EP0860894B1 - Miniatur-Resonanzantenne in Form von ringförmigen Streifenleiterantennen - Google Patents

Miniatur-Resonanzantenne in Form von ringförmigen Streifenleiterantennen Download PDF

Info

Publication number
EP0860894B1
EP0860894B1 EP98400437A EP98400437A EP0860894B1 EP 0860894 B1 EP0860894 B1 EP 0860894B1 EP 98400437 A EP98400437 A EP 98400437A EP 98400437 A EP98400437 A EP 98400437A EP 0860894 B1 EP0860894 B1 EP 0860894B1
Authority
EP
European Patent Office
Prior art keywords
ring
antenna according
antenna
sections
meanders
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98400437A
Other languages
English (en)
French (fr)
Other versions
EP0860894A1 (de
Inventor
Hervé Legay
Thierry Rostan
Frédéric Croq
Michel Gomez-Henry
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Lucent SAS
Original Assignee
Alcatel Lucent SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel Lucent SAS filed Critical Alcatel Lucent SAS
Publication of EP0860894A1 publication Critical patent/EP0860894A1/de
Application granted granted Critical
Publication of EP0860894B1 publication Critical patent/EP0860894B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0464Annular ring patch

Definitions

  • the invention relates to a transmitting or receiving antenna of the microwave domain. It relates more particularly to a flat antenna made of microstrip technology, which has the general shape of a ring, and is resonant type.
  • Antennas of this type have a small footprint and a low mass. They are therefore used for embedded applications, especially for space vehicles and satellites.
  • omnidirectional antennas are often needed, that is, capable of transmitting or receiving in a solid angle of great value.
  • the aim of the invention is to provide a ring-shaped resonant antenna which is of minimal size and which has a maximum angular coverage with a purity of polarization preserved in this angular coverage.
  • the flat antenna of resonant type, has the general shape of a ring with meanders or crenellations.
  • This form of meandering ring or crenellations makes it possible to maximize the length of the periphery in a predetermined size, that is to say to minimize the space requirement for a given wavelength.
  • the wavelength guided in the antenna is proportional to the length of the periphery, for the same wavelength, the size (that is to say the occupied area) of an antenna according to the invention is weaker than the size of an antenna of the same type with a circular ring.
  • the decrease in the size of the antenna is favorable to the increase of its omnidirectionality.
  • two successive radial portions must have an orientation and dimensions such that they generate spurious fields. who compensate each other. It is preferable that the distance between these successive radial portions is small.
  • the radial portions are, as a whole, shaped in such a way that they do not produce a disturbing field of the polarization of the signal to be emitted.
  • the excitation of the antenna is performed on the outer section of the ring.
  • the ratio of the largest diameter to the smallest diameter is at most equal to two.
  • the ring has eight or sixteen sections in total.
  • the meandering ring or crenellations is either a metal deposit on a substrate, or a slot provided in a metal deposit.
  • the dielectric permittivity of the substrate because the guided wavelength in the antenna is substantially proportional to the square root of this dielectric permittivity.
  • the increase of this permittivity is not, either, favorable to the maintenance of the purity of polarization.
  • a suitable degree of polarization purity could be maintained if the dielectric permittivity was of the order of 1.5. But we do not have a material with this permittivity.
  • a permittivity material 2.5 approximately a good degree of purity can be maintained provided that the annular antenna is deposited on a substrate which also comprises a housing with metal walls substantially perpendicular to the plane of the substrate, for example cylindrical shape of circular section.
  • the width of these meanders or crenellations is of the order of 0.2 times the diameter.
