EP0320404B1 - Helix-type antenna and its manufacturing process - Google Patents

Helix-type antenna and its manufacturing process Download PDF

Info

Publication number
EP0320404B1
EP0320404B1 EP88403145A EP88403145A EP0320404B1 EP 0320404 B1 EP0320404 B1 EP 0320404B1 EP 88403145 A EP88403145 A EP 88403145A EP 88403145 A EP88403145 A EP 88403145A EP 0320404 B1 EP0320404 B1 EP 0320404B1
Authority
EP
European Patent Office
Prior art keywords
sleeve
zone
radiating
type antenna
strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88403145A
Other languages
German (de)
French (fr)
Other versions
EP0320404A1 (en
Inventor
Albert Auriol
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National dEtudes Spatiales CNES
Original Assignee
Centre National dEtudes Spatiales CNES
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National dEtudes Spatiales CNES filed Critical Centre National dEtudes Spatiales CNES
Priority to AT88403145T priority Critical patent/ATE86413T1/en
Publication of EP0320404A1 publication Critical patent/EP0320404A1/en
Application granted granted Critical
Publication of EP0320404B1 publication Critical patent/EP0320404B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q11/00Electrically-long antennas having dimensions more than twice the shortest operating wavelength and consisting of conductive active radiating elements
    • H01Q11/02Non-resonant antennas, e.g. travelling-wave antenna
    • H01Q11/08Helical antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support

Definitions

  • the invention relates to a helix-type antenna and its manufacturing method.
  • the propeller type antennas have the advantage of radiating an electromagnetic wave in good quality circular polarization over a wide coverage and with an emission lobe possibly formed.
  • this type of antenna generally comprises four radiating strands which it is necessary to supply according to laws of adequate amplitude and phase.
  • the four radiating strands are wound on a circular sleeve with a pitch p, along a guideline of the sleeve, corresponding to an angular offset of ⁇ 2 . rd and each strand is supplied from a signal having a relative successive angular phase shift equal to ⁇ 2 .
  • the radiating strands noted successively 2, 3, 4 are supplied with signals of the same amplitude A but of successive phase relative to -90 ° , - 180 °, - 270 °.
  • the excitation is done firstly through a hybrid coupler which separates the energy into two equal-amplitude channels and phase shifted relative to each other by 90 ° .
  • a double balun housed in the axis of the antenna, makes it possible to pass, for each of the two channels, from the coaxial line to the diametrically opposite strands. The latter are therefore supplied by equal amplitudes and in phase opposition.
  • Using a compensated balun allows the operating frequency range of the antenna to be adjusted.
  • a hybrid coupler makes it possible to separate the energy into two equal-amplitude channels and in phase quadrature.
  • the energy is then conveyed to the supply point by two of the radiating strands which are, in fact, made up of coaxial cables then it is distributed at equal amplitudes and in phase opposition between the diametrically opposite strands, some connected to the cores of the coaxial, the others formed by the external part of the shielding of the coaxials themselves.
  • the coaxial supply line is split at its end to constitute a balun.
  • the distribution of the energy in quadrature between the two bi-helices is carried out by adjusting the length, therefore the reactance, of the radiating strands.
  • the four radiating strands are supplied from a distributor.
  • the other end of the strands, relative to the end constituting the feed point is either in open circuit with then a length of strands equal to an odd whole number of quarter wavelengths, or a short circuit with a length of strands equal to an integer number of half-wavelengths.
  • a true open circuit is impossible to achieve, unlike a good short circuit.
  • the four strands are generally short-circuited together at the end opposite to the supply point, this short-circuit being produced in the form of a cross as shown in FIG. 1f.
  • the object of the present invention is to remedy the aforementioned drawbacks by using a particularly simple helical antenna structure.
  • Another object of the present invention is the implementation of a helix type antenna of particularly reduced weight and size.
  • Another object of the present invention is the implementation of a helix type antenna with very high reproducibility of radiation pattern characteristics.
  • Another object of the present invention is finally the implementation of a method of manufacturing a helix type antenna, particularly simple and very easily adaptable on an industrial scale with very high reproducibility and automation qualities.
  • the antenna of the helix type object of the invention, comprises at least two radiating strands wound in a helix according to a form of revolution. It is remarkable in that it comprises a supply circuit, of said radiating strands, constituted by a transmission line of the ribbon line type ensuring both the power distribution function and the adaptation of the radiating strands of the 'antenna.
  • the method of manufacturing a helix-type antenna in accordance with the subject of the invention is remarkable in that it consists in cutting a flexible double-sided printed circuit sheet with the corresponding dimensions of a sleeve of revolution, on said printed circuit, to delimit a first zone intended to contain said ribbon line and a second zone intended to contain said radiating strands, on a first face of the printed circuit, to remove metallization at said second zone, said metallization being maintained over the whole of the first zone to constitute said reference propagation plane, on the second face of said printed circuit, to be formed by removal of material, at the level of the second zone, on the one hand , from said metallization in defined zones, said radiating strands and said annular conductive zone, and at the level of the first zone on the other hand, a conductive zone forming with said reference propagation plane said strip line, for winding the sheet of printed circuit, side of the reference propagation plane or strand side on the sleeve, the radiating strands being suitably oriented.
  • the invention finds application in the manufacture and realization of antennas of the propeller type used in ground / satellite telecommunication links with scrolling or mobiles / geostationary relays, and in radiolocation.
  • the antenna object of the invention is a helix type antenna comprising at least two radiating strands wound in a helix according to a form of revolution.
  • the helix type antenna according to the invention comprises at least two radiating strands denoted 11, 12, 13 or 14 wound in a helix in a circular shape around a sleeve 1 for example.
  • FIG. 2a which shows the antenna in developed form according to a particular embodiment of the invention, there is shown in dotted lines the sleeve 1 on which the antenna is normally wound to constitute the antenna actually obtained as shown in Figure 2b.
  • the antenna of the propeller type which is the subject of the invention, it comprises a supply circuit denoted 2 by the radiating strands.
  • This circuit consists of a transmission line of the ribbon line type denoted 20.
  • the ribbon line 20 performs both the power distribution function and the impedance matching of the radiating strands of the antenna.
  • the helix-type antenna object of the invention comprises four radiating strands denoted 11, 12, 13 and 14.
  • Each radiating strand is constituted by a metallized zone in shape of strip wound in a helix on the lateral surface of the sleeve 1.
  • Each strip constituting the radiating strands 11, 12, 13 and 14 is spaced from the next along a guideline of the sleeve 1 by a determined distance P.
  • the radiating strands are inclined at an angle ⁇ with respect to any guideline of the sleeve 1 and are thus wound in a helix.
  • the transmission line 20 constituting the latter can advantageously be constituted by a meander line denoted 200 in FIGS. 2a and 2b.
  • Each radiating strand 11, 12 13 and 14 is at its supply point denoted 110, 120, 130, 140 or entry end, connected in electrical contact with the strip constituting the meander line 200.
  • the electrical distance on the meandering line between two entry points of two consecutive radiating strands, entry points such as 110, 120, 130 and 140 is equal at an odd multiple of quarter wavelength of the transmit-receive signal propagating in the ribbon line under consideration.
  • each feed point or entry point 110, 120, 130 and 140 of the radiating strands 11, 12, 13 and 14 is supplied by signals of equal amplitude, respectively phase-shifted by ⁇ / 2 rd, that is to say in the supply conditions as shown in FIG. 1a.
  • the adaptation function of the radiating strands can advantageously be achieved by the use of line sections 201, 202, 203, 204, of variable width, thus constituting the line 20, as shown in FIG. 2d, and by the sections 110 to 112 , 120 to 122, 130 to 132 and 140 to 142 of the radiating strands.
  • the end of the strands opposite the input ends 110, 120, 130, 140, end noted 111, 121, 131, 141 in FIGS. 2a and 2b is advantageously connected in short circuit to the same annular conductive zone 100.
  • one end of one of the radiating strands 111, 121, 131, 141 is necessarily short-circuited, that is to say with an amplitude of field electric zero and all opposite ends 111, 121, 131, 141 by the connection to the conductive area, are thus short-circuited.
  • the annular conductive zone 100 thus imposes a short circuit on the end of the four radiating strands 11, 12, 13 and 14.
  • the ribbon line 200 constituting the supply circuit 2 comprises a sheet of dielectric material 2000, of which a first face intended to be applied to the lateral surface of the sleeve 1 is entirely metallized, to constitute a reference propagation plane denoted 2001.
  • a second face of the sheet of dielectric material 2000 opposite the first face comprises a metal strip 2002, forming with the first metallized face 2001, the ribbon line 20.
  • the supply circuit 2 constituted by a ribbon line 20, radiating strands 11, 12, 13 and 14 and the annular conductive zone 100 short circuits are formed on the same sheet of dielectric material.
  • FIG. 2b shows a front view of the antenna obtained after mounting, that is to say after winding of the sheet of dielectric material 2000, provided with its various conductive zones around the sleeve 1.
  • FIGS. 3 and 4 A method of producing a helix-type antenna in accordance with the object of the invention will be described in conjunction with FIGS. 3 and 4, and in particular with FIG. 3 at points a, b, c, d, of that -this.
  • the production method may consist, as shown in point a) of FIG. 3, of cutting a sheet 10 of printed circuit flexible, double-sided, the double-sided being denoted 101, 102 and provided with a metallization, with the corresponding dimensions for a cylindrical sleeve 1 of given dimension.
  • the printed circuit sheet may be constituted by a sheet of high quality, of which the sheet of dielectric material 2000 consists for example of a sheet of plastic material such as kapton or polytetrafluoroethylene reinforced with glass.
  • the method can then consist in delimiting on the printed circuit sheet 10 a first zone denoted I intended to contain said ribbon line and a second zone denoted II intended to contain the radiant strands.
  • the embodiment then consists in removing on a first face of the printed circuit 10, in particular at the level of the second zone denoted II, the metallization 101 for example, this same metallization 101 being maintained over the entire first zone of the same face to constitute the reference propagation plane noted 2001.
  • the embodiment then consists in forming by removing material on the second face of the printed circuit 10 at the level of the second zone on the one hand, of the metallization 102, according to determined zones, the radiating strands 11, 12, 13 and 14 and the annular conductive zone 100.
  • a conductive zone is then formed constituting with the reference propagation plane 2001, the ribbon line 20.
  • the aforementioned conductive zone can then be constituted by a conductive zone denoted 200 constituting the meandering line.
  • the sheet thus obtained in FIG. 3c, provided with its various conductive zones, is then wound on the sleeve 1, the side of the reference propagation plane 2001 or the strand side being pressed against the lateral surface of the sleeve 1.
  • the sleeve can then be withdrawn or not.
  • the radiating strands 11, 12, 13 and 14 are suitably oriented.
  • the step consisting in cutting the flexible printed circuit sheet 10 double-sided with the corresponding dimensions of the cylindrical sleeve 1, can advantageously be carried out by stamping from an appropriate cutting tool.
  • the cutting of the double-sided printed circuit sheet 10, with the dimensions corresponding to those of the sleeve 1 may consist, for example, of cutting the aforementioned sheet along a contour whose shape corresponds to that of a rectangle whose length L corresponds to the perimeter of the section of the sleeve 1, and whose width 1 has a determined value.
  • this shape includes a parallelogram superimposed on the aforementioned rectangle.
  • This parallelogram includes a small side noted a, which corresponds to the length L of the aforementioned rectangle, and whose height h is such that the width 1 of the rectangle increased by the height h of the parallelogram is equal to the height H of the sleeve 1, thus that it has been represented in FIG.
  • the sleeve 1 of substantially corresponding dimension being represented in line with the cut out printed circuit sheet.
  • the angle of the parallelogram corresponds to the helical winding angle of the radiating strands on the sleeve 1, the radiating strands 11, 12, 13 and 14, then being formed, as described above, parallel to the corresponding sides of the above parallelogram.
  • a suitable connector 30 can then be put in place at the end 25 of the line 20 by a conventional technique, such as screwing, clamping, welding or gluing.
  • the propeller type antenna object of the invention may also, as shown in Figures 5a and 5b, include at least one strand radiating 11, 12, 13, 14 wound in a helix according to a form of conical revolution.
  • the process which is the subject of the invention in its various stages of etching the supply circuit 200, the radiating strands 11, 12, 13, 14 and the possible final short circuit 100 can, of course, be applied to any antenna of developable shape and, in particular, with conical helix antennas.
  • the production method differs from that of cylindrical helix antennas only in the particular shape of the developed circuit, and in the shape in which it is wound.
  • a helix type antenna and its embodiment on an industrial scale have thus been described, which is particularly advantageous. Indeed, due to its design, the antenna object of the invention has a very high degree of reproducibility in its mechanical and electromagnetic characteristics. In addition, due to the design of the propeller-type antenna that is the subject of the invention, an implementation and production method has been defined, which allows production of this type of antenna on an industrial scale with very high reliability criteria.

