EP0954055B1 - Antenne für zwei Frequenzen für die Radiokommunikation in Form einer Mikrostreifenleiterantenne - Google Patents

Antenne für zwei Frequenzen für die Radiokommunikation in Form einer Mikrostreifenleiterantenne Download PDF

Info

Publication number
EP0954055B1
EP0954055B1 EP99400922A EP99400922A EP0954055B1 EP 0954055 B1 EP0954055 B1 EP 0954055B1 EP 99400922 A EP99400922 A EP 99400922A EP 99400922 A EP99400922 A EP 99400922A EP 0954055 B1 EP0954055 B1 EP 0954055B1
Authority
EP
European Patent Office
Prior art keywords
antenna
patch
frequency
extending
resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99400922A
Other languages
English (en)
French (fr)
Other versions
EP0954055A1 (de
Inventor
Christophe Grangeat
Pascal Herve
Laurence Lorcy
Charles Ngounou Kouam
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Lucent SAS
Original Assignee
Alcatel Lucent SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel Lucent SAS filed Critical Alcatel Lucent SAS
Publication of EP0954055A1 publication Critical patent/EP0954055A1/de
Application granted granted Critical
Publication of EP0954055B1 publication Critical patent/EP0954055B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0442Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular tuning means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • H01Q5/364Creating multiple current paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0421Substantially flat resonant element parallel to ground plane, e.g. patch antenna with a shorting wall or a shorting pin at one end of the element

