EP0320404B1 - Wendeltyp-Antenne und Verfahren zu ihrer Herstellung - Google Patents

Wendeltyp-Antenne und Verfahren zu ihrer Herstellung Download PDF

Info

Publication number
EP0320404B1
EP0320404B1 EP88403145A EP88403145A EP0320404B1 EP 0320404 B1 EP0320404 B1 EP 0320404B1 EP 88403145 A EP88403145 A EP 88403145A EP 88403145 A EP88403145 A EP 88403145A EP 0320404 B1 EP0320404 B1 EP 0320404B1
Authority
EP
European Patent Office
Prior art keywords
sleeve
zone
radiating
type antenna
strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88403145A
Other languages
English (en)
French (fr)
Other versions
EP0320404A1 (de
Inventor
Albert Auriol
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National dEtudes Spatiales CNES
Original Assignee
Centre National dEtudes Spatiales CNES
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National dEtudes Spatiales CNES filed Critical Centre National dEtudes Spatiales CNES
Priority to AT88403145T priority Critical patent/ATE86413T1/de
Publication of EP0320404A1 publication Critical patent/EP0320404A1/de
Application granted granted Critical
Publication of EP0320404B1 publication Critical patent/EP0320404B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q11/00Electrically-long antennas having dimensions more than twice the shortest operating wavelength and consisting of conductive active radiating elements
    • H01Q11/02Non-resonant antennas, e.g. travelling-wave antenna
    • H01Q11/08Helical antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support

