EP0899814B1 - Strahlende Struktur - Google Patents

Strahlende Struktur Download PDF

Info

Publication number
EP0899814B1
EP0899814B1 EP98402148A EP98402148A EP0899814B1 EP 0899814 B1 EP0899814 B1 EP 0899814B1 EP 98402148 A EP98402148 A EP 98402148A EP 98402148 A EP98402148 A EP 98402148A EP 0899814 B1 EP0899814 B1 EP 0899814B1
Authority
EP
European Patent Office
Prior art keywords
patches
center
patch
structure according
pellets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98402148A
Other languages
English (en)
French (fr)
Other versions
EP0899814A1 (de
Inventor
Hervé Legay
Frédéric Croq
Michel Pauchet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Lucent SAS
Original Assignee
Alcatel Lucent SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel Lucent SAS filed Critical Alcatel Lucent SAS
Publication of EP0899814A1 publication Critical patent/EP0899814A1/de
Application granted granted Critical
Publication of EP0899814B1 publication Critical patent/EP0899814B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/18Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
    • H01Q19/185Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces wherein the surfaces are plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/22Reflecting surfaces; Equivalent structures functioning also as polarisation filter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration

Definitions

  • the invention relates to an antenna, or radiating structure, comprising an exciter chip associated with a set of radiating secondary pellets.
  • Pad printed antennas are of common use because their cost of implementation is low and they have a reduced mass and volume, which is particularly useful for space applications. They are generally made by etching or lithography of pellets, or conductive blocks, on dielectric substrates.
  • This antenna is well suited to radiate in a range of directivities from 9 to 13 dbi, a range that would be difficult to obtain by networking elementary radiators.
  • antennas of this type make it possible to obtain a circular polarization of good quality, that is to say a very low ellipticity rate in the axis of the antenna, perpendicular to the planes of the pellets.
  • rate ellipticity increases significantly for inclined directions relative to the axis of the antenna.
  • the invention provides a radiating structure for maintaining the purity of circular polarization over a wide angular sector.
  • a reflecting surface surrounding the exciter pad and the secondary pads constitute semi-reflecting surfaces for the exciting wave, the relative position of the secondary pads between them and with respect to the reflecting surface being such that the transmitted waves are in phase.
  • the secondary pellets are not excited by electromagnetic coupling but are excited in dichroic mode.
  • the quality of the radiated signal depends on the signal applied to the exciter chip.
  • the emitting pellet is located in (or near) a first plane constituting the reflecting surface, or ground plane, and the secondary pellet is at a distance equal to about half the length ( ⁇ ) of the wave to be transmitted.
  • a wave emitted by the exciter chip to a secondary pellet travels a distance of half a wavelength.
  • the corresponding beam is partially transmitted, and thus radiated outward, and is partially reflected by the secondary pellet.
  • the reflected beam is directed to the surface reflective from where it is returned to the same secondary pellet or other secondary pellet, from where it is transmitted and thus radiated.
  • the beam reflected on a secondary pellet and which returns to another secondary pellet thus travels a wavelength. In this way, the two transmitted rays are in phase.
  • the total opening of the radiated beam depends on the reflection coefficient of the secondary pellets.
  • the opening can be all the more important as the reflection coefficient is greater.
  • the part of the beam which is furthest from the central part, where the excitation pellet is is that which undergoes the greatest number of reflections and which is therefore the most weakened by these reflections.
  • the primary and secondary pellets are disposed in a conductive cavity in order to orient the emitted radiation and / or to limit the coupling with other neighboring elements.
  • the reflection of the excitatory waves on the walls of the cavity causes an alteration of the polarization quality. Therefore, in this embodiment, it is intended to provide at least peripheral secondary pellets a shape and orientation to restore the circular polarization.
  • the peripheral secondary pellets all have substantially the same shapes and the same dimensions and are elongated along a determined axis, with or without a distinct orientation of the radial orientation, and the angle between the axes of two successive pellets corresponds to the angle whose vertex is constituted by the center around which the secondary pellets are arranged and whose sides are the lines joining this vertex to the centers of the pellets concerned.
  • peripheral secondary pellets increase the directivity of the antenna because the illumination of the secondary pellets is standardized.
  • the invention makes it possible to emit waves over a wide frequency band.
  • the invention provides means for compensating the phase shift.