Definitions

  • the present invention relates generally to radio communication devices, in particular portable radio telephones, and more particularly to antennas which are produced according to the microstrip technique to be included in such devices.
  • Such an antenna comprises a patch which is typically formed by etching a metal layer. It is called in English by specialists "microstrip patch antenna” for "microstrip pellet antenna”.
  • the microstrip technique is a planar technique that applies both to the realization of lines transmitting signals and to that of antennas coupling between such lines and radiated waves. It uses ribbons and / or conductive pads formed on the upper surface of a thin dielectric substrate which separates them from a conductive layer extending on the lower surface of this substrate and constituting a mass of the line or antenna . Such a pellet is typically wider than such ribbon and its shapes and dimensions are important features of the antenna.
  • the shape of the substrate is typically that of a rectangular flat sheet of constant thickness and the pellet is also typically rectangular. But this is not an obligation.
  • the thickness of the substrate for example according to an exponential law, makes it possible to widen the bandwidth of such an antenna and that the shape of the wafer may in particular be circular.
  • the electric field lines extend between the ribbon or pellet and the ground layer as they pass through the substrate.
  • This technique differs from various other techniques also using conductive elements on a thin substrate, and in particular that of coplanar lines in which the electric field is established on the upper surface of the substrate and symmetrically between a a central conductive ribbon and two conductive pads located on either side of the ribbon from which they are respectively separated by two slots.
  • a pellet is surrounded by a continuous conducting pad from which it is separated by a slot.
  • Antennas made according to these techniques typically, although not necessarily, resonant structures capable of being the seat of standing waves for coupling with the radiated waves.
  • a first type is the most common and can be called "half wave". Given that a dimension of the pellet constitutes a length and extends along a so-called longitudinal direction, this length is typically substantially equal to a half wave, ie to half the wavelength of a wave. electromagnetic propagation propagating in this direction in the line formed by the mass, the substrate and the pellet. The antenna is then called "half wave".
  • This type of resonances can be defined in a general manner by the presence of an electrical current node at each of the two ends of this length which can also be equal to said half wave multiplied by an integer other than one. This number is typically odd.
  • the coupling with the radiated waves is at the ends of this length, these ends being located in the regions where the amplitude of the electric field prevailing in the substrate is maximum.
  • a second type of resonant structure that can be produced using this same technique can be called "quarter wave". It differs from said half-wave type on the one hand by the fact that the pellet typically has a length substantially equal to a quarter wave, that is to say a quarter of a wavelength, this length of the pellet and this wavelength being defined as above, the antenna then being called "quarter wave". It differs on the other hand by the fact that a large short circuit is made at one end of this length between the mass and the chip so as to impose a resonance mode of a type called “quarter wave” .
  • This type of resonance can be defined generally by the presence of an electric field node fixed by this short circuit at one end of the length of the chip and by an electrical current node at the other end. of this length. The latter can therefore also be equal to an integer number of half-waves adding to said quarter wave.
  • the coupling with the radiated waves is at the other end of this length, this other end being located in the region where the amplitude of the electric field through the substrate is maximum.
  • Each mode of resonance can be described as resulting from the superposition of two waves propagating in two opposite directions on the same path by reflecting alternately at both ends of this path.
  • This path is imposed by the constituent elements of the antenna. It constitutes said “resonance path” for this resonance mode. It is rectilinear and longitudinal in the case of half-wave and quarter-wave antennas previously mentioned. But it can also conform to a curved radiative slot. In all cases, the resonance frequency is inversely proportional to the time during which a progressive wave considered above traverses this resonance path.
  • the expression "resonance mode” will sometimes be replaced hereinafter by the term "resonance”.
  • connection assembly comprising a coupling device included in this antenna, and a connection line external to this antenna and connecting the coupling device to the signal processing member.
  • the respective functions of the coupling device, the connection line and the antenna are as follows:
  • the function of the connection line is to carry a radio frequency signal or microwave from the transmitter to the antenna terminals. Throughout such a line the signal propagates in the form of a progressive wave without undergoing, at least in principle, significant modification of its characteristics.
  • the function of the coupling device is to transform the signal supplied by the connecting line so that this signal excites a resonance of the antenna, that is to say that the energy of the progressive wave carrying this signal is transferred to a standing wave established in the antenna with characteristics defined by the latter.
