EP0585250B1 - Rundstrahlende, gedruckte Zylinderantenne und Seeradar-Antwortgerät mit derartigen Antennen - Google Patents

Rundstrahlende, gedruckte Zylinderantenne und Seeradar-Antwortgerät mit derartigen Antennen Download PDF

Info

Publication number
EP0585250B1
EP0585250B1 EP92908983A EP92908983A EP0585250B1 EP 0585250 B1 EP0585250 B1 EP 0585250B1 EP 92908983 A EP92908983 A EP 92908983A EP 92908983 A EP92908983 A EP 92908983A EP 0585250 B1 EP0585250 B1 EP 0585250B1
Authority
EP
European Patent Office
Prior art keywords
antenna
sub
supply line
radiating elements
transmitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92908983A
Other languages
English (en)
French (fr)
Other versions
EP0585250A1 (de
Inventor
Philippe Dupuis
Jean-Pierre Louis Marie Daniel
Jean-Luc Alanic
Philippe Renaudin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CENTRE REGIONAL D'INNOVATION ET DE TRANSFERT DE TECHNOLOGIE EN ELECTRONIQUE ET COMMUNICATIONS DE BRETAGNE ASSOCIATION LOI 1901
Serpe D'etudes Et De Realisations De Protection Electronique SA Ste
Original Assignee
CENTRE REGIONAL D'INNOVATION ET DE TRANSFERT DE TECHNOLOGIE EN ELECTRONIQUE ET COMMUNICATIONS DE BRETAGNE ASSOCIATION LOI 1901
Serpe D'etudes Et De Realisations De Protection Electronique SA Ste
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CENTRE REGIONAL D'INNOVATION ET DE TRANSFERT DE TECHNOLOGIE EN ELECTRONIQUE ET COMMUNICATIONS DE BRETAGNE ASSOCIATION LOI 1901, Serpe D'etudes Et De Realisations De Protection Electronique SA Ste filed Critical CENTRE REGIONAL D'INNOVATION ET DE TRANSFERT DE TECHNOLOGIE EN ELECTRONIQUE ET COMMUNICATIONS DE BRETAGNE ASSOCIATION LOI 1901
Publication of EP0585250A1 publication Critical patent/EP0585250A1/de
Application granted granted Critical
Publication of EP0585250B1 publication Critical patent/EP0585250B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • H01Q21/205Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path providing an omnidirectional coverage

