EP0481417A1 - Dispositif d'alimentation d'un élément rayonnant fonctionnant en double polarisation - Google Patents

Dispositif d'alimentation d'un élément rayonnant fonctionnant en double polarisation Download PDF

Info

Publication number
EP0481417A1
EP0481417A1 EP91117514A EP91117514A EP0481417A1 EP 0481417 A1 EP0481417 A1 EP 0481417A1 EP 91117514 A EP91117514 A EP 91117514A EP 91117514 A EP91117514 A EP 91117514A EP 0481417 A1 EP0481417 A1 EP 0481417A1
Authority
EP
European Patent Office
Prior art keywords
cavity
line
radiating element
une
cavities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP91117514A
Other languages
German (de)
English (en)
Other versions
EP0481417B1 (fr
Inventor
Gérard Raguenet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Espace Industries SA
Alcatel Lucent NV
Original Assignee
Alcatel Espace Industries SA
Alcatel NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel Espace Industries SA, Alcatel NV filed Critical Alcatel Espace Industries SA
Publication of EP0481417A1 publication Critical patent/EP0481417A1/fr
Application granted granted Critical
Publication of EP0481417B1 publication Critical patent/EP0481417B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
    • H01Q9/0457Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means electromagnetically coupled to the feed line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • H01Q13/18Resonant slot antennas the slot being backed by, or formed in boundary wall of, a resonant cavity ; Open cavity antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0075Stripline fed arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/064Two dimensional planar arrays using horn or slot aerials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/378Combination of fed elements with parasitic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/50Feeding or matching arrangements for broad-band or multi-band operation
    • H01Q5/55Feeding or matching arrangements for broad-band or multi-band operation for horn or waveguide antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0428Substantially flat resonant element parallel to ground plane, e.g. patch antenna radiating a circular polarised wave
    • H01Q9/0435Substantially flat resonant element parallel to ground plane, e.g. patch antenna radiating a circular polarised wave using two feed points

Definitions

  • the invention relates to a device for supplying a radiating element operating in double polarization, which may be of the printed antenna type or of the waveguide type.
  • the first two approaches have been widely described and studied insofar as they are on the one hand a priori easy achievements and have a similarity in propagation behavior with the radiating element itself which can be approximated by a microstrip line.
  • the solutions belonging to the third category mark a step in the feeding technique by decoupling the radiating element from the main line.
  • the increase in the number of parameters thus allows better management of the bandwidth performance of the assembly.
  • the supply of a printed antenna can also be carried out from a microstrip line. Again these types of food are widely known. This feeding method is widely used and does not require any particular process other than that of the etching of the "patch" itself. It is thus possible to supply the radiating elements and produce the distribution elements according to the same surface.
  • the supply of a printed antenna can, finally, be carried out by electromagnetic coupling technique.
  • This supply mode allows RE energy to be transferred from a main line without any contact or mechanical connection between the conductors.
  • they allow better management of the adaptive capacities of aerials. From microstrip lines it is possible to supply a dipole or a patch-type antenna. It is also possible to supply a radiating element from a triplate line. This can offer certain interesting aspects in comparison with the electrical situation of the microstrip which is an open line.
  • the object of the present invention is to respond to the problem thus defined
  • the invention provides an original device for supplying a radiating element operating in double polarization, characterized in that it comprises a first supply line penetrating into a first cavity situated under said radiating element, and a second supply line, arranged in a geometry orthogonal to the first line, penetrating into a second cavity located in the extension of the first, a conductive part forming a coupling slot between these two cavities.
  • the device of the invention makes it possible to considerably simplify the distribution architecture, the production technology, and the cost of the sub-networks of the radiating elements.
  • This "open" cavity is produced by a set of conductive cylinder 15, for example metallic, of diameter 0 a and two metallic tracks 10 at level N, and 16 at level N-2, which thus produce the "covers” "of said cylinder.
  • the access window 20 of the line 11 to the cavity 13 is dimensioned according to rules known to those skilled in the art in accordance with the distribution of the fields along the line 11.
  • the second line 12 of the second distributor arranged in a geometry orthogonal to the first line 11, enters a second cylindrical cavity 14 of diameter 0 b located at a level N-3 lower than that of the first cavity 13 and concentric with it.
  • This second cavity 14 is produced by all of the electric cylindrical walls 17, a metallized bottom 18 as well as the metal part 16 which also constitutes the bottom of the first cavity 13.
  • the two cavities 13 and 14 are therefore located one above the other and have a common part 16 which has a vital role in the operation of the double-stage device which is described below. They contain, in the example shown, dielectric spacer devices 40, 41 and 42, 43 allowing the positioning of the two lines 11 and 12, arranged in two blocks 44 and 45 for example of brass.
  • the cavity 13 acts as a directional coupler with respect to the lower stages so that no transfer of energy takes place from the first line 11 to the second line 12 which therefore has a high degree of coupling .
  • the energy conveyed by the first line 11 is therefore completely transferred to the radiating element 10 without coupling to the line 12.
  • the second line 12 which is located at level N-3 has a configuration of compatible field lines of the slot (s) 19. Therefore, these make it possible to couple the RF energy contained in the second cavity 14 to the first cavity 13.
  • the only suitable outlet presented by the assembly is the radiating element 10 so that no energy initially conveyed by line 12 can couple to line 11, due to the orthogonality conditions imposed field lines with respect to line 11.
  • the excitation of the radiating element 10 according to the polarization of the second line 12 therefore involves the two cavities 13 and 14 as well as a selective coupling device 16 and 19 in polarization.
  • the adaptation of the radiating element 10 to the line 12 therefore brings into play all of the characteristics of the conductors and their respective geometries.
  • FIG. 3 shows the geometry of a radiating element with double orthogonal polarizations, produced in KU band, which corresponds to the principles described above.
  • FIG. 6 is a curve illustrating the decoupling between accesses as a function of the frequency.
  • the device has decoupling in the entire band greater than 30 dB and on average close to 33 dB between the upper and lower ports.
  • a similar distributor for the other polarization can be integrated completely independently at the corresponding level.
  • the radiating element 10 can excite a passive resonator so as to produce a broadband radiating element.
  • the device thus described whether or not using a passive resonator, can be used to supply, in a manner known to those skilled in the art, a microwave element of the waveguide or radiating horn type (corrugated, dual mode , etc .).