  • a first embodiment of this compensation consists in making the resonance frequency of each secondary pellet dependent on its distance from the center around which the secondary pellets are arranged, this resonant frequency being all the more important as the distance to the center is tall.
  • this variation is obtained, for example, either by conferring on the secondary pellets furthest from the center a smaller diameter than that of the central pellets, or by conferring an annular shape on the pellets, the internal diameter of the central pellets. being larger than the inner diameter of the peripheral secondary pellets.
  • a second embodiment of phase-shift compensation consists in modulating the distance separating the reflecting surface from the surface of the secondary pellets, for example by providing a distance between the secondary pellets and the reflecting surface, which is all the smaller the distance of the secondary pellets in the center.
  • the antenna shown in these figures is intended to emit waves in the microwave range around a center frequency of 8 GHz.
  • the pellet 20 is deposited on a face 24 1 of a dielectric substrate 24 while the pellets 22 1 to 22 7 are arranged on the opposite face 24 2 of the dielectric 24. All the pellets constitute metal deposits and have a circle shape of the same diameter in the example.
  • the pellet 22 1 is at the right of the pellet 20, that is to say that the centers of the pellets 20 and 22 1 are on the same normal to the plane of the parallel faces 24 1 and 24 2 .
  • the other secondary pellets 22 2 to 22 7 are evenly distributed around the central pellet 22 1 .
  • the distance separating the faces 24 1 and 24 2 is substantially equal to half a wavelength ⁇ 2 .
  • the face 24 1 is at a short distance from a conducting surface 26 forming a ground plane.
  • the characteristics of the secondary pellets 22 1 to 22 7 are chosen such that these pellets are semi-reflective, that is to say that a beam 28 received by a secondary pellet is partially reflected, in a beam 30, by this secondary pellet and is partially transmitted in a beam 32.
  • the antenna works as follows:
  • the beam 30 reflected by the central secondary pellet 22 1 is again reflected on the ground plane 26 to be returned, according to the beam 34, to a peripheral secondary pellet 22 4 .
  • the pellet 22 4 partially transmits the beam at 36.
  • the beam 32 transmitted by the central pellet 22 1 is parallel to the beam 36 transmitted by the pellet 22 4 and the beams 32 and 36 are substantially in phase because the path traveled by the beams 30 and 34 is substantially equal to ⁇ .
  • This characteristic makes it possible to maintain a purity of circular or linear polarization over a wide angular sector up to an inclination of about 50 ° relative to the normal to the faces 24 1 and 24 2 .
  • the excitation signal applied to the wafer 20 may be applied to a single access of the latter, provided that the wafer has a shape that deviates from the circular shape, with an axis inclined by example of about 45 ° with respect to the direction of the incident current.
  • the secondary pellets 22 1 to 22 7 have a semi-reflective character.
  • Reflective "semi” does not necessarily mean properties such that 50% of the energy is reflected and 50% of the energy is transmitted.
  • the reflection coefficient can be modulated according to the needs, including the desired aperture for the antenna. In particular the reflection coefficient will be higher as the number of secondary pellets succeed each other in the radial direction. Indeed, at each reflection on a secondary pellet, the energy of the beam decreases in proportion to the reflection coefficient. It will therefore require a high reflection coefficient so that sufficient energy remains for the beams reflected several times on the secondary pellets. It can be noted here that the reflection coefficient on the ground plane is practically 100%.
  • a dielectric substrate 24 is used.
  • the exciter chip and the secondary pellets may be deposited on different substrates separated by vacuum or air.
  • the antenna is housed in a metal cavity 40.
  • This cavity makes it possible to orient the emitted beam and to limit the coupling with other neighboring antennas, for example identical or similar antennas forming a network in which there is the antenna shown.
  • the first exciter pad 42 receives the excitation signal while the second exciter pad 44 is coupled, by proximity effect, or electromagnetic coupling, with the pitch; lower tile.
  • the secondary pellets 46 1 to 46 7 are in a plane 48 distant from the plane 45 of the pellet 44 of about half a wavelength.
  • the pellet 42 constitutes a metal deposit on a substrate 47 and this pellet has the shape of a semi-curvilinear rectangle with two parallel straight sides 50 and 52 and two curvilinear sides 54 and 56 forming arcs of the same circle.
  • the common vertex 58 at the sides 50 and 54 is connected to a conductor 60 also constituted by a metal deposit on the substrate 47.
  • the conductor 60 has the direction of the diagonal of the curvilinear rectangle which ends at the top 58.
  • the angle between this diagonal and the sides 50 and 52 is about 30 °.
  • a scalloped conductive deposit on the one hand, by a circle 62 surrounding the patch 42 and, on the other hand, by two channels 64 and 66 having the direction of the diagonal, the channel 64 being provided to let the driver pass 60.