  • the coupling device reflects a portion of the energy to the connection line which gives rise in the latter to a parasitic standing wave.
  • the corresponding stationary wave ratio varies according to the frequency and the diagram of this variation defines the bandwidth (s) of the antenna.
  • the antenna transfers the energy of the useful standing wave to a radiated wave in space.
  • the signal provided by the transmitter thus undergoes a first transformation to change from the shape of a progressive wave to that of a standing wave, then a second transformation which gives it the shape of a radiated wave.
  • the signal takes the same forms in the same organs but it takes them in reverse order.
  • the coupling device and the connecting line may be produced using a technique other than that of microstrips, for example in the form of coaxial or coplanar lines. Their natures and their dimensions are chosen so as to obtain a mutual adaptation of the impedances of the various organs traversed by the signals, this to limit parasitic reflections.
  • connection assembly of an antenna is often designated as constituting a supply line of this antenna.
  • the present invention relates to antennas suitable for inclusion in various types of apparatus. These devices include portable radiotelephones, base stations for the latter, automobiles and aircraft or air missiles.
  • portable radiotelephones In the case of a portable radiotelephone, the continuous nature of the lower ground layer of an antenna made using the microstrip technique makes it possible to easily limit the radiation power intercepted by the body of the user of the apparatus.
  • the antenna In the case of automobiles and especially in the case of aircraft or missiles whose outer surface is metallic and has a curved profile to obtain a low aerodynamic drag, the antenna can be conformed to this profile so as not to appear additional aerodynamic drag annoying.
  • a first such known antenna is described in the document ORMISTON TD AND AL: "microstrip short-circuit patch design equations" microwave and optical technology letters, vol. 16, No. 1, September 1997, pages 12-14 , XP000198277 .
  • the pellet of this antenna has a rectangular shape allowing this antenna to have a quarter-wave resonance along a resonance path extending between two opposite edges of the pellet.
  • This antenna has the disadvantage of only having a single quarter wave resonance.
  • a second such known antenna is described in the patent document US-A-4,766,440 (Gan ).
  • the patch 10 of this antenna has a generally rectangular shape allowing this antenna to present two half-wave resonances whose paths are established along a length and a width of this patch. Moreover, it has a U-shaped curved slot which is entirely internal to this pellet. This slot is radiative and shows an additional resonance mode established in another path. It also allows, by a suitable choice of its shape and its dimensions, to bring the frequencies of the resonance modes to desired values which gives the possibility of emitting a circularly polarized wave through the combination of two modes having a same frequency and crossed linear polarizations.
  • the coupling device has the form of a line which is made according to the microstrip technique but which is also said to be coplanar, because the microstrip extends in the plane of the pellet and penetrates between two notches of the latter.
  • This device is provided with impedance transformation means to adapt it to the different input impedances respectively presented by the line at different resonance frequencies used as operating frequencies.
  • a third known antenna differs from the previous one by the use of a single resonance path. It is described in the patent document US-A-4,771,291 (LO et al ). Its pellet has punctual short circuits and slots extending in line segments respectively inner to the pellet. These slots and short circuits make it possible to reduce the difference between two frequencies corresponding to two resonances having said path in common but two mutually different respective modes which are designated by the digits (0,1) and (0,3). that is to say that this common path is occupied by a half wave or three half-waves depending on the mode considered. The ratio between these two frequencies can thus be lowered from 3 to 1.8. Punctual short circuits consist of conductors crossing the substrate.
  • a fourth known dual frequency antenna differs from the previous ones by the use of a quarter-wave resonance. It is described in an article: IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL DIGEST SYMPOSIUM, NEWPORT BEACH, JUNE 18-23, 1995, pp. 2124-2127 Boag et al "Dual Band Cavity-Backed Quarter-wave Patch Antenna
  • a first resonance frequency is defined by the dimensions and characteristics of the substrate and the pellet of this antenna. substantially of the same type is obtained at a second frequency on the same resonance path through the use of an adaptation system.
  • this invention has an advantage in the case where the ratio between two desired operating frequencies takes some thieves, and more particularly in the case where this ratio is between 0.2 and about 0.8 and in particular close to 0.5.
  • This advantage is to allow to achieve this desired report in a way relatively simple and effective. It is obtained thanks to the combined use of two modes of resonance which are, one of a said quarter-wave type, the other of a said half-wave type, and which are established from progressive waves traveling the same area in two respective mutually crossed directions.