Definitions

  • the invention relates to a helix-type antenna and its manufacturing method.
  • the propeller type antennas have the advantage of radiating an electromagnetic wave in good quality circular polarization over a wide coverage and with an emission lobe possibly formed.
  • this type of antenna generally comprises four radiating strands which it is necessary to supply according to laws of adequate amplitude and phase.
  • the four radiating strands are wound on a circular sleeve with a pitch p, along a guideline of the sleeve, corresponding to an angular offset of ⁇ 2 . rd and each strand is supplied from a signal having a relative successive angular phase shift equal to ⁇ 2 .
  • the radiating strands noted successively 2, 3, 4 are supplied with signals of the same amplitude A but of successive phase relative to -90 ° , - 180 °, - 270 °.
  • the excitation is done firstly through a hybrid coupler which separates the energy into two equal-amplitude channels and phase shifted relative to each other by 90 ° .
  • a double balun housed in the axis of the antenna, makes it possible to pass, for each of the two channels, from the coaxial line to the diametrically opposite strands. The latter are therefore supplied by equal amplitudes and in phase opposition.
  • Using a compensated balun allows the operating frequency range of the antenna to be adjusted.
  • a hybrid coupler makes it possible to separate the energy into two equal-amplitude channels and in phase quadrature.
  • the energy is then conveyed to the supply point by two of the radiating strands which are, in fact, made up of coaxial cables then it is distributed at equal amplitudes and in phase opposition between the diametrically opposite strands, some connected to the cores of the coaxial, the others formed by the external part of the shielding of the coaxials themselves.
  • the coaxial supply line is split at its end to constitute a balun.
  • the distribution of the energy in quadrature between the two bi-helices is carried out by adjusting the length, therefore the reactance, of the radiating strands.
  • the four radiating strands are supplied from a distributor.
  • the other end of the strands, relative to the end constituting the feed point is either in open circuit with then a length of strands equal to an odd whole number of quarter wavelengths, or a short circuit with a length of strands equal to an integer number of half-wavelengths.
  • a true open circuit is impossible to achieve, unlike a good short circuit.
  • the four strands are generally short-circuited together at the end opposite to the supply point, this short-circuit being produced in the form of a cross as shown in FIG. 1f.
  • the object of the present invention is to remedy the aforementioned drawbacks by using a particularly simple helical antenna structure.
  • Another object of the present invention is the implementation of a helix type antenna of particularly reduced weight and size.
  • Another object of the present invention is the implementation of a helix type antenna with very high reproducibility of radiation pattern characteristics.
  • Another object of the present invention is finally the implementation of a method of manufacturing a helix type antenna, particularly simple and very easily adaptable on an industrial scale with very high reproducibility and automation qualities.
  • the antenna of the helix type object of the invention, comprises at least two radiating strands wound in a helix according to a form of revolution. It is remarkable in that it comprises a supply circuit, of said radiating strands, constituted by a transmission line of the ribbon line type ensuring both the power distribution function and the adaptation of the radiating strands of the 'antenna.
  • the method of manufacturing a helix-type antenna in accordance with the subject of the invention is remarkable in that it consists in cutting a flexible double-sided printed circuit sheet with the corresponding dimensions of a sleeve of revolution, on said printed circuit, to delimit a first zone intended to contain said ribbon line and a second zone intended to contain said radiating strands, on a first face of the printed circuit, to remove metallization at said second zone, said metallization being maintained over the whole of the first zone to constitute said reference propagation plane, on the second face of said printed circuit, to be formed by removal of material, at the level of the second zone, on the one hand , from said metallization in defined zones, said radiating strands and said annular conductive zone, and at the level of the first zone on the other hand, a conductive zone forming with said reference propagation plane said strip line, for winding the sheet of printed circuit, side of the reference propagation plane or strand side on the sleeve, the radiating strands being suitably oriented.
  • the invention finds application in the manufacture and realization of antennas of the propeller type used in ground / satellite telecommunication links with scrolling or mobiles / geostationary relays, and in radiolocation.
  • the antenna object of the invention is a helix type antenna comprising at least two radiating strands wound in a helix according to a form of revolution.
  • the helix type antenna according to the invention comprises at least two radiating strands denoted 11, 12, 13 or 14 wound in a helix in a circular shape around a sleeve 1 for example.
  • FIG. 2a which shows the antenna in developed form according to a particular embodiment of the invention, there is shown in dotted lines the sleeve 1 on which the antenna is normally wound to constitute the antenna actually obtained as shown in Figure 2b.
  • the antenna of the propeller type which is the subject of the invention, it comprises a supply circuit denoted 2 by the radiating strands.
  • This circuit consists of a transmission line of the ribbon line type denoted 20.
  • the ribbon line 20 performs both the power distribution function and the impedance matching of the radiating strands of the antenna.
  • the helix-type antenna object of the invention comprises four radiating strands denoted 11, 12, 13 and 14.
  • Each radiating strand is constituted by a metallized zone in shape of strip wound in a helix on the lateral surface of the sleeve 1.
  • Each strip constituting the radiating strands 11, 12, 13 and 14 is spaced from the next along a guideline of the sleeve 1 by a determined distance P.
  • the radiating strands are inclined at an angle ⁇ with respect to any guideline of the sleeve 1 and are thus wound in a helix.
  • the transmission line 20 constituting the latter can advantageously be constituted by a meander line denoted 200 in FIGS. 2a and 2b.
  • Each radiating strand 11, 12 13 and 14 is at its supply point denoted 110, 120, 130, 140 or entry end, connected in electrical contact with the strip constituting the meander line 200.