Landscapes

  • Details Of Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Windings For Motors And Generators (AREA)
  • Support Of Aerials (AREA)

Abstract

The antenna comprises at least one radiating wire (11, 12, 13, 14) wound into a helix following a body of revolution (1). The antenna comprises a supply circuit (2) for the radiating wire(s) which consists of a transmission line of the strip line type (20), which ensures both the function of distribution of supply and of matching of the radiating wires of the antenna. <??>Application to the construction of circularly polarised radiating antennas for satellite telecommunications, radiolocation. <IMAGE>

Description

L'invention concerne une antenne de type hélice et son procédé de fabrication.The invention relates to a helix-type antenna and its manufacturing method.

Les antennes de type hélice présentent l'avantage de rayonner une onde électromagnétique en polarisation circulaire de bonne qualité sur une large couverture et avec un lobe d'émission éventuellement formé.The propeller type antennas have the advantage of radiating an electromagnetic wave in good quality circular polarization over a wide coverage and with an emission lobe possibly formed.

Ces caractéristiques rendent celles-ci intéressantes dans de nombreux domaines d'utilisation, et en particulier, dans le cas de liaisons sol/satellite à défilement ou mobiles/relais géostationnaires.These characteristics make them interesting in many fields of use, and in particular, in the case of ground / satellite links with scrolling or mobiles / geostationary relays.

Cependant, ce type d'antenne comporte généralement quatre brins rayonnants qu'il est nécessaire d'alimenter suivant des lois d'amplitude et de phase adéquates. Ainsi qu'on l'a représenté en figure 1a, les quatre brins rayonnants sont enroulés sur un manchon circulaire avec un pas p, selon une ligne directrice du manchon, correspondant à un décalage angulaire de π 2

Figure imgb0001
. rd et chaque brin est alimenté à partir d'un signal présentant un déphasage angulaire successif relatif égal à π 2
Figure imgb0002
. Pour un brin rayonnant 1 alimenté avec un signal de phase relative nulle, notée 0° sur la figure 1a, les brins rayonnants notés successivement 2, 3, 4 sont alimentés avec des signaux de même amplitude A mais de phase successive relative à -90°, - 180°, - 270°.However, this type of antenna generally comprises four radiating strands which it is necessary to supply according to laws of adequate amplitude and phase. As shown in FIG. 1a, the four radiating strands are wound on a circular sleeve with a pitch p, along a guideline of the sleeve, corresponding to an angular offset of π 2
Figure imgb0001
. rd and each strand is supplied from a signal having a relative successive angular phase shift equal to π 2
Figure imgb0002
. For a radiating strand 1 supplied with a zero relative phase signal, denoted 0 ° in FIG. 1a, the radiating strands noted successively 2, 3, 4 are supplied with signals of the same amplitude A but of successive phase relative to -90 ° , - 180 °, - 270 °.

Afin de réaliser l'alimentation de telles antennes, on a jusqu'à ce jour proposé différentes solutions.In order to supply these antennas, various solutions have been proposed to date.

Selon une première solution, telle que représentée en figure 1b, l'excitation se fait d'abord à travers un coupleur hybride qui sépare l'énergie en deux voies équi-amplitude et déphasées l'une par rapport à l'autre de 90°. Un double symétriseur, logé dans l'axe de l'antenne, permet de passer, pour chacune des deux voies, de la ligne coaxiale aux brins diamétralement opposés. Ces derniers se trouvent donc alimentés par des amplitudes égales et en opposition de phase. L'utilisation d'un symétriseur compensé permet d'ajuster la plage de fréquence de fonctionnement de l'antenne.According to a first solution, as represented in FIG. 1b, the excitation is done firstly through a hybrid coupler which separates the energy into two equal-amplitude channels and phase shifted relative to each other by 90 ° . A double balun, housed in the axis of the antenna, makes it possible to pass, for each of the two channels, from the coaxial line to the diametrically opposite strands. The latter are therefore supplied by equal amplitudes and in phase opposition. Using a compensated balun allows the operating frequency range of the antenna to be adjusted.

Selon une deuxième solution, telle que représentée en figure 1c, comme dans le cas de la figure 1b, un coupleur hybride permet de séparer l'énergie en deux voies équi-amplitude et en quadrature de phase.According to a second solution, as shown in FIG. 1c, as in the case of FIG. 1b, a hybrid coupler makes it possible to separate the energy into two equal-amplitude channels and in phase quadrature.

L'énergie est ensuite acheminée au point d'alimentation par deux des brins rayonnants qui sont, en fait, constitués de câbles coaxiaux puis elle se répartit à amplitudes égales et en opposition de phase entre les brins diamétralement opposés, les uns connectés aux âmes des coaxiaux, les autres constitués par la partie externe du blindage des coaxiaux eux-mêmes.The energy is then conveyed to the supply point by two of the radiating strands which are, in fact, made up of coaxial cables then it is distributed at equal amplitudes and in phase opposition between the diametrically opposite strands, some connected to the cores of the coaxial, the others formed by the external part of the shielding of the coaxials themselves.