  • Figure 1 shows a perspective view of a radio communication device made according to this invention.
  • FIG. 2 represents a view from above of the antenna of the device of FIG. 1.
  • FIG. 3 represents a diagram of the variation of a reflection coefficient measured at the input of this same antenna and plotted on the ordinate, as a function of the frequency of a signal supplying this antenna, this frequency being plotted on the abscissa.
  • the antenna further comprises a coupling device.
  • This device comprises on the one hand a main conductor constituted by a coupling strip C1 extending on the upper surface S2 of the substrate and connected to the chip 6 at an internal connection point 18. It also comprises a conductor mass formed by the layer 4. It constitutes all or part of a connection assembly which connects the resonant structure of the antenna to a signal processing element 22, for example to excite one or more resonances of the antenna from of this organ in the case where it is a transmitting antenna.
  • the connection assembly typically includes a connection line which is external to the antenna. This line may in particular be of the coaxial type, of the microstrip type or of the coplanar type.
  • the remaining fraction of the connecting line has been symbolically represented in the form of two conducting wires C4 and C5 respectively connecting the ground 4 and the ribbon C3 to the two terminals of the signal processing unit 22. It should be understood that this remaining fraction would in practice preferably be in the form of a microstrip line or a coaxial line.
  • the signal processing unit 22 is adapted to operate at predetermined operating frequencies which are at least close to useful resonant frequencies of the antenna, ie which are included in passbands centered on these frequencies of frequency. resonance. It can be composite and then have an element permanently assigned to each of these operating frequencies. It may also include a tunable element on the various operating frequencies. Said quarter-wave resonance frequency constitutes such a useful resonant frequency.
  • another said useful resonant frequency is a half-wave resonance frequency constituted by the frequency of a resonance of said half-wave type establishing itself in this antenna with a resonance path extending between the two lateral edges. 14 and 16.
  • the antenna coupling device must be able to perform its coupling function for each of the two quarter wave and half wave resonance frequencies.
  • this aptitude is obtained by the fact that this device presents, relative to a longitudinal axis not shown of the antenna, an asymmetry which differentiates one of the two lateral edges of the pellet relative to the other.
  • This dissymmetry of the coupling device can be obtained in various known ways. It can in particular affect the position, orientation and / or dimensions of all or part of this device. However, it appeared that the realization of the latter in the form of a coaxial line would be inappropriate, at least if this line was vertical.
  • This device can advantageously be formed according to a planar technique at the level of the pellet and / or that of the mass of the antenna.
  • the wafer 6 has the usual shape of a rectangle and the dissymmetry of the coupling device of the antenna can advantageously be achieved by the following provision: the wafer 6 has a coupling inlet slot 20 opening outwardly of this pellet through a first lateral edge 14 of this pellet and extending from this first lateral edge, for example in the transverse direction DT, to an end of this slot.
  • a coupling tape C1 then extends over the upper surface of the substrate within this coupling inlet slot from this first side edge. It is connected to this chip at the end of this slot, this end constituting an internal connection point 18.
  • the distances from this point to a first lateral edge 14 and the rear edge 10 respectively constitute a connection depth L3 and a dimension connection L4.
  • the ground conductor of the antenna coupling device is constituted by the ground 4 of the antenna.
  • the L1 / L2 ratio of the length of the pellet to its width is between about 2.5 and 0.625.
  • connection depth L3 is between about 8% and 25% of the width L2 of the tablet 6.
  • connection dimension L4 is between approximately 25% and 75% of the length L1 of the pellet 6.
  • the short circuit C2 extends over a segment only of said rear edge 10 and this segment has a length of between 10% and 90% of the width L2 of the chip 6.
  • the diagram of FIG. 3 has been plotted from measurements made on the antenna whose numerical characteristics have been indicated above.
  • the 0 dB level corresponds to the upper horizontal registration line.
  • the difference between two horizontal registration lines is 3 dB.
  • the extreme frequencies of the scale shown are 200 and 2000 MHz.
  • the difference between two vertical registration lines represents 180 MHz.
  • the resonance peaks presented by the diagram correspond to the quarter-wave resonant frequencies F1 and half wave F2 previously indicated.
  • This invention makes it possible to give each of these two frequency bands a sufficient width, not only to avoid a crosstalk between the spectral transmit and receive channels located in this band, but also to make it possible to choose between several possible positions of these channels. in this band.
  • the low frequency band corresponds to the GSM standard and the high frequency band to the DCS standard.
  • the high transmit and receive frequencies can be respectively 1750 and 1840 MHz and the transmit and receive frequencies Low reception frequencies can be respectively 890 and 940 MHz.