  • the electrical distance on the meandering line between two entry points of two consecutive radiating strands, entry points such as 110, 120, 130 and 140 is equal at an odd multiple of quarter wavelength of the transmit-receive signal propagating in the ribbon line under consideration.
  • each feed point or entry point 110, 120, 130 and 140 of the radiating strands 11, 12, 13 and 14 is supplied by signals of equal amplitude, respectively phase-shifted by ⁇ / 2 rd, that is to say in the supply conditions as shown in FIG. 1a.
  • the adaptation function of the radiating strands can advantageously be achieved by the use of line sections 201, 202, 203, 204, of variable width, thus constituting the line 20, as shown in FIG. 2d, and by the sections 110 to 112 , 120 to 122, 130 to 132 and 140 to 142 of the radiating strands.
  • the end of the strands opposite the input ends 110, 120, 130, 140, end noted 111, 121, 131, 141 in FIGS. 2a and 2b is advantageously connected in short circuit to the same annular conductive zone 100.
  • one end of one of the radiating strands 111, 121, 131, 141 is necessarily short-circuited, that is to say with an amplitude of field electric zero and all opposite ends 111, 121, 131, 141 by the connection to the conductive area, are thus short-circuited.
  • the annular conductive zone 100 thus imposes a short circuit on the end of the four radiating strands 11, 12, 13 and 14.
  • the ribbon line 200 constituting the supply circuit 2 comprises a sheet of dielectric material 2000, of which a first face intended to be applied to the lateral surface of the sleeve 1 is entirely metallized, to constitute a reference propagation plane denoted 2001.
  • a second face of the sheet of dielectric material 2000 opposite the first face comprises a metal strip 2002, forming with the first metallized face 2001, the ribbon line 20.
  • the supply circuit 2 constituted by a ribbon line 20, radiating strands 11, 12, 13 and 14 and the annular conductive zone 100 short circuits are formed on the same sheet of dielectric material.
  • FIG. 2b shows a front view of the antenna obtained after mounting, that is to say after winding of the sheet of dielectric material 2000, provided with its various conductive zones around the sleeve 1.
  • FIGS. 3 and 4 A method of producing a helix-type antenna in accordance with the object of the invention will be described in conjunction with FIGS. 3 and 4, and in particular with FIG. 3 at points a, b, c, d, of that -this.
  • the production method may consist, as shown in point a) of FIG. 3, of cutting a sheet 10 of printed circuit flexible, double-sided, the double-sided being denoted 101, 102 and provided with a metallization, with the corresponding dimensions for a cylindrical sleeve 1 of given dimension.
  • the printed circuit sheet may be constituted by a sheet of high quality, of which the sheet of dielectric material 2000 consists for example of a sheet of plastic material such as kapton or polytetrafluoroethylene reinforced with glass.
  • the method can then consist in delimiting on the printed circuit sheet 10 a first zone denoted I intended to contain said ribbon line and a second zone denoted II intended to contain the radiant strands.
  • the embodiment then consists in removing on a first face of the printed circuit 10, in particular at the level of the second zone denoted II, the metallization 101 for example, this same metallization 101 being maintained over the entire first zone of the same face to constitute the reference propagation plane noted 2001.
  • the embodiment then consists in forming by removing material on the second face of the printed circuit 10 at the level of the second zone on the one hand, of the metallization 102, according to determined zones, the radiating strands 11, 12, 13 and 14 and the annular conductive zone 100.
  • a conductive zone is then formed constituting with the reference propagation plane 2001, the ribbon line 20.
  • the aforementioned conductive zone can then be constituted by a conductive zone denoted 200 constituting the meandering line.
  • the sheet thus obtained in FIG. 3c, provided with its various conductive zones, is then wound on the sleeve 1, the side of the reference propagation plane 2001 or the strand side being pressed against the lateral surface of the sleeve 1.
  • the sleeve can then be withdrawn or not.
  • the radiating strands 11, 12, 13 and 14 are suitably oriented.
  • the step consisting in cutting the flexible printed circuit sheet 10 double-sided with the corresponding dimensions of the cylindrical sleeve 1, can advantageously be carried out by stamping from an appropriate cutting tool.
  • the cutting of the double-sided printed circuit sheet 10, with the dimensions corresponding to those of the sleeve 1 may consist, for example, of cutting the aforementioned sheet along a contour whose shape corresponds to that of a rectangle whose length L corresponds to the perimeter of the section of the sleeve 1, and whose width 1 has a determined value.
  • this shape includes a parallelogram superimposed on the aforementioned rectangle.
  • This parallelogram includes a small side noted a, which corresponds to the length L of the aforementioned rectangle, and whose height h is such that the width 1 of the rectangle increased by the height h of the parallelogram is equal to the height H of the sleeve 1, thus that it has been represented in FIG.
  • the sleeve 1 of substantially corresponding dimension being represented in line with the cut out printed circuit sheet.
  • the angle of the parallelogram corresponds to the helical winding angle of the radiating strands on the sleeve 1, the radiating strands 11, 12, 13 and 14, then being formed, as described above, parallel to the corresponding sides of the above parallelogram.
  • a suitable connector 30 can then be put in place at the end 25 of the line 20 by a conventional technique, such as screwing, clamping, welding or gluing.
  • the propeller type antenna object of the invention may also, as shown in Figures 5a and 5b, include at least one strand radiating 11, 12, 13, 14 wound in a helix according to a form of conical revolution.
  • the process which is the subject of the invention in its various stages of etching the supply circuit 200, the radiating strands 11, 12, 13, 14 and the possible final short circuit 100 can, of course, be applied to any antenna of developable shape and, in particular, with conical helix antennas.
  • the production method differs from that of cylindrical helix antennas only in the particular shape of the developed circuit, and in the shape in which it is wound.
  • a helix type antenna and its embodiment on an industrial scale have thus been described, which is particularly advantageous. Indeed, due to its design, the antenna object of the invention has a very high degree of reproducibility in its mechanical and electromagnetic characteristics. In addition, due to the design of the propeller-type antenna that is the subject of the invention, an implementation and production method has been defined, which allows production of this type of antenna on an industrial scale with very high reliability criteria.