Cette solution présente par rapport à la précédente, selon la figure 1b, l'avantage de supprimer le symétriseur central, par contre sa caractéristique en fréquence est plus étroite du fait de l'absence de tout réglage.This solution has, compared to the previous one, according to FIG. 1b, the advantage of eliminating the central balun, on the other hand its frequency characteristic is narrower due to the absence of any adjustment.

Selon une troisième solution, ainsi que représentée en figure 1d, la ligne coaxiale d'alimentation est fendue à son extrémité pour constituer un symétriseur. Le répartition de l'énergie en quadrature entre les deux bi-hélices est réalisée en ajustant la longueur, donc la réactance, des brins rayonnants.According to a third solution, as shown in FIG. 1d, the coaxial supply line is split at its end to constitute a balun. The distribution of the energy in quadrature between the two bi-helices is carried out by adjusting the length, therefore the reactance, of the radiating strands.

Cette solution permet, de manière avantageuse, de supprimer le coupleur hybride mais elle nécessite un réglage délicat de la longueur des brins. De plus, ceux-ci étant de longueurs différentes, la géométrie de l'antenne ne présente plus de symétrie de révolution et la réalisation de l'antenne est plus complexe.This solution advantageously makes it possible to eliminate the hybrid coupler, but it requires a delicate adjustment of the length of the strands. In addition, these being of different lengths, the geometry of the antenna no longer exhibits symmetry of revolution and the production of the antenna is more complex.

Selon une quatrième solution, telle que représentée en figure 1e, solution la plus simple d'un point de vue théorique, les quatre brins rayonnants sont alimentés à partir d'un répartiteur.According to a fourth solution, as shown in FIG. 1e, the simplest solution from a theoretical point of view, the four radiating strands are supplied from a distributor.

Ces circuits répartiteurs sont constitués par des éléments discrets qu'il est nécessaire de relier à l'antenne par quatre connexions et il est parfois difficile d'adapter cette solution à la géométrie de l'antenne.These distribution circuits are made up of discrete elements which it is necessary to connect to the antenna by four connections and it is sometimes difficult to adapt this solution to the geometry of the antenna.

Dans tous les cas précités, l'autre extrémité des brins, par rapport à l'extrémité constituant point d'alimentation, est soit en circuit ouvert avec alors une longueur de brins égale à un nombre entier impair de quarts de longueur d'onde, soit un court-circuit avec alors une longueur de brins égale à un nombre entier de demi-longueurs d'onde. En pratique, un véritable circuit ouvert est impossible à réaliser, contrairement à un bon court-circuit. C'est pourquoi les quatre brins sont généralement court-circuités ensemble à l'extrémité opposée au point d'alimentation, ce court-circuit étant réalisé en forme de croix ainsi que représenté en figure 1f.In all the aforementioned cases, the other end of the strands, relative to the end constituting the feed point, is either in open circuit with then a length of strands equal to an odd whole number of quarter wavelengths, or a short circuit with a length of strands equal to an integer number of half-wavelengths. In practice, a true open circuit is impossible to achieve, unlike a good short circuit. This is why the four strands are generally short-circuited together at the end opposite to the supply point, this short-circuit being produced in the form of a cross as shown in FIG. 1f.

La présente invention a pour objet de remédier aux inconvénients précités par la mise en oeuvre d'une structure d'antenne en hélice particulièrement simple.The object of the present invention is to remedy the aforementioned drawbacks by using a particularly simple helical antenna structure.

Un autre objet de la présente invention est la mise en oeuvre d'une antenne de type hélice de poids et d'encombrement particulièrement réduits.Another object of the present invention is the implementation of a helix type antenna of particularly reduced weight and size.

Un autre objet de la présente invention est la mise en oeuvre d'une antenne de type hélice d'une très grande reproductibilité de caractéristiques de diagramme de rayonnement.Another object of the present invention is the implementation of a helix type antenna with very high reproducibility of radiation pattern characteristics.

Un autre objet de la présente invention est enfin la mise en oeuvre d'un procédé de fabrication d'une antenne de type hélice, particulièrement simple et très facilement adaptable à l'échelle industrielle avec des qualités de reproductibilité et d'automatisation très élevées.Another object of the present invention is finally the implementation of a method of manufacturing a helix type antenna, particularly simple and very easily adaptable on an industrial scale with very high reproducibility and automation qualities.

L'antenne de type hélice, objet de l'invention, comporte au moins deux brins rayonnants enroulés en hélice selon une forme de révolution. Elle est remarquable en ce qu'elle comporte un circuit d'alimentation, desdits brins rayonnants, constitué par une ligne de transmission du type ligne à ruban assurant à la fois la fonction de répartition d'alimentation et d'adaptation des brins rayonnants de l'antenne.The antenna of the helix type, object of the invention, comprises at least two radiating strands wound in a helix according to a form of revolution. It is remarkable in that it comprises a supply circuit, of said radiating strands, constituted by a transmission line of the ribbon line type ensuring both the power distribution function and the adaptation of the radiating strands of the 'antenna.

Le procédé de fabrication d'une antenne de type hélice conformément à l'objet de l'invention est remarquable en ce qu'il consiste à découper une feuille de circuit imprimé souple double face aux dimensions correspondantes d'un manchon de révolution, sur ledit circuit imprimé, à délimiter une première zone destinée à contenir ladite ligne à ruban et une deuxième zone destinée à contenir lesdits brins rayonnants, sur une première face du circuit imprimé, à supprimer la métallisation au niveau de ladite deuxième zone, ladite métallisation étant maintenue sur la totalité de la première zone pour constituer ledit plan de propagation de référence, sur la deuxième face dudit circuit imprimé, à former par enlèvement de matière, au niveau de la deuxième zone, d'une part, de ladite métallisation selon des zones déterminées lesdits brins rayonnants et ladite zone conductrice annulaire, et au niveau de la première zone d'autre part, une zone conductrice formant avec ledit plan de propagation de référence ladite ligne à ruban, à enrouler la feuille de circuit imprimé, côté plan de propagation de référence ou côté brins sur le manchon, les brins rayonnants étant convenablement orientés.The method of manufacturing a helix-type antenna in accordance with the subject of the invention is remarkable in that it consists in cutting a flexible double-sided printed circuit sheet with the corresponding dimensions of a sleeve of revolution, on said printed circuit, to delimit a first zone intended to contain said ribbon line and a second zone intended to contain said radiating strands, on a first face of the printed circuit, to remove metallization at said second zone, said metallization being maintained over the whole of the first zone to constitute said reference propagation plane, on the second face of said printed circuit, to be formed by removal of material, at the level of the second zone, on the one hand , from said metallization in defined zones, said radiating strands and said annular conductive zone, and at the level of the first zone on the other hand, a conductive zone forming with said reference propagation plane said strip line, for winding the sheet of printed circuit, side of the reference propagation plane or strand side on the sleeve, the radiating strands being suitably oriented.

L'invention trouve application à la fabrication et à la réalisation d'antennes de type hélice utilisées dans les liaisons de télécommunication sol/satellite à défilement ou mobiles/relais géostationnaires, et à la radiolocalistion.The invention finds application in the manufacture and realization of antennas of the propeller type used in ground / satellite telecommunication links with scrolling or mobiles / geostationary relays, and in radiolocation.

Elle sera mieux comprise à la lecture de la description et à l'observation des dessins ci-après dans lesquels outre les figures 1a à 1f relatives à l'art antérieur,

  • la figure 2a représente, en développé, une antenne de type hélice conforme à l'objet de la présente invention,
  • la figure 2b représente une vue de face d'une antenne conformément à l'objet de l'invention,
  • la figure 2c représente une coupe selon le plan de coupe AA de la figure 2a,
  • la figure 2d représente un détail de réalisation de la figure 2a,
  • la figure 3 représente en a), b), c), d), les différentes étapes d'un procédé de fabrication d'une antenne conformément à l'objet de l'invention,
  • la figure 4 représente un mode opératoire avantageux de mise en oeuvre du procédé de la figure 3,
  • la figure 5a représente un circuit imprimé développé à plat permettant la mise en oeuvre d'une antenne de type hélice de forme conique,
  • la figure 5b représente une antenne de type hélice de forme conique obtenue à l'aide du circuit imprimé de la figure 5a.
It will be better understood on reading the description and on observing the drawings below in which, in addition to FIGS. 1a to 1f relating to the prior art,
  • FIG. 2a represents, in the developed, a helix type antenna in accordance with the object of the present invention,
  • FIG. 2b represents a front view of an antenna in accordance with the object of the invention,
  • FIG. 2c represents a section along the section plane AA of FIG. 2a,
  • FIG. 2d represents a detail of embodiment of FIG. 2a,
  • FIG. 3 represents in a), b), c), d), the different stages of a method of manufacturing an antenna in accordance with the subject of the invention,
  • FIG. 4 represents an advantageous operating mode for implementing the method of FIG. 3,
  • FIG. 5a represents a printed circuit developed flat allowing the use of a conical-shaped helix-type antenna,
  • FIG. 5b represents an antenna of the helical type of conical shape obtained using the printed circuit of FIG. 5a.