  • the pellet 44 ( figure 5 ) has a shape similar to that of the pellet 42. Its dimensions are slightly smaller than those of this pellet 42. Its center is at the right of the center of the lower pellet.
  • the orientation of the straight sides 70 and 72 of the wafer 44 differs from the orientation of the straight sides of the wafer 42: the inclination of the sides 70 and 72 with respect to the direction of the conductor 60 is about 45 °.
  • the elongate or chamfered shape of the pellets 42 and 44 makes it possible to excite the pellets using a circularly polarized wave with a single access (top 58, figure 4 ) without altering the quality of this circular polarization after excitation of the secondary pellets 46 1 to 46 7 .
  • the central secondary pellet 46 1 at the right of the pellet 44, has a circular shape while the peripheral secondary pills 46 2 to 46 7 have an elongate shape, similar to that of the pellets 42 and 44, that is to say in the shape of a semi-curvilinear rectangle ( figure 6 ).
  • the rectilinear sides of the peripheral pellets which are diametrically opposite have the same orientation.
  • Two peripheral pellets that follow each other have rectilinear sides of different orientations.
  • the angle formed between the rectilinear sides of these successive peripheral pellets is practically equal to the angle at the center a (60 ° in the example) formed by the straight lines 73 and 74 connecting the centers of the corresponding pellets 46 2 and 46 3 to the center of center pellet 46 1 .
  • peripheral pellets have the same inclination with respect to their radial direction (the direction joining the center of the pellet in the center of the central pellet).
  • the double resonator formed by the pellets 42 and 44 makes it possible, with respect to a single patch, to increase the bandwidth of the antenna.
  • pellets 42 and 44 allow the excitation by a circularly polarized wave by a single access 58 ( figure 4 ).
  • the shape, arrangement and orientation of the secondary pellets 46 2 to 46 7 make it possible to compensate for the depolarization induced by the conductive cavity 40.
  • the embodiment shown on the Figures 7 to 9 relates to a large aperture antenna, that is to say having a large number of secondary pellets and whose radial extension from the central pellet 80 1 , is important.
  • 19 secondary pellets 80 1 to 80 19 are provided with a central pellet 80 1 , surrounded by 6 intermediate pellets 80 2 to 80 7 , which are surrounded by 12 peripheral pellets 80 8 to 80 19 .
  • a beam emitted from the exciter pad (not shown) towards the central secondary pellet 80 1 is reflected by this central pad 80 1 from which it is reflected on the ground plane and, from the ground plane, the beam is reflected towards an intermediate pellet. On the intermediate pellet the beam is reflected back to the ground plane and finally to a peripheral pellet. It is recalled that these multiple reflections require a relatively high reflection coefficient on the secondary pellets so that the beam arriving at the peripheral secondary pellets has an intensity which is not too low compared to the beam transmitted by the central pellet.
  • the reflected beams not being strictly perpendicular to the plane of the pellets, it follows that the electrical path traveled by the beam between two adjacent secondary pellets is greater than one wavelength.
  • the resulting phase shift is insignificant from a secondary pellet to an adjacent pellet but becomes sensitive when phase shifts add up. This results in troublesome side lobes.
  • a lower resonance frequency is given in the center than at the periphery.
  • the wavelength is adapted to the electric paths traveled so that the waves emitted by all the secondary pellets are in phase.
  • the variation of the resonance frequencies is favorable to a wide bandwidth.
  • all the pellets have substantially the same outer diameter and have an annular shape, but the diameter of the central opening depends on the position of the pellet.
  • the diameter of the opening of the wafer 80 1 is greater than the diameter of the opening of the peripheral wafers 80 2 to 80 7 and the diameter of the opening of the peripheral wafers 80 8 to 80 19 is the smallest.
  • the resonant frequency is varied by varying the outer diameter of the pellets, the central pellet having the largest diameter.
  • phase compensation means In a second category of phase compensation means is varied the distance between the reflective surface and the semi-reflective pellets from the center to the periphery.
  • the secondary pellets are in a plane 90 and the reflecting surface 92 has circular steps, about the axis 94. These steps are even closer to the plane 90 that they are distant from the axis 94.
  • the reflective surface 96 is planar while the secondary patches are on circular steps 98.
  • the center pellet is farthest from the plane 96 and the peripheral pads are closest to the plane 96.
  • steps are provided inclined surfaces. It is also possible to provide inclined surfaces or steps for both the reflecting surface and the secondary pellets.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Aerials With Secondary Devices (AREA)
  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Claims (13)

