EP0020196B1 - Scheibenförmige Mikrowellenmehrelementenantenne mit Speiseanordnung und deren Verwendung bei Radar - Google Patents

Scheibenförmige Mikrowellenmehrelementenantenne mit Speiseanordnung und deren Verwendung bei Radar Download PDF

Info

Publication number
EP0020196B1
EP0020196B1 EP80400537A EP80400537A EP0020196B1 EP 0020196 B1 EP0020196 B1 EP 0020196B1 EP 80400537 A EP80400537 A EP 80400537A EP 80400537 A EP80400537 A EP 80400537A EP 0020196 B1 EP0020196 B1 EP 0020196B1
Authority
EP
European Patent Office
Prior art keywords
mode
array antenna
hand
guide
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80400537A
Other languages
English (en)
French (fr)
Other versions
EP0020196A1 (de
Inventor
Serge Drabowitch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0020196A1 publication Critical patent/EP0020196A1/de
Application granted granted Critical
Publication of EP0020196B1 publication Critical patent/EP0020196B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/02Antennas or antenna systems providing at least two radiating patterns providing sum and difference patterns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0012Radial guide fed arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path

Definitions

  • the present invention relates to disc type microwave network antennas, more particularly associated with radars performing deviation measurements.
  • the disk type array antennas for deviation measurements are known and described for example in American patent US Pat. No. 3,576,579. These antennas comprise a cylindrical cavity of large diameter and small thickness. One of the faces of this cavity is connected in its center to a guide of circular section, the other face is provided with elementary antennas, distributed in concentric circles, and electromagnetically coupled with the interior of the cavity. On transmission, the circular guide is supplied by an electromagnetic wave according to the TM o1 mode which generates a circular radial wave in the cavity.
  • the circular guide is supplied by a T-coupler which delivers the TM o1 wave to it and which, upon receipt, on at least two separate channels, the signals Sum ⁇ and Difference A necessary for the development of the deviation signal s.
  • Difference A Elevation and A Azimuth There are two ways here Difference A Elevation and A Azimuth.
  • the Sum channel of this tee receives the electromagnetic wave TM o1 transmitted to the disk type array antenna.
  • This type of embodiment has several disadvantages due to the use of the TM o1 mode for transmission in the Sum channel, this mode allowing neither a wide frequency band nor a high power level.
  • This TM 01 mode is generally obtained via the Difference channel of a magic tee connected to the Sum channel of the T-coupler of the antenna.
  • this Difference route is difficult to adapt and has a low power handling capacity.
  • the device according to the invention aims to remedy these drawbacks by feeding the circular guide connected to the array antenna by an electromagnetic wave according to TE 11 mode which can then come directly from the microwave oscillator.
  • the US patent 3,022,506 describes an antenna in which a cylindrical cavity is supplied by a circular guide which receives two TE 11 waves whose relative phase shift adjustment allows, in combination with a network of particular elementary radiating sources formed crossed slots arranged in a circle around the center of the cylindrical cavity, to obtain an antenna with controlled arbitrary polarization.
  • This patent also indicates that by supplying the circular guide with two TE 11 modes with rectilinear polarization in quadrature there is obtained a TE 11 mode with circular polarization.
  • the invention consists on the one hand, in having perceived that the supply of a network antenna intended to be used in measurements of deviation measurement, was more advantageous in the fundamental mode TE 11 than in the mode usually used until there TM 01 , for reasons of power and frequency band; on the other hand to have produced a network antenna adapted to this new supply mode in which, on transmission, TE mode 11 supplies the sum channel (s) while on reception the sum channel (s) operates in TE 11 mode and the Difference channel in TM oi mode; finally to have properly arranged the elementary radiating sources on the cylindrical cavity to obtain the desired equiphase radiation.
  • a disk-type microwave network antenna for carrying out deviation measurements is in accordance with claim 1.
  • I (r) translates the attenuation of the current as a function of the radial distance.
  • the same TE 11 mode in phase quadrature and in vertical polarization gives a second radial current whose amplitude law is given by the double circle diagram defined by the equation:
  • Figure la shows the section of a disk type array antenna. It comprises a cylindrical cavity 3, supplied by a circular guide 4. This cavity has on its periphery a suitable charge 5 which can for example be made of dielectric materials.
  • Directive probes 7 are connected on the one hand to suitable loads 6 and on the other hand to elementary antennas 1 by means of phase shifters 2. These elementary antennas 1 can be by way of nonlimiting example of the spiral type or propeller.
