EP0481417A1 - Device for feeding an antenna element radiating two orthogonal polarisations - Google Patents
Device for feeding an antenna element radiating two orthogonal polarisations Download PDFInfo
- Publication number
- EP0481417A1 EP0481417A1 EP91117514A EP91117514A EP0481417A1 EP 0481417 A1 EP0481417 A1 EP 0481417A1 EP 91117514 A EP91117514 A EP 91117514A EP 91117514 A EP91117514 A EP 91117514A EP 0481417 A1 EP0481417 A1 EP 0481417A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cavity
- line
- radiating element
- une
- cavities
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000010168 coupling process Methods 0.000 claims abstract description 11
- 230000008878 coupling Effects 0.000 claims abstract description 10
- 238000005859 coupling reaction Methods 0.000 claims abstract description 10
- 230000000149 penetrating effect Effects 0.000 claims abstract description 6
- 230000010287 polarization Effects 0.000 claims description 23
- 239000002184 metal Substances 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 125000006850 spacer group Chemical group 0.000 claims description 2
- 230000009977 dual effect Effects 0.000 abstract description 2
- 230000005540 biological transmission Effects 0.000 abstract 1
- 239000004020 conductor Substances 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- 229910001369 Brass Inorganic materials 0.000 description 6
- 239000004952 Polyamide Substances 0.000 description 6
- 230000006978 adaptation Effects 0.000 description 6
- 239000010951 brass Substances 0.000 description 6
- 230000005284 excitation Effects 0.000 description 6
- 229920002647 polyamide Polymers 0.000 description 6
- 239000010453 quartz Substances 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 238000009826 distribution Methods 0.000 description 4
- 229920003223 poly(pyromellitimide-1,4-diphenyl ether) Polymers 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 238000007726 management method Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 241000256815 Apocrita Species 0.000 description 1
- 102100040853 PRKC apoptosis WT1 regulator protein Human genes 0.000 description 1
- 101710162991 PRKC apoptosis WT1 regulator protein Proteins 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005388 cross polarization Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000003872 feeding technique Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 235000010603 pastilles Nutrition 0.000 description 1
- 230000008569 process Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
- H01Q9/045—Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
- H01Q9/0457—Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means electromagnetically coupled to the feed line
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/10—Resonant slot antennas
- H01Q13/18—Resonant slot antennas the slot being backed by, or formed in boundary wall of, a resonant cavity ; Open cavity antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/0006—Particular feeding systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/0006—Particular feeding systems
- H01Q21/0075—Stripline fed arrays
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
- H01Q21/061—Two dimensional planar arrays
- H01Q21/064—Two dimensional planar arrays using horn or slot aerials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/24—Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/30—Arrangements for providing operation on different wavebands
- H01Q5/378—Combination of fed elements with parasitic elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/50—Feeding or matching arrangements for broad-band or multi-band operation
- H01Q5/55—Feeding or matching arrangements for broad-band or multi-band operation for horn or waveguide antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
- H01Q9/0414—Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
- H01Q9/0428—Substantially flat resonant element parallel to ground plane, e.g. patch antenna radiating a circular polarised wave
- H01Q9/0435—Substantially flat resonant element parallel to ground plane, e.g. patch antenna radiating a circular polarised wave using two feed points
Definitions
- the invention relates to a device for supplying a radiating element operating in double polarization, which may be of the printed antenna type or of the waveguide type.
- the first two approaches have been widely described and studied insofar as they are on the one hand a priori easy achievements and have a similarity in propagation behavior with the radiating element itself which can be approximated by a microstrip line.
- the solutions belonging to the third category mark a step in the feeding technique by decoupling the radiating element from the main line.
- the increase in the number of parameters thus allows better management of the bandwidth performance of the assembly.
- the supply of a printed antenna can also be carried out from a microstrip line. Again these types of food are widely known. This feeding method is widely used and does not require any particular process other than that of the etching of the "patch" itself. It is thus possible to supply the radiating elements and produce the distribution elements according to the same surface.
- the supply of a printed antenna can, finally, be carried out by electromagnetic coupling technique.
- This supply mode allows RE energy to be transferred from a main line without any contact or mechanical connection between the conductors.
- they allow better management of the adaptive capacities of aerials. From microstrip lines it is possible to supply a dipole or a patch-type antenna. It is also possible to supply a radiating element from a triplate line. This can offer certain interesting aspects in comparison with the electrical situation of the microstrip which is an open line.
- the object of the present invention is to respond to the problem thus defined
- the invention provides an original device for supplying a radiating element operating in double polarization, characterized in that it comprises a first supply line penetrating into a first cavity situated under said radiating element, and a second supply line, arranged in a geometry orthogonal to the first line, penetrating into a second cavity located in the extension of the first, a conductive part forming a coupling slot between these two cavities.
- the device of the invention makes it possible to considerably simplify the distribution architecture, the production technology, and the cost of the sub-networks of the radiating elements.
- This "open" cavity is produced by a set of conductive cylinder 15, for example metallic, of diameter 0 a and two metallic tracks 10 at level N, and 16 at level N-2, which thus produce the "covers” "of said cylinder.
- the access window 20 of the line 11 to the cavity 13 is dimensioned according to rules known to those skilled in the art in accordance with the distribution of the fields along the line 11.
- the second line 12 of the second distributor arranged in a geometry orthogonal to the first line 11, enters a second cylindrical cavity 14 of diameter 0 b located at a level N-3 lower than that of the first cavity 13 and concentric with it.
- This second cavity 14 is produced by all of the electric cylindrical walls 17, a metallized bottom 18 as well as the metal part 16 which also constitutes the bottom of the first cavity 13.
- the two cavities 13 and 14 are therefore located one above the other and have a common part 16 which has a vital role in the operation of the double-stage device which is described below. They contain, in the example shown, dielectric spacer devices 40, 41 and 42, 43 allowing the positioning of the two lines 11 and 12, arranged in two blocks 44 and 45 for example of brass.
- the cavity 13 acts as a directional coupler with respect to the lower stages so that no transfer of energy takes place from the first line 11 to the second line 12 which therefore has a high degree of coupling .
- the energy conveyed by the first line 11 is therefore completely transferred to the radiating element 10 without coupling to the line 12.
- the second line 12 which is located at level N-3 has a configuration of compatible field lines of the slot (s) 19. Therefore, these make it possible to couple the RF energy contained in the second cavity 14 to the first cavity 13.
- the only suitable outlet presented by the assembly is the radiating element 10 so that no energy initially conveyed by line 12 can couple to line 11, due to the orthogonality conditions imposed field lines with respect to line 11.
- the excitation of the radiating element 10 according to the polarization of the second line 12 therefore involves the two cavities 13 and 14 as well as a selective coupling device 16 and 19 in polarization.
- the adaptation of the radiating element 10 to the line 12 therefore brings into play all of the characteristics of the conductors and their respective geometries.
- FIG. 3 shows the geometry of a radiating element with double orthogonal polarizations, produced in KU band, which corresponds to the principles described above.
- FIG. 6 is a curve illustrating the decoupling between accesses as a function of the frequency.