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)
  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)

Abstract

La présente invention se rapporte à un dispositif d'alimentation d'un élément rayonnant fonctionnant en double polarisation, comprenant une première ligne d'alimentation (11) pénétrant dans une première cavité (13) située sous ledit élément rayonnant (10), et une seconde ligne d'alimentation (12), disposée selon une géométrie orthogonale à la première ligne (11) pénétrant dans une seconde cavité (14) située dans le prolongement de la première, une pièce conductrice (16) formant une fente de couplage (19) entre ces deux cavités (13, 14). Application notamment au domaine des transmissions spatiales. <IMAGE>

Description

  • L'invention se rapporte à un dispositif d'alimentation d'un élément rayonnant fonctionnant en double polarisation, pouvant être du type antenne imprimée ou de type guide d'onde.
  • L'emploi des antennes dites imprimées : antennes "patch", dipoles, fentes annulaires etc..... va croissant dans le domaine des télécommunications.
  • En fonction de la mission envisagée : télécommunications fixes, télécommunications maritimes ou aéronautiques, "broadcasting", localisation, relais, etc., les choix d'un type d'élément rayonnant d'une part et d'un type de ligne de propagation d'autre part résultent d'un compromis mettant en jeu un nombre important de paramètres :
    • . adéquation à la mission RF (Radiofréquence)
    • . niveau de définition de la technologie ;
    • . type d'interfaces requis, connectique ;
    • . tenue en puissance ;
    • . coût ; . encombrement, masse .....
  • L'intégration de tous ces paramètres ainsi que le développement d'antennes actives permettent de proposer les antennes imprimées comme des solutions forts attractives et compétitives sur la plupart des missions envisagées aujourd'hui.
  • Ceci est tout à fait courant pour des missions opérant en bande L (1,5-1,6 GHz), en bande S (2 GHz), en bande C (4-6 GHz) et tend à le devenir de plus en plus pour des missions en bande K, aujourd'hui en bande Ku (12,4-18 GHz). Toutefois la montée en fréquence ne peut se faire qu'au prix d'un grand effort technologique tant les problèmes apparaissent difficiles :
    • - montée vertigineuse des pertes ;
    • - miniaturisation des éléments rayonnants ;
    • - difficultés de connectique et de réalisation.
  • Bien des missions ne requièrent qu'une seule polarisation par fréquence (linéaire ou circulaire). Dans ce cas les spécifications de polarisation croisées ne sont pas en général très difficiles à tenir. C'est le cas des missions bande L (aéronautiques et maritimes), bande S (relais), bandes L et S (localisation). Pour ce genre d'applications, en fonction de l'élément rayonnant retenu, différents modes d'alimentation peuvent être envisagés.
  • Les modes d'excitation les plus courants d'une antenne imprimée sont :
    • - l'alimentation à partir d'une ligne coaxiale ;
    • - l'alimentation dans le plan à partir d'une ligne microruban ;
    • - l'alimentation par couplage électromagnétique à partir d'une ligne microruban ou triplaque.
  • Les deux premières approches ont été largement décrites et étudiées dans la mesure où elles sont d'une part de réalisations à priori aisées et présentent une similitude de comportement de propagation avec l'élément rayonnant lui-même qui peut être approximé par une ligne microruban.
  • Les solutions appartenant à la troisième catégorie marquent un pas dans la technique d'alimentation en découplant l'élément rayonnant de la ligne principale. L'accroissement du nombre de paramètres permet ainsi une meilleure gestion des performances de bande passante de l'ensemble.
  • Ainsi l'alimentation d'une antenne imprimée peut être réalisée à l'aide d'une ligne coaxiale orthogonale. La configuration de base consiste à connecter l'âme centrale du coaxial à un point d'impédance sous le "patch" correspondant à l'impédance du coaxial. Cette technique est bien souvent insuffisante dans le cadre de mission à bande importante ( >-_ 1 %) en raison de l'effet de sonde dû au diamètre non nul du conducteur. Aussi afin d'accroître les performances d'une telle transition, ont été couramment développés des dispositifs compensateurs de la self de sonde à savoir :