Landscapes

  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)
  • Support Of Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)

Claims (9)

  1. Antenne für zwei Frequenzen in Form einer Mikrostreifenleiterantenne, wobei diese Antenne umfasst:
    - ein dielektrisches Substrat (2), aufweisend zwei einander gegenüberliegende Hauptflächen, die in den in dieser Antenne definierten Richtungen verlaufen und horizontale Richtungen (DL und DT) bilden, wobei diese beiden Hauptflächen jeweils eine untere Fläche (S1) und eine obere Fläche (S2) bilden;
    - eine leitende untere Schicht, die auf dieser unteren Fläche verläuft und eine Masse (4) dieser Antenne bildet;
    - eine leitende obere Schicht, die auf einer Teilfläche der genannten oberen Fläche oberhalb der genannten Masse in der Weise verläuft, dass sie die Anschlussfläche ("Patch") (6) bildet;
    - einen Patch (6), der einen mit einem Kurzschluss versehenen Rand besitzt und einen hinteren Rand (10) bildet, wobei dieser Patch auch einen vorderen Rand (12) besitzt, der diesem hinteren Rand gegenüberliegt, sowie zwei Seitenränder (14, 16), die diesen hinteren Rand mit diesem vorderen Rand verbinden, wobei der Kurzschluss (C2) einer Resonanz vom Typ einer Viertelwelle die Möglichkeit bietet, sich in der Antenne aufzubauen, und zwar mit einem Knoten des elektrischen Feldes, der durch diesen Kurzschluss festgelegt ist, und einer Resonanzstrecke, die zwischen dem hinteren Rand und dem vorderen Rand verläuft; und
    - eine Antennenkopplungsvorrichtung, welche ermöglicht, diese Antenne mit einem Signalverarbeitungsorgan (22) zu koppeln, wobei die Antennenkopplungsvorrichtung (20, C1, 4) eine Symmetrieabweichung aufweist, durch welche sich ein Seitenrand (14) des Patchs gegenüber dem anderen Seitenrand (16) des Patchs unterscheidet, sodass es dieser Vorrichtung möglich ist, diese Antenne mit dem Signalverarbeitungsorgan (22) nicht nur für die Resonanz vom Typ einer Viertelwelle zu koppeln, sondern auch für eine Resonanz vom Typ einer Halbwelle, die sich in dieser Antenne mit einer Resonanzstrecke aufbaut, die zwischen den beiden Seitenrändern des Patch verläuft;
    wobei die Antenne dadurch gekennzeichnet, dass sie umfasst:
    - den Kurzschluss (C2), wobei dieser Kurzschluss diesen Patch (6) elektrisch mit der Masse (4) vom hinteren Rand (10) dieses Patchs aus verbindet, wobei dieser Rand entlang einer horizontalen Richtung verläuft, die eine Querrichtung (DT) bildet, wobei eine Länge (L1) dieses Patchs zwischen diesem hinteren Rand und dem vorderen Rand (12) entlang einer Längsrichtung (DL) verläuft, die von einer horizontalen Richtung gebildet wird, wobei die beiden Seitenränder des Patchs jeweils einen ersten Seitenrand (14) und einen zweiten Seitenrand (16) bilden, wobei eine Breite (L2) dieses Patchs zwischen diesen beiden Seitenrändern verläuft; und
    - die Antennenkopplungsvorrichtung, wobei diese Vorrichtung selbst umfasst:
    - einen Hauptleiter (C1); und
    - einen Masseleiter (4) in der Weise, dass es möglich ist, die Antenne über diese Vorrichtung mit einem Signalverarbeitungsorgan (22) zu koppeln;
    wobei der Patch (6) einen Kopplungseingangsspalt (20) umfasst, der in die Außenseite dieses Patchs durch den ersten Seitenrand (14) dieses Patchs (6) mündet und von diesem ersten Seitenrand aus im Wesentlichen in der Querrichtung bis zu einem Ende (18) dieses Spalts verläuft, wobei der Hauptleiter (C1) der Antennenkopplungsvorrichtung die Form eines Kopplungsstreifens aufweist, der auf der oberen Fläche des Substrats in dem Kopplungseingangsspalt von dem ersten Seitenrand des Patchs aus verläuft, wobei dieser Streifen mit dem Patch an dem genannten Ende dieses Spalts verbunden ist, wobei der Masseleiter der Antennenkopplungsvorrichtung von der Masse (4) der Antenne gebildet wird.
  2. Vorrichtung für zwei Frequenzen für die Radiokommunikation, wobei diese Vorrichtung umfasst:
    ein Signalverarbeitungsorgan (22), welches dafür geeignet ist, auf die Umgebung von mindestens zwei zuvor festgelegten Frequenzen abgestimmt zu werden, um ein elektrisches Signal auf jeder dieser beiden Frequenzen zu senden und/oder zu empfangen; und