  1. Abstrahlstruktur, oder Antenne, mit einem Erreger-Patch (20; 44), das für den Empfang eines Anregungssignals bestimmt ist, und einer Vielzahl von sekundären Patches (22; 46; 80), die für das Ausstrahlen der von dem Erreger-Patch empfangenen Wellen bestimmt sind, dadurch gekennzeichnet, dass sie eine reflektierende Fläche (26) nahe des Erreger-Patches aufweist, und dass die sekundären Patches halbreflektierende Flächen bilden, wobei der Abstand zwischen dem Erreger-Patch und der reflektierenden Fläche, einerseits, und den sekundären Patches, andererseits, im Wesentlichen einer halben Länge der zu übertragenden Welle entspricht.
  2. Struktur nach Anspruch 1, dadurch gekennzeichnet, dass die sekundären Patches konzentrisch angeordnet sind, und dass sie einen Reflexionskoeffizienten aufweisen, der umso höher ist, je höher die Anzahl der sekundären Patches, die sich in radialer Richtung erstrecken, ist.
  3. Struktur nach einem beliebigen der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass die Vielzahl von sekundären Patches einerseits ein zentrales Patch (22; 46; 80), und andererseits mindestens eine Vielheit von Umfangs-Patches rund um das zentrale Patch umfasst.
  4. Struktur nach einem beliebigen der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Erreger-Patch (42) eine gemäß einer Richtung längliche Form aufweist, und dass dieses Erreger-Patch über einen einzigen Zugang (58) von einer zirkular polarisierten Welle versorgt wird.
  5. Struktur nach einem beliebigen der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Erreger-Patch (44) die Anregungsenergie über ein anderes Patch (42), dessen Abstand vom Erreger-Patch kleiner ist als der Abstand zwischen dem Erreger-Patch und den sekundären Patches, empfängt.
  6. Struktur nach einem beliebigen der vorstehenden Ansprüche, dadurch gekennzeichnet, dass sie einen leitfähigen Hohlraum (40) aufweist, welcher das Erreger-Patch und die sekundären Patches aufnimmt.
  7. Struktur nach Anspruch 6, dadurch gekennzeichnet, dass die sekundären Patches eine Vielheit von Umfangs-Patches (462 bis 467) aufweisen, deren Form und Ausrichtungen derart gestaltet sind, dass sie die von dem leitfähigen Hohlraum (40) induzierte Depolarisation kompensieren.
  8. Struktur nach Anspruch 7, dadurch gekennzeichnet, dass die Umfangs-Patches eine gemäß einer im Verhältnis zur radialen Richtung, welche das Zentrum dieser Patches mit der Zentrum aller sekundären Patches verbindet, geneigten Richtung längliche Form aufweisen, wobei die Neigung aller Umfangs-Patches im Verhältnis zu ihrer radialen Richtung dieselbe ist.
  9. Struktur nach einem beliebigen der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die sekundären Patches rund um ein Zentrum mit mindestens einer Gruppe von Patches in einem ersten Abstand vom Zentrum und mindestens einer Vielheit von Umfangs-Patches, die weiter vom Zentrum entfernt liegen, angeordnet sind, wobei die Resonanzfrequenz des oder der Patches, welche(s) dem Zentrum am nächsten liegt/liegen, niedriger ist als die Resonanzfrequenz der Patches, die am weitesten vom Zentrum entfernt sind.
  10. Struktur nach Anspruch 9, dadurch gekennzeichnet, dass die Patches kreisförmig ausgebildet sind, und dass die Patches, die dem Zentrum am nächsten liegen, einen größeren Durchmesser aufweisen als die Patches, die am weitesten vom Zentrum entfernt sind.
  11. Struktur nach Anspruch 9, dadurch gekennzeichnet, dass die Patches ringförmig ausgebildet sind und alle im Wesentlichen denselben Außendurchmesser aufweisen, wobei der Innendurchmesser der Patches, die dem Zentrum am nächsten liegen, größer ist als der Innendurchmesser der Patches, die am weitesten vom Zentrum entfernt sind.
  12. Struktur nach einem beliebigen der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die sekundären Patches um ein Zentrum herum angeordnet sind, und dass sich der Abstand der sekundären Patches zur reflektierenden Fläche vom Zentrum bis zum Umfang vermindert.
  13. Struktur nach Anspruch, 12 dadurch gekennzeichnet, dass die reflektierende Fläche und/oder die Fläche, auf welcher die sekundären Patches angeordnet sind, Stufen (92; 98) aufweisen.
EP98402148A 1997-09-01 1998-08-31 Strahlende Struktur Expired - Lifetime EP0899814B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9710842 1997-09-01
FR9710842A FR2767970B1 (fr) 1997-09-01 1997-09-01 Structure rayonnante