  • the antenna shown in FIG. 1 is intended to receive or transmit microwave signals in two bands, namely, on the one hand, the S band at 2 GHz and, on the other hand, the UHF band at 400 MHz.
  • This antenna is mainly intended to be implanted on small satellites, such as satellites assigned to the location of objects or for missions measuring or remote control with conventional satellites. Because of this application, it must have a small footprint, a wide angular coverage for the two frequency bands and a circular polarization with a suitable ellipticity rate over this wide angular coverage, especially for the orientations furthest from axis.
  • the antenna 10 shown in FIG. 1 is of the combined type. It is formed by the combination of two concentric planar antennas, respectively 14 and 16. Each of the antennas 14 and 16 and the assembly 10 have an axis 12 of rotational symmetry.
  • the central antenna 14, of smaller dimensions, is intended for the S-band at 2 GHz and the outer antenna 16, of larger dimensions, is intended for the UHF band at 400 MHz.
  • Each of the individual antennas 14, 16 comprises a dielectric substrate, respectively 18 and 20, on which is deposited a conductive ring, respectively 22 and 24.
  • the two rings 22 and 24 are centered on the axis 12.
  • Each of the substrates is enclosed in a cylindrical metal housing of axis 12.
  • the housing for the antenna 14 has the reference 25 and the housing for the antenna 16 has the reference 26.
  • This housing is limited, a on the one hand, by a cylindrical outer wall 26 1 and, on the other hand, by an inner cylindrical wall 26 2 at a short distance from the wall of the housing 25.
  • the space 28 formed between the wall of the housing 25 and the wall 26 2 has a length (in the direction of the axis 12) equal to one quarter of the length of the S-band waves, that is to say 35 mm about. It is open, at 29, on the side where the emission occurs. It constitutes a trap intended to prevent the propagation of the leakage currents of the ring 22 towards the ring 24.
  • a metal filler ring 36 can be arranged at the bottom of the space 28 to adjust the length (parallel to the axis 12) of this space 28 so that it is equal to a quarter of the wavelength of the band S .
  • the walls 25 and 26 2 may be formed from the same sheet of metal.
  • a ring or metal ring 30 Around the housing 26, substantially in the plane of the ring 24, and therefore perpendicular to the axis 12, is a ring or metal ring 30.
  • the inner rim 32 of the crown 30 is connected to a skirt 34 moving away, on the one hand, from the ring 30 towards the bottom of the housing 26 and, on the other hand, from the axis 12.
  • the angle formed in the plane of Figure 1 by the plane of the ring 30 and the skirt 34 is of the order of 45 °.
  • the ring 22 radiates in a cone of axis 12 half-angle at the vertex ⁇ equal to about 60 °. There is however a radiation outside this cone.
  • the purpose of the ring 30 is to diffract the waves deflected outwards in order to increase the omnidirectionality of the antenna 14.
  • the ring 30 tends to degrade the circular polarization of the radiation, i.e., to degrade the ellipticity rate.
  • the skirt 34 made it possible to maintain an ellipticity rate of circularly polarized waves close to 1, especially for the directions forming a wide angle with the axis 12.
  • the ellipticity rate can be adjusted empirically by varying the orientation of the skirt 34, i.e. the angle it forms with the plane of the ring 30 as well as by varying its dimensions.
  • the outer edge 34 1 of the skirt 34 is further from the axis 12 than the outer edge 30 1 of the ring 30.
  • the inner diameter of the ring 30 is 256 mm, its outer diameter 300 mm, while the outer diameter of the skirt 34 - which has a generally frustoconical shape - is 348 mm.
  • skirt 34 creates an S-band wave diffraction which opposes the negative effect of the diffracting ring 30 on the ellipticity rate of the S-band waves.
  • housings or cavities 25 and 26 contribute to symmetrize the radiation pattern around the axis 12 and to improve the ellipticity rate.