Claims (12)

  1. Wendeltyp-Antenne mit zumindest zwei Strahlungselementen (11, 12, 13, 14), die gemäß einer Rotationsform (1) schraubenförmig gewickelt sind, dadurch gekennzeichnet, daß die besagte Antenne einen Speisestromkreis (2) für diese Strahlungselemente aufweist, der durch eine Transmissionsleitung vom Band-Leitungstyp (20) gebildet ist, die gleichzeitig die Funktion der Aufteilung der Speisung und der Anpassung der Strahlungselemente der Antenne sicherstellt.
  2. Antenne nach Anspruch 1, dadurch gekennzeichnet, daß die Rotationsform (1) zylindrisch oder konisch ist.
  3. Antenne nach Anspruch 2, dadurch gekennzeichnet, daß sie vier Strahlungselemente (11, 12, 13, 14) aufweist, von denen jedes von einer metallisierten Zone in der Form eines schraubenförmig auf die seitliche Oberfläche der Form (Hülse) aufgewickelten Bandes gebildet ist, wobei jedes Band von dem darauf folgenden Band gemäß einer richtungsgebenden Linie dieser Form um eine bestimmte Distanz p beabstandet ist und wobei die den Speisestromkreis bildende Transmissionsleitung (20) durch eine mäanderförmige Leitung (200) gebildet ist.
  4. Antenne nach Anspruch 3, dadurch gekennzeichnet, daß jedes Strahlungselement (11, 12, 13, 14) auf dem Niveau seines Speisungspunktes (110, 120, 130, 140) oder Endpunktes des Eingangs in elektrischem Kontakt mit dem die mäanderförmige Leitung bildenden Band (200) ist, wobei der elektrische Abstand entlang der Leitung zwischen zwei Eingangspunkten (110, 120, 130, 140) zweier aufeinanderfolgender Strahlungselemente gleich einem ungeradzahligen Vielfachen des vierten Teiles der Wellenlänge des Sende-/Empfangs-Signals ist.
  5. Antenne nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Endpunkte (111, 121, 131, 141) der Strahlungselemente, die den Endpunkten der Eingänge (110, 120, 130, 140) gegenüberliegen, mit derselben leitenden ringförmigen Zone (100) einen Kurzschluß bildend verbunden sind.
  6. Antenne nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die den Speisestromkreis bildende Band-Leitung (200) eine Folie aus einem dielektrischen Material umfaßt, von der eine erste auf die seitliche Oberfläche der Form (Hülse) aufzubringende Seite vollständig metallisiert ist, um die Referenzausbreitungsebene (2001) zu bilden, und von der eine zweite, der ersten Seite gegenüberliegende Seite ein metallisches Band (2002) aufweist, das mit der ersten metallisierten Seite (2001) die Band-Leitung bildet.
  7. Antenne nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der von einer Band-Leitung (20) gebildete Speisestromkreis, die Strahlungselemente (11, 12, 13, 14) und die kurzgeschlossene ringförmige leitende Zone (100) von derselben Folie aus dielektrischem Material gebildet sind.
  8. Verfahren zur Herstellung einer Antenne nach einem der vorstehenden Ansprüche 1 bis 7, dadurch gekennzeichnet, daß es besteht aus:
    a) Zuschneiden einer Folie (10) aus einer biegsamen doppelseitigen (101, 102) gedruckten Schaltung auf die entsprechenden Abmessungen für eine Rotationsform (1) mit vorgegebener Abmessung,
    b) Abgrenzen einer die Band-Leitung enthaltenden ersten Zone (1) und einer die Strahlungselemente enthaltenden zweiten Zone (II) auf der gedruckten Schaltung,
    c) Entfernen der Metallisierung auf dem Niveau dieser zweiten Zone auf einer ersten Seite der gedruckten Schaltung unter Beibehaltung der Metallisierung auf der gesamten ersten Zone zur Bildung der Referenzausbreitungsebene (2001),
    d) Herstellen der Strahlungselemente und der ringförmigen leitenden Zone durch Entfernen von Material gemäß bestimmten Zonen auf der zweiten Seite der gedruckten Schaltung auf dem Niveau der zweiten Zone der Metallisierung einerseits sowie Herstellen einer leitenden mit der Referenzausbreitungsebene (2001) die Band-Leitung bildenden Zone auf dem Niveau der ersten Zone andererseits,
    e) Aufwickeln der Folie mit der gedruckten Schaltung auf die Form mit der Seite der Referenzausbreitungsebene oder der Seite der Strahlungselemente gegen die Form, wobei die Strahlungselemente in geeigneter Weise orientiert werden.
  9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß die Schritte b) und c) durch Maskierung, Belichtung und durch chemisches Ätzen realisiert werden.
  10. Verfahren nach Anspruch 8 oder 9, dadurch gekennzeichnet, daß der Schritt c) mittels einer einzigen und gleichen Maske realisiert wird.
  11. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß die Form (1) zylindrisch ist, daß das Zuschneiden der Folie mit der doppelseitigen gedruckten Schaltung auf Abmessungen, die denjenigen der Form (1) entsprechen, entlang einer Kontur erfolgt, deren Form derjenigen eines Rechtecks entspricht, oberhalb dessen ein Parallelogramm angeordnet ist, wobei die Länge (L) des Rechtsecks dem Umfang des Querschnittes der Form (1) entspricht und seine Breite (l) einen vorgegebenen Wert hat, und wobei die kleine Seite a des Parallelogramms der Länge (L) des vorstehenden Rechtecks entspricht und seine Höhe (h) so bemessen ist, daß die Breite (l) des Rechtecks vermehrt um die Höhe (h) des Parallelogramms gleich der Höhe (H) der Form ist, wobei der Winkel (α) des Parallelogramms dem Winkel (α) der schraubenförmigen Wicklung der Strahlungselemente entspricht.
  12. Verfahren nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, daß die besagte Form (1) konisch ist.
EP88403145A 1987-12-10 1988-12-09 Wendeltyp-Antenne und Verfahren zu ihrer Herstellung Expired - Lifetime EP0320404B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88403145T ATE86413T1 (de) 1987-12-10 1988-12-09 Wendeltyp-antenne und verfahren zu ihrer herstellung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8717218 1987-12-10
FR8717218A FR2624656B1 (fr) 1987-12-10 1987-12-10 Antenne de type helice et son procede de realisation