L'antenne objet de l'invention est une antenne de type hélice comportant au moins deux brins rayonnants enroulés en hélice selon une forme de révolution.The antenna object of the invention is a helix type antenna comprising at least two radiating strands wound in a helix according to a form of revolution.

Elle sera tout d'abord décrite en liaison avec les figures 2a, 2b et 2c, la forme de révolution étant cylindrique.It will first be described in connection with Figures 2a, 2b and 2c, the shape of revolution being cylindrical.

Conformément aux figures précitées, l'antenne de type hélice selon l'invention comprend au moins deux brins rayonnants notés 11, 12, 13 ou 14 enroulé en hélice selon une forme circulaire autour d'un manchon 1 par exemple. Sur la figure 2a, laquelle représente en développé l'antenne selon un mode de réalisation particulier de l'invention, on a représenté en pointillé le manchon 1 sur lequel l'antenne est normalement enroulée pour constituer l'antenne effectivement obtenue telle que représentée en figure 2b.According to the aforementioned figures, the helix type antenna according to the invention comprises at least two radiating strands denoted 11, 12, 13 or 14 wound in a helix in a circular shape around a sleeve 1 for example. In FIG. 2a, which shows the antenna in developed form according to a particular embodiment of the invention, there is shown in dotted lines the sleeve 1 on which the antenna is normally wound to constitute the antenna actually obtained as shown in Figure 2b.

Conformément à une caractéristique particulièrement avantageuse de l'antenne de type hélice objet de l'invention, celle-ci comporte un circuit d'alimentation noté 2 des brins rayonnants. Ce circuit est constitué par une ligne de transmission du type ligne à ruban notée 20. La ligne à ruban 20 assure à la fois la fonction de répartition d'alimentation et d'adaptation d'impédance des brins rayonnants de l'antenne.According to a particularly advantageous characteristic of the antenna of the propeller type which is the subject of the invention, it comprises a supply circuit denoted 2 by the radiating strands. This circuit consists of a transmission line of the ribbon line type denoted 20. The ribbon line 20 performs both the power distribution function and the impedance matching of the radiating strands of the antenna.

Dans le mode de réalisation particulier représenté en figures 2a, 2b et 2c, l'antenne de type hélice objet de l'invention comporte quatre brins rayonnants notés 11, 12, 13 et 14. Chaque brin rayonnant est constitué par une zone métallisée en forme de bande enroulée en hélice sur la surface latérale du manchon 1. Chaque bande constituant les brins rayonnants 11, 12, 13 et 14 est distante de la suivante selon une ligne directrice du manchon 1 d'une distance P déterminée. Ainsi, comme représenté en figure 2b, les brins rayonnants sont inclinés d'un angle α par rapport à toute ligne directrice du manchon 1 et se trouvent ainsi enroulés en hélice.In the particular embodiment represented in FIGS. 2a, 2b and 2c, the helix-type antenna object of the invention comprises four radiating strands denoted 11, 12, 13 and 14. Each radiating strand is constituted by a metallized zone in shape of strip wound in a helix on the lateral surface of the sleeve 1. Each strip constituting the radiating strands 11, 12, 13 and 14 is spaced from the next along a guideline of the sleeve 1 by a determined distance P. Thus, as shown in FIG. 2b, the radiating strands are inclined at an angle α with respect to any guideline of the sleeve 1 and are thus wound in a helix.

Selon une caractéristique avantageuse du circuit d'alimentation 2, la ligne de transmission 20 constituant ce dernier peut avantageusement être constituée par une ligne à méandre notée 200 sur les figures 2a et 2b. Chaque brin rayonnant 11, 12 13 et 14 est au niveau de son point d'alimentation noté 110, 120, 130, 140 ou extrémité d'entrée, connecté en contact électrique avec la bande constituant la ligne à méandre 200. Selon une caractéristique avantageuse du circuit d'alimentation de l'antenne objet de l'invention, la distance électrique sur la ligne à méandre entre deux points d'entrée de deux brins rayonnants consécutifs, points d'entrée tels que 110, 120, 130 et 140 est égale à un multiple impair de quart de longueur d'onde du signal d'émission-réception se propageant dans la ligne à ruban considérée.According to an advantageous characteristic of the supply circuit 2, the transmission line 20 constituting the latter can advantageously be constituted by a meander line denoted 200 in FIGS. 2a and 2b. Each radiating strand 11, 12 13 and 14 is at its supply point denoted 110, 120, 130, 140 or entry end, connected in electrical contact with the strip constituting the meander line 200. According to an advantageous characteristic of the antenna feed circuit object of the invention, the electrical distance on the meandering line between two entry points of two consecutive radiating strands, entry points such as 110, 120, 130 and 140 is equal at an odd multiple of quarter wavelength of the transmit-receive signal propagating in the ribbon line under consideration.

Dans ces conditions, et en particulier dans le cas où le multiple impair de quarts de longueur d'onde est égal à 1, chaque point d'alimentation ou point d'entrée 110, 120, 130 et 140 des brins rayonnants 11, 12, 13 et 14 se trouve alimenté par des signaux d'amplitude égale, respectivement déphasés de π /2 rd, c'est-à-dire dans les condiditions d'alimentation telles que représentées en figure 1a.Under these conditions, and in particular in the case where the odd multiple of quarter-wavelengths is equal to 1, each feed point or entry point 110, 120, 130 and 140 of the radiating strands 11, 12, 13 and 14 is supplied by signals of equal amplitude, respectively phase-shifted by π / 2 rd, that is to say in the supply conditions as shown in FIG. 1a.

La fonction adaptation des brins rayonnants peut avantageusement être réalisée par l'utilisation de tronçons de ligne 201, 202, 203, 204, de largeur variable, constituant ainsi la ligne 20, ainsi que représenté en figure 2d, et par les tronçons 110 à 112, 120 à 122, 130 à 132 et 140 à 142 des brins rayonnants.The adaptation function of the radiating strands can advantageously be achieved by the use of line sections 201, 202, 203, 204, of variable width, thus constituting the line 20, as shown in FIG. 2d, and by the sections 110 to 112 , 120 to 122, 130 to 132 and 140 to 142 of the radiating strands.

Selon une autre caractéristique avantageuse de l'antenne de type hélice objet de l'invention, l'extrémité des brins opposés aux extrémités d'entrée 110, 120, 130, 140, extrémité notée 111, 121,131, 141 sur les figures 2a et 2b est avantageusement connecté en court-circuit à une même zone conductrice annulaire 100. Ainsi qu'on le comprendra aisément, en fonction des conditions de phase du signal d'alimentation au point d'entrée 110, 120, 130, 140 de chaque brin rayonnant 11, 12, 13, 14, l'une des extrémités d'un des brins rayonnants 111, 121, 131, 141 se trouve nécessairement en court-circuit, c'est-à-dire avec une amplitude de champ électrique nul et toutes les extrémités opposées 111, 121, 131, 141 de par la connexion à la zone conductrice, se trouvent ainsi en court-circuit. La zone conductrice annulaire 100 impose ainsi un court-circuit sur l'extrémité des quatre brins rayonnants 11, 12, 13 et 14.According to another advantageous characteristic of the helix-type antenna object of the invention, the end of the strands opposite the input ends 110, 120, 130, 140, end noted 111, 121, 131, 141 in FIGS. 2a and 2b is advantageously connected in short circuit to the same annular conductive zone 100. As will be easily understood, depending on the phase conditions of the supply signal at the input point 110, 120, 130, 140 of each radiating strand 11, 12, 13, 14, one end of one of the radiating strands 111, 121, 131, 141 is necessarily short-circuited, that is to say with an amplitude of field electric zero and all opposite ends 111, 121, 131, 141 by the connection to the conductive area, are thus short-circuited. The annular conductive zone 100 thus imposes a short circuit on the end of the four radiating strands 11, 12, 13 and 14.

Ainsi qu'on l'a en outre représenté sur la figure 2c, selon une coupe suivant le plan de coupe AA de la figure 2a, la ligne à ruban 200 constituant le circuit d'alimentation 2 comprend une feuille de matériau diélectrique 2000, dont une première face destinée à être appliquée sur la surface latérale du manchon 1 est entièrement métallisée, pour constituer un plan de propagation de référence noté 2001. Une deuxième face de la feuille de matériau diélectrique 2000 opposée à la première face comporte une bande métallique 2002, formant avec la première face métallisée 2001, la ligne à ruban 20.As has also been shown in Figure 2c, in a section along the section plane AA of Figure 2a, the ribbon line 200 constituting the supply circuit 2 comprises a sheet of dielectric material 2000, of which a first face intended to be applied to the lateral surface of the sleeve 1 is entirely metallized, to constitute a reference propagation plane denoted 2001. A second face of the sheet of dielectric material 2000 opposite the first face comprises a metal strip 2002, forming with the first metallized face 2001, the ribbon line 20.