- the device has decoupling in the entire band greater than 30 dB and on average close to 33 dB between the upper and lower ports.
- a similar distributor for the other polarization can be integrated completely independently at the corresponding level.
- the radiating element 10 can excite a passive resonator so as to produce a broadband radiating element.
- the device thus described whether or not using a passive resonator, can be used to supply, in a manner known to those skilled in the art, a microwave element of the waveguide or radiating horn type (corrugated, dual mode , etc .).
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Waveguide Aerials (AREA)
- Waveguide Switches, Polarizers, And Phase Shifters (AREA)
- Details Of Aerials (AREA)
Abstract
Description
L'invention se rapporte à un dispositif d'alimentation d'un élément rayonnant fonctionnant en double polarisation, pouvant être du type antenne imprimée ou de type guide d'onde.The invention relates to a device for supplying a radiating element operating in double polarization, which may be of the printed antenna type or of the waveguide type.
L'emploi des antennes dites imprimées : antennes "patch", dipoles, fentes annulaires etc..... va croissant dans le domaine des télécommunications.The use of so-called printed antennas: patch antennas, dipoles, annular slots, etc. is increasing in the telecommunications field.
En fonction de la mission envisagée : télécommunications fixes, télécommunications maritimes ou aéronautiques, "broadcasting", localisation, relais, etc., les choix d'un type d'élément rayonnant d'une part et d'un type de ligne de propagation d'autre part résultent d'un compromis mettant en jeu un nombre important de paramètres :
- . adéquation à la mission RF (Radiofréquence)
- . niveau de définition de la technologie ;
- . type d'interfaces requis, connectique ;
- . tenue en puissance ;
- . coût ; . encombrement, masse .....
- . adequacy to the RF (Radiofrequency) mission
- . level of technology definition;
- . type of interfaces required, connectivity;
- . power handling;
- . cost ; . size, mass .....
L'intégration de tous ces paramètres ainsi que le développement d'antennes actives permettent de proposer les antennes imprimées comme des solutions forts attractives et compétitives sur la plupart des missions envisagées aujourd'hui.The integration of all these parameters as well as the development of active antennas makes it possible to offer printed antennas as very attractive and competitive solutions on most of the missions envisaged today.
Ceci est tout à fait courant pour des missions opérant en bande L (1,5-1,6 GHz), en bande S (2 GHz), en bande C (4-6 GHz) et tend à le devenir de plus en plus pour des missions en bande K, aujourd'hui en bande Ku (12,4-18 GHz). Toutefois la montée en fréquence ne peut se faire qu'au prix d'un grand effort technologique tant les problèmes apparaissent difficiles :
- - montée vertigineuse des pertes ;
- - miniaturisation des éléments rayonnants ;
- - difficultés de connectique et de réalisation.
- - vertiginous rise in losses;
- - miniaturization of radiating elements;
- - connection and implementation difficulties.
Bien des missions ne requièrent qu'une seule polarisation par fréquence (linéaire ou circulaire). Dans ce cas les spécifications de polarisation croisées ne sont pas en général très difficiles à tenir. C'est le cas des missions bande L (aéronautiques et maritimes), bande S (relais), bandes L et S (localisation). Pour ce genre d'applications, en fonction de l'élément rayonnant retenu, différents modes d'alimentation peuvent être envisagés.Many missions require only one polarization per frequency (linear or circular). In this case, the crossed polarization specifications are not generally very difficult to maintain. This is the case for L-band (aeronautical and maritime), S-band (relay), L and S-bands (localization) missions. For this kind of application, depending on the radiating element selected, different modes of supply can be envisaged.
Les modes d'excitation les plus courants d'une antenne imprimée sont :
- - l'alimentation à partir d'une ligne coaxiale ;
- - l'alimentation dans le plan à partir d'une ligne microruban ;
- - l'alimentation par couplage électromagnétique à partir d'une ligne microruban ou triplaque.
- - feeding from a coaxial line;
- - feeding in the plane from a microstrip line;
- - power supply by electromagnetic coupling from a microstrip or triplate line.
Les deux premières approches ont été largement décrites et étudiées dans la mesure où elles sont d'une part de réalisations à priori aisées et présentent une similitude de comportement de propagation avec l'élément rayonnant lui-même qui peut être approximé par une ligne microruban.The first two approaches have been widely described and studied insofar as they are on the one hand a priori easy achievements and have a similarity in propagation behavior with the radiating element itself which can be approximated by a microstrip line.
Les solutions appartenant à la troisième catégorie marquent un pas dans la technique d'alimentation en découplant l'élément rayonnant de la ligne principale. L'accroissement du nombre de paramètres permet ainsi une meilleure gestion des performances de bande passante de l'ensemble.The solutions belonging to the third category mark a step in the feeding technique by decoupling the radiating element from the main line. The increase in the number of parameters thus allows better management of the bandwidth performance of the assembly.
Ainsi l'alimentation d'une antenne imprimée peut être réalisée à l'aide d'une ligne coaxiale orthogonale. La configuration de base consiste à connecter l'âme centrale du coaxial à un point d'impédance sous le "patch" correspondant à l'impédance du coaxial. Cette technique est bien souvent insuffisante dans le cadre de mission à bande importante ( >-_ 1 %) en raison de l'effet de sonde dû au diamètre non nul du conducteur. Aussi afin d'accroître les performances d'une telle transition, ont été couramment développés des dispositifs compensateurs de la self de sonde à savoir :
- - attaque par une jupe capacitive réalisée à l'aide d'une gaine de conducteur coaxial extérieur ;
- - attaque par une pastille capacitive sur ou sous le "patch".
- - attack by a capacitive skirt produced using an outer coaxial conductor sheath;
- - attack by a capacitive patch on or under the "patch".
Ces dispositifs sont largement connus et décrits : par exemple dans un article intitulé "Conformal microstrip antennas" de Robert E. MUNSON (Microwave journal ; mars 1988) qui décrit plusieurs types d'antennes microstrip, leurs applications et leurs performances.These devices are widely known and described: for example in an article entitled "Conformal microstrip antennas" by Robert E. MUNSON (Microwave journal; March 1988) which describes several types of microstrip antennas, their applications and their performance.
L'alimentation d'une antenne imprimée ("patch" ou dipole) peut, également, être réalisée à partir d'une ligne microruban. Là encore ces types d'alimentation sont largement connus. Ce mode d'alimentation est largement utilisé et ne nécessite aucun procédé particulier autre que celui de la gravure du "patch" lui-même. On peut ainsi alimenter les éléments rayonnants et réaliser les éléments de répartition selon la même surface.The supply of a printed antenna ("patch" or dipole) can also be carried out from a microstrip line. Again these types of food are widely known. This feeding method is widely used and does not require any particular process other than that of the etching of the "patch" itself. It is thus possible to supply the radiating elements and produce the distribution elements according to the same surface.