Definitions

  • the present invention relates to a printed cylindrical antenna as described in the document IEE Proceedings H. Microwaves, Antennas and Propagation, vol. 135, no 2, April 1988, pages 132-134 and a maritime radar transponder which uses such antennas.
  • a cylindrical antenna which is omnidirectional in a horizontal plane and which has a minimized diameter while having a fairly high gain. Its opening angle in a vertical plane can be of the order of 35 ° and, in this case, it can be used in a maritime radar transponder as a receiving antenna and transmitting antenna in the frequency band 9.2 GHz-9.5 GHz.
  • the object of the invention is to produce an antenna which has these technical characteristics and the manufacture of which is easy to implement.
  • a cylindrical antenna according to the invention consists of a cylindrical substrate of a dielectric material whose internal wall is covered with a layer of metallic material forming a ground plane and whose external wall receives the radiating elements, these being arranged in a plurality of identical sub-networks parallel to each other and equidistant on a perimeter of the substrate, the sub-networks being supplied in phase, each sub-network consisting of a rectilinear supply line who on the cylindrical substrate of the antenna, is located on a generator of said cylinder and of a plurality of identical radiating elements located alternately on either side of said supply line and supplied by said supply line so as to be able emitting phase waves, the distance on the perimeter of the cylinder which separates two neighboring sub-networks being at most equal to 2 times the maximum dimension on the perimeter of the cylinder of the radiating elements, the radiating elements on one side of a sub -network being interlaced with the radiating elements on the opposite side of a neighboring sub-network.
  • each radiating element consists of a conductive patch of square shape, one corner of which is in galvanic contact with the supply line of the corresponding sub-network and whose diagonal is perpendicular to the line d at the feed point.
  • the radiating elements of the same sub-network are distant from each other, on the supply line of said sub-network, by a half-wavelength guided by said line of food.
  • the invention also relates to a maritime radar transponder comprising a cylindrical housing at least part of which forms a radome and which contains a wave receiver such as those emitted by a scanning radar system, a transmitter emitting such radar waves, a control circuit which controls the transmission of the transmitter when the receiver has received a radar wave from a radar system, the receiver and the transmitter respectively comprising a reception antenna and a transmission antenna.
  • a maritime radar transponder comprising a cylindrical housing at least part of which forms a radome and which contains a wave receiver such as those emitted by a scanning radar system, a transmitter emitting such radar waves, a control circuit which controls the transmission of the transmitter when the receiver has received a radar wave from a radar system, the receiver and the transmitter respectively comprising a reception antenna and a transmission antenna.
  • each antenna is a cylindrical antenna having the characteristics mentioned above and is mounted coaxially inside said part forming a radome.
  • the transmitter, the receiver and the control circuit of this transponder are mounted on the same printed circuit board on which are threaded the cylindrical transmitting and receiving antennas, the transmitter located inside the transmitting antenna and the receiver inside the receiving antenna.
  • the transmitter and the receiver are on one side while the control circuit is on the other side.
  • the cylindrical antenna shown in FIG. 1 consists of a cylindrical substrate of a dielectric material, the internal wall of which is covered with a layer 2 of a metallic material forming a ground plane and the internal wall of which receives radiating elements 3 supplied by lines of food 4.
  • the substrate is, for example, in a dielectric material such as polypropylene or Teflon glass. Its relative permittivity is, for example, close to 2.2. For correct operation in a band centered on 9.4 GHz, its thickness is advantageously of the order of 800 microns.