  • Feeding the antenna according to TE11 mode makes it possible to keep the same arrangement of the prior art of the elementary antennas 1 which then are of the spiral or helix type and therefore do not have axial symmetry and are arranged on concentric circles of center 0, O being the point of intersection of the axis of symmetry of the antenna with the radiating surface of the cylindrical cavity 3.
  • This arrangement makes it possible to obtain an equiphase radiation of the elementary antennas if it is carried out in conjunction with an orientation of these elementary antennas 1 made necessary by the use of the TE 11 mode, such that all the antennas located on the same circle are deduced from each other by a rotation about the axis of symmetry of the cylindrical cavity 3.
  • this radial orientation of the elementary antennas 1 introduces a phase correction of the form e -i ⁇ which added to the phase modification of the phase shifters 2 of the form e ikr leads to a law of illumination of the disk type array antenna which is a circular symmetry equiphase law radiating a diagram of the same symmetry.
  • a significant advantage of the TE 11 mode power supply is the possibility of having a second arrangement of the elementary antennas. allowing a less restrictive choice of the type of elementary antennas.
  • the elementary antennas 1 are then arranged in Archimedean spirals, and have an axial symmetry such as for example two crossed dipoles. It is then clear that the law of illumination of the antenna remains unchanged because by being placed on Archimedes spirals, the term of phase e i ⁇ disappears as well as the term e -i ⁇ due to the radial orientation of these antennas elementary 1.
  • Couplers can be used to supply the cylindrical cavity 3 of the antenna with TE 11 with circular polarization.
  • Figure 2a shows one of them which includes a Tee of the fork type whose structure and operation are known. It is formed of two rectangular section guides 10 and 11 electromagnetically coupled together.
  • the guide with rectangular section 10 is connected to a guide with circular section 4.
  • This guide with circular section is electromagnetically coupled to a guide with rectangular section 12 by means of a guide, with rectangular section, forming a ring 13.
  • this coupler then receives on transmission two waves on the guides 10 and 12.
  • An additional advantage therefore lies here in the fact that each guide 10 and 12 receives only half of the power transmitted.
  • the guide 11 gives the difference signal ⁇
  • the guide 12 the component of the sum signal ⁇ v corresponding to a vertical polarization
  • the guide 10 the component of the sum signal ⁇ H corresponding to a horizontal polarization.
  • FIG. 2b shows another structure of a coupler usable according to the invention comprising a Te of the fork type. It is formed of a rectangular section guide 10 connected to a circular section guide 40. A rectangular section guide 11 is electromagnetically coupled to the guide 10. The rectangular section guide 11 is such that the plane determined by one of its sections straight is fixed on a plane delimiting the guide 10 and comprising one of the short sides of its straight section, and that the long side of a straight section of the guide 11 is orthogonal to the plane delimiting the guide 10 and comprising the large side of the section rectangular.
  • a polarizer 20, for example consisting of an approximately diamond-shaped blade cut out of a dielectric material is fixed in the circular section guide 40 so that the plane of this polarizer 20 makes an angle of n / 4 with respect to the plane delimiting the guide with rectangular section 10.
  • the guide 10, on reception, delivers the sum signal ⁇ while the perpendicular guide 11 delivers the difference signal ⁇ .
  • FIG. 2c shows a third example of a coupler, called a turnstile, which may be of interest in cases where the antenna diagrams must have good symmetry characteristics, the power supply also has these symmetry characteristics. It comprises, in addition to the circular section guide 40, four rectangular section guides 30, 31, 32 and 33 electromagnetically coupled with the circular section guide 40 so that the long side of the straight section of the guides 30, 31, 32 and 33 is parallel to the axis of the circular section guide 4. In addition, each of these rectangular section guides is deduced from the following by a rotation of n / 2 around the axis of the circular section guide 40.
  • the section guide circular 40 is connected at one end to a coaxial line 34, and a coupling means 35 ensures the electromagnetic connection.
  • each of the four rectangular section guides 30, 31, 32 and 33 receives a wave according to the TE 11 mode of amplitude A o corresponding to a quarter of the total power that the antenna must receive. If A 1 , A 2 , A 3 and A 4 represent the waves applied respectively to the guides 30, 31, 32 and 33, then it can be shown that to obtain a wave with circular polarization, the following conditions must be fulfilled:
  • the components of the sum signal ⁇ are then obtained on the four waveguides 30, 31, 32 and 33 and the difference signal A on the coaxial line 34.
  • a disk type array antenna has thus been described providing a solution to the power problem of the prior art.
  • This antenna is preferably applied to radars performing deviation measurements.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radar Systems Or Details Thereof (AREA)