L'alimentation d'une antenne imprimée peut, enfin, être réalisée par technique de couplage électromagnétique. Ce mode d'alimentation permet de transférer l'énergie RE à partir d'une ligne principale sans aucun contact ou liaison mécanique entre les conducteurs. De plus par l'introduction de paramètres elles permettent une meilleure gestion des capacités d'adaptation des aériens. A partir de lignes microruban il est possible de réaliser l'alimentation d'un dipole ou d'une antenne de type "patch". On peut aussi alimenter un élément rayonnant à partir d'une ligne triplaque. Ce qui peut offrir certains aspects intéressants en comparaison de la situation électrique du microruban qui est une ligne ouverte.The supply of a printed antenna can, finally, be carried out by electromagnetic coupling technique. This supply mode allows RE energy to be transferred from a main line without any contact or mechanical connection between the conductors. In addition, by the introduction of parameters, they allow better management of the adaptive capacities of aerials. From microstrip lines it is possible to supply a dipole or a patch-type antenna. It is also possible to supply a radiating element from a triplate line. This can offer certain interesting aspects in comparison with the electrical situation of the microstrip which is an open line.
Toutes ces réalisations largement connues deviennent cependant difficiles à mettre en oeuvre pour des missions nécessitant une utilisation en double polarisation. En effet pour ce genre d'application les problèmes vont croissants ; Bien souvent l'élément rayonnant de base n'est pas seul, mais constitue un sous-réseau et le problème posé dans sa globalité consiste à :
- - alimenter les éléments rayonnants selon deux polarisations orthogonales ;
- - intégrer les circuits BFN ("Beam Forming Networks") dans la maille physique du réseau ;
- - supply the radiating elements according to two orthogonal polarizations;
- - integrate BFN circuits ("Beam Forming Networks") in the physical mesh of the network;
de façon à réaliser un module permettant de tenir les objectifs de pureté de polarisation, bande passante, efficacité, qualité de rayonnement et... moyennant une technologie et des coûts acceptables.so as to produce a module making it possible to meet the objectives of polarization purity, bandwidth, efficiency, quality of radiation and ... with acceptable technology and costs.
Les solutions du type utilisant deux attaques coaxiales orthogonales conduisent à des architectures compliquées pour alimenter l'élément rayonnant et pour accéder à chacun des circuits BFN. Quelle que soit la configuration celle-ci nécessite au moins une transition coaxiale/triplaque simple étage ainsi qu'une transition à double étage ; ce qui se traduit par une complexité technologique accrue par rapport à la simple polarisation, associée en outre à de faibles performances intrinsèques. Le couplage entre les deux sondes coaxiales est typiquement de 20 dB pour ce type d'excitation entrainant ainsi des problèmes de re-rayonnement en polarisation croisée à résoudre par des artifices de mise en sous-réseaux particuliers (rotations séquentielles par exemple).Solutions of the type using two orthogonal coaxial attacks lead to complicated architectures for supplying the radiating element and for accessing each of the BFN circuits. Whatever the configuration, this requires at least a single-stage coaxial / triplate transition as well as a double-stage transition; which results in an increased technological complexity compared to simple polarization, associated in addition with low intrinsic performance. The coupling between the two coaxial probes is typically 20 dB for this type of excitation, thus causing cross-polarization re-radiation problems to be resolved by special sub-array devices (sequential rotations for example).
De toute façon la mise au point n'est pas aisée, du fait de phénomènes parasites. De plus la solution requiert un gros effort d'ingénierie électrique et technologique.In any case, the development is not easy, due to parasitic phenomena. In addition, the solution requires a major effort in electrical and technological engineering.
L'objet de la présente invention consiste à répondre au problème ainsi définiThe object of the present invention is to respond to the problem thus defined
L'invention propose à cet effet un dispositif original d'alimentation d'un élément rayonnant fonctionnant en double polarisation, caractérisé en ce qu'il comprend une première ligne d'alimentation pénétrant dans une première cavité située sous ledit élément rayonnant, et une seconde ligne d'alimentation, disposée selon une géométrie orthogonale à la première ligne, pénétrant dans une seconde cavité située dans le prolongement de la première, une pièce conductrice formant une fente de couplage entre ces deux cavités.To this end, the invention provides an original device for supplying a radiating element operating in double polarization, characterized in that it comprises a first supply line penetrating into a first cavity situated under said radiating element, and a second supply line, arranged in a geometry orthogonal to the first line, penetrating into a second cavity located in the extension of the first, a conductive part forming a coupling slot between these two cavities.
Avantageusement ce dispositif permet d'assurer simultanément en une seule unité, et sans nécessiter de liaison mécanique (connectique) :
- - l'alimentation d'un élément rayonnant selon deux polarisations orthogonales ;
- - la sortie de chacune des polarisations sur des niveaux séparés, permettant ainsi une gestion indépendante des circuits BFN et une intégration complète de l'ensemble de ces répartiteurs sous le réseau de l'élément rayonnant sans nécessiter d'éléments de connexion autres que ceux existant entre le dispositif d'alimentation et l'élément rayonnant lui-même.
- - the supply of a radiating element according to two orthogonal polarizations;
- - the output of each of the polarizations on separate levels, thus allowing independent management of the BFN circuits and complete integration of all of these distributors under the network of the radiating element without requiring connection elements other than those existing between the supply device and the radiating element itself.
De plus le dispositif de l'invention permet de simplifier considérablement l'architecture de distribution, la technologie de réalisation, et le coût des sous-réseaux des éléments rayonnants.In addition, the device of the invention makes it possible to considerably simplify the distribution architecture, the production technology, and the cost of the sub-networks of the radiating elements.
Les caractéristiques et avantages de l'invention ressortiront d'ailleurs de la description qui va suivre, à titre d'exemple non limitatif, en référence aux figures annexées sur lesquelles :
- - les figures 1
et 2 illustrent le dispositif de l'invention respectivement en vue en coupe et en vue de dessus ; - - les figures 3 à 6 illustrent respectivement une réalisation du dispositif de l'invention et plusieurs courbes de fonctionnement ;
- - Les figures 7 et 8 illustrent une application du dispositif de l'invention à un sous-réseau à quatre éléments.
- - Figures 1 and 2 illustrate the device of the invention respectively in sectional view and in top view;
- - Figures 3 to 6 respectively illustrate an embodiment of the device of the invention and several operating curves;
- - Figures 7 and 8 illustrate an application of the device of the invention to a four-element subnetwork.
L'excitation de l'élément rayonnant 10, de technologie composite ou non, représenté sur la figure 1, se fait en utilisant une structure multifentes et multicavités. Une telle structure permet d'effectuer en une seule opération :
- - l'alimentation d'un élément rayonnant selon deux modes orthogonaux avec un haut découplage entre les accès (>-_ 30 dB) ;
- - les changements de plan nécessaires à l'implantation de circuits formateurs de faisceaux (BFN) de chacune des polarisations.
- - the supply of a radiating element according to two orthogonal modes with a high decoupling between the accesses (> -_ 30 dB);
- - the plan changes necessary for the installation of beam forming circuits (BFN) of each of the polarizations.