    - eine Antenne (1) nach Anspruch 1, die mit diesem Verarbeitungsorgan verbunden ist, um das elektrische Signal mit abgestrahlten Wellen zu koppeln;
    wobei diese Vorrichtung durch den Umstand gekennzeichnet ist, dass die andere zuvor festgelegte Frequenz eine Halbwellen-Resonanzfrequenz ist, welche durch die Frequenz einer Halbwellenresonanz gebildet wird, die sich in dieser Antenne mit einer Resonanzstrecke aufbaut, die zwischen den beiden Seitenrändern verläuft (14, 16).
  3. Vorrichtung für die Radiokommunikation nach Anspruch 2,
    gekennzeichnet durch den Umstand, dass der Patch (6) einen Kopplungseingangsspalt umfasst, der in die Außenseite dieses Patchs durch den ersten Seitenrand (14) dieses Patchs mündet und von diesem ersten Seitenrand aus im Wesentlichen in der Querrichtung bis zu einem Ende dieses Spalts verläuft, wobei der Hauptleiter (C1) der Antennenkopplungsvorrichtung die Form eines Kopplungsstreifens aufweist, der auf der oberen Fläche des Substrats in dem Kopplungseingangsspalt von dem ersten Seitenrand des Patchs aus verläuft, wobei dieser Streifen mit dem Patch an dem genannten Ende dieses Spalts verbunden ist, wobei dieses Ende einen inneren Anschlusspunkt (18) bildet, wobei die Entfernungen dieses Punkts zum ersten Seitenrand (14) und zu dem hinteren Rand (10) eine Anschlusstiefe (L3) bzw. ein Anschlussmaß (L4) bildet, wobei der Masseleiter der Antennenkopplungsvorrichtung von der Antennenmasse gebildet wird.
  4. Vorrichtung für die Radiokommunikation nach Anspruch 3, wobei das Verhältnis (L1/L2) der Länge des Patchs zur Breite des Patchs ungefähr zwischen 2,5 und 0,625 liegt.
  5. Vorrichtung für die Radiokommunikation nach Anspruch 4, wobei die Anschlusstiefe (L3) ungefähr zwischen 8 % und 25 % der Breite (L2) des Patchs (6) liegt.
  6. Vorrichtung für die Radiokommunikation nach Anspruch 4, wobei das Anschlussmaß (L4) ungefähr zwischen 25 % und 75 % der Länge (L1) des Patchs (6) liegt.
  7. Vorrichtung für die Radiokommunikation nach Anspruch 4, wobei der Kurzschluss (C2) auf einem Abschnitt des hinteren Randes (10) des Patchs verläuft, wobei dieser Abschnitt eine Länge zwischen 10 % und 90 % der Breite (L2) des Patchs aufweist.
  8. Vorrichtung für die Radiokommunikation nach Anspruch 3, wobei die Vorrichtung außerdem eine Anschlussleitung (C3, 4) umfasst, die außerhalb der Antenne verläuft, um die Antennenkopplungsvorrichtung mit dem Signalverarbeitungsorgan zu verbinden, wobei mindestens ein Teilstück einer Länge dieser Anschlussleitung umfasst:
    - einen Hauptleiter, der die Form eines Anschlussstreifens (C3) aufweist, der auf der oberen Fläche des Substrats (2) in Fortsetzung des Kopplungsstreifens (C1) verläuft; und
    - einen Masseleiter (4), der auf der unteren Fläche des Substrats in Fortsetzung der Antennenmasse verläuft.
  9. Vorrichtung für die Radiokommunikation nach einem beliebigen der Ansprüche 2 bis 8, wobei die Antenne dafür geeignet ist, in einem hohen Frequenzband in der Umgebung der Halbwellen-Resonanzfrequenz und in einem tiefen Frequenzband in der Umgebung der Viertelwellen-Resonanzfrequenz betrieben zu werden, wobei das Signalverarbeitungsorgan (22) abstimmbar ist auf vier zuvor festgelegte, gegenseitig unterschiedliche Frequenzen, welche bilden:
    - eine hohe Sendefrequenz, die in dem hohen Frequenzband liegt,
    - eine hohe Empfangsfrequenz, die in diesem hohen Frequenzband liegt;
    - eine tiefe Sendefrequenz, die in dem tiefen Frequenzband liegt; und
    - eine tiefe Empfangsfrequenz, die in diesem tiefen Frequenzband liegt;
    wobei dieses Verarbeitungsorgan dafür geeignet ist, ein Signal zu senden oder ein Signal zu empfangen, wenn es auf eine solche Sendefrequenz bzw. auf eine solche Empfangsfrequenz abgestimmt ist.
EP99400922A 1998-04-30 1999-04-15 Antenne für zwei Frequenzen für die Radiokommunikation in Form einer Mikrostreifenleiterantenne Expired - Lifetime EP0954055B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9805542 1998-04-30
FR9805542A FR2778272B1 (fr) 1998-04-30 1998-04-30 Dispositif de radiocommunication et antenne bifrequence realisee selon la technique des microrubans