Ainsi qu'on l'a en outre représenté en figure 2c, et de manière particulièrement avantageuse, le circuit d'alimentation 2 constitué par une ligne à ruban 20, des brins rayonnants 11, 12, 13 et 14 et la zone conductrice annulaire 100 en court-circuit sont formés sur une même feuille de matériau diélectrique.As has also been shown in FIG. 2c, and in a particularly advantageous manner, the supply circuit 2 constituted by a ribbon line 20, radiating strands 11, 12, 13 and 14 and the annular conductive zone 100 short circuits are formed on the same sheet of dielectric material.

Sur la figure 2b, on a représenté une vue de face de l'antenne obtenue après montage, c'est-à-dire après enroulement de la feuille de matériau diélectrique 2000, munie de ses différentes zones conductrices autour du manchon 1.FIG. 2b shows a front view of the antenna obtained after mounting, that is to say after winding of the sheet of dielectric material 2000, provided with its various conductive zones around the sleeve 1.

Un procédé de réalisation d'une antenne de type hélice conformément à l'objet de l'invention sera décrit en liaison avec les figures 3 et 4, et en particulier avec la figure 3 aux points a, b, c, d, de celle-ci.A method of producing a helix-type antenna in accordance with the object of the invention will be described in conjunction with FIGS. 3 and 4, and in particular with FIG. 3 at points a, b, c, d, of that -this.

Afin de réaliser à l'échelle industrielle une antenne de type hélice conforme à l'objet de l'invention, le procédé de réalisation peut consister, ainsi que représenté au point a) de la figure 3, à découper une feuille 10 de circuit imprimé souple, double face, les double faces étant notées 101, 102 et pourvues d'une métallisation, aux dimensions correspondantes pour un manchon cylindrique 1 de dimension donnée. Bien entendu, la feuille de circuit imprimé pourra être constituée par une feuille de grande qualité, dont la feuille de matériau diélectrique 2000 est constituée par exemple par une feuille de matériau plastique tel que le kapton ou le polytétrafluoréthylène armé de verre.In order to produce on an industrial scale an antenna of the helix type in accordance with the object of the invention, the production method may consist, as shown in point a) of FIG. 3, of cutting a sheet 10 of printed circuit flexible, double-sided, the double-sided being denoted 101, 102 and provided with a metallization, with the corresponding dimensions for a cylindrical sleeve 1 of given dimension. Of course, the printed circuit sheet may be constituted by a sheet of high quality, of which the sheet of dielectric material 2000 consists for example of a sheet of plastic material such as kapton or polytetrafluoroethylene reinforced with glass.

Ainsi que représenté en outre au point a) de la figure 3, le procédé peut alors consister à délimiter sur la feuille de circuit imprimé 10 une première zone notée I destinée à contenir ladite ligne à ruban et une deuxième zone notée II destinée à contenir les brins rayonnants.As also represented in point a) of FIG. 3, the method can then consist in delimiting on the printed circuit sheet 10 a first zone denoted I intended to contain said ribbon line and a second zone denoted II intended to contain the radiant strands.

Ainsi que représenté sur la figure 3 au point b) de celle-ci, le mode de réalisation consiste alors à supprimer sur une première face du circuit imprimé 10, en particulier au niveau de la deuxième zone notée II, la métallisation 101 par exemple, cette même métallisation 101 étant maintenue sur la totalité de la première zone de la même face pour constituer le plan de propagation de référence noté 2001.As shown in FIG. 3 in point b) thereof, the embodiment then consists in removing on a first face of the printed circuit 10, in particular at the level of the second zone denoted II, the metallization 101 for example, this same metallization 101 being maintained over the entire first zone of the same face to constitute the reference propagation plane noted 2001.

Ainsi qu'on l'a représenté en outre au point c) de la figure 3, le mode de réalisation consiste alors à former par enlèvement de matière sur la deuxième face du circuit imprimé 10 au niveau de la deuxième zone d'une part, de la métallisation 102, selon des zones déterminées, les brins rayonnants 11, 12, 13 et 14 et la zone conductrice annulaire 100. De la même façon, au niveau de la première zone d'autre part, est alors formée une zone conductrice constituant avec le plan de propagation de référence 2001, la ligne à ruban 20. La zone conductrice précitée peut alors être constituée par une zone conductrice notée 200 constituant la ligne à méandre.As has also been shown in point c) of FIG. 3, the embodiment then consists in forming by removing material on the second face of the printed circuit 10 at the level of the second zone on the one hand, of the metallization 102, according to determined zones, the radiating strands 11, 12, 13 and 14 and the annular conductive zone 100. In the same way, at the level of the first zone on the other hand, a conductive zone is then formed constituting with the reference propagation plane 2001, the ribbon line 20. The aforementioned conductive zone can then be constituted by a conductive zone denoted 200 constituting the meandering line.

Ainsi que représenté au point d) de la figure 3, la feuille ainsi obtenue en figure 3c, munie de ses différentes zones conductrices, est ensuite enroulée sur le manchon 1, le côté plan de propagation de référence 2001 ou le côté brins étant plaqué sur la surface latérale du manchon 1. Le manchon peut alors être rétiré ou non. Bien entendu, les brins rayonnants 11, 12, 13 et 14 sont convenablement orientés.As shown in point d) of FIG. 3, the sheet thus obtained in FIG. 3c, provided with its various conductive zones, is then wound on the sleeve 1, the side of the reference propagation plane 2001 or the strand side being pressed against the lateral surface of the sleeve 1. The sleeve can then be withdrawn or not. Of course, the radiating strands 11, 12, 13 and 14 are suitably oriented.

Les différentes étapes représentées en figure 3 aux points a, b, c,) de celle-ci, sont de manière classique avantageuse, réalisées par masquage, insolation puis attaque chimique. Bien entendu, l'étape représentée au point c de la figure 3 peut avantageusement être réalisée au moyen d'un seul et même masque.The different steps shown in Figure 3 at points a, b, c,) thereof, are conventionally advantageous, carried out by masking, exposure and chemical attack. Of course, the step shown in point c of Figure 3 can advantageously be achieved by means of a single mask.

De manière avantageuse, l'étape consistant à découper la feuille de circuit imprimé 10 souple double face aux dimensions correspondantes du manchon cylindrique 1, peut avantageusement être réalisée par estampage à partir d'un outil de découpe approprié.Advantageously, the step consisting in cutting the flexible printed circuit sheet 10 double-sided with the corresponding dimensions of the cylindrical sleeve 1, can advantageously be carried out by stamping from an appropriate cutting tool.

Ainsi qu'on l'a représenté en outre en figure 4, de manière avantageuse, le découpage de la feuille de circuit imprimé double face 10, aux dimensions correspondant à celles du manchon 1 peut consister par exemple à découper la feuille précitée selon un contour dont la forme correspond à celle d'un rectangle dont la longueur L correspond au périmètre de la section du manchon 1, et dont la largeur 1 a une valeur déterminée. En outre, cette forme comporte un parallélogramme superposé sur le rectangle précité. Ce parallélogramme comprend un petit côté noté a, lequel correspond à la longueur L du rectangle précité, et dont la hauteur h est telle que la largeur 1 du rectangle augmentée de la hauteur h du parallélogramme soit égale à la hauteur H du manchon 1, ainsi qu'on l'a représenté en figure 4, le manchon 1 en dimension sensiblement correspondante étant représenté au droit de la feuille de circuit imprimé découpé. Bien entendu, l'angle du parallélogramme correspond à l'angle d'enroulement en hélice des brins rayonnants sur le manchon 1, les brins rayonnants 11, 12, 13 et 14, étant alors formés, ainsi que décrit précédemment, parallèlement aux côtés correspondants du parallélogramme précité.As has also been shown in FIG. 4, advantageously, the cutting of the double-sided printed circuit sheet 10, with the dimensions corresponding to those of the sleeve 1 may consist, for example, of cutting the aforementioned sheet along a contour whose shape corresponds to that of a rectangle whose length L corresponds to the perimeter of the section of the sleeve 1, and whose width 1 has a determined value. In addition, this shape includes a parallelogram superimposed on the aforementioned rectangle. This parallelogram includes a small side noted a, which corresponds to the length L of the aforementioned rectangle, and whose height h is such that the width 1 of the rectangle increased by the height h of the parallelogram is equal to the height H of the sleeve 1, thus that it has been represented in FIG. 4, the sleeve 1 of substantially corresponding dimension being represented in line with the cut out printed circuit sheet. Of course, the angle of the parallelogram corresponds to the helical winding angle of the radiating strands on the sleeve 1, the radiating strands 11, 12, 13 and 14, then being formed, as described above, parallel to the corresponding sides of the above parallelogram.