Typiquement deux lignes d'alimentation 11 et 12 correspondant aux terminaisons de deux formateurs de faisceaux sont implantées à des niveaux différents sous un élément rayonnant 10.Typically two
La première ligne 11 microruban ou triplaque, symétrique ou non, pénètre dans une première cavité 13 cylindrique. Cette cavité "ouverte" est réalisée par l'ensemble d'un cylindre conducteur 15, par exemple métallique, de diamètre 0 a et de deux pistes métalliques 10 au niveau N, et 16 au niveau N-2, qui réalisent ainsi les "couvercles" dudit cylindre. La fenêtre d'accès 20 de la ligne 11 à la cavité 13 est dimensionnée selon des règles connues de l'homme de l'art conformément à la distribution des champs le long de la ligne 11.The first microstrip or
De la même manière la seconde ligne 12 du second répartiteur, disposée selon une géométrie orthogonale à la première ligne 11, pénètre dans une seconde cavité cylindrique 14 de diamètre 0 b située à un niveau N-3 inférieur à celui de la première cavité 13 et concentrique avec celle-ci. Cette seconde cavité 14 est réalisée par l'ensemble des parois électriques 17 cylindriques, d'un fond métallisé 18 ainsi que de la pièce métallique 16 qui constitue aussi le fond de la première cavité 13.In the same way, the
Les deux cavités 13 et 14 sont donc implantées l'une au dessus de l'autre et présentent une partie commune 16 qui a un rôle capital dans le fonctionnement du dispositif à double étage qui est décrit ci-après. Elles contiennent, dans l'exemple représenté, des dispositifs espaceurs en diélectrique 40, 41 et 42, 43 permettant le positionnement des deux lignes 11 et 12, disposés dans deux blocs 44 et 45 par exemple en laiton.The two
Une onde électromagnétique est véhiculée par la première ligne 11 à l'intérieur de la première cavité 13. L'ensemble de cette cavité agit comme un hexapole directif adapté ; ce qui nécessite donc
- - d'une part une géométrie des conducteurs en présence optimisée de façon à réaliser l'adaptation d'impédance de l'élément rayonnant 10 à chaque ligne d'alimentation ;
- - d'autre part un soin extrême apporté à la géométrie de la pièce 16 et conséquemment à la nature de la fente de couplage 19 : Cette pièce 16 joue en quelque sorte un rôle de séparateur de polarisation, qui agit comme un court-circuit pour l'onde véhiculée par la première
ligne 11 , de sorte que l'on a une condition de fermeture vis-à-vis des étages inférieurs. Typiquement la géométrie du conducteur 16 et de la fente 19 peut comporter une ou plusieurs fentes rectangulaires parallèles au conducteur 11.
- - On the one hand, a geometry of the conductors in the presence optimized so as to achieve the impedance adaptation of the radiating
element 10 to each supply line; - - on the other hand, extreme care given to the geometry of the
part 16 and consequently to the nature of the coupling slot 19: Thispart 16 acts in a way as a polarization splitter, which acts as a short circuit for the wave carried by thefirst line 11, so that there is a closing condition vis-à-vis the lower floors. Typically, the geometry of theconductor 16 and of theslot 19 may include one or more rectangular slots parallel to theconductor 11.
Ainsi la cavité 13 agit comme un coupleur directif vis-à-vis des étages inférieurs de sorte qu'aucun transfert d'énergie n'a lieu de la première ligne 11 vers la seconde ligne 12 qui présente de ce fait un haut degré de couplage. L'énergie véhiculée par la première ligne 11 est donc transférée totalement à l'élément rayonnant 10 sans couplage à la ligne 12.Thus the
La seconde ligne 12 qui se trouve au niveau N-3 présente une configuration de lignes de champ compatible de la ou des fentes 19. De ce fait, celles-ci permettent de coupler l'énergie RF contenue dans la seconde cavité 14 à la première cavité 13. A ce niveau la seule sortie adaptée que présente l'ensemble est l'élément rayonnant 10 de sorte qu'aucune énergie initialement véhiculée par la ligne 12 ne puisse se coupler à la ligne 11, en raison des conditions d'orthogonalité imposées des lignes de champ par rapport à la ligne 11. L'excitation de l'élément rayonnant 10 selon la polarisation de la seconde ligne 12 met donc en jeu les deux cavités 13 et 14 ainsi qu'un dispositif de couplage 16 et 19 sélectif en polarisation. L'adaptation de l'élément rayonnant 10 à la ligne 12 met donc en jeu l'ensemble des caractéristiques des conducteurs et leur géométries respectives.The
Dans une variante de réalisation la cavité 14 a une forme plus élaborée mettant en jeu une troisième cavité de diamètre 0c, implantée sous les deux premières et dans le prolongement de celles-ci avec :
- /c ≦ φb < oa ; Elle a pour objet d'augmenter le nombre de paramètres permettant de réaliser l'adaptation de l'ensemble à la
ligne 12. Ainsi une succession de n cavités superposées peut être utilisée de façon à dégager des paramètres d'optimisation.
- / c ≦ φb <oa; Its purpose is to increase the number of parameters making it possible to adapt the assembly to
line 12. Thus a succession of n superimposed cavities can be used so as to release optimization parameters.
La figure 3 présente la géométrie d'un élément rayonnant à double polarisations orthogonales, réalisé en bande KU, qui correspond aux principes décrits précédemment.FIG. 3 shows the geometry of a radiating element with double orthogonal polarizations, produced in KU band, which corresponds to the principles described above.
Les performances typiques d'un tel dispositif sont présentées sur les figures 4 à 6.Typical performances of such a device are presented in Figures 4 to 6.
Ce dispositif présente les caractéristiques suivantes :
- - un élément rayonnant 10 à double étage comprenant :
- .
un patch carré 21 en cuivre de longueur 6 mm, et 0,2 mm qui est actif pour l'accès supérieur ;d'épaisseur - . une couche 22 en Nida ("Nid d'Abeille") de
4,2 mm ;hauteur - . une couche 23 de scotch Kapton ;
- .
un patch 24 circulaire en laiton collé sur la surface inférieure du scotch Kapton de diamètre 6,8 mm, et 0,3 mm ;d'épaisseur
- .
- -
une plaque 25 en laiton d'épaisseur 0,4 mm ; - -
une fente 26 de largeur 14 mm ; - -
un triplaque 27d'épaisseur 0,8 mm ; - - une ligne 100
ohms 28d'épaisseur environ 0,01 mm, de longueur débouchante 5 mm ; - - une feuille de
quartz polyamide 29 0,1 mm ;d'épaisseur environ - - une première cavité 30 de diamètre 14 mm, de hauteur 5,8 mm réalisée dans un premier bloc de laiton 36 ;
- - une feuille de
quartz polyamide 31 0,1 mm sur laquelle est disposée un "patch" en laiton de diamètre 7 mm etd'épaisseur environ 0,3 mm réalisant un court-circuit dans le sens de la polarisation supérieure ;d'épaisseur - -
un triplaque 32d'épaisseur 0,8 mm ; - - une ligne 100
ohms 35d'épaisseur environ 0,01 mm, de longueur débouchante 5 mm ; - - une feuille de
quartz polyamide 33 0,1 mm ;d'épaisseur environ - - une seconde cavité 34 de diamètre 14 mm et de hauteur 5,8 mm réalisée dans un second bloc de laiton 37 ; Les figures 4 et 5 représentent des courbes illustrant l'adaptation des polarisations en fonction de la fréquence, soient respectivement :
- - R.O.S. accès supérieur (figure 4) : -20 dB de 10.50 GHz à 12,75 GHz soit
environ 20% de bande passante à R.O.S. = 1,22 ; - - R.O.S. accès inférieur (figure 5) performance similaire traduisant 20% de bande passante à R.O.S. = 1,22.