Publications (2)

Publication Number Publication Date
EP0320404A1 EP0320404A1 (de) 1989-06-14
EP0320404B1 true EP0320404B1 (de) 1993-03-03

Family

ID=9357724

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88403145A Expired - Lifetime EP0320404B1 (de) 1987-12-10 1988-12-09 Wendeltyp-Antenne und Verfahren zu ihrer Herstellung

Country Status (8)

Country Link
US (1) US5134422A (de)
EP (1) EP0320404B1 (de)
JP (1) JPH0758858B2 (de)
AT (1) ATE86413T1 (de)
CA (1) CA1291560C (de)
DE (1) DE3878862T2 (de)
ES (1) ES2038328T3 (de)
FR (1) FR2624656B1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5909196A (en) * 1996-12-20 1999-06-01 Ericsson Inc. Dual frequency band quadrifilar helix antenna systems and methods
US5920292A (en) * 1996-12-20 1999-07-06 Ericsson Inc. L-band quadrifilar helix antenna
US6181297B1 (en) 1994-08-25 2001-01-30 Symmetricom, Inc. Antenna
US6300917B1 (en) 1999-05-27 2001-10-09 Sarantel Limited Antenna

Families Citing this family (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2654554B1 (fr) * 1989-11-10 1992-07-31 France Etat Antenne en helice, quadrifilaire, resonnante bicouche.
EP0465658B1 (de) * 1990-01-08 1996-10-16 Toyo Communication Equipment Co. Ltd. Wendelantenne mit geteilter vierdrahtwicklung und verfahren zu deren herstellung
JPH0426203A (ja) * 1990-05-21 1992-01-29 Furuno Electric Co Ltd ヘリカルアンテナ
GB2246910B (en) * 1990-08-02 1994-12-14 Polytechnic Electronics Plc A radio frequency antenna
US5198831A (en) * 1990-09-26 1993-03-30 501 Pronav International, Inc. Personal positioning satellite navigator with printed quadrifilar helical antenna
US5559524A (en) * 1991-03-18 1996-09-24 Hitachi, Ltd. Antenna system including a plurality of meander conductors for a portable radio apparatus
US5343173A (en) * 1991-06-28 1994-08-30 Mesc Electronic Systems, Inc. Phase shifting network and antenna and method
JP2717741B2 (ja) * 1991-12-16 1998-02-25 シャープ株式会社 4線式ヘリカルアンテナ
JP2719857B2 (ja) * 1991-07-11 1998-02-25 シャープ株式会社 4線式バックファイヤヘリカルアンテナ
US5346300A (en) * 1991-07-05 1994-09-13 Sharp Kabushiki Kaisha Back fire helical antenna
US5349365A (en) * 1991-10-21 1994-09-20 Ow Steven G Quadrifilar helix antenna
US5541617A (en) * 1991-10-21 1996-07-30 Connolly; Peter J. Monolithic quadrifilar helix antenna
WO1993022804A1 (en) * 1992-04-24 1993-11-11 Industrial Research Limited Steerable beam helix antenna
US5349362A (en) * 1992-06-19 1994-09-20 Forbes Mark M Concealed antenna applying electrically-shortened elements and durable construction
US5485170A (en) * 1993-05-10 1996-01-16 Amsc Subsidiary Corporation MSAT mast antenna with reduced frequency scanning
JPH07240616A (ja) * 1994-02-28 1995-09-12 Matsushita Electric Ind Co Ltd ヘリカルアンテナ及び無線電話機
US5577026A (en) * 1993-12-28 1996-11-19 Analogic Corporation Apparatus for transferring data to and from a moving device
US6011524A (en) * 1994-05-24 2000-01-04 Trimble Navigation Limited Integrated antenna system
US5635945A (en) * 1995-05-12 1997-06-03 Magellan Corporation Quadrifilar helix antenna
DE69522668T2 (de) * 1995-05-17 2002-06-20 Murata Manufacturing Co Oberflächenmontierbares Antennensystem
US5793338A (en) * 1995-08-09 1998-08-11 Qualcomm Incorporated Quadrifilar helix antenna and feed network
US5838285A (en) * 1995-12-05 1998-11-17 Motorola, Inc. Wide beamwidth antenna system and method for making the same
GB9601250D0 (en) * 1996-01-23 1996-03-27 Symmetricom Inc An antenna
GB9603914D0 (en) * 1996-02-23 1996-04-24 Symmetricom Inc An antenna
FR2746547B1 (fr) * 1996-03-19 1998-06-19 France Telecom Antenne helice a alimentation large bande integree, et procedes de fabrication correspondants
US5872549A (en) * 1996-04-30 1999-02-16 Trw Inc. Feed network for quadrifilar helix antenna
US5990847A (en) * 1996-04-30 1999-11-23 Qualcomm Incorporated Coupled multi-segment helical antenna
US5706019A (en) * 1996-06-19 1998-01-06 Motorola, Inc. Integral antenna assembly for a radio and method of manufacturing
FR2751137B1 (fr) * 1996-07-10 1998-11-06 Centre Nat Etd Spatiales Dispositif d'emission a antenne omnidirectionnelle
US6278414B1 (en) * 1996-07-31 2001-08-21 Qualcomm Inc. Bent-segment helical antenna
US5986620A (en) * 1996-07-31 1999-11-16 Qualcomm Incorporated Dual-band coupled segment helical antenna
JPH10145125A (ja) * 1996-09-10 1998-05-29 Murata Mfg Co Ltd アンテナ装置
US6184845B1 (en) * 1996-11-27 2001-02-06 Symmetricom, Inc. Dielectric-loaded antenna
US5896113A (en) * 1996-12-20 1999-04-20 Ericsson Inc. Quadrifilar helix antenna systems and methods for broadband operation in separate transmit and receive frequency bands
US6025816A (en) * 1996-12-24 2000-02-15 Ericsson Inc. Antenna system for dual mode satellite/cellular portable phone