Publications (2)

Publication Number Publication Date
EP0899814A1 EP0899814A1 (de) 1999-03-03
EP0899814B1 true EP0899814B1 (de) 2012-11-14

Family

ID=9510634

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98402148A Expired - Lifetime EP0899814B1 (de) 1997-09-01 1998-08-31 Strahlende Struktur

Country Status (5)

Country Link
US (1) US6061027A (de)
EP (1) EP0899814B1 (de)
CA (1) CA2243603C (de)
FR (1) FR2767970B1 (de)
NO (1) NO984006L (de)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2459387A1 (en) 2001-08-31 2003-03-13 The Trustees Of Columbia University In The City Of New York Systems and methods for providing optimized patch antenna excitation for mutually coupled patches
US6624787B2 (en) 2001-10-01 2003-09-23 Raytheon Company Slot coupled, polarized, egg-crate radiator
DE10334979B4 (de) * 2003-07-29 2009-10-29 Wengler, Peter, Dipl.-Phys. Dr.-Ing. Richtantenne
EP1508940A1 (de) * 2003-08-19 2005-02-23 Era Patents Limited Strahlformer mit Reaktanzen auf einer dielektrischen Oberfläche
JP4192212B2 (ja) * 2004-01-28 2008-12-10 日本電波工業株式会社 マイクロストリップライン型の平面アレーアンテナ
US8279131B2 (en) * 2006-09-21 2012-10-02 Raytheon Company Panel array
US9019166B2 (en) 2009-06-15 2015-04-28 Raytheon Company Active electronically scanned array (AESA) card
US7671696B1 (en) 2006-09-21 2010-03-02 Raytheon Company Radio frequency interconnect circuits and techniques
US9172145B2 (en) 2006-09-21 2015-10-27 Raytheon Company Transmit/receive daughter card with integral circulator
WO2009049191A2 (en) * 2007-10-11 2009-04-16 Raytheon Company Patch antenna
EP2332213A1 (de) * 2008-09-12 2011-06-15 Advanced Automotive Antennas, S.L. Bündig angebrachte resonanzlochantenne mit niedrigem profil
FR2939568B1 (fr) 2008-12-05 2010-12-17 Thales Sa Antenne a partage de sources et procede d'elaboration d'une antenne a partage de sources pour l'elaboration de multi-faisceaux
US8159409B2 (en) * 2009-01-20 2012-04-17 Raytheon Company Integrated patch antenna
US7859835B2 (en) * 2009-03-24 2010-12-28 Allegro Microsystems, Inc. Method and apparatus for thermal management of a radio frequency system
US8686914B2 (en) * 2009-06-25 2014-04-01 National Taiwan University Antenna module and design method thereof
TWI420740B (zh) * 2009-06-25 2013-12-21 Univ Nat Taiwan 天線模組
US8537552B2 (en) * 2009-09-25 2013-09-17 Raytheon Company Heat sink interface having three-dimensional tolerance compensation