Après enroulement de l'antenne, il est nécessaire d'assurer le contact électrique des extrémités 101, 102 de la zone annulaire 100 par soudure ou rivetage ou collage avec une colle conductrice. Un connecteur adéquat 30 peut alors être mis en place à l'extrémité 25 de la ligne 20 par une technique classique, telle que vissage, pinçage, soudage ou collage.After winding the antenna, it is necessary to ensure the electrical contact of the ends 101, 102 of the annular zone 100 by welding or riveting or bonding with a conductive adhesive. A suitable connector 30 can then be put in place at the end 25 of the line 20 by a conventional technique, such as screwing, clamping, welding or gluing.

L'antenne de type hélice objet de l'invention peut également, ainsi que représenté en figures 5a et 5b, comporter au moins un brin rayonnant 11, 12, 13, 14 enroulé en hélice selon une forme de révolution conique.The propeller type antenna object of the invention may also, as shown in Figures 5a and 5b, include at least one strand radiating 11, 12, 13, 14 wound in a helix according to a form of conical revolution.

Sur la figure 5a, on a représenté la forme développée à plat du circuit imprimé, lequel correspond au manchon de forme conique utilisé.In Figure 5a, there is shown the flat developed form of the printed circuit, which corresponds to the conical sleeve used.

Le procédé objet de l'invention en ses différentes étapes de gravure du circuit d'alimentation 200, des brins rayonnants 11, 12, 13, 14 et du court-circuit final éventuel 100 peut, bien entendu, s'appliquer à toute antenne de forme développable et, en particulier, aux antennes hélices de forme conique.The process which is the subject of the invention in its various stages of etching the supply circuit 200, the radiating strands 11, 12, 13, 14 and the possible final short circuit 100 can, of course, be applied to any antenna of developable shape and, in particular, with conical helix antennas.

Ces dernières présentent par rapport aux antennes de forme cylindrique une polarisation circulaire de meilleure qualité dans la couverture et un rayonnement arrière, côté connecteur, plus faibles. Par contre, leur encombrement est plus important, à fréquence égale, et le circuit développé présente une forme plus complexe, ainsi que l'indique la figure 5a.Compared to cylindrical antennas, the latter have lower circular polarization of better quality and lower radiation on the connector side. On the other hand, their bulk is greater, at equal frequency, and the developed circuit has a more complex shape, as indicated in FIG. 5a.

Le procédé de réalisation ne diffère de celui des antennes hélices cylindriques que par la forme particulière du circuit développé, et par la forme suivant laquelle celui-ci est enroulé.The production method differs from that of cylindrical helix antennas only in the particular shape of the developed circuit, and in the shape in which it is wound.

On a ainsi décrit une antenne de type hélice et son mode de réalisation à l'échelle industrielle, particulièrement avantageux. En effet, de part sa conception, l'antenne objet de l'invention présente un très grand degré de reproductibilité dans ses caractéristiques tant mécaniques que électromagnétiques. En outre, de part la conception de l'antenne de type hélice objet de l'invention, un procédé de mise en oeuvre et de réalisation a pu être défini, lequel permet une production de ce type d'antenne à l'échelle industrielle avec de très grands critères de fiabilité.A helix type antenna and its embodiment on an industrial scale have thus been described, which is particularly advantageous. Indeed, due to its design, the antenna object of the invention has a very high degree of reproducibility in its mechanical and electromagnetic characteristics. In addition, due to the design of the propeller-type antenna that is the subject of the invention, an implementation and production method has been defined, which allows production of this type of antenna on an industrial scale with very high reliability criteria.

Claims (12)

  1. A helical type antenna comprising at least two radiating cords (11,12,13,14), helically wound in a rotational shape (1), wherein said antenna has a circuit (2) to supply said radiating cords, formed by a strip line type of transmission line (20), performing both the power distribution function and the function of matching the radiating cords of the antenna.
  2. A helical type antenna according to claim 1, wherein said rotational shape (1) is cylindrical or conical.
  3. A helical type antenna according to claim 2, comprising four radiating cords (11,12,13,14) each formed by a metallized zone in the form of a strip, helically wound on the lateral surface of the sleeve, said strip being distant from the next strip, along a directrix of said sleeve, by a defined distance p, said transmission line (20), forming a supply circuit being formed by a meandering line (200).
  4. A helical type antenna according to claim 3, wherein each radiating cord (11,12,13,14) is, at its supply point (110,120,130,140) or incoming end, in electrical contact with the strip (200) forming the meandering line, the electrical distance on the line between the two incoming points of two consecutive radiating cords (110,120,130,140) being equal to an odd-numbered multiple of quarter wavelengths of the transmission/reception signal.
  5. A helical type antenna according to any one of claims 1 to 3, wherein the end (111,121,131,141) of each cord opposite to the corresponding incoming end (110,120,130,140) is connected in a short circuit to one and the same ring-shaped conducting zone (100).
  6. A helical type antenna according to any one of the preceding claims, wherein said strip line (200) forming the supply circuit has a sheet of dielectrical material, of which a first face designed to be applied to the lateral surface of the sleeve, is entirely metallized to form a reference propagation plane (2001) and of which a second face, opposite to the first face, has a metallic strip (2002) forming said strip line with the first metallized face.
  7. A helical type antenna according to any one of the preceding claims, wherein said supply circuit formed by a strip line (20) of said radiating cords (11,12,13,14) and the ring-shaped conducting zone (100) in short circuit are formed by one and the same sheet of dielectrical material.
  8. A method of manufacturing a helical type antenna according to any one of claims 1 to 7, consisting in :
    a) stamping a double-sided (10), flexible printed circuit sheet (101,102) with dimensions corresponding to a sleeve of a rotational shape, on said printed circuit;
    b) demarcating, on said printed circuit, a first zone (I) designed to contain said strip line and a second zone (II) designed to contain said radiating cords;
    c) removing said metallization at the level of said second zone on a first face of said printed circuit, said metallization being kept on the entire first zone to form said reference propagation plane (2001);
    d) forming, on the second face of said printed circuit, by the removal of material, firstly, at the second zone of said metallization in defined zones, of said radiating cords and of said ring-shaped conducting zone and, secondly, at the first zone, of a conducting zone, forming said strip line with said propagation reference plane (2001);
    e) winding the printed circuit sheet on the reference propagation plane side or on the side of the cords on the sleeve, these radiating cords being suitably oriented.
  9. A method according to claim 8, wherein the steps (b) and (c) are accomplished by masking, insolation and chemical attack process.
  10. A method according to any one of claim 8 or 9, wherein the step (c) is achieved by means of one and the same mask.
  11. A method according to claim 8 wherein, said sleeve (1) being cylindrical, the stamping of the two-sided printed circuit sheet to the dimensions corresponding to that of the sleeve (1) consists in stamping said sheet along a contour, the shape of which corresponds to that of a rectangle with a length (L) corresponding to the perimeter of the section of the sleeve (1), and with a width (1) of a defined value, a rectangle on which there is superimposed a parallelogram, the small side of which, marked a, corresponds to the length (L) of the above-mentioned rectangle and the height (h) of which is such that the width (2) of the rectangle plus the height (h) of the parallelogram is equal to the height (H) of the sleeve, the angle (α) of the parallelogram corresponding to the angle (α) of the helical winding of the radiating cords.
  12. A method according to any one of claims 8 to 10, wherein said sleeve (1) is conical.
EP88403145A 1987-12-10 1988-12-09 Helix-type antenna and its manufacturing process Expired - Lifetime EP0320404B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88403145T ATE86413T1 (en) 1987-12-10 1988-12-09 HElix-TYPE ANTENNA AND METHOD OF PRODUCTION.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8717218 1987-12-10
FR8717218A FR2624656B1 (en) 1987-12-10 1987-12-10 PROPELLER-TYPE ANTENNA AND ITS MANUFACTURING METHOD

Publications (2)

Publication Number Publication Date
EP0320404A1 EP0320404A1 (en) 1989-06-14
EP0320404B1 true EP0320404B1 (en) 1993-03-03

Family

ID=9357724

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88403145A Expired - Lifetime EP0320404B1 (en) 1987-12-10 1988-12-09 Helix-type antenna and its manufacturing process

Country Status (8)

Country Link
US (1) US5134422A (en)
EP (1) EP0320404B1 (en)
JP (1) JPH0758858B2 (en)
AT (1) ATE86413T1 (en)
CA (1) CA1291560C (en)
DE (1) DE3878862T2 (en)
ES (1) ES2038328T3 (en)
FR (1) FR2624656B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5909196A (en) * 1996-12-20 1999-06-01 Ericsson Inc. Dual frequency band quadrifilar helix antenna systems and methods
US5920292A (en) * 1996-12-20 1999-07-06 Ericsson Inc. L-band quadrifilar helix antenna
US6181297B1 (en) 1994-08-25 2001-01-30 Symmetricom, Inc. Antenna
US6300917B1 (en) 1999-05-27 2001-10-09 Sarantel Limited Antenna