  • the dielectric substrates 18 and 20 have a relative dielectric permittivity ⁇ r of the order of 2.5. As indicated above, the higher the dielectric permittivity, the smaller the antenna dimensions can be. However, increasing the dielectric constant is unfavorable to maintaining circular polarization. Therefore, in the example, the constant ⁇ r does not exceed the value 2.5.
  • FIGS. 1a, 1b and 1c are diagrams making it possible to highlight the advantages, on the one hand, of the quarter-wave trap constituted by the annular space 28 and, on the other hand, diffractive elements 30 and 34.
  • the abscissa the elevation ⁇ (in degrees), that is to say the half-angle of the emission cone axis 12, and the ordinate the amplitudes in decibels normal polarization and cross polarization.
  • FIG. 1a is a diagram for an antenna similar to that of FIG. 1 but devoid of, on the one hand, the quarter-wave trap 28 and, on the other hand, diffractive elements 30 and 34.
  • Curve 40 corresponds to normal polarization and curves 41 correspond to cross polarization.
  • the purity of the circular polarization is all the greater the greater the difference between the curves 40 and 41. It is thus seen that for an angle ⁇ of 0 °, that is to say along the axis 12 , the emission is in a circular polarization. By cons, when one moves away from the axis 12, the circular polarization degrades significantly.
  • the emission weakens substantially as one moves away from the axis 12.
  • FIG. 1b corresponds to an antenna similar to that of FIG. 1, with a quarter-wave trap 28, but without the diffracting elements 30 and 34.
  • FIG. 1c corresponds to the antenna represented in FIG. 1, with a quarter-wave trap 28, the crown 30 and the skirt 34. It can be seen, with respect to FIG. 1b, that the omnidirectionality is all quite satisfactory up to an angle ⁇ of 60 °. In addition, the circular polarization purity is significantly improved between the angles 30 ° and 60 °, the distance between the curves 40 2 and 41 2 being substantially larger.
  • the compactness of the antenna is increased by imparting a crenellated or meandering shape to the rings 22 and 24.
  • the ring 22 comprises, regularly distributed around the axis 12, eight internal segments 46 1 to 46 8 alternated with eight external segments 48 1 to 48 8 . These segments 46 and 48 in the form of arcs of circles are connected at their ends by rectilinear segments 50, of radial directions. Thus, in this example, the radial segments are sixteen in number.
  • the ring 24 is homothetic of the ring 22.
  • the guided wavelength of the radiation to be transmitted is directly proportional to the electrical length of the ring of the resonant antenna 14 (14 ') or 16 (16'). This length electric is equal to the sum of the lengths of all segments 46, 48 and 50.
  • an antenna according to the invention has a smaller footprint than an antenna having a simply circular shape. Indeed, it is found that, with respect to a circular ring having the same diameter as the circle on which the segments 48 are arranged, the electrical length is increased by about the sum of the lengths of the segments 50.
  • the antenna's antenna impedance decreases because the metal ribbon further obscures the aperture; thus, the proportion of energy dissipated in the conductor or the dielectric is larger. It is therefore preferable that the ratio between the outside diameter and the inside diameter is at most of the order of two.
  • FIG. 4 shows, in exploded perspective, the various constituent elements of the antenna combined with rings 22 'and 24' of the type of those of FIG.
  • the crown 30 and the skirt 34 inclined at 45 ° constitute a single piece 50.
  • the rings 24 'and 22' are made by etching on dielectric substrates, respectively 18 and 20, made of a material referred to as "polypenco".
  • the rings 22 'and 24' separated from the substrates 18 and 20 are shown; but it goes without saying that these rings are deposited on the respective substrates 18 and 20.
  • a coaxial cable 60 passes through the bottom 52 of the housing 25 to bring the excitation signal to the splitter 54.