  • the radiating elements 3 are produced on the substrate 1 according to the printed circuit technique on a dielectric plate covered, beforehand, on each of its two faces, with a layer metallic, for example, copper or aluminum and which is, after printing the radiating elements 3 on one of these two faces, rolled to form the cylindrical antenna shown in FIG. 1.
  • Fig. 2 shows an array of radiating elements 3 according to an exemplary embodiment of the invention. This network is shown developed on a plan as it appears when printed on a plate, before rolling.
  • It comprises four identical sub-networks R1, R2, R3, and R4 of, each, four identical radiating elements 3, the sub-networks Ri being mutually parallel and equidistant on the perimeter of the cylinder.
  • the number of sub-arrays can be less than or greater than four, depending on the diameter of the antenna that one wishes to obtain.
  • the Ri subnetworks are supplied in phase in a tree-like configuration.
  • the sub-networks R1, R2, R3 and R4 are respectively supplied by conductive lines L1, L2, L3 and L4 bent at 90 °
  • the lines L1 and L2 have their common ends connected to a conductive line L12 bent at 90 °
  • lines L3 and L4 have their common ends connected to a conductive line L34 bent at 90 °.
  • the latter L12 and L34 have their common ends connected to a general supply line LA.
  • Another supply mode could also be used as long as it supplies a phase supply to the sub-networks R1 to R4, for example, a supply in series.
  • the lines L1 to L4 have lengths which are equal to a wavelength guided on the substrate at the operating frequency of the antenna. Their width is such that they have a characteristic impedance allowing the adaptation of impedance with the sub-networks R1 to R4.
  • the lines L 12 and L 34 have equal lengths and each have a characteristic impedance which allows the impedance adaptation with the lines L1 to L4 and the sub-networks which the latter supply.
  • these impedance adaptations may nevertheless require quarter-wave transformers consisting of an enlargement supply lines over a length equal to a quarter of guided wavelength on the substrate.
  • transformers must be provided on lines L1 to L4 and L12 and L34.
  • radiating elements per sub-network it is necessary to provide transformers on the line sections between the radiating elements.
  • lines L 12 and L 34 have sections (horizontal in FIG. 2) which belong to the same perimeter of the cylinder. It is the same for lines L1 to L4 which also have sections belonging to the same perimeter of the cylinder.
  • Each sub-network Ri consists of a rectilinear supply line L R which, on the cylindrical substrate 1 of the antenna, happens to be on a generator of this cylinder.
  • the supply line L R there are, supplied at points spaced on said line L R of a half-wavelength guided on the substrate, four radiating elements 3.
  • Each element radiating 3 is advantageously constituted by a conductive patch of square shape, a corner 31 of which is in galvanic contact with the supply line L R for its excitation and of which a diagonal d is perpendicular to the supply line L R at point d food 31.
  • the radiating elements 3 could also consist of conductive pads of any shape, for example, circular, rectangular, etc. Square or rectangular in shape, they could also be fed from the middle of one side by means of an appropriate line section.
  • the supply line L R of each sub-network and the vertical section in FIG. 2 of the corresponding line L1 to L4 are collinear.
  • the radiating elements 3g situated on one side of the supply line L R of a sub-network R i are interlaced with the radiating elements 3d on the opposite side of the supply line LR of a sub- neighboring network R i-1 or R i + 1 .
  • the radiating elements 3 interleaved are spaced apart by a guided half-wavelength on the substrate.
  • the distance which separates the feed lines L R from two neighboring sub-arrays R i and R i + 1 is an important parameter as regards the omnidirectional characteristic of the antenna. This distance is at most equal to 2 times the maximum dimension on the perimeter of the cylinder of the radiating elements, that is to say, in the case of radiating elements made up of pellets of square shape, the length of the diagonal of this pastille.
  • Measurements were made on a cylindrical antenna having a substrate with a permittivity of 2.2 and whose radius is 15 mm.