Families Citing this family (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2654554B1 (en) * 1989-11-10 1992-07-31 France Etat ANTENNA IN PROPELLER, QUADRIFILAIRE, RESONANT BICOUCHE.
WO1991011038A1 (en) * 1990-01-08 1991-07-25 Toyo Communication Equipment Co., Ltd. Four-wire fractional winding helical antenna and manufacturing method thereof
JPH0426203A (en) * 1990-05-21 1992-01-29 Furuno Electric Co Ltd Helical antenna
GB2246910B (en) * 1990-08-02 1994-12-14 Polytechnic Electronics Plc A radio frequency antenna
US5198831A (en) * 1990-09-26 1993-03-30 501 Pronav International, Inc. Personal positioning satellite navigator with printed quadrifilar helical antenna
US5559524A (en) * 1991-03-18 1996-09-24 Hitachi, Ltd. Antenna system including a plurality of meander conductors for a portable radio apparatus
US5343173A (en) * 1991-06-28 1994-08-30 Mesc Electronic Systems, Inc. Phase shifting network and antenna and method
JP2717741B2 (en) * 1991-12-16 1998-02-25 シャープ株式会社 4-wire helical antenna
JP2719857B2 (en) * 1991-07-11 1998-02-25 シャープ株式会社 4-wire backfire helical antenna
US5346300A (en) * 1991-07-05 1994-09-13 Sharp Kabushiki Kaisha Back fire helical antenna
US5349365A (en) * 1991-10-21 1994-09-20 Ow Steven G Quadrifilar helix antenna
US5541617A (en) * 1991-10-21 1996-07-30 Connolly; Peter J. Monolithic quadrifilar helix antenna
AU687349B2 (en) * 1992-04-24 1998-02-26 Industrial Research Limited Steerable beam helix antenna
US5349362A (en) * 1992-06-19 1994-09-20 Forbes Mark M Concealed antenna applying electrically-shortened elements and durable construction
US5485170A (en) * 1993-05-10 1996-01-16 Amsc Subsidiary Corporation MSAT mast antenna with reduced frequency scanning
JPH07240616A (en) * 1994-02-28 1995-09-12 Matsushita Electric Ind Co Ltd Helical antenna and radio telephone set
US5577026A (en) * 1993-12-28 1996-11-19 Analogic Corporation Apparatus for transferring data to and from a moving device
US6011524A (en) * 1994-05-24 2000-01-04 Trimble Navigation Limited Integrated antenna system
US5635945A (en) * 1995-05-12 1997-06-03 Magellan Corporation Quadrifilar helix antenna
EP0743699B1 (en) * 1995-05-17 2001-09-12 Murata Manufacturing Co., Ltd. Surface mounting type antenna system
US5793338A (en) * 1995-08-09 1998-08-11 Qualcomm Incorporated Quadrifilar helix antenna and feed network
US5838285A (en) * 1995-12-05 1998-11-17 Motorola, Inc. Wide beamwidth antenna system and method for making the same
GB9601250D0 (en) * 1996-01-23 1996-03-27 Symmetricom Inc An antenna
GB9603914D0 (en) * 1996-02-23 1996-04-24 Symmetricom Inc An antenna
FR2746547B1 (en) * 1996-03-19 1998-06-19 France Telecom PROPELLER ANTENNA WITH INTEGRATED BROADBAND SUPPLY, AND MANUFACTURING METHODS THEREOF
US5872549A (en) * 1996-04-30 1999-02-16 Trw Inc. Feed network for quadrifilar helix antenna
US5990847A (en) * 1996-04-30 1999-11-23 Qualcomm Incorporated Coupled multi-segment helical antenna
US5706019A (en) * 1996-06-19 1998-01-06 Motorola, Inc. Integral antenna assembly for a radio and method of manufacturing
FR2751137B1 (en) * 1996-07-10 1998-11-06 Centre Nat Etd Spatiales TRANSMISSION DEVICE WITH OMNIDIRECTIONAL ANTENNA
US6278414B1 (en) * 1996-07-31 2001-08-21 Qualcomm Inc. Bent-segment helical antenna
US5986620A (en) * 1996-07-31 1999-11-16 Qualcomm Incorporated Dual-band coupled segment helical antenna
JPH10145125A (en) * 1996-09-10 1998-05-29 Murata Mfg Co Ltd Antenna system
US6184845B1 (en) * 1996-11-27 2001-02-06 Symmetricom, Inc. Dielectric-loaded antenna
US5896113A (en) * 1996-12-20 1999-04-20 Ericsson Inc. Quadrifilar helix antenna systems and methods for broadband operation in separate transmit and receive frequency bands
US6025816A (en) * 1996-12-24 2000-02-15 Ericsson Inc. Antenna system for dual mode satellite/cellular portable phone
GB2322011A (en) * 1997-02-04 1998-08-12 Ico Services Ltd Antenna and fabrication method
FR2759814B1 (en) * 1997-02-14 1999-04-30 Dassault Electronique PROPELLER HYPERFREQUENCY ANTENNA ELEMENTS
JP3314654B2 (en) * 1997-03-14 2002-08-12 日本電気株式会社 Helical antenna
CN1199320C (en) * 1997-03-27 2005-04-27 高通股份有限公司 An antenna and feed network for an antenna
US6184844B1 (en) * 1997-03-27 2001-02-06 Qualcomm Incorporated Dual-band helical antenna
JP3189735B2 (en) * 1997-05-08 2001-07-16 日本電気株式会社 Helical antenna
US5943027A (en) * 1997-10-03 1999-08-24 Motorola, Inc. Telescopic antenna assembly
GB2331630B (en) * 1997-11-20 2001-12-05 Nec Technologies Retractable antenna for a mobile telephone
FI113814B (en) 1997-11-27 2004-06-15 Nokia Corp Multifunctional helix antennas
JP3041520B2 (en) * 1998-01-19 2000-05-15 株式会社トーキン antenna
SE514530C2 (en) 1998-05-18 2001-03-12 Allgon Ab An antenna device comprising capacitively coupled radio tower elements and a hand-held radio communication device for such an antenna device
SE514568C2 (en) * 1998-05-18 2001-03-12 Allgon Ab An antenna device comprising feed means and a hand-held radio communication device for such an antenna device
GB9813002D0 (en) 1998-06-16 1998-08-12 Symmetricom Inc An antenna
US6107977A (en) * 1998-08-19 2000-08-22 Qualcomm Incorporated Helical antenna assembly and tool for assembling same
JP3542505B2 (en) * 1998-09-28 2004-07-14 三菱電機株式会社 Antenna feed circuit
GB9828768D0 (en) 1998-12-29 1999-02-17 Symmetricom Inc An antenna
GB9902765D0 (en) 1999-02-08 1999-03-31 Symmetricom Inc An antenna
JP2000341024A (en) * 1999-05-13 2000-12-08 K Cera Inc Helical antenna, its manufacturing facility and its manufacture
WO2001001518A1 (en) * 1999-06-29 2001-01-04 Mitsubishi Denki Kabushiki Kaisha Antenna device
AU6041700A (en) * 1999-07-01 2001-01-22 Avantego Ab Antenna arrangement and method
JP2001102852A (en) * 1999-09-29 2001-04-13 Nippon Antenna Co Ltd Helical antenna
US6229499B1 (en) 1999-11-05 2001-05-08 Xm Satellite Radio, Inc. Folded helix antenna design
US7039437B2 (en) * 2001-09-17 2006-05-02 Nokia Corporation Internal broadcast reception system for mobile phones
US6559804B2 (en) * 2001-09-28 2003-05-06 Mitsumi Electric Co., Ltd. Electromagnetic coupling type four-point loop antenna
JP2003110337A (en) * 2001-09-28 2003-04-11 Mitsumi Electric Co Ltd Four-point-fed loop antenna
US6535179B1 (en) 2001-10-02 2003-03-18 Xm Satellite Radio, Inc. Drooping helix antenna
US6816122B2 (en) * 2002-01-29 2004-11-09 Mitsumi Electric Co., Ltd. Four-point feeding loop antenna capable of easily obtaining an impedance match
US6621458B1 (en) 2002-04-02 2003-09-16 Xm Satellite Radio, Inc. Combination linearly polarized and quadrifilar antenna sharing a common ground plane
US6788272B2 (en) * 2002-09-23 2004-09-07 Andrew Corp. Feed network
GB2399948B (en) * 2003-03-28 2006-06-21 Sarantel Ltd A dielectrically-loaded antenna
US7372427B2 (en) * 2003-03-28 2008-05-13 Sarentel Limited Dielectrically-loaded antenna
US7038636B2 (en) * 2003-06-18 2006-05-02 Ems Technologies Cawada, Ltd. Helical antenna
US7233298B2 (en) * 2003-10-30 2007-06-19 Wavetest Systems, Inc. High performance antenna
ES2325618T3 (en) * 2004-06-11 2009-09-10 Ruag Aerospace Sweden Ab QUADRIFILAR HELICOIDAL ANTENNA.
TWI244237B (en) * 2004-11-12 2005-11-21 Emtac Technology Corp Quadri-filar helix antenna structure
GB2434037B (en) * 2006-01-06 2009-10-14 Antenova Ltd Laptop computer antenna device
US7554509B2 (en) * 2006-08-25 2009-06-30 Inpaq Technology Co., Ltd. Column antenna apparatus and method for manufacturing the same
US20080062060A1 (en) * 2006-09-13 2008-03-13 Junichi Noro Antenna and receiver having the same
JP4766260B2 (en) * 2006-09-20 2011-09-07 ミツミ電機株式会社 Antenna device
FR2916581B1 (en) * 2007-05-21 2009-08-28 Cnes Epic PROPELLER TYPE ANTENNA.
US7714795B2 (en) * 2007-08-23 2010-05-11 Research In Motion Limited Multi-band antenna apparatus disposed on a three-dimensional substrate, and associated methodology, for a radio device
FR2920917B1 (en) * 2007-09-11 2010-08-20 Centre Nat Etd Spatiales SINUSOIDAL - PATTERNED RADIANT BRIDGE PROPELLER TYPE ANTENNA AND METHOD OF MANUFACTURING THE SAME.
US8106846B2 (en) * 2009-05-01 2012-01-31 Applied Wireless Identifications Group, Inc. Compact circular polarized antenna
US8618998B2 (en) 2009-07-21 2013-12-31 Applied Wireless Identifications Group, Inc. Compact circular polarized antenna with cavity for additional devices
FR2988524B1 (en) 2012-03-21 2014-03-28 Centre Nat Rech Scient COMPACT SINE PROPELLER ANTENNA WITH SINUSOIDAL PROFILE MODULATING A FRACTAL PATTERN
USD815071S1 (en) * 2012-05-29 2018-04-10 Airgain Incorporated Multi-element antenna
GB2508638B (en) * 2012-12-06 2016-03-16 Harris Corp A dielectrically loaded multifilar antenna with a phasing ring feed
US9899731B1 (en) 2016-09-06 2018-02-20 Aeroantenna Technology, Inc. Octofilar antenna