  • the role of the latter is to distribute, with appropriate phase shifts, the excitation signal between the four outer segments 48 'of the 'ring 14'.
  • a distributor 58 is arranged between the bottom 56 of the housing 26 and the dielectric 20 .
  • a coaxial cable 62 passes through the bottom 56 to bring the UHF excitation signal to the splitter 58 which distributes, with appropriate phase shifts, this excitation signal between the four outer segments of the ring 24 '.
  • FIGS 5, 6 and 7 show the splitter 54.
  • the circuits 64 make it possible, from the excitation signal supplied by the coaxial 60, to obtain a circular polarization. For this purpose, they feed the four outer segments 48 'with successive phase shifts of 90 °.
  • the signal supplied through the coaxial 60 is applied to an input 66 which, as shown in Figure 5, is connected to the input of a phase shifter 70 to 180 ° via a transformer 68.
  • the output 70 1 without phase shift of the phase-shifter 70 is connected to a port 74 which is itself connected to a 90 ° phase-shifter 78 via a transformer 76.
  • the phase-shifted output 70 2 of 180 of the phase-shifter 70 is connected to a another port 80, which is connected to a second phase-shifter 84 of 90 ° via a transformer 82.
  • the output 78 1 without phase shift of the phase shifter 78 is connected to a first output 90 1 of the circuit 64 via a Transformer 86 and an adapter 88.
  • Output 90 1 is connected to a first outer segment of ring 22 '.
  • phase shifter output 78 2 of the phase shifter 78 is connected to a second output 90 2 via another transformer and another adapter.
  • the output 90 2 is connected to a second outer segment of the ring 22 '.
  • the output without phase shift 84 1 of the phase shifter 84 is connected to the third output 90 3 via a transformer and an adapter.
  • This output 90 3 is connected to a third outer segment of the ring 22 '.
  • the output 84 2 of 90 ° phase shift of the phase shifter 84 is connected to the fourth output 90 4 of the circuit 64 through a transformer and an adapter.
  • This output 90 4 is connected to a fourth outer segment of the ring 22 '.
  • the signal on the output 90 1 is in phase with the input signal on the first port 66, while the signals on the outputs 90 2 , 90 3 and 90 4 are out of phase by 90 °, 180 ° and 270 °, respectively. report to the input signal.
  • the outputs 90 1 to 90 4 are at the periphery of the cutouts and regularly distributed; these outputs are in line with the outer segments of the ring 22 'to which they are connected.
  • the metal blanks are sandwiched between distributing dielectrics, respectively 102 and 104.
  • each output 90 of the circuit 64 is effected via a probe 92.
  • Four probes are therefore provided.
  • the probe 92 1 is shown .
  • the splitter 64, 102, 104 is enclosed in a metal housing 106 forming a trap preventing the excitation of surface waves on the splitter.
  • the circuit 64 is made using metal etchings on a substrate.
  • three concentric antennas are provided, 110 for the central antenna, 112 for the intermediate antenna and 114 for the outermost antenna, respectively.
  • a diffraction ring 30 surrounds the outermost antenna and this ring 30 is integral with a skirt 34 oriented substantially at 45 ° to the plane of the ring 30.
  • a quarter-wave trap 28 prevents propagation of leakage current from the excited cavity to the surrounding cavities.
  • a quarter-wave trap 116 prevents the propagation of a leakage current to the antenna 114.
  • the trap 116 is of length (along the axis) larger than the trap 28 because it is intended to eliminate longer wavelengths, those of the signals emitted by the antenna 112.
  • FIG. 9 represents a resonant annular cavity which applies more particularly to a slot antenna.
  • this example could also apply to a resonant ring antenna formed by a metal conductor.
  • the ring 130 is constituted by a slot 132 in a metal conductor 134.
  • This ring 130 forms meanders each having substantially the shape of a petal.
  • the number of petals is, in this embodiment, equal to 8.
  • the excitation is carried out on the outer segments by means of a coaxial cable