US8508943B2 (en) 2009-10-16 2013-08-13 Raytheon Company Cooling active circuits
CN101752671B (zh) * 2010-01-13 2012-11-28 东南大学 可实现极化变换的高增益谐振天线
US8427371B2 (en) 2010-04-09 2013-04-23 Raytheon Company RF feed network for modular active aperture electronically steered arrays
FR2959611B1 (fr) 2010-04-30 2012-06-08 Thales Sa Element rayonnant compact a cavites resonantes.
US8363413B2 (en) 2010-09-13 2013-01-29 Raytheon Company Assembly to provide thermal cooling
US8810448B1 (en) 2010-11-18 2014-08-19 Raytheon Company Modular architecture for scalable phased array radars
US8355255B2 (en) 2010-12-22 2013-01-15 Raytheon Company Cooling of coplanar active circuits
US9124361B2 (en) 2011-10-06 2015-09-01 Raytheon Company Scalable, analog monopulse network
US9130278B2 (en) 2012-11-26 2015-09-08 Raytheon Company Dual linear and circularly polarized patch radiator
TWI514680B (zh) * 2014-03-17 2015-12-21 Wistron Neweb Corp 多頻天線及多頻天線配置方法
CN107437659B (zh) 2016-05-26 2020-07-03 香港中文大学 用于降低天线阵列中互耦的设备和方法
US10367259B2 (en) * 2017-01-12 2019-07-30 Arris Enterprises Llc Antenna with enhanced azimuth gain
KR102346283B1 (ko) * 2018-02-02 2022-01-04 삼성전자 주식회사 반사체를 포함하는 안테나 모듈 및 이를 포함하는 전자장치

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4623893A (en) * 1983-12-06 1986-11-18 State Of Israel, Ministry Of Defense, Rafael Armament & Development Authority Microstrip antenna and antenna array
US5005019A (en) * 1986-11-13 1991-04-02 Communications Satellite Corporation Electromagnetically coupled printed-circuit antennas having patches or slots capacitively coupled to feedlines
US4847626A (en) * 1987-07-01 1989-07-11 Motorola, Inc. Microstrip balun-antenna
JPH01103006A (ja) * 1987-10-15 1989-04-20 Matsushita Electric Works Ltd 平面アンテナ
US5278569A (en) * 1990-07-25 1994-01-11 Hitachi Chemical Company, Ltd. Plane antenna with high gain and antenna efficiency
FR2677491B1 (fr) * 1991-06-10 1993-08-20 Alcatel Espace Antenne hyperfrequence elementaire bipolarisee.
FR2706085B1 (fr) * 1993-06-03 1995-07-07 Alcatel Espace Structure rayonnante multicouches à directivité variable.
WO1996039728A1 (en) * 1995-06-05 1996-12-12 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Industry Through The Communications Research Centre Moderately high gain microstrip patch cavity antenna