- - a double-
stage radiating element 10 comprising:- . a
square patch 21 of copper 6 mm long and 0.2 mm thick which is active for the upper access; - . a
layer 22 of Nida ("Honeycomb") 4.2 mm high; - . a
layer 23 of Kapton tape; - . a
circular brass patch 24 glued to the lower surface of the Kapton scotch with a diameter of 6.8 mm and a thickness of 0.3 mm;
- . a
- - a
brass plate 25 of thickness 0.4 mm; - - A
slot 26 ofwidth 14 mm; - - a
triplate 27 of 0.8 mm thickness; - a 100
ohm line 28 of thickness approximately 0.01 mm, of through length 5 mm; - - a
polyamide 29 quartz sheet about 0.1 mm thick; - - A
first cavity 30 ofdiameter 14 mm, height 5.8 mm made in a first block ofbrass 36; - - a
polyamide 31 quartz sheet of thickness approximately 0.1 mm on which is placed a brass "patch" with a diameter of 7 mm and a thickness of 0.3 mm producing a short circuit in the direction of the higher polarization; - - a
triplate 32 with a thickness of 0.8 mm; - a 100
ohm 35 line about 0.01 mm thick, 5 mm through length; - - a
polyamide 33 quartz sheet about 0.1 mm thick; - a
second cavity 34 with a diameter of 14 mm and a height of 5.8 mm produced in a second block ofbrass 37; FIGS. 4 and 5 represent curves illustrating the adaptation of the polarizations as a function of the frequency, namely: - - ROS upper access (Figure 4): -20 dB from 10.50 GHz to 12.75 GHz, i.e. around 20% of bandwidth at ROS = 1.22;
- - ROS lower access (Figure 5) similar performance translating 20% of bandwidth at ROS = 1.22.
La figure 6 est une courbe illustrant le découplage entre accès en fonction de la fréquence. Le dispositif présente un découplage dans toute la bande supérieure à 30 dB et en moyenne voisin de 33 dB entre les accès supérieur et inférieur.FIG. 6 is a curve illustrating the decoupling between accesses as a function of the frequency. The device has decoupling in the entire band greater than 30 dB and on average close to 33 dB between the upper and lower ports.
Après étude des diagrammes de rayonnement mesurés sur chacun des accès à fréquence centrale, il apparait qu'en raison de l'absence de couplage entre les accès, une excellente pureté de polarisation est obtenue en tout point conforme aux résultats concernant le même type d'élément rayonnant utilisé en monopolarisation.After studying the radiation patterns measured on each of the accesses at central frequency, it appears that due to the absence of coupling between the accesses, an excellent polarization purity is obtained at all points in accordance with the results concerning the same type of radiating element used in monopolarization.
Dans une réalisation d'un sous-réseau de 32 éléments rayonnants, On voit clairement pour un niveau de BFN que :
- - d'une part l'alimentation des sous-
réseaux 1par 4 est facilement réalisée sous la maille des éléments rayonnants. - - d'autre part l'alimentation de chacune des polarisations, réalisées séparément en deux plans distincts, permet de pousser très loin l'intégration du répartiteur associé à chaque polarisation. A titre d'exemple il est possible de réaliser
un circuit 1par 32 implanté en totalité sur le même niveau sans qu'il soit nécessaire d'effectuer une opération de changement de plan autre que celle du dispositif d'excitation de l'élément rayonnant.
- - On the one hand, the supply of the
sub-networks 1 by 4 is easily carried out under the mesh of the radiating elements. - - On the other hand the supply of each of the polarizations, produced separately in two distinct planes, makes it possible to push very far the integration of the distributor associated with each polarization. For example, it is possible to make a 1 by 32 circuit located entirely on the same level without the need to perform a plane change operation other than that of the excitation device of the radiating element. .
Un répartiteur similaire pour l'autre polarisation peut être intégré de façon totalement indépendante au niveau correspondant.A similar distributor for the other polarization can be integrated completely independently at the corresponding level.
Ainsi l'approche proposée au niveau de l'élément rayonnant : excitateur à changement de niveau intégré a donc des répercussions très intéressantes au niveau des sous réseaux dont il simplifie considérablement l'architecture de distribution, la technologie de réalisation, et donc, au niveau industriel, le coût.Thus the approach proposed at the level of the radiating element: exciter with integrated level change therefore has very interesting repercussions at the level of the subnetworks, of which it considerably simplifies the distribution architecture, the production technology, and therefore, at the level industrial, the cost.
Dans une technologie en version "tout planaire", il apparaît des problèmes fondamentaux d'implantation même au niveau d'un sous-réseau de quatre éléments :
- - quasi-impossibilité de loger les circuits BFN ("Beam Forming Networks") dans la maille du réseau ;
- - nécessiter de prévoir des opérations de changement de plan.
- - it is almost impossible to accommodate BFN ("Beam Forming Networks") circuits in the network;
- - require planning operations to change plans.
Alors qu'en utilisant le dispositif de l'invention on résout tous ces problèmes. Ainsi la figure 7 représente le détail des circuits et des cavités situés sous les éléments rayonnants pour un premier répartiteur. La figure 8 représente le détail des circuits et cavités pour un second répartiteur implanté à un second niveau. Les dessins sont les mêmes, seule la topologie a tournée de 90°.
- Il est bien entendu que la présente invention n'a été décrite et représentée qu'à titre d'exemple préférentiel et que l'on pourra remplacer ses éléments constitutifs par des éléments équivalents sans, pour autant, sortir du cadre de l'invention.
- It is understood that the present invention has only been described and shown as a preferred example and that its constituent elements can be replaced by equivalent elements without, however, departing from the scope of the invention.
Ainsi l'élément rayonnant 10 peut exciter un résonateur passif de façon à réaliser un élément rayonnant large bande.Thus the radiating
De la même manière, le dispositif ainsi décrit, utilisant ou non un résonateur passif, peut servir à alimenter, de manière connue de l'homme de l'art, un élément hyperfréquence de type guide d'onde ou cornet rayonnant (corrugué, bimode, etc....).In the same way, the device thus described, whether or not using a passive resonator, can be used to supply, in a manner known to those skilled in the art, a microwave element of the waveguide or radiating horn type (corrugated, dual mode , etc ....).