  • the distance on the line LR of each sub-network Ri between two radiating elements is substantially equal to 12.1 mm and the distance between two neighboring sub-networks is substantially equal to 2.40 mm.
  • the diagonal of the square of the pads 3 is substantially equal to 14 mm.
  • the width of the supply lines L1 to L4, L12, L34, and LA was adjusted to a characteristic impedance of 80 ohms in the 9.2 GHz-9.5 GHz frequency band. .
  • Fig. 3a shows gain diagrams as a function of the azimuth angle which have been plotted with this antenna at an operating frequency of 9.4 GHz.
  • the main axis of the cylinder of this antenna is vertical.
  • the gain for the main polarization component is substantially constant and the gain ripples noted do not exceed 2.5 dB.
  • the gain for the cross component is at least 10 dB lower than that of the main component. It can therefore be seen that the antenna emits a wave polarized substantially linearly in a horizontal plane.
  • the standing wave ratio (ROS) is less than 1.5 in the band 9.2 GHz - 9.5 GHz.
  • Fig. 3b the gain at an operating frequency of 9.4 GHz of an antenna according to the invention as a function of the angle formed by the direction of measurement with a horizontal plane, the antenna cylindrical having its main vertical axis. It can be seen that the opening angle at -3 dB as measured is + 18 ° and -18 ° relative to the horizontal.
  • FIG. 4 There is shown in FIG. 4, a maritime rescue radar responder.
  • the housing 10 shown here in thin dashed mixed lines, inside which are housed, coaxially, a cylindrical transmitting antenna 11 and a cylindrical receiving antenna 12.
  • the housing 10 shown comprises a part 10a forming a radome transparent to radar waves and part 10b.
  • the antennas 11 and 12 are inside the part 10a.
  • the entire housing 10 can be a radome.
  • a transmitter 14 housed inside the first cylindrical antenna 11, and, at the other end, a receiver 15 housed at the inside the second cylindrical antenna 12.
  • a control circuit 16 is provided on the other face of the plate 13.
  • Coaxial cables 17 and 18 are respectively provided for respectively connecting the high-frequency signal output of the transmitter 14 to the transmit antenna 10 and the high frequency signal input from the receiver 15 to the receive antenna 11.
  • An electrical supply device 19 is provided, in part 10b, for supplying direct current to the transmitter 14, the receiver 15 and the control circuit 16.
  • this supply device 19 is separated from the rest of the responder and is located in a second housing separate from the housing 10. In this case, the part 10b of the housing 10 does not exist.
  • the receiver 15 is of the type which can receive and demodulate signals transmitted by radar systems transmitting in the band of frequencies 9.2 GHz - 9.5 GHz. As for the transmitter 14, it transmits, by frequency scanning, waves in the same frequency band.
  • a radar responder is used as follows. It equips, for example, a buoy or a lifeboat.
  • a second vessel has a rotating beam radar system which transmits, for example, on a frequency in the band 9.2 GHz - 9.5 GHz.
  • the receiving antenna 11 of this transponder When it passes within range of a buoy or a boat whose maritime radar transponder is started, following for example a sinking, the receiving antenna 11 of this transponder periodically receives the signals transmitted by the radar system and the receiver 15, connected to the reception antenna 11, detects them. This has the effect of activating the control circuit 16 which then turns on the transmitter 14.
  • the latter transmits, via the transmitting antenna 10 to which it is connected and by frequency scanning, radar waves in the same band which are then picked up by the radar system of the second boat. It is therefore possible to determine, on the screen of this system, the position of the buoy.
  • the antennas according to the invention are particularly well suited to this particular application. Indeed, due to their shape, they are easily accommodated in a cylindrical housing. In the internal volume that each generates, it is possible to place the transmitter and receiver which, because of the ground plane on their internal walls of the antenna, are isolated from the ambient waves and parasites and which, consequently, do not require shields.