Claims (8)

1. Mikrowellen-Gruppenantenne vom Scheibentyp, mit zugehöriger Speisevorrichtung und versehen mit einem zylindrischen Hohlraum (3) bzw. einer "Scheibe", worauf die die Gruppe bildenden elementaren Strahlerquellen (1) angeordnet sind, mit Speisung über einen kreisrunden Leiter (4, 40) der seinerseits im Sendebetrieb eine kreispolarisierte Welle des Schwingungsmode TE11 empfängt, welche aus wenigstens einer linear polarisierten Welle vom selben Schwingungstyp TE11 erhalten wird, dadurch gekennzeichnet, daß diese Speisevorrichtung wenigstens einen Summenkanal umfaßt, an welchen die linear polarisierte Welle vom Schwingungsmode TE11 angelegt ist, und einen Differenzkanal umfaßt, wobei ein Summensignal und ein Differenzsignal, welche für eine Ablagemessung erforderlich sind, im Empfangsbetrieb am Summenkanal bzw. Differenzkanal erhalten werden, und daß die elementaren Strahlerquellen auf der Scheibe über Koppelsonden (7) angeordnet sind und ferner um den Mittelpunkt des zylindrischen Hohlraums herum auf gleichphasigen Archimedesspiralen angeordnet sind.
2. Mikrowellen-Gruppenantenne nach Anspruch 1, dadurch gekennzeichnet, daß die elementaren Strahlerquellen (1) Axialsymmetrie aufweisen.
3. Mikrowellen-Gruppenantenne nach Anspruch 1, dadurch gekennzeichnet, daß die elementaren Strahlerquellen (1) zirkular polarisierende Quellen vom Spiral- oder Helixtyp sind, daß sie auf konzentrischen Kreisen angeordnet sind, welche auf die Mitte des zylindrischen Hohlraums (3) zentriert sind, und daß sie eine solche Orientierung auf demselben Kreis aufweisen, daß sie auseinander durch eine Drehung um den Mittelpunkt des zylindrischen Hohlraums entstehen, so daß sie stets in gleicher Weise bezüglich dieses Mittelpunktes orientiert sind.
4. Gruppenantenne nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Speisevorrichtung ein T-Koppler vom Gabeltyp (Fig. 2a) ist, versehen mit einerseites zwei Eingangs-Summenkanälen (10, 12) für den Schwingungsmode TE,1, an welch die für den Sendebetrieb erforderliche Energie angelegt wird, wobei die so an diese beiden Eingänge angelegten TEn-Wellen um 90° gegeneinander phasenverschoben sind, so daß in dem kreisrunden Leiter (4) eine TE11-Welle mit Zirkularpolarisation erzeugt wird, und andererseits mit einem Differenzkanal (11).
5. Gruppenantenne nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Speisevorrichtung ein T-Koppler vom Gabeltyp (Fig. 2b) ist, versehen einerseits mit einem Eingangs-Summenkanal (10) für den Schwingungsmode TE11, an welchen die für den Sendebetrieb erforderliche Energie angelegt wird, wobei die an den zylindrischen Leiter (40) angelegte linear polarisierte TE11-Welle dort in eine TE11-Welle mit Zirkularpolarisation durch einen Polarisator (20) umgeformt wird, und undererseits mit einem Differenzkanal (11).
6. Gruppenantenne nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Speisevorrichtung ein Koppler vom Drehkreuztyp (Fig. 2c) ist, versehen einerseits mit vier Eingangs-Summenkanälen (30) bis 34) für den Schwingungsmode TE11, an welche die für den Sendebetrieb erforderliche Energie angelegt wird, wobei die so an diese vier Eingänge angelegten vier TE11-Wellen jeweils von einer zur nächsten um 90° phasenverschoben sind, so daß in dem kreisrunden Leiter (4) eine TE"-Welle mit Zirkularpolarisation erzeugt wird, und andererseits mit einem Differenzkanal (34).
7. Gruppenantenne nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Anschluß der elementaren Strahlerquellen (1) an die Koppelsonden (7) über Phasenschieber (2) hergestellt ist.
8. Verwendung einer Gruppenantenne nach Anspruch als Antenne mit elektronisher Verschwenkung.
EP80400537A 1979-05-08 1980-04-21 Scheibenförmige Mikrowellenmehrelementenantenne mit Speiseanordnung und deren Verwendung bei Radar Expired EP0020196B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR7911629A FR2456399A1 (fr) 1979-05-08 1979-05-08 Antenne reseau hyperfrequence du type disque avec son dispositif d'alimentation, et application aux radars d'ecartometrie
FR7911629 1979-05-08