Claims (8)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9012896 | 1990-10-18 | ||
FR9012896A FR2668305B1 (en) | 1990-10-18 | 1990-10-18 | DEVICE FOR SUPPLYING A RADIANT ELEMENT OPERATING IN DOUBLE POLARIZATION. |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0481417A1 true EP0481417A1 (en) | 1992-04-22 |
EP0481417B1 EP0481417B1 (en) | 1996-08-14 |
Family
ID=9401356
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP91117514A Expired - Lifetime EP0481417B1 (en) | 1990-10-18 | 1991-10-14 | Device for feeding an antenna element radiating two orthogonal polarisations |
Country Status (6)
Country | Link |
---|---|
US (1) | US6091373A (en) |
EP (1) | EP0481417B1 (en) |
JP (1) | JP3288059B2 (en) |
CA (1) | CA2053643C (en) |
DE (1) | DE69121352T2 (en) |
FR (1) | FR2668305B1 (en) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0518271A1 (en) * | 1991-06-10 | 1992-12-16 | Alcatel Espace | Elemental microwave antenna with two polarisations |
FR2700067A1 (en) * | 1992-12-29 | 1994-07-01 | France Telecom | Dual polarized plated antenna and corresponding transmitting / receiving device. |
EP0735611A2 (en) * | 1995-03-31 | 1996-10-02 | Daewoo Electronics Co., Ltd | Patch antenna array capable of simultaneously receiving dual polarized signals |
WO1999066594A1 (en) * | 1998-06-12 | 1999-12-23 | Kunjie Zhuang | A wideband microstrip element for array antenna |
AU738670B2 (en) * | 1997-07-29 | 2001-09-20 | Alcatel | Dual polarised patch antenna |
WO2003030301A1 (en) * | 2001-10-01 | 2003-04-10 | Raytheon Company | Slot coupled, polarized radiator |
EP1775795A1 (en) | 2005-10-11 | 2007-04-18 | M/A-Com, Inc. | Broadband proximity-coupled cavity backed patch antenna |
WO2007046055A2 (en) * | 2005-10-16 | 2007-04-26 | Starling Advanced Communications Ltd. | Dual polarization planar array antenna and radiating element therefor |
US7636063B2 (en) | 2005-12-02 | 2009-12-22 | Eswarappa Channabasappa | Compact broadband patch antenna |
WO2009133448A3 (en) * | 2008-04-30 | 2009-12-23 | Topcon Gps Llc | Broadband patch antenna system |
US7859835B2 (en) | 2009-03-24 | 2010-12-28 | Allegro Microsystems, Inc. | Method and apparatus for thermal management of a radio frequency system |
US8279131B2 (en) | 2006-09-21 | 2012-10-02 | Raytheon Company | Panel array |
US8355255B2 (en) | 2010-12-22 | 2013-01-15 | Raytheon Company | Cooling of coplanar active circuits |
US8363413B2 (en) | 2010-09-13 | 2013-01-29 | Raytheon Company | Assembly to provide thermal cooling |
US8427371B2 (en) | 2010-04-09 | 2013-04-23 | Raytheon Company | RF feed network for modular active aperture electronically steered arrays |
US8508943B2 (en) | 2009-10-16 | 2013-08-13 | Raytheon Company | Cooling active circuits |
US8537552B2 (en) | 2009-09-25 | 2013-09-17 | Raytheon Company | Heat sink interface having three-dimensional tolerance compensation |
US8810448B1 (en) | 2010-11-18 | 2014-08-19 | Raytheon Company | Modular architecture for scalable phased array radars |
US8981869B2 (en) | 2006-09-21 | 2015-03-17 | Raytheon Company | Radio frequency interconnect circuits and techniques |
US9019166B2 (en) | 2009-06-15 | 2015-04-28 | Raytheon Company | Active electronically scanned array (AESA) card |
US9124361B2 (en) | 2011-10-06 | 2015-09-01 | Raytheon Company | Scalable, analog monopulse network |
US9130278B2 (en) | 2012-11-26 | 2015-09-08 | Raytheon Company | Dual linear and circularly polarized patch radiator |
WO2021128175A1 (en) * | 2019-12-26 | 2021-07-01 | 瑞声声学科技(深圳)有限公司 | Array antenna and base station |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2778802B1 (en) * | 1998-05-15 | 2000-09-08 | Alsthom Cge Alcatel | CIRCULARLY POLARIZED MICROWAVE TRANSMISSION AND RECEPTION DEVICE |
DE10023497A1 (en) * | 2000-05-13 | 2001-11-15 | Endress Hauser Gmbh Co | Microwave-type level gauge for industrial applications, is equipped with a plate for positioning the microwave generator |
EP1430563A4 (en) * | 2001-01-06 | 2005-02-09 | Telisar Corp | An integrated antenna system |
US6727776B2 (en) * | 2001-02-09 | 2004-04-27 | Sarnoff Corporation | Device for propagating radio frequency signals in planar circuits |
FR2827430A1 (en) * | 2001-07-11 | 2003-01-17 | France Telecom | Satellite biband receiver/transmitter printed circuit antenna having planar shapes radiating elements and first/second reactive coupling with radiating surface areas coupled simultaneously |
DE10154839A1 (en) * | 2001-11-08 | 2003-05-22 | Bosch Gmbh Robert | Antenna arrangement for a radar transmitting and receiving device and method for its production |
IL154525A (en) | 2003-02-18 | 2011-07-31 | Starling Advanced Comm Ltd | Low profile antenna for satellite communication |
US7973733B2 (en) * | 2003-04-25 | 2011-07-05 | Qualcomm Incorporated | Electromagnetically coupled end-fed elliptical dipole for ultra-wide band systems |
US7158089B2 (en) * | 2004-11-29 | 2007-01-02 | Qualcomm Incorporated | Compact antennas for ultra wide band applications |
US7864113B2 (en) * | 2005-03-31 | 2011-01-04 | Georgia Tech Research Corporation | Module, filter, and antenna technology for millimeter waves multi-gigabits wireless systems |
IL171450A (en) * | 2005-10-16 | 2011-03-31 | Starling Advanced Comm Ltd | Antenna panel |
US7586410B2 (en) * | 2006-03-09 | 2009-09-08 | Zih Corp. | RFID UHF stripline coupler |
DE102006014010B4 (en) * | 2006-03-27 | 2009-01-08 | Vega Grieshaber Kg | Waveguide transition with decoupling element for planar waveguide couplings |
JP5028068B2 (en) * | 2006-05-31 | 2012-09-19 | キヤノン株式会社 | Active antenna oscillator |
US9172145B2 (en) | 2006-09-21 | 2015-10-27 | Raytheon Company | Transmit/receive daughter card with integral circulator |
EP2097945A4 (en) * | 2006-12-21 | 2010-01-20 | Ericsson Telefon Ab L M | A dual polarized waveguide feed arrangement |
US7825868B2 (en) * | 2007-06-15 | 2010-11-02 | Emag Technologies, Inc. | Hand held reader antenna for RFID and tire pressure monitoring system |
NL2001238C2 (en) * | 2008-01-30 | 2009-08-03 | Cyner Substrates B V | Antenna device for use in mobile telecommunication applications, has antenna element having connecting electrode that is coupled for electrical conduction to electric port of electro-optical converter |