Landscapes

  • Details Of Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Claims (6)

  1. Gedruckte Zylinderantenne,
    dadurch gekennzeichnet, daß
    sie aus einem aus einem nichtleitenden Material hergestellten zylindrischen Substrat (1) besteht, dessen Innenwand mit einer Schicht (2) aus einem metallischen Material überzogen ist, welches eine Erdung bildet, und an deren Außenwand Strahlungselemente (3) vorgesehen sind, welche
    in einer Vielzahl von identischen untereinander parallel und in gleichem Abstand auf einem Umfang des Substrats (1) angeordneten Teilnetze (Ri) bestehen, und
    die Teilnetze (Ri) phasengleich gespeist werden,
    und daß jedes der Teilnetze (ri) aus einer geradlinigen Speiseleitung (LR) gebildet wird, welche sich auf dem zylindrischen Substrat (1) der Antenne auf einer Mantellinie dieses Zylinders befindet, sowie aus einer Vielzahl von Strahlungselementen (3) besteht, die abwechselnd beidseitig von der Speiseleitung (LR) angeordnet sind und von dieser Speiseleitung (LR) so gespeist werden, daß phasengleiche Wellen ausgesendet werden können, und daß
    der Abstand auf dem Umfang des Zylinders, welcher zwei benachbarte Teilnetze (Ri und Ri + 1) voneinander trennt, mindestens doppelt so groß ist, wie die maximale Abmessung auf dem Umfang des Zylinders der Strahlungselemente (3), und dadurch, daß
    diese auf einer Seite eines Teilnetzes angeordneten Strahlungselemente mit den Strahlungselementen (3) auf der gegenüberliegenden Seite eines benachbarten Teilnetzes verschachtelt sind.
  2. Antenne nach Anspruch 1,
    dadurch gekennzeichnet, daß
    jedes der Strahlungselemente (3) aus einem quadratischen Leiterplättchen besteht, dessen eine Ecke in galvanischem Kontakt mit der Speiseleitung (LR) des entsprechenden Teilnetzes (Ri) steht, und dessen Diagonale (d) am Speisepunkt (31) senkrecht zu dieser Speiseleitung (LR) verläuft.
  3. Antenne nach einem der Ansprüche 1 oder 2,
    dadurch gekennzeichnet, daß
    die Strahlungslemente (3) des gleichen Teilnetzes untereinander in einem Abstand angeordnet sind, welcher einer halben Länge einer von dieser Speiseleitung (LR) leitungsgebundenen Welle entspricht.
  4. Seeradar-Seeradar-Antowortgerät mit einem Gehäuse, bei dem mindestens ein Teil eine Radarkuppel bildet und das einen Empfänger (15) für Wellen aufweist, wie sie von einem Radarabtastsystem ausgesendet werden, sowie einen Sender (14), welcher solche Radarwellen aussenden kann, und einen Steuerkreis (15) für die Steuerung der Aussendung des Senders (14) enthält, wenn der Empfänger (15) eine von einem Radarsystem ausgesendete Radarwelle empfangen hat, wobei der Empfänger (15) und der Sender (14) jeweils eine Empfangsantenne (11) und eine Senderantenne (10) aufweisen,
    dadurch gekennzeichnet, daß
    jede der Antennen (10, 11) eine zylindrische Antenne nach einem der vorausgegangenen Ansprüche darstellt, wobei jede dieser Antennen koaxial im Inneren des Teils des Gehäuses (10) angeordnet ist, welcher die Radarkuppel bildet.
  5. Seeradar-Antwortgerät nach Anspruch 4,
    dadurch gekennzeichnet, daß
    der Sender (14), der Empfänger (15) sowie der Steuerkreis (16) auf der gleichen Flachgruppe (13) einer gedruckten Schaltung montiert sind, in die die zylindrischen Antennen für die Aussendung (10) und den Empfang (11) eingefügt sind, und dadurch, daß der Sender (14), welcher im Inneren der Senderantenne (10) und der Empfangsantenne (11) montiert ist, und daß der Sender (14) an der Innenseite der Senderantenne (10) und der Empfänger (15) innerhalb der Empfangsantenne (11) angeordnet sind.
  6. Seeradar-Antwortgerät nach Anspruch 5,
    dadurch gekennzeichnet, daß
    auf der Flachgruppe (13) der gedruckten Schaltung der Sender (14) und der Empfänger (15) auf einer der Flächen angeordnet sind, während der Steuerkreis (16) auf der anderen Fläche angeordnet ist.
EP92908983A 1991-03-29 1992-03-23 Rundstrahlende, gedruckte Zylinderantenne und Seeradar-Antwortgerät mit derartigen Antennen Expired - Lifetime EP0585250B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9104146 1991-03-29
FR9104146A FR2674689B1 (fr) 1991-03-29 1991-03-29 Antenne cylindrique imprimee omnidirectionnelle et repondeur radar maritime utilisant de telles antennes.
PCT/FR1992/000263 WO1992017915A1 (fr) 1991-03-29 1992-03-23 Antenne cylindrique imprimee omnidirectionnelle et repondeur radar maritime utilisant de telles antennes

Publications (2)

Publication Number Publication Date
EP0585250A1 EP0585250A1 (de) 1994-03-09
EP0585250B1 true EP0585250B1 (de) 1996-07-24

Family

ID=9411504

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92908983A Expired - Lifetime EP0585250B1 (de) 1991-03-29 1992-03-23 Rundstrahlende, gedruckte Zylinderantenne und Seeradar-Antwortgerät mit derartigen Antennen

Country Status (4)

