der als zusätz­licher Kühlkreislauf zu kühlungsintensiven Motorbereichen führt.
2. Verbrennungsmotor nach Anspruch 1, dadurch gekennzeichnet, daß der Nebenkreislauf (10) Außenleitungen (10a) zur Oberflä­chenkühlung, beispielsweise der Stegbereiche eines Zylinderkop­fes und/oder Innenleitungen (10b) zur Innenkühlung, beispiels­weise vom Hauptschmierölkanal (2b) abzweigende Stichleitungen (10b) zur Kolbenkühlung, umfaßt.
3. Verbrennungsmotor nach Anspruch 1 oder 2, dadurch gekenn­zeichnet, daß die Schmierölpumpe (3) dem Ölkühler (8) nach- und der Abzweigung des Nebenkreislaufes (10) vorgeordnet ist.
4. Verbrennungsmotor nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Kühlölpumpe (5) eine größere Ölmenge fördert als die Schmierölpumpe (3) und die Über­schußmenge vor dem Ölkühler (8) ab- und unter Umgehung des Schmierölkreislaufes (2) in den Ölsumpf (7) zurückleitbar ist.
5. Verbrennungsmotor nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das dem Ölkühler (8) nachgeordnete Ölfilter (9) bzw. ein Steigrohr im Höhenbereich des Ölkühler­zuflusses (8a) liegt.
6. Verbrennungsmotor nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der Kühlölkreislauf (4) eine die Kühlölpumpe (5) umgehende Rückleitung (14) mit einem druck- und/oder temperaturgesteuerten Sperrventil (15) aufweist.
7. Verbrennungsmotor nach Anspruch 6, dadurch gekennzeichnet, daß das Sperrventil (15) über eine Steuerleitung (16) mit der Druckseite der Schmierölpumpe (3) verbunden ist und bei Absin­ken des Schmieröldruckes unter einen Grenzwert öffnet.
8. Verbrennungsmotor nach Ansprüche 6, dadurch gekennzeichnet, daß das Sperrventil (15) in Abhängigkeit von einer Motorkenn­temperatur, z. B. der Zylinderkopftemperatur, betätigbar ist und erst bei Ansteigen dieser Temperatur über einen Grenzwert schließt.
9. Verbrennungsmotor nach Anspruch 8, dadurch gekennzeich­net, daß das Sperrventil (15) als Regelventil ausgebildet und in Abhängigkeit von zumindest einer Motorkenntemperatur an­steuerbar ist.
EP89890103A 1988-04-29 1989-04-10 Ölgekühlter Verbrennungsmotor Expired - Lifetime EP0340205B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT1103/88 1988-04-29
AT110388 1988-04-29

Publications (3)

Publication Number Publication Date
EP0340205A2 true EP0340205A2 (de) 1989-11-02
EP0340205A3 EP0340205A3 (en) 1990-03-21
EP0340205B1 EP0340205B1 (de) 1992-05-13

Family

ID=3506658

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89890103A Expired - Lifetime EP0340205B1 (de) 1988-04-29 1989-04-10 Ölgekühlter Verbrennungsmotor

Country Status (8)

Country Link
US (1) US4926800A (de)
EP (1) EP0340205B1 (de)
JP (1) JPH066890B2 (de)
AT (1) ATE76160T1 (de)
CA (1) CA1324040C (de)
DE (1) DE58901374D1 (de)
RU (1) RU1802852C (de)
YU (1) YU60389A (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0636772A1 (de) * 1993-07-27 1995-02-01 Klöckner-Humboldt-Deutz Aktiengesellschaft Brennkraftmaschine
DE4442221A1 (de) * 1994-11-26 1996-05-30 Kloeckner Humboldt Deutz Ag Ölgekühlte Hubkolben-Brennkraftmaschine
EP1050569A1 (de) * 1999-05-06 2000-11-08 Filip Vandeputte Flüssiges Kühlmittel für Brennkraftmaschinen