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Waveguide Aerials (AREA)

Claims (15)

  1. Resonanzantenne, die für eine vordefinierte Frequenz konzipiert ist, die einen leitfähigen, flachen Ring (22, 24) umfasst, der auf einem dielektrischen Substrat (18, 20) aufgebracht ist, das in eine metallische Aufnahme (25, 26) eingeschlossen ist, die Wände aufweist (25, 261, 262), die sich parallel zur Achse (12) der Ringdrehung erstrecken, wobei die Schaltung zur Stromversorgung der Antenne dazu bestimmt ist, mittels einer Sonde (921) an den Ring angeschlossen zu werden, wobei das elektrische Längenmaß des Ringumfangs die leitungsgebundene Wellenlänge in der Antenne festlegt, dadurch gekennzeichnet, dass der Ring (22, 24, 22', 24', 130) Windungen oder Lücken (46, 48, 132) aufweist, die Bereiche (50) aufweisen, die in einer praktisch radialen Richtung ausgerichtet sind, wobei die genannten Windungen oder Lücken erstellt wurden, um das elektrische Längenmaß des Ringumfangs zu erhöhen.
  2. Antenne gemäß Anspruch 1, dadurch gekennzeichnet, dass die Windungen oder Lücken in etwa radiale Bereiche (50) aufweisen, die so ausgeführt sind, dass sie zusammen kein Störfeld für die polarisation des abzustrahlenden Signals erzeugen.
  3. Antenne gemäß Anspruch 2, dadurch gekennzeichnet, dass die beiden aufeinander folgenden, radialen Bereiche Polarisationsstörrelder erzeugen, die sich gegenseitig kompensieren.
  4. Antenne gemäß Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass die Windungen oder Lücken in etwa radiale Bereiche (50) aufweisen, die geradlinig verlaufen.
  5. Antenne gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Ring abwechselnde abschnitte (46, 48) aufweist, die so ausgeführt sind, dass die Abstände von zwei aufeinander folgenden Abschnitten zur Mitte unterschiedlich sind, sowie dadurch, dass die am weitesten von der Mitte entfernten Abschnitte auf der gleichen Kreislinie liegen.
  6. Antenne gemäß einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass der Ring abwechselnde Abschnitte (46, 48) aufweist, die so ausgeführt sind, dass die Abstände von zwei aufeinander folgenden Abschnitten zur Mitte (12) unterschiedlich sind, sowie dadurch, dass die der Mitte am nächsten gelegenen Abschnitte auf der gleichen Kreislinie liegen.
  7. Antenne gemäß Anspruch 5 und 6, dadurch gekennzeichnet, dass das Verhältnis zwischen den Durchmessern der Abschnitte höchstens gleich zwei ist.
  8. Antenne gemäß einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass die Windungen oder. Lücken regelmäßig um eine Achse (12) herum verteilt sind.
  9. Antenne gemäß einem der vorgenannten Ansprüche, dadurch Gekennzeichnet, dass die Anzahl der Windungen oder Lücken gleich acht oder sechzehn ist.
  10. Antenne gemäß einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass sie zum Senden an den am weitesten von der Mitte entfernten Abschnitten (48) mit Strom versorgt wird.
  11. Antenne gemäß, einem der vorgenannten Ansprüche, dadurch gekennzeichnet, da sie entsprechend konzipiert ist, Wellen mit Kreispolarisierung zu senden, dass die Abschnitte des Rings in aufeinander folgenden Phasenverschiebungen der abzustrahlenden Welle mit Strom versorgt werden, wodurch diese Kreispolarisation ermöglicht wird.
  12. Antenne gemäß. Anspruch 11, dadurch gekennzeichnet dass die Schaltung (64) zur Erzeugung der Phasenverschiebung durch. Metallausschnitte oder Ätzen ausgeführt ist, wobei die Ausgänge (901, 902, 903, 904) am Rand angeordnet sind.
  13. Antenne gemäß einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass der Ring aus einem Streifenleiter besteht.
  14. Antenne gemäß einem der Anspruche 1 bis 12, dadurch gekennzeichnet, dass der Ring aus einem Schlitzstrahl (132) in einem Leiter (134) besteht.
  15. Antenne gemäß einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass sie dazu bestimmt ist, Wellen im UHF-Band oder im S-Band abzustrahlen.
EP98400437A 1997-02-24 1998-02-23 Miniatur-Resonanzantenne in Form von ringförmigen Streifenleiterantennen Expired - Lifetime EP0860894B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9702168 1997-02-24
FR9702168A FR2760134B1 (fr) 1997-02-24 1997-02-24 Antenne miniature resonnante de type microruban de forme annulaire