Publications (2)

Publication Number Publication Date
EP0020196A1 EP0020196A1 (de) 1980-12-10
EP0020196B1 true EP0020196B1 (de) 1986-06-11

Family

ID=9225194

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80400537A Expired EP0020196B1 (de) 1979-05-08 1980-04-21 Scheibenförmige Mikrowellenmehrelementenantenne mit Speiseanordnung und deren Verwendung bei Radar

Country Status (4)

Country Link
US (1) US4322731A (de)
EP (1) EP0020196B1 (de)
DE (1) DE3071638D1 (de)
FR (1) FR2456399A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8317938D0 (en) * 1983-07-01 1983-08-03 Emi Ltd Antenna
DE3684709D1 (de) * 1985-10-03 1992-05-07 Hughes Aircraft Co In einem radialwellenleiter ausgefuehrter reaktanzfreier leistungsverteiler/-addierer mit integriertem modefilter.
GB8624984D0 (en) * 1986-10-17 1986-11-19 Emi Plc Thorn Antenna
US4831331A (en) * 1987-04-10 1989-05-16 Chevron Research Company Method and apparatus for interface location determination
JPH02189008A (ja) * 1989-01-18 1990-07-25 Hisamatsu Nakano 円偏波アンテナ装置
FR2812457B1 (fr) 2000-07-28 2004-05-28 Thomson Csf Reflecteur hyperfrequence actif a bi-polarisation, notamment pour antenne a balalyage electronique
ES2682767T3 (es) 2013-10-21 2018-09-21 European Space Agency (Esa) Extractor de modos TM01 muy compacto
FR3049393B1 (fr) * 2016-03-24 2020-05-08 Centre National D'etudes Spatiales C N E S Procede d'alimentation d'un guide d'onde radial et dispositif a guide d'onde radial