Publications (2)

Publication Number Publication Date
EP0954055A1 EP0954055A1 (de) 1999-11-03
EP0954055B1 true EP0954055B1 (de) 2007-08-22

Family

ID=9525940

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99400922A Expired - Lifetime EP0954055B1 (de) 1998-04-30 1999-04-15 Antenne für zwei Frequenzen für die Radiokommunikation in Form einer Mikrostreifenleiterantenne

Country Status (12)

Country Link
US (1) US6218990B1 (de)
EP (1) EP0954055B1 (de)
JP (1) JPH11340728A (de)
CN (1) CN1164008C (de)
AT (1) ATE371276T1 (de)
AU (1) AU743866B2 (de)
CA (1) CA2267536A1 (de)
DE (1) DE69936903T2 (de)
ES (1) ES2293713T3 (de)
FR (1) FR2778272B1 (de)
SG (1) SG90050A1 (de)
TW (1) TW419860B (de)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2800920B1 (fr) * 1999-11-08 2006-07-21 Cit Alcatel Dispositif de transmission bi-bande et antenne pour ce dispositif
FR2811479B1 (fr) * 2000-07-10 2005-01-21 Cit Alcatel Antenne a couche conductrice et dispositif de transmission bi-bande incluant cette antenne
ATE399431T1 (de) * 2000-08-28 2008-07-15 In4Tel Ltd Vorrichtung und verfahren zur verbesserung des niederfrequenten betriebs von mobilkommunikationsantennen
FR2822301B1 (fr) * 2001-03-15 2004-06-04 Cit Alcatel Antenne a bande elargie pour appareils mobiles
US6747605B2 (en) 2001-05-07 2004-06-08 Atheros Communications, Inc. Planar high-frequency antenna
US6741219B2 (en) 2001-07-25 2004-05-25 Atheros Communications, Inc. Parallel-feed planar high-frequency antenna
US6734828B2 (en) 2001-07-25 2004-05-11 Atheros Communications, Inc. Dual band planar high-frequency antenna
FI115343B (fi) * 2001-10-22 2005-04-15 Filtronic Lk Oy Sisäinen monikaista-antenni
KR100500434B1 (ko) * 2002-04-10 2005-07-14 주식회사 선우커뮤니케이션 이동통신기기용 소형 미엔더 및 역 에프 구조를 이용한안테나
EP1522122A1 (de) * 2002-07-15 2005-04-13 Fractus S.A. Notch-gespeiste antenne
US6885343B2 (en) 2002-09-26 2005-04-26 Andrew Corporation Stripline parallel-series-fed proximity-coupled cavity backed patch antenna array
US7248877B2 (en) * 2002-11-21 2007-07-24 Bandspeed, Inc. Multiple access wireless communications architecture
US7136655B2 (en) * 2002-11-21 2006-11-14 Bandspeed, Inc. Method and apparatus for coverage and throughput enhancement in a wireless communication system
US7512404B2 (en) * 2002-11-21 2009-03-31 Bandspeed, Inc. Method and apparatus for sector channelization and polarization for reduced interference in wireless networks
US6778141B1 (en) * 2003-03-06 2004-08-17 D-Link Corporation Patch antenna with increased bandwidth
JP2005051747A (ja) * 2003-07-14 2005-02-24 Ngk Spark Plug Co Ltd アンテナ装置およびその製造方法
KR100675383B1 (ko) 2004-01-05 2007-01-29 삼성전자주식회사 극소형 초광대역 마이크로스트립 안테나
US7042403B2 (en) * 2004-01-23 2006-05-09 General Motors Corporation Dual band, low profile omnidirectional antenna
JP4807413B2 (ja) * 2006-12-15 2011-11-02 株式会社村田製作所 アンテナおよびそのアンテナを備えた通信装置
EP2502310A1 (de) * 2009-11-19 2012-09-26 Hadronex, Llc Robustes antennensystem und verfahren
CN101771189B (zh) * 2009-12-12 2014-03-26 中国计量学院 宽带笔记本天线
CN101728647A (zh) * 2010-01-20 2010-06-09 刘智佳 小型化射频识别标签及其中的微带贴片天线
KR101801186B1 (ko) * 2011-02-25 2017-11-24 엘지전자 주식회사 이동 단말기
JP5475729B2 (ja) * 2011-08-26 2014-04-16 学校法人智香寺学園 板状逆fアンテナ
US9972905B2 (en) * 2013-01-09 2018-05-15 Hrl Laboratories, Llc Reconfigurable electromagnetic surface of pixelated metal patches
US9941584B2 (en) 2013-01-09 2018-04-10 Hrl Laboratories, Llc Reducing antenna array feed modules through controlled mutual coupling of a pixelated EM surface
DE102015100415A1 (de) 2015-01-13 2016-07-14 Krohne Messtechnik Gmbh Vorrichtung zur Bestimmung des Füllstands eines Mediums
DE102015100414A1 (de) 2015-01-13 2016-07-14 Krohne Messtechnik Gmbh Vorrichtung zur Bestimmung des Füllstands eines Mediums in einem Behälter
DE102015100417A1 (de) 2015-01-13 2016-07-14 Krohne Messtechnik Gmbh Verfahren zur Bestimmung des Füllstands eines Mediums in einem Behälter
TWI763017B (zh) 2020-08-28 2022-05-01 韋僑科技股份有限公司 用於金屬環境之天線結構與裝置
FR3118836B1 (fr) * 2021-01-11 2024-03-29 Hager Controls Dispositif d’antenne sur circuit imprimé et procédé de réalisation d’antenne(s) sur circuit(s) imprimé(s)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4040060A (en) * 1976-11-10 1977-08-02 The United States Of America As Represented By The Secretary Of The Navy Notch fed magnetic microstrip dipole antenna with shorting pins
US4771291A (en) * 1985-08-30 1988-09-13 The United States Of America As Represented By The Secretary Of The Air Force Dual frequency microstrip antenna
US4766440A (en) * 1986-12-11 1988-08-23 The United States Of America As Represented By The Secretary Of The Navy Triple frequency U-slot microstrip antenna
CA2129139C (en) * 1992-12-07 2003-02-11 Koichi Tsunekawa Antenna devices
US5400040A (en) * 1993-04-28 1995-03-21 Raytheon Company Microstrip patch antenna
CA2190792C (en) * 1995-11-29 1999-10-05 Koichi Tsunekawa Antenna device having two resonance frequencies