GB2322011A (en) * 1997-02-04 1998-08-12 Ico Services Ltd Antenna and fabrication method
FR2759814B1 (fr) * 1997-02-14 1999-04-30 Dassault Electronique Elements d'antenne hyperfrequence en helice
JP3314654B2 (ja) * 1997-03-14 2002-08-12 日本電気株式会社 ヘリカルアンテナ
CA2284673A1 (en) * 1997-03-27 1998-10-08 Qualcomm Incorporated An antenna and a feed network for an antenna
US6184844B1 (en) * 1997-03-27 2001-02-06 Qualcomm Incorporated Dual-band helical antenna
JP3189735B2 (ja) * 1997-05-08 2001-07-16 日本電気株式会社 ヘリカルアンテナ
US5943027A (en) * 1997-10-03 1999-08-24 Motorola, Inc. Telescopic antenna assembly
GB2331630B (en) * 1997-11-20 2001-12-05 Nec Technologies Retractable antenna for a mobile telephone
FI113814B (fi) * 1997-11-27 2004-06-15 Nokia Corp Monilankaiset helix-antennit
JP3041520B2 (ja) * 1998-01-19 2000-05-15 株式会社トーキン アンテナ
SE514530C2 (sv) 1998-05-18 2001-03-12 Allgon Ab Antennanordning omfattande kapacitivt kopplade radiotorelement och en handburen radiokommunikationsanordning för en sådan antennanordning
SE514568C2 (sv) * 1998-05-18 2001-03-12 Allgon Ab Antennanordning omfattande matningsmedel och en handburen radiokommunikationsanordning för en sådan antennanordning
GB9813002D0 (en) 1998-06-16 1998-08-12 Symmetricom Inc An antenna
US6107977A (en) * 1998-08-19 2000-08-22 Qualcomm Incorporated Helical antenna assembly and tool for assembling same
JP3542505B2 (ja) * 1998-09-28 2004-07-14 三菱電機株式会社 アンテナ給電回路
GB9828768D0 (en) 1998-12-29 1999-02-17 Symmetricom Inc An antenna
GB9902765D0 (en) 1999-02-08 1999-03-31 Symmetricom Inc An antenna
JP2000341024A (ja) * 1999-05-13 2000-12-08 K Cera Inc ヘリカルアンテナ、その製造装置及び製造方法
KR20010106460A (ko) * 1999-06-29 2001-11-29 다니구찌 이찌로오, 기타오카 다카시 안테나 장치
AU6041700A (en) * 1999-07-01 2001-01-22 Avantego Ab Antenna arrangement and method
JP2001102852A (ja) * 1999-09-29 2001-04-13 Nippon Antenna Co Ltd ヘリカルアンテナ
US6229499B1 (en) 1999-11-05 2001-05-08 Xm Satellite Radio, Inc. Folded helix antenna design
US7039437B2 (en) * 2001-09-17 2006-05-02 Nokia Corporation Internal broadcast reception system for mobile phones
US6559804B2 (en) * 2001-09-28 2003-05-06 Mitsumi Electric Co., Ltd. Electromagnetic coupling type four-point loop antenna
JP2003110337A (ja) * 2001-09-28 2003-04-11 Mitsumi Electric Co Ltd 4点給電ループアンテナ
US6535179B1 (en) 2001-10-02 2003-03-18 Xm Satellite Radio, Inc. Drooping helix antenna
US6816122B2 (en) * 2002-01-29 2004-11-09 Mitsumi Electric Co., Ltd. Four-point feeding loop antenna capable of easily obtaining an impedance match
US6621458B1 (en) 2002-04-02 2003-09-16 Xm Satellite Radio, Inc. Combination linearly polarized and quadrifilar antenna sharing a common ground plane
US6788272B2 (en) * 2002-09-23 2004-09-07 Andrew Corp. Feed network
GB2399948B (en) * 2003-03-28 2006-06-21 Sarantel Ltd A dielectrically-loaded antenna
US7372427B2 (en) * 2003-03-28 2008-05-13 Sarentel Limited Dielectrically-loaded antenna
US7038636B2 (en) * 2003-06-18 2006-05-02 Ems Technologies Cawada, Ltd. Helical antenna
US7233298B2 (en) * 2003-10-30 2007-06-19 Wavetest Systems, Inc. High performance antenna
ES2325618T3 (es) * 2004-06-11 2009-09-10 Ruag Aerospace Sweden Ab Antena helicoidal cuadrifilar.
TWI244237B (en) * 2004-11-12 2005-11-21 Emtac Technology Corp Quadri-filar helix antenna structure
GB2434037B (en) * 2006-01-06 2009-10-14 Antenova Ltd Laptop computer antenna device
US7554509B2 (en) * 2006-08-25 2009-06-30 Inpaq Technology Co., Ltd. Column antenna apparatus and method for manufacturing the same
US20080062060A1 (en) * 2006-09-13 2008-03-13 Junichi Noro Antenna and receiver having the same
JP4766260B2 (ja) * 2006-09-20 2011-09-07 ミツミ電機株式会社 アンテナ装置
FR2916581B1 (fr) * 2007-05-21 2009-08-28 Cnes Epic Antenne de type helice.
US7714795B2 (en) * 2007-08-23 2010-05-11 Research In Motion Limited Multi-band antenna apparatus disposed on a three-dimensional substrate, and associated methodology, for a radio device
FR2920917B1 (fr) * 2007-09-11 2010-08-20 Centre Nat Etd Spatiales Antenne de type helice a brins rayonnants a motif sinusoidal et procede de fabrication associe.
US8106846B2 (en) * 2009-05-01 2012-01-31 Applied Wireless Identifications Group, Inc. Compact circular polarized antenna
US8618998B2 (en) 2009-07-21 2013-12-31 Applied Wireless Identifications Group, Inc. Compact circular polarized antenna with cavity for additional devices
FR2988524B1 (fr) 2012-03-21 2014-03-28 Centre Nat Rech Scient Antenne helice compacte a profil sinusoidal modulant un motif fractal
USD815071S1 (en) * 2012-05-29 2018-04-10 Airgain Incorporated Multi-element antenna
GB2508638B (en) * 2012-12-06 2016-03-16 Harris Corp A dielectrically loaded multifilar antenna with a phasing ring feed
US9899731B1 (en) 2016-09-06 2018-02-20 Aeroantenna Technology, Inc. Octofilar antenna