Also Published As

Publication number Publication date
FR2767970B1 (fr) 1999-10-15
EP0899814A1 (de) 1999-03-03
NO984006L (no) 1999-03-02
CA2243603C (fr) 2007-02-06
US6061027A (en) 2000-05-09
NO984006D0 (no) 1998-08-31
CA2243603A1 (fr) 1999-03-01
FR2767970A1 (fr) 1999-03-05

Similar Documents

Publication Publication Date Title
EP0899814B1 (de) Strahlende Struktur
EP3547450B1 (de) Strahlungselement mit kreispolarisierung, bei dem eine resonanz in einem fabry-perot-interferometer angewandt wird
EP1038333B1 (de) Plattenantenne
EP2564466B1 (de) Kompaktes strahlungselement mit hohlraumresonatoren
EP0372451B1 (de) Multifrequenz-Strahlungsvorrichtung
EP2202846B1 (de) Dual polarisiertes, planares Strahlungselement und mit einem solchen Strahlungselement ausgestattete Netzantenne
EP0012055B1 (de) In Streifenleitertechnik ausgeführter Monopulsprimärstrahler und Antenne mit einem solchen Strahler
FR2810163A1 (fr) Perfectionnement aux antennes-sources d'emission/reception d'ondes electromagnetiques
EP0886889A1 (de) Breitbandige gedruckte gruppenantenne
WO2004040694A1 (fr) Antenne multi-faisceaux a materiau bip
EP0430745B1 (de) Zirkular polarisierte Antenne, insbesondere für Gruppenantenne
EP3011639A1 (de) Quelle für eine parabolantenne
WO2000014825A9 (fr) Antenne
WO2004040696A1 (fr) Antenne a materiau bip multi-faisceaux
EP0045254A1 (de) Kompakter Mikrowellenerreger für zwei Frequenzbereiche
FR2518828A1 (fr) Filtre spatial de frequences et antenne comportant un tel filtre
EP0860894B1 (de) Miniatur-Resonanzantenne in Form von ringförmigen Streifenleiterantennen
EP3902059B1 (de) Breitband-richtantenne mit longitudinalwellen-übertragung
EP0860895A1 (de) Resonanzantenne zum Senden oder Empfangen polarisierter Wellen
EP2293385B1 (de) Selbstausrichtende Antenne mit Kreispolarisierung
EP0337841A1 (de) Unsymmetrisch gespeiste breitbandige Sendeantennenschleife und Antennenfeld aus einer Vielzahl dieser Schleifen
FR3102311A1 (fr) Antenne-reseau
EP2351148B1 (de) Ausklappbare struktur und antennensystem mit membranen mit einer solchen struktur
EP4203191A1 (de) Planare zirkular polarisierte hochfrequenzantenne
FR2677493A1 (fr) Reseau d'elements rayonnants a topologie autocomplementaire, et antenne utilisant un tel reseau.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCATEL

17P Request for examination filed

Effective date: 19990903

AKX Designation fees paid

Free format text: DE ES FR GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCATEL LUCENT

17Q First examination report despatched

Effective date: 20070906

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCATEL LUCENT

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 69842881

Country of ref document: DE

Effective date: 20130110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130815

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20130926 AND 20131002

REG Reference to a national code

Ref country code: FR

Ref legal event code: GC

Effective date: 20131018

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 69842881

Country of ref document: DE

Effective date: 20130815

REG Reference to a national code

Ref country code: FR

Ref legal event code: RG

Effective date: 20141016

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150819

Year of fee payment: 18

Ref country code: DE

Payment date: 20150821

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150820

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69842881

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170301