    • - attaque par une jupe capacitive réalisée à l'aide d'une gaine de conducteur coaxial extérieur ;
    • - attaque par une pastille capacitive sur ou sous le "patch".
  • Ces dispositifs sont largement connus et décrits : par exemple dans un article intitulé "Conformal microstrip antennas" de Robert E. MUNSON (Microwave journal ; mars 1988) qui décrit plusieurs types d'antennes microstrip, leurs applications et leurs performances.
  • L'alimentation d'une antenne imprimée ("patch" ou dipole) peut, également, être réalisée à partir d'une ligne microruban. Là encore ces types d'alimentation sont largement connus. Ce mode d'alimentation est largement utilisé et ne nécessite aucun procédé particulier autre que celui de la gravure du "patch" lui-même. On peut ainsi alimenter les éléments rayonnants et réaliser les éléments de répartition selon la même surface.
  • L'alimentation d'une antenne imprimée peut, enfin, être réalisée par technique de couplage électromagnétique. Ce mode d'alimentation permet de transférer l'énergie RE à partir d'une ligne principale sans aucun contact ou liaison mécanique entre les conducteurs. De plus par l'introduction de paramètres elles permettent une meilleure gestion des capacités d'adaptation des aériens. A partir de lignes microruban il est possible de réaliser l'alimentation d'un dipole ou d'une antenne de type "patch". On peut aussi alimenter un élément rayonnant à partir d'une ligne triplaque. Ce qui peut offrir certains aspects intéressants en comparaison de la situation électrique du microruban qui est une ligne ouverte.
  • Toutes ces réalisations largement connues deviennent cependant difficiles à mettre en oeuvre pour des missions nécessitant une utilisation en double polarisation. En effet pour ce genre d'application les problèmes vont croissants ; Bien souvent l'élément rayonnant de base n'est pas seul, mais constitue un sous-réseau et le problème posé dans sa globalité consiste à :
    • - alimenter les éléments rayonnants selon deux polarisations orthogonales ;
    • - intégrer les circuits BFN ("Beam Forming Networks") dans la maille physique du réseau ;
  • de façon à réaliser un module permettant de tenir les objectifs de pureté de polarisation, bande passante, efficacité, qualité de rayonnement et... moyennant une technologie et des coûts acceptables.
  • Les solutions du type utilisant deux attaques coaxiales orthogonales conduisent à des architectures compliquées pour alimenter l'élément rayonnant et pour accéder à chacun des circuits BFN. Quelle que soit la configuration celle-ci nécessite au moins une transition coaxiale/triplaque simple étage ainsi qu'une transition à double étage ; ce qui se traduit par une complexité technologique accrue par rapport à la simple polarisation, associée en outre à de faibles performances intrinsèques. Le couplage entre les deux sondes coaxiales est typiquement de 20 dB pour ce type d'excitation entrainant ainsi des problèmes de re-rayonnement en polarisation croisée à résoudre par des artifices de mise en sous-réseaux particuliers (rotations séquentielles par exemple).
  • De toute façon la mise au point n'est pas aisée, du fait de phénomènes parasites. De plus la solution requiert un gros effort d'ingénierie électrique et technologique.
  • L'objet de la présente invention consiste à répondre au problème ainsi défini
  • L'invention propose à cet effet un dispositif original d'alimentation d'un élément rayonnant fonctionnant en double polarisation, caractérisé en ce qu'il comprend une première ligne d'alimentation pénétrant dans une première cavité située sous ledit élément rayonnant, et une seconde ligne d'alimentation, disposée selon une géométrie orthogonale à la première ligne, pénétrant dans une seconde cavité située dans le prolongement de la première, une pièce conductrice formant une fente de couplage entre ces deux cavités.
  • Avantageusement ce dispositif permet d'assurer simultanément en une seule unité, et sans nécessiter de liaison mécanique (connectique) :
    • - l'alimentation d'un élément rayonnant selon deux polarisations orthogonales ;
    • - la sortie de chacune des polarisations sur des niveaux séparés, permettant ainsi une gestion indépendante des circuits BFN et une intégration complète de l'ensemble de ces répartiteurs sous le réseau de l'élément rayonnant sans nécessiter d'éléments de connexion autres que