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1160874A (fr) * 1956-11-21 1958-08-12 Csf Perfectionnements aux antennes directives
US3381371A (en) * 1965-09-27 1968-05-07 Sanders Associates Inc Method of constructing lightweight antenna
CH499888A (fr) * 1967-12-15 1970-11-30 Onera (Off Nat Aerospatiale) Antenne à un seul conducteur enroulé hélicoïdalement de dimensions réduites, et procédé pour sa fabrication
FR1577323A (de) * 1968-02-26 1969-08-08
US3508269A (en) * 1968-05-02 1970-04-21 Us Air Force Active retrodirective antenna array employing spiral elements and tunnel diode amplifiers
US3778839A (en) * 1971-07-30 1973-12-11 Hallicrafters Co Double ridged wave guide feed for signal antenna
US4012744A (en) * 1975-10-20 1977-03-15 Itek Corporation Helix-loaded spiral antenna
US4008479A (en) * 1975-11-03 1977-02-15 Chu Associates, Inc. Dual-frequency circularly polarized spiral antenna for satellite navigation
US4114164A (en) * 1976-12-17 1978-09-12 Transco Products, Inc. Broadband spiral antenna
US4349824A (en) * 1980-10-01 1982-09-14 The United States Of America As Represented By The Secretary Of The Navy Around-a-mast quadrifilar microstrip antenna
JPS5799006A (en) * 1980-12-12 1982-06-19 Nec Corp Helical antenna
JPS5888463A (ja) * 1981-11-20 1983-05-26 Hitachi Ltd 内燃機関用配電器
US4525720A (en) * 1982-10-15 1985-06-25 The United States Of America As Represented By The Secretary Of The Navy Integrated spiral antenna and printed circuit balun
JPS60214602A (ja) * 1984-04-10 1985-10-26 Mitsubishi Electric Corp ブランチラインカツプラ
US4675690A (en) * 1984-05-25 1987-06-23 Revlon, Inc. Conical spiral antenna
JPS6142112U (ja) * 1984-08-21 1986-03-18 日本無線株式会社 4線分数巻ヘリカルアンテナ
US4780723A (en) * 1986-02-21 1988-10-25 The Singer Company Microstrip antenna compressed feed
US4847627A (en) * 1987-09-08 1989-07-11 Lockheed Corporation Compact wave antenna system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6181297B1 (en) 1994-08-25 2001-01-30 Symmetricom, Inc. Antenna
US5909196A (en) * 1996-12-20 1999-06-01 Ericsson Inc. Dual frequency band quadrifilar helix antenna systems and methods
US5920292A (en) * 1996-12-20 1999-07-06 Ericsson Inc. L-band quadrifilar helix antenna
US6300917B1 (en) 1999-05-27 2001-10-09 Sarantel Limited Antenna