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1160874A (en) * 1956-11-21 1958-08-12 Csf Improvements to directive antennas
US3381371A (en) * 1965-09-27 1968-05-07 Sanders Associates Inc Method of constructing lightweight antenna
CH499888A (en) * 1967-12-15 1970-11-30 Onera (Off Nat Aerospatiale) Helically wound single conductor antenna of reduced dimensions, and method for its manufacture
FR1577323A (en) * 1968-02-26 1969-08-08
US3508269A (en) * 1968-05-02 1970-04-21 Us Air Force Active retrodirective antenna array employing spiral elements and tunnel diode amplifiers
US3778839A (en) * 1971-07-30 1973-12-11 Hallicrafters Co Double ridged wave guide feed for signal antenna
US4012744A (en) * 1975-10-20 1977-03-15 Itek Corporation Helix-loaded spiral antenna
US4008479A (en) * 1975-11-03 1977-02-15 Chu Associates, Inc. Dual-frequency circularly polarized spiral antenna for satellite navigation
US4114164A (en) * 1976-12-17 1978-09-12 Transco Products, Inc. Broadband spiral antenna
US4349824A (en) * 1980-10-01 1982-09-14 The United States Of America As Represented By The Secretary Of The Navy Around-a-mast quadrifilar microstrip antenna
JPS5799006A (en) * 1980-12-12 1982-06-19 Nec Corp Helical antenna
JPS5888463A (en) * 1981-11-20 1983-05-26 Hitachi Ltd Distributor for internal-combustion engine
US4525720A (en) * 1982-10-15 1985-06-25 The United States Of America As Represented By The Secretary Of The Navy Integrated spiral antenna and printed circuit balun
JPS60214602A (en) * 1984-04-10 1985-10-26 Mitsubishi Electric Corp Branch line coupler
US4675690A (en) * 1984-05-25 1987-06-23 Revlon, Inc. Conical spiral antenna
JPS6142112U (en) * 1984-08-21 1986-03-18 日本無線株式会社 4 wire fractional winding helical antenna
US4780723A (en) * 1986-02-21 1988-10-25 The Singer Company Microstrip antenna compressed feed
US4847627A (en) * 1987-09-08 1989-07-11 Lockheed Corporation Compact wave antenna system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6181297B1 (en) 1994-08-25 2001-01-30 Symmetricom, Inc. Antenna
US5909196A (en) * 1996-12-20 1999-06-01 Ericsson Inc. Dual frequency band quadrifilar helix antenna systems and methods
US5920292A (en) * 1996-12-20 1999-07-06 Ericsson Inc. L-band quadrifilar helix antenna
US6300917B1 (en) 1999-05-27 2001-10-09 Sarantel Limited Antenna

Also Published As

Publication number Publication date
FR2624656B1 (en) 1990-05-18
DE3878862D1 (en) 1993-04-08
JPH01264003A (en) 1989-10-20
ATE86413T1 (en) 1993-03-15
CA1291560C (en) 1991-10-29
EP0320404A1 (en) 1989-06-14
JPH0758858B2 (en) 1995-06-21
ES2038328T3 (en) 1993-07-16
DE3878862T2 (en) 1993-06-17
US5134422A (en) 1992-07-28
FR2624656A1 (en) 1989-06-16

Similar Documents

Publication Publication Date Title
EP0320404B1 (en) Helix-type antenna and its manufacturing process
EP0205212B1 (en) Modular microwave antenna units and antenna composed of such units
EP0403910B1 (en) Radiating, diplexing element
EP0123350B1 (en) Plane microwave antenna with a totally suspended microstrip array
EP0274074B1 (en) Feeding radiator for a communications antenna
EP0108463B1 (en) Radiating element for cross-polarized microwave signals and planar antenna consisting of an array of such elements
EP1416586B1 (en) Antenna with an assembly of filtering material
EP0243289A1 (en) Plate antenna with two crossed polarizations
EP0427654A1 (en) Tuned helical antennae consisting of two quadrifilar antennas fit into each other
EP0481417A1 (en) Device for feeding an antenna element radiating two orthogonal polarisations
EP0134611B1 (en) A flat microwave emitting or receiving antenna array, and microwave signal emitting or receiving system comprising a such flat antenna
EP0012055A1 (en) Microstrip monopulse primary feed and antenna using same
EP0082751A1 (en) Microwave radiator and its use in an electronically scanned antenna
EP0888648A1 (en) Helical antenna with built-in duplexing means, and manufacturing methods therefor
EP0017530B1 (en) Radiating source constituted by a dipole excited by a waveguide, and its use in an electronic scanning antenna
EP0012645B1 (en) Sheet antenna composed of two circular rings
EP0149400B1 (en) Aerial with a circular-mode promotion system
EP0377155B1 (en) Dual frequency radiating device
EP0020196B1 (en) Ringplate-type microwave array antenna with feeding system and its application in radars
EP1024546A1 (en) Microwave circuit module and device for connection to another module
EP0769824A1 (en) Electromagnetic lens of the type of a circuit printed on a suspended substrate
EP0334270B1 (en) Microwave matching arrangement for a waveguide-to-planar line transition
EP0430136A1 (en) Band elimination filter for microwave waveguide
FR2759814A1 (en) PROPELLER HYPERFREQUENCY ANTENNA ELEMENTS
FR2519476A1 (en) Electromagnetic feed for electronic scanning aerial - comprises dielectric substrate with spaced conductive bands forming horn shaped waveguide

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19891120

17Q First examination report despatched

Effective date: 19920507

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19930303

Ref country code: NL

Effective date: 19930303

Ref country code: AT

Effective date: 19930303

REF Corresponds to:

Ref document number: 86413

Country of ref document: AT

Date of ref document: 19930315

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: ING. MILANI GIORGIO

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930302

REF Corresponds to:

Ref document number: 3878862

Country of ref document: DE

Date of ref document: 19930408

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2038328

Country of ref document: ES

Kind code of ref document: T3

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19931231

Ref country code: LI

Effective date: 19931231

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19931231

Ref country code: BE

Effective date: 19931231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
BERE Be: lapsed

Owner name: CENTRE NATIONAL D'ETUDES SPATIALES

Effective date: 19931231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EAL Se: european patent in force in sweden

Ref document number: 88403145.1

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20071218

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20071221

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20071120

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20071214

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20071211

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20071228

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20081208

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20081210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20081210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20081208