US8120536B2 (en) * | 2008-04-11 | 2012-02-21 | Powerwave Technologies Sweden Ab | Antenna isolation |
JP5184562B2 (en) * | 2010-02-02 | 2013-04-17 | 日本電信電話株式会社 | Fin line type waveguide structure, polarization separator, and manufacturing method of fin line type waveguide structure |
DE102010040809A1 (en) * | 2010-09-15 | 2012-03-15 | Robert Bosch Gmbh | Planar array antenna with multi-level antenna elements |
CA2831325A1 (en) | 2012-12-18 | 2014-06-18 | Panasonic Avionics Corporation | Antenna system calibration |
CA2838861A1 (en) | 2013-02-12 | 2014-08-12 | Panasonic Avionics Corporation | Optimization of low profile antenna(s) for equatorial operation |
US10186775B2 (en) * | 2015-08-11 | 2019-01-22 | The United States Of America, As Represented By The Secretary Of The Army | Patch antenna element with parasitic feed probe |
KR102589762B1 (en) * | 2016-06-20 | 2023-10-17 | 주식회사 에이치엘클레무브 | Radar apparatus and Method for processing radar signal |
HUE066397T2 (en) * | 2017-05-12 | 2024-07-28 | Tongyu Communication Inc | Integrated antenna element, antenna unit, multi-array antenna, transmission method and receiving method of same |
KR102425821B1 (en) | 2017-11-28 | 2022-07-27 | 삼성전자주식회사 | Dual-band antenna using coupling feeding and electronic device including the same |
US10693235B2 (en) | 2018-01-12 | 2020-06-23 | The Government Of The United States, As Represented By The Secretary Of The Army | Patch antenna elements and parasitic feed pads |
US10854978B2 (en) * | 2018-04-23 | 2020-12-01 | Samsung Electro-Mechanics Co., Ltd. | Antenna apparatus and antenna module |
CN110400779B (en) * | 2018-04-25 | 2022-01-11 | 华为技术有限公司 | Packaging structure |
US10770781B1 (en) * | 2019-02-26 | 2020-09-08 | Microsoft Technology Licensing, Llc | Resonant cavity and plate hybrid antenna |
CN110212300B (en) * | 2019-05-22 | 2021-05-11 | 维沃移动通信有限公司 | Antenna unit and terminal equipment |
WO2023089207A1 (en) * | 2021-11-17 | 2023-05-25 | Airbus Defence And Space, S.A. | Stacked patch antenna |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4208660A (en) * | 1977-11-11 | 1980-06-17 | Raytheon Company | Radio frequency ring-shaped slot antenna |
EP0123350A1 (en) * | 1983-04-22 | 1984-10-31 | Laboratoires D'electronique Et De Physique Appliquee L.E.P. | Plane microwave antenna with a totally suspended microstrip array |
FR2603744A1 (en) * | 1986-09-05 | 1988-03-11 | Matsushita Electric Works Ltd | FLAT ANTENNA |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3974462A (en) * | 1972-03-07 | 1976-08-10 | Raytheon Company | Stripline load for airborne antenna system |
US4596047A (en) * | 1981-08-31 | 1986-06-17 | Nippon Electric Co., Ltd. | Satellite broadcasting receiver including a parabolic antenna with a feed waveguide having a microstrip down converter circuit |
FR2523376A1 (en) * | 1982-03-12 | 1983-09-16 | Labo Electronique Physique | RADIATION ELEMENT OR HYPERFREQUENCY SIGNAL RECEIVER WITH LEFT AND RIGHT CIRCULAR POLARIZATIONS AND FLAT ANTENNA COMPRISING A NETWORK OF SUCH JUXTAPOSED ELEMENTS |
FR2592233B1 (en) * | 1985-12-20 | 1988-02-12 | Radiotechnique Compelec | PLANE ANTENNA HYPERFREQUENCES RECEIVING SIMULTANEOUSLY TWO POLARIZATIONS. |
FR2641133B1 (en) * | 1988-12-26 | 1991-05-17 | Alcatel Espace |
-
1990
- 1990-10-18 FR FR9012896A patent/FR2668305B1/en not_active Expired - Fee Related
-
1991
- 1991-10-14 EP EP91117514A patent/EP0481417B1/en not_active Expired - Lifetime
- 1991-10-14 DE DE69121352T patent/DE69121352T2/en not_active Expired - Lifetime
- 1991-10-17 CA CA002053643A patent/CA2053643C/en not_active Expired - Lifetime
- 1991-10-18 JP JP27125091A patent/JP3288059B2/en not_active Expired - Fee Related
-
1993
- 1993-04-08 US US08/044,113 patent/US6091373A/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4208660A (en) * | 1977-11-11 | 1980-06-17 | Raytheon Company | Radio frequency ring-shaped slot antenna |
EP0123350A1 (en) * | 1983-04-22 | 1984-10-31 | Laboratoires D'electronique Et De Physique Appliquee L.E.P. | Plane microwave antenna with a totally suspended microstrip array |
FR2603744A1 (en) * | 1986-09-05 | 1988-03-11 | Matsushita Electric Works Ltd | FLAT ANTENNA |
Non-Patent Citations (1)
Title |
---|
1988 INTERNATIONAL SYMPOSIUM DIGEST ANTENNAS ANDPROPAGATION vol. 3, Juin 1988, SYRACUSE,NY pages 936 - 939; TSAO ET AL.: 'Aperture-coupled Patch Antennas with Wide-bandwith and Dual -polarization Capabilities' * |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0518271A1 (en) * | 1991-06-10 | 1992-12-16 | Alcatel Espace | Elemental microwave antenna with two polarisations |
FR2700067A1 (en) * | 1992-12-29 | 1994-07-01 | France Telecom | Dual polarized plated antenna and corresponding transmitting / receiving device. |
EP0605338A1 (en) * | 1992-12-29 | 1994-07-06 | France Telecom | Patch antenna with dual polarisation and corresponding device for transmission/reception |
EP0735611A2 (en) * | 1995-03-31 | 1996-10-02 | Daewoo Electronics Co., Ltd | Patch antenna array capable of simultaneously receiving dual polarized signals |
EP0735611A3 (en) * | 1995-03-31 | 1998-05-06 | Daewoo Electronics Co., Ltd | Patch antenna array capable of simultaneously receiving dual polarized signals |
AU738670B2 (en) * | 1997-07-29 | 2001-09-20 | Alcatel | Dual polarised patch antenna |
WO1999066594A1 (en) * | 1998-06-12 | 1999-12-23 | Kunjie Zhuang | A wideband microstrip element for array antenna |
WO2003030301A1 (en) * | 2001-10-01 | 2003-04-10 | Raytheon Company | Slot coupled, polarized radiator |
US6624787B2 (en) | 2001-10-01 | 2003-09-23 | Raytheon Company | Slot coupled, polarized, egg-crate radiator |
EP1764863A1 (en) | 2001-10-01 | 2007-03-21 | Raython Company | Slot coupled, polarized radiator |
AU2002334695B2 (en) * | 2001-10-01 | 2007-07-12 | Raytheon Company | Slot coupled, polarized radiator |
EP1775795A1 (en) | 2005-10-11 | 2007-04-18 | M/A-Com, Inc. | Broadband proximity-coupled cavity backed patch antenna |
WO2007046055A2 (en) * | 2005-10-16 | 2007-04-26 | Starling Advanced Communications Ltd. | Dual polarization planar array antenna and radiating element therefor |
WO2007046055A3 (en) * | 2005-10-16 | 2007-12-06 | Starling Advanced Comm Ltd | Dual polarization planar array antenna and radiating element therefor |