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH046526U (de) * 1990-04-27 1992-01-21
US5072705A (en) * 1991-02-21 1991-12-17 Kenneth Overman Rotary engine and method
US5669335A (en) * 1994-09-14 1997-09-23 Thomas J. Hollis System for controlling the state of a flow control valve
US5540203A (en) * 1994-10-05 1996-07-30 Ford Motor Company Integrated hydraulic system for automotive vehicle
US5657722A (en) * 1996-01-30 1997-08-19 Thomas J. Hollis System for maintaining engine oil at a desired temperature
US5522351A (en) * 1995-05-22 1996-06-04 Brunswick Corporation Internal combustion engine temperature control system
IT1308421B1 (it) * 1999-03-11 2001-12-17 Fiat Ricerche Sistema di raffreddamento per un motore a combustione interna.
DE19955302A1 (de) * 1999-11-17 2001-05-23 Deutz Ag Flüssigkeitsgekühlte Brennkraftmaschine
US6536381B2 (en) 2001-02-20 2003-03-25 Volvo Trucks North America, Inc. Vehicle lubricant temperature control
CN1996198B (zh) * 2005-12-31 2010-06-16 比亚迪股份有限公司 一种改进的发动机试验台架机油恒温控制方法及系统
US8375917B1 (en) 2009-07-23 2013-02-19 Gene Neal Engine oil cooler
RU2484277C2 (ru) * 2011-07-21 2013-06-10 Открытое акционерное общество "Автодизель" (Ярославский моторный завод) Двигатель внутреннего сгорания
DE102011084632B4 (de) * 2011-10-17 2015-03-05 Ford Global Technologies, Llc Verfahren zum Erwärmen einer Brennkraftmaschine und Brennkraftmaschine zur Durchführung eines derartigen Verfahrens
US8387571B2 (en) 2011-11-04 2013-03-05 Ford Global Technologies, Llc Oil delivery system
US10550754B2 (en) 2017-05-15 2020-02-04 Polaris Industries Inc. Engine
US10428705B2 (en) * 2017-05-15 2019-10-01 Polaris Industries Inc. Engine
USD904227S1 (en) 2018-10-26 2020-12-08 Polaris Industries Inc. Headlight of a three-wheeled vehicle
DE102019212801A1 (de) * 2019-08-27 2021-03-04 Ford Global Technologies, Llc Flüssigkeitsgekühlte Brennkraftmaschine mit Ölkreislauf und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
CN113847140B (zh) * 2021-09-08 2023-03-03 东风汽车集团股份有限公司 一种增程器润滑冷却系统、混动汽车和控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR563752A (fr) * 1922-06-22 1923-12-13 Perfectionnements apportés aux procédés de refroidissement et de graissage des moteurs thermiques
FR1088134A (fr) * 1952-12-04 1955-03-03 Daimler Benz Ag Dispositif de lubrification pour moteurs à combustion interne avec un réfrigérateur de lubrifiant
FR2415198A1 (fr) * 1978-01-19 1979-08-17 Honda Motor Co Ltd Dispositif pour le refroidissement de l'huile d'un moteur
US4703726A (en) * 1985-08-08 1987-11-03 Honda Giken Kogyo Kabushiki Kaisha Lubricating system for engine
DE3633093A1 (de) * 1986-09-29 1988-03-31 Kloeckner Humboldt Deutz Ag Anordnung zur schmierung und kuehlung einer brennkraftmaschine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3485324A (en) * 1967-11-07 1969-12-23 Allis Chalmers Mfg Co Piston cooling system
DE2810980A1 (de) * 1978-03-14 1979-09-27 Daimler Benz Ag Oelgekuehlter verbrennungsmotor
DE2847057A1 (de) * 1978-10-28 1980-05-08 Daimler Benz Ag Verbrennungskraftmaschine mit kuehlsystem
DE3509095A1 (de) * 1984-04-11 1985-10-17 Volkswagenwerk Ag, 3180 Wolfsburg Anordnung zur kuehlung und schmierung einer hubkolben-brennkraftmaschine
JPH07116937B2 (ja) * 1986-05-30 1995-12-18 スズキ株式会社 シリンダヘッド冷却方法
DE3618794A1 (de) * 1986-06-04 1987-12-10 Daimler Benz Ag Oelgekuehlte brennkraftmaschine
US4708095A (en) * 1986-06-16 1987-11-24 Deere & Company Combined engine cooling and lube system
DE3633576A1 (de) * 1986-10-02 1988-04-07 Kloeckner Humboldt Deutz Ag Brennkraftmaschine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR563752A (fr) * 1922-06-22 1923-12-13 Perfectionnements apportés aux procédés de refroidissement et de graissage des moteurs thermiques
FR1088134A (fr) * 1952-12-04 1955-03-03 Daimler Benz Ag Dispositif de lubrification pour moteurs à combustion interne avec un réfrigérateur de lubrifiant
FR2415198A1 (fr) * 1978-01-19 1979-08-17 Honda Motor Co Ltd Dispositif pour le refroidissement de l'huile d'un moteur
US4703726A (en) * 1985-08-08 1987-11-03 Honda Giken Kogyo Kabushiki Kaisha Lubricating system for engine
DE3633093A1 (de) * 1986-09-29 1988-03-31 Kloeckner Humboldt Deutz Ag Anordnung zur schmierung und kuehlung einer brennkraftmaschine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0636772A1 (de) * 1993-07-27 1995-02-01 Klöckner-Humboldt-Deutz Aktiengesellschaft Brennkraftmaschine
DE4325141A1 (de) * 1993-07-27 1995-02-02 Kloeckner Humboldt Deutz Ag Brennkraftmaschine
DE4442221A1 (de) * 1994-11-26 1996-05-30 Kloeckner Humboldt Deutz Ag Ölgekühlte Hubkolben-Brennkraftmaschine
EP1050569A1 (de) * 1999-05-06 2000-11-08 Filip Vandeputte Flüssiges Kühlmittel für Brennkraftmaschinen