Publications (2)

Publication Number Publication Date
EP0860894A1 EP0860894A1 (de) 1998-08-26
EP0860894B1 true EP0860894B1 (de) 2007-08-22

Family

ID=9504096

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98400437A Expired - Lifetime EP0860894B1 (de) 1997-02-24 1998-02-23 Miniatur-Resonanzantenne in Form von ringförmigen Streifenleiterantennen

Country Status (5)

Country Link
US (1) US6034645A (de)
EP (1) EP0860894B1 (de)
CA (1) CA2228631C (de)
DE (1) DE69838270T2 (de)
FR (1) FR2760134B1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4012733B2 (ja) 1999-09-20 2007-11-21 フラクトゥス・ソシエダッド・アノニマ マルチレベルアンテナ
EP1170704A1 (de) * 2000-07-04 2002-01-09 acter AG Tragbare Zugangsberechtigungsvorrichtung, GPS-Empfänger und Antenne
BR0116866A (pt) * 2001-02-07 2004-06-22 Fractus Sa Antena extra plana de banda larga miniatura
EP1434300B1 (de) * 2002-12-23 2007-04-18 HUBER & SUHNER AG Breitband-Antenne mit einem 3-dimensionalen Gussteil
US9184504B2 (en) * 2011-04-25 2015-11-10 Topcon Positioning Systems, Inc. Compact dual-frequency patch antenna
US10693218B2 (en) * 2014-07-01 2020-06-23 Microsoft Technology Licensing, Llc Structural tank integrated into an electronic device case
US9985341B2 (en) 2015-08-31 2018-05-29 Microsoft Technology Licensing, Llc Device antenna for multiband communication

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3716861A (en) * 1971-03-22 1973-02-13 J Root Serpentine antenna mounted on a rotatable capacitive coupler
US4804965A (en) * 1985-07-09 1989-02-14 Agence Spatiale Europeenne Flat wide-band antenna
JPH05152829A (ja) * 1991-11-28 1993-06-18 Sony Corp 円環マイクロストリツプアンテナ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3701161A (en) * 1970-05-11 1972-10-24 Trak Microwave Corp Four band slot antenna
US4320402A (en) * 1980-07-07 1982-03-16 General Dynamics Corp./Electronics Division Multiple ring microstrip antenna
US5194876A (en) * 1989-07-24 1993-03-16 Ball Corporation Dual polarization slotted antenna
WO1992013372A1 (en) * 1991-01-24 1992-08-06 Rdi Electronics, Inc. Broadband antenna
AT396532B (de) * 1991-12-11 1993-10-25 Siemens Ag Oesterreich Antennenanordnung, insbesondere für kommunikationsendgeräte
JP2840493B2 (ja) * 1991-12-27 1998-12-24 株式会社日立製作所 一体型マイクロ波回路
DE9312559U1 (de) * 1993-08-21 1994-02-10 Schneider, Till, 60327 Frankfurt Dachluken-Treppe
US5754143A (en) * 1996-10-29 1998-05-19 Southwest Research Institute Switch-tuned meandered-slot antenna

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3716861A (en) * 1971-03-22 1973-02-13 J Root Serpentine antenna mounted on a rotatable capacitive coupler
US4804965A (en) * 1985-07-09 1989-02-14 Agence Spatiale Europeenne Flat wide-band antenna
JPH05152829A (ja) * 1991-11-28 1993-06-18 Sony Corp 円環マイクロストリツプアンテナ