US7636063B2 (en) | 2005-12-02 | 2009-12-22 | Eswarappa Channabasappa | Compact broadband patch antenna |
US8279131B2 (en) | 2006-09-21 | 2012-10-02 | Raytheon Company | Panel array |
US8981869B2 (en) | 2006-09-21 | 2015-03-17 | Raytheon Company | Radio frequency interconnect circuits and techniques |
US8174450B2 (en) | 2008-04-30 | 2012-05-08 | Topcon Gps, Llc | Broadband micropatch antenna system with reduced sensitivity to multipath reception |
WO2009133448A3 (en) * | 2008-04-30 | 2009-12-23 | Topcon Gps Llc | Broadband patch antenna system |
US7859835B2 (en) | 2009-03-24 | 2010-12-28 | Allegro Microsystems, Inc. | Method and apparatus for thermal management of a radio frequency system |
US9019166B2 (en) | 2009-06-15 | 2015-04-28 | Raytheon Company | Active electronically scanned array (AESA) card |
US8537552B2 (en) | 2009-09-25 | 2013-09-17 | Raytheon Company | Heat sink interface having three-dimensional tolerance compensation |
US8508943B2 (en) | 2009-10-16 | 2013-08-13 | Raytheon Company | Cooling active circuits |
US8427371B2 (en) | 2010-04-09 | 2013-04-23 | Raytheon Company | RF feed network for modular active aperture electronically steered arrays |
US8363413B2 (en) | 2010-09-13 | 2013-01-29 | Raytheon Company | Assembly to provide thermal cooling |
US8810448B1 (en) | 2010-11-18 | 2014-08-19 | Raytheon Company | Modular architecture for scalable phased array radars |
US8355255B2 (en) | 2010-12-22 | 2013-01-15 | Raytheon Company | Cooling of coplanar active circuits |
US9124361B2 (en) | 2011-10-06 | 2015-09-01 | Raytheon Company | Scalable, analog monopulse network |
US9397766B2 (en) | 2011-10-06 | 2016-07-19 | Raytheon Company | Calibration system and technique for a scalable, analog monopulse network |
US9130278B2 (en) | 2012-11-26 | 2015-09-08 | Raytheon Company | Dual linear and circularly polarized patch radiator |
WO2021128175A1 (en) * | 2019-12-26 | 2021-07-01 | 瑞声声学科技(深圳)有限公司 | Array antenna and base station |
Also Published As
Publication number | Publication date |
---|---|
EP0481417B1 (en) | 1996-08-14 |
FR2668305A1 (en) | 1992-04-24 |
US6091373A (en) | 2000-07-18 |
JPH04271605A (en) | 1992-09-28 |
FR2668305B1 (en) | 1992-12-04 |
DE69121352D1 (en) | 1996-09-19 |
DE69121352T2 (en) | 1996-12-12 |
JP3288059B2 (en) | 2002-06-04 |
CA2053643C (en) | 1995-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0481417B1 (en) | Device for feeding an antenna element radiating two orthogonal polarisations | |
EP1325537B1 (en) | Improvements to transmission/reception sources of electromagnetic waves for multireflector antenna | |
EP0205212B1 (en) | Modular microwave antenna units and antenna composed of such units | |
EP0108463B1 (en) | Radiating element for cross-polarized microwave signals and planar antenna consisting of an array of such elements | |
EP2564466B1 (en) | Compact radiating element having resonant cavities | |
EP0012055B1 (en) | Microstrip monopulse primary feed and antenna using same | |
EP1605546A1 (en) | Radiating device with orthogonal feeding | |
EP0667984B1 (en) | Monopolar wire-plate antenna | |
LU86727A1 (en) | ELECTROMAGNETICALLY COUPLED MICROBAND ANTENNAS WITH TRANSMISSION PLATES CAPACITIVELY COUPLED TO TRANSMISSION LINES | |
EP2710676B1 (en) | Radiating element for an active array antenna consisting of elementary tiles | |
FR2648626A1 (en) | RADIANT ELEMENT DIPLEXANT | |
EP0315141A1 (en) | Excitation arrangement of a circular polarised wave with a patch antenna in a waveguide | |
FR2909486A1 (en) | MULTI-SECTOR ANTENNA | |
EP2869400A1 (en) | Bi-polarisation compact power distributor, network of a plurality of distributors, compact radiating element and planar antenna having such a distributor | |
WO2014202498A1 (en) | Source for parabolic antenna | |
EP0430745A1 (en) | Circular polarized antenna, particularly for array antenna | |
FR2677491A1 (en) | BIPOLARIZED ELEMENTARY HYPERFREQUENCY ANTENNA. | |
EP1346442A1 (en) | Printed patch antenna | |
FR3024802A1 (en) | CORNET COAXIAL MULTIBAND SOURCE WITH MONOPULSE TRACKING SYSTEMS FOR REFLECTOR ANTENNA | |
EP1305846B1 (en) | Active dual-polarization microwave reflector, in particular for electronically scanning antenna | |
EP0377155B1 (en) | Dual frequency radiating device | |
EP0520908B1 (en) | Linear antenna array | |
EP0477102B1 (en) | Directional network with adjacent radiator elements for radio communication system and unit with such a directional network | |
FR2901062A1 (en) | Radiating device for e.g. passive focal array fed reflector antenna, has air resonant cavity with dielectric cover to establish electromagnetic field in transverse electromagnetic mode presenting uniform distribution on opening of device | |
EP3900113B1 (en) | Elementary microstrip antenna and array antenna |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE FR GB IT LI SE |
|
17P | Request for examination filed |
Effective date: 19921015 |
|
17Q | First examination report despatched |
Effective date: 19940907 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE FR GB IT LI SE |
|
REF | Corresponds to: |
Ref document number: 69121352 Country of ref document: DE Date of ref document: 19960919 |
|
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19961004 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Effective date: 19961031 Ref country code: LI Effective date: 19961031 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20091007 Year of fee payment: 19 Ref country code: DE Payment date: 20091008 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20091017 Year of fee payment: 19 Ref country code: GB Payment date: 20091014 Year of fee payment: 19 Ref country code: FR Payment date: 20091029 Year of fee payment: 19 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20101014 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101102 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20110630 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 69121352 Country of ref document: DE Effective date: 20110502 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101014 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101015 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101014 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110502 |