Country Link
EP (1) EP0585250B1 (de)
DE (1) DE69212471T2 (de)
FR (1) FR2674689B1 (de)
WO (1) WO1992017915A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9417450D0 (en) 1994-08-25 1994-10-19 Symmetricom Inc An antenna
GB9601250D0 (en) * 1996-01-23 1996-03-27 Symmetricom Inc An antenna
GB9603914D0 (en) * 1996-02-23 1996-04-24 Symmetricom Inc An antenna
JPH1093322A (ja) * 1996-09-18 1998-04-10 Honda Motor Co Ltd アンテナ装置
GB9828768D0 (en) 1998-12-29 1999-02-17 Symmetricom Inc An antenna
GB9912441D0 (en) 1999-05-27 1999-07-28 Symmetricon Inc An antenna
FR2828935B1 (fr) * 2001-08-21 2003-11-07 Serpe Iesm Soc D Etudes Et De Repondeur radar maritime

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL186344C (nl) * 1978-04-18 1990-11-01 Mitsubishi Electric Corp Radarbaken.
US4816836A (en) * 1986-01-29 1989-03-28 Ball Corporation Conformal antenna and method

Also Published As

Publication number Publication date
FR2674689B1 (fr) 1993-05-21
DE69212471T2 (de) 1996-11-28
EP0585250A1 (de) 1994-03-09
DE69212471D1 (de) 1996-08-29
WO1992017915A1 (fr) 1992-10-15
FR2674689A1 (fr) 1992-10-02

Similar Documents

Publication Publication Date Title
EP0954055B1 (de) Antenne für zwei Frequenzen für die Radiokommunikation in Form einer Mikrostreifenleiterantenne
EP0427654B1 (de) Wendelförmige Resonanzantenne, bestehend aus je vier Wendelleitern übereinander
FR2652453A1 (fr) Antenne coaxiale a fentes du type a alimentation a ondes progressives.
EP0899814B1 (de) Strahlende Struktur
EP1416586B1 (de) Antenne mit einer Filtermaterialanordnung
EP0457880B1 (de) Iff-bordantenne mit schaltbaren strahlungsdiagrammen
FR2505097A1 (fr) Element rayonnant ou recepteur de signaux hyperfrequences a polarisations circulaires et antenne plane hyperfrequence comprenant un reseau de tels elements
CA2019181A1 (fr) Element rayonnant diplexant
EP0805512A1 (de) Kompakt gedruckte Antenne mit geringer Strahlung in Elevationsrichtung
FR2584872A1 (fr) Antenne plate a large bande a polarisation circulaire, utilisations d'une telle antenne, applications, et procede de fabrication
FR2800920A1 (fr) Dispositif de transmission bi-bande et antenne pour ce dispositif
EP0585250B1 (de) Rundstrahlende, gedruckte Zylinderantenne und Seeradar-Antwortgerät mit derartigen Antennen
EP0518271A1 (de) Mikrowellen-Antennenelement mit zwei Polarisationen
FR2704359A1 (fr) Antenne plane.
EP1523062B1 (de) Rundstrahlende Antenne zum Senden und Empfangen von Audio/Video Signalen
EP1188202B1 (de) Anordnung zur übertragung und/oder zum empfang von signalen
FR2616015A1 (fr) Procede d'amelioration du decouplage entre antennes imprimees
EP0520908B1 (de) Lineare Gruppenantenne
EP0477102B1 (de) Richtnetzwerk mit benachbarten Strahlerelementen für Funkübertragungssystem und Einheit mit einem derartigen Richtnetzwerk
EP0860894B1 (de) Miniatur-Resonanzantenne in Form von ringförmigen Streifenleiterantennen
EP0860895A1 (de) Resonanzantenne zum Senden oder Empfangen polarisierter Wellen
EP3900113B1 (de) Elementare mikrostreifenantenne und gruppenantenne
FR3102311A1 (fr) Antenne-reseau
EP0429338A1 (de) Zirkular polarisierte Antenne, insbesondere für Gruppenstrahlerantennen
CA2448636C (fr) Antenne pourvue d'un assemblage de materiaux filtrant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19931227

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19951213

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REF Corresponds to:

Ref document number: 69212471

Country of ref document: DE

Date of ref document: 19960829

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960903

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050309

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061003

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070322

Year of fee payment: 16

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080323