Also Published As

Publication number Publication date
RU1802852C (ru) 1993-03-15
US4926800A (en) 1990-05-22
JPH066890B2 (ja) 1994-01-26
YU60389A (sh) 1993-10-20
DE58901374D1 (de) 1992-06-17
CA1324040C (en) 1993-11-09
EP0340205B1 (de) 1992-05-13
ATE76160T1 (de) 1992-05-15
EP0340205A3 (en) 1990-03-21
JPH01313614A (ja) 1989-12-19

Similar Documents

Publication Publication Date Title
EP0340205B1 (de) Ölgekühlter Verbrennungsmotor
EP0249776B1 (de) Kühl- und Schmiersystem eines Verbrennungsmotors
DE3407521C1 (de) Fluessigkeitskuehlsystem fuer eine aufgeladene Brennkraftmaschine
EP0636772B1 (de) Brennkraftmaschine
DE2704778A1 (de) Vorrichtung zur regelung der temperatur eines mit vorverdichtung gespeisten dieselmotors
DE1476207A1 (de) Mit Schwerkraftstoff gespeiste Gleichdruckbrennkraftmaschine
DD149920A5 (de) Heizeinrichtung
DE2631748A1 (de) Oelkuehlungssystem fuer ein gasturbinentriebwerk
DE2847057A1 (de) Verbrennungskraftmaschine mit kuehlsystem
DE2314301A1 (de) Umlaufkuehlvorrichtung fuer kolbenbrennkraftmaschinen
DE112015000115B4 (de) Abgasrückführungsventil, System zum Auftauen von Abgasrückführungsventil und Motor
DE4407984A1 (de) Kühlsystem für eine Hubkolbenbrennkraftmaschine
DE3618794C2 (de)
DE648930C (de) Brennkraftmaschine mit OElkuehlung
DE10212672A1 (de) Verfahren zum Betrieb einer flüssigkeitsgekühlten Brennkraftmaschine
DE3509095A1 (de) Anordnung zur kuehlung und schmierung einer hubkolben-brennkraftmaschine
DE803449C (de) Umlaufkuehlung fuer Brennkraftmaschinen
DE871659C (de) Aufgeladene Brennkraftmaschine mit zwei voneinander getrennten Kuehlwasserkreislaeufen
DE102004030153A1 (de) Kühlkreislauf für eine Brennkraftmaschine
DE2810980A1 (de) Oelgekuehlter verbrennungsmotor
DE1476370A1 (de) Kuehlanlage fuer eine Brennkraftmaschine mit Kuehlwassermantel
DE4400201A1 (de) Flüssigkeitsgekühlte Brennkraftmaschine mit Schmiermittelkühlung
DE3126534C2 (de)
DE674780C (de) Vorrichtung zum schnellen Wiedererwaermen des Schmieroeles in Brennkraftmaschinen
DE3620903A1 (de) Schmieroelkreislauf einer brennkraftmaschine mit einer aufteilung in einen schmieroelkreislauf und einen rueckkuehlkreislauf

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT DE FR GB IT NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19900214

17Q First examination report despatched

Effective date: 19910425

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE FR GB IT NL SE

REF Corresponds to:

Ref document number: 76160

Country of ref document: AT

Date of ref document: 19920515

Kind code of ref document: T

REF Corresponds to:

Ref document number: 58901374

Country of ref document: DE

Date of ref document: 19920617

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19940430

Year of fee payment: 6

EAL Se: european patent in force in sweden

Ref document number: 89890103.8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19951101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19951101

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990315

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990324

Year of fee payment: 11

Ref country code: AT

Payment date: 19990324

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19990325

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990326

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000410

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000411

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000410

EUG Se: european patent has lapsed

Ref document number: 89890103.8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050410