Also Published As

Publication number Publication date
FR2778272B1 (fr) 2000-09-08
CN1241045A (zh) 2000-01-12
TW419860B (en) 2001-01-21
CA2267536A1 (fr) 1999-10-30
DE69936903T2 (de) 2008-05-15
AU743866B2 (en) 2002-02-07
AU2399399A (en) 1999-11-11
JPH11340728A (ja) 1999-12-10
EP0954055A1 (de) 1999-11-03
DE69936903D1 (de) 2007-10-04
FR2778272A1 (fr) 1999-11-05
ATE371276T1 (de) 2007-09-15
ES2293713T3 (es) 2008-03-16
US6218990B1 (en) 2001-04-17
SG90050A1 (en) 2002-07-23
CN1164008C (zh) 2004-08-25

Similar Documents

Publication Publication Date Title
EP0954055B1 (de) Antenne für zwei Frequenzen für die Radiokommunikation in Form einer Mikrostreifenleiterantenne
EP1172885B1 (de) Kurzgeschlossene Streifenleiterantenne und Zweiband-Übertragungsanordnung damit
EP0924797B1 (de) Multifrequenzstreifenleitungsantenne und Gerät mit einer derartigen Antenne
EP1145378B1 (de) Zweiband-übertragungsanordnung und eine antenne für diese anordnung
EP0923157B1 (de) In Mikrostreifenleitungstechnik ausgeführte Antenne und diese enthaltende Vorrichtung
EP0923156B1 (de) Kurzgeschlossene Streifenleiterantenne und Gerät damit
EP0961344B1 (de) Funkkommunikationseinrichtung und eine Schlitz-Schleifenantenne
EP1075043A1 (de) Antenne mit übereinanderliegenden Resonanzstrukturen und Multibandfunkkommunikationsendgerät mit einer derartigen Antenne
EP1241733B1 (de) PIFA-Antenne mit Schlitzen
EP1073143B1 (de) Dualpolarisierte gedruckte Antenne und entsprechende Gruppenantenne
EP1407512B1 (de) Antenne
EP1225655B1 (de) Dualband Planarantenne und diese enthaltendes Gerät
CA2019181A1 (fr) Element rayonnant diplexant
EP1902491A1 (de) Antennensystem mit diversität zweiter ordnung und karte für ein mit dieser vorrichtung ausgestattetes drahtloses kommunikationsgerät
FR2709604A1 (fr) Antenne pour appareil radio portatif.
WO2004004066A1 (fr) Antenne plane multibande
EP0585250B1 (de) Rundstrahlende, gedruckte Zylinderantenne und Seeradar-Antwortgerät mit derartigen Antennen
WO2002037606A1 (fr) Antenne multibande
EP1873864A1 (de) Symmetrische Antenne für Mikrostreifenleitertechnologie

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE ES GB IT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000503

AKX Designation fees paid

Free format text: AT DE ES GB IT SE

17Q First examination report despatched

Effective date: 20041008

17Q First examination report despatched

Effective date: 20041008

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1021257

Country of ref document: HK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCATEL LUCENT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE ES GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 69936903

Country of ref document: DE

Date of ref document: 20071004

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20071115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070822

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2293713

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071122

26N No opposition filed

Effective date: 20080526

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20130926 AND 20131002

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160421

Year of fee payment: 18

Ref country code: DE

Payment date: 20160421

Year of fee payment: 18

Ref country code: ES

Payment date: 20160413

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160427

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69936903

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170415

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20180629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170416