Also Published As

Publication number Publication date
DE69838270D1 (de) 2007-10-04
US6034645A (en) 2000-03-07
FR2760134B1 (fr) 1999-03-26
CA2228631C (fr) 2003-10-14
DE69838270T2 (de) 2008-05-15
EP0860894A1 (de) 1998-08-26
FR2760134A1 (fr) 1998-08-28
CA2228631A1 (fr) 1998-08-24

Similar Documents

Publication Publication Date Title
EP0899814B1 (de) Strahlende Struktur
EP2564466B1 (de) Kompaktes strahlungselement mit hohlraumresonatoren
FR2652453A1 (fr) Antenne coaxiale a fentes du type a alimentation a ondes progressives.
EP1416586B1 (de) Antenne mit einer Filtermaterialanordnung
EP0012055B1 (de) In Streifenleitertechnik ausgeführter Monopulsprimärstrahler und Antenne mit einem solchen Strahler
EP2710676B1 (de) Strahlerelement für eine aktive gruppenantenne aus elementarfliesen
EP2548261A2 (de) Reflektorgruppenantenne mit kreuzpolarisationskompensation und verfahren zur herstellung einer derartigen antenne
FR2692404A1 (fr) Motif élémentaire d'antenne à large bande passante et antenne-réseau le comportant.
EP1979987B1 (de) Antenne mit zirkularer oder linearer polarisation
EP0315141A1 (de) Anregungsvorrichtung einer zirkularpolarisierten Welle mit einer Flachantenne in einem Hohlleiter
EP0860894B1 (de) Miniatur-Resonanzantenne in Form von ringförmigen Streifenleiterantennen
EP0860893A1 (de) Konzentrische Gruppe von Mikrowellenantennen
WO2003061062A1 (fr) Dispositif pour la reception et/ou l'emission d'ondes electromagnetiques a diversite de rayonnement
EP0860895A1 (de) Resonanzantenne zum Senden oder Empfangen polarisierter Wellen
EP1346442A1 (de) Gedruckte patch-antenne
WO2012095365A1 (fr) Antenne a resonateur dielectrique
EP0020196B1 (de) Scheibenförmige Mikrowellenmehrelementenantenne mit Speiseanordnung und deren Verwendung bei Radar
EP0585250B1 (de) Rundstrahlende, gedruckte Zylinderantenne und Seeradar-Antwortgerät mit derartigen Antennen
EP3902059B1 (de) Breitband-richtantenne mit longitudinalwellen-übertragung
CA2327371C (fr) Source rayonnante pour antenne d'emission et de reception destinee a etre installee a bord d'un satellite
EP3692598A1 (de) Antenne mit teilweise gesättigtem dispersivem ferromagnetischem substrat
EP0762534A1 (de) Verfahren zur Verbreiterung des Strahlungsdiagramms einer Gruppenantenne mit verteilten Elementen in einem Volumen
FR2634598A1 (fr) Antenne omnidirectionnelle, notamment pour l'emission de signaux de radiodiffusion ou de television dans la bande des ondes decimetriques, et systeme rayonnant forme d'un groupement de ces antennes
EP4396901A1 (de) Mehrbandantenne
FR2677493A1 (fr) Reseau d'elements rayonnants a topologie autocomplementaire, et antenne utilisant un tel reseau.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCATEL

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCATEL

17P Request for examination filed

Effective date: 19990226

AKX Designation fees paid

Free format text: DE ES FR GB IT

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB IT

17Q First examination report despatched

Effective date: 20031119

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCATEL LUCENT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 69838270

Country of ref document: DE

Date of ref document: 20071004

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20071115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071203

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080229

REG Reference to a national code

Ref country code: FR

Ref legal event code: GC

Effective date: 20131018

REG Reference to a national code

Ref country code: FR

Ref legal event code: RG

Effective date: 20141016

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

Effective date: 20150521

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

Effective date: 20150521

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160218

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160218

Year of fee payment: 19

Ref country code: GB

Payment date: 20160217

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69838270

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170223

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170901

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170223