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3063049A (en) * 1959-01-02 1962-11-06 Hughes Aircraft Co Linearly polarized monopulse lobing antenna having cancellation of crosspolarization components in the principal lobe
US3022506A (en) * 1959-03-27 1962-02-20 Hughes Aircraft Co Arbitrarily polarized slot antenna
FR1459373A (fr) * 1964-11-02 1966-04-29 Hughes Aircraft Co Système d'antenne
US3524151A (en) * 1968-01-09 1970-08-11 Emerson Electric Co Phased array transmission lens feed system
US3576579A (en) * 1968-04-19 1971-04-27 Sylvania Electric Prod Planar radial array with controllable quasi-optical lens
US3731235A (en) * 1971-11-03 1973-05-01 Gte Sylvania Inc Dual polarized diplexer
US3745585A (en) * 1972-03-29 1973-07-10 Gte Sylvania Inc Broadband plane antenna with log-periodic reflectors

Also Published As

Publication number Publication date
EP0020196A1 (de) 1980-12-10
DE3071638D1 (en) 1986-07-17
FR2456399A1 (fr) 1980-12-05
US4322731A (en) 1982-03-30
FR2456399B1 (de) 1983-07-18

Similar Documents

Publication Publication Date Title
EP0012055B1 (de) In Streifenleitertechnik ausgeführter Monopulsprimärstrahler und Antenne mit einem solchen Strahler
EP0320404B1 (de) Wendeltyp-Antenne und Verfahren zu ihrer Herstellung
EP0954055B1 (de) Antenne für zwei Frequenzen für die Radiokommunikation in Form einer Mikrostreifenleiterantenne
EP0899814B1 (de) Strahlende Struktur
EP0315141B1 (de) Anregungsvorrichtung einer zirkularpolarisierten Welle mit einer Flachantenne in einem Hohlleiter
FR2652453A1 (fr) Antenne coaxiale a fentes du type a alimentation a ondes progressives.
CA2019181A1 (fr) Element rayonnant diplexant
GB2558365A (en) Antenna and method of manufacture thereof
FR2775835A1 (fr) Antenne plane
EP0020196B1 (de) Scheibenförmige Mikrowellenmehrelementenantenne mit Speiseanordnung und deren Verwendung bei Radar
FR3105884A1 (fr) Cornet pour antenne satellite bi-bande Ka à polarisation circulaire
CA2006291C (fr) Dispositif rayonnant bifrequence
EP0149400B1 (de) Strahler mit einer Zirkularmoduserregungsvorrichtung
EP3180816B1 (de) Mehrbandige quelle mit koaxialem horn mit monopulsnachführungsverfahren für eine reflektorantenne
EP0463263B1 (de) Zirkular polarisierte Rundum-Antenne mit grösstem Gewinn in horizontaler Richtung
WO2012095365A1 (fr) Antenne a resonateur dielectrique
EP0605338A1 (de) Streifenleitungsantenne mit zwei Polarisationen und entsprechende Vorrichtung zum Senden/Empfangen
EP0520908B1 (de) Lineare Gruppenantenne
EP0860894B1 (de) Miniatur-Resonanzantenne in Form von ringförmigen Streifenleiterantennen
EP0477102B1 (de) Richtnetzwerk mit benachbarten Strahlerelementen für Funkübertragungssystem und Einheit mit einem derartigen Richtnetzwerk
EP0860895A1 (de) Resonanzantenne zum Senden oder Empfangen polarisierter Wellen
FR2466878A1 (fr) Antenne de navigation a effet doppler, avec correction automatique des erreurs terre-mer
FR2538959A1 (fr) Lentille hyperfrequence bi-bande, son procede de fabrication et antenne radar bi-bande de poursuite
WO2015189134A1 (fr) Antenne plate de telecommunication par satellite
EP3155690A1 (de) Flachantenne zur satellitenkommunikation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE GB IT LI NL SE

17P Request for examination filed

Effective date: 19801224

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE GB IT LI NL SE

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REF Corresponds to:

Ref document number: 3071638

Country of ref document: DE

Date of ref document: 19860717

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19900309

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900331

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19900404

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19900405

Year of fee payment: 11

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19900430

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19910421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19910422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19910430

Ref country code: CH

Effective date: 19910430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19911101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19920201

EUG Se: european patent has lapsed

Ref document number: 80400537.9

Effective date: 19911108