Also Published As

Publication number Publication date
JPH01264003A (ja) 1989-10-20
US5134422A (en) 1992-07-28
CA1291560C (fr) 1991-10-29
ATE86413T1 (de) 1993-03-15
FR2624656B1 (fr) 1990-05-18
DE3878862D1 (de) 1993-04-08
DE3878862T2 (de) 1993-06-17
EP0320404A1 (de) 1989-06-14
JPH0758858B2 (ja) 1995-06-21
FR2624656A1 (fr) 1989-06-16
ES2038328T3 (es) 1993-07-16

Similar Documents

Publication Publication Date Title
EP0320404B1 (de) Wendeltyp-Antenne und Verfahren zu ihrer Herstellung
EP0205212B1 (de) Modulare Mikrowellenantenneneinheiten und Antenne mit solchen Einheiten
EP0403910B1 (de) Strahlendes, diplexes Element
EP0123350B1 (de) Flache Mikrowellenantenne mit einer völlig hängenden Mikrostreifengruppe
EP0274074B1 (de) Erreger für die Ausleuchtung einer Übertragungsantenne
EP0108463B1 (de) Strahlelement für orthogonal polarisierte Signale und flache Antennengruppe mit solchen nebeneinandergestellten Elementen
EP1416586B1 (de) Antenne mit einer Filtermaterialanordnung
EP0243289A1 (de) Plattenantenne mit zwei gekreuzten Polarisationen
EP0013222A1 (de) Diodenphasenschieber für Mikrowellen und elektronisch abtastende Antenne mit einem solchen Schieber
EP0427654A1 (de) Wendelförmige Resonanzantenne, bestehend aus je vier Wendelleitern übereinander
EP0481417A1 (de) Vorrichtung zur Speisung eines Strahlungselementes für zwei orthogonale Polarisationen
EP0134611B1 (de) Sende- oder Empfangsstrahlergruppe einer Mikrowellenflachantenne und Sende- oder Empfangseinrichtung von Mikrowellensignalen mit einer solchen Flachantenne
EP2195877B1 (de) Omt-breitband- und multiband-/sende- und empfangs-/kopplungs- und trennvorrichtung für hochfrequenz-telekommunikationsantennen
EP0012055A1 (de) In Streifenleitertechnik ausgeführter Monopulsprimärstrahler und Antenne mit einem solchen Strahler
EP0082751A1 (de) Mikrowellenstrahler und seine Verwendung für eine Antenne mit elektronischer Abtastung
EP0888648A1 (de) Wendelantenne mit integriertem duplexer und verfahren zu deren herstellung
EP0012645B1 (de) Antenne aus zwei kreisförmigen flachen Ringen
EP0149400B1 (de) Strahler mit einer Zirkularmoduserregungsvorrichtung
EP0377155B1 (de) Doppelfrequenz strahlende Vorrichtung
EP0020196B1 (de) Scheibenförmige Mikrowellenmehrelementenantenne mit Speiseanordnung und deren Verwendung bei Radar
EP0769824A1 (de) Elektomagnetische Linse in Form einer auf einem getragenen Substrat gedruckten Schaltung
EP0430136A1 (de) Bandsperrfilter für Mikrowellenhohlleiter
EP0334270A1 (de) Mikrowellen-Anpassungsvorrichtung für einen Übergang zwischen einem Hohlleiter und einer Planarleitung
FR2519476A1 (fr) Dispositif d'alimentation d'un element rayonnant
FR2759814A1 (fr) Elements d'antenne hyperfrequence en helice

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19891120

17Q First examination report despatched

Effective date: 19920507

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19930303

Ref country code: NL

Effective date: 19930303

Ref country code: AT

Effective date: 19930303

REF Corresponds to:

Ref document number: 86413

Country of ref document: AT

Date of ref document: 19930315

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: ING. MILANI GIORGIO

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930302

REF Corresponds to:

Ref document number: 3878862

Country of ref document: DE

Date of ref document: 19930408

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2038328

Country of ref document: ES

Kind code of ref document: T3

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19931231

Ref country code: LI

Effective date: 19931231

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19931231

Ref country code: BE

Effective date: 19931231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
BERE Be: lapsed

Owner name: CENTRE NATIONAL D'ETUDES SPATIALES

Effective date: 19931231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EAL Se: european patent in force in sweden

Ref document number: 88403145.1

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20071218

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20071221

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20071120

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20071214

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20071211

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20071228

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20081208

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20081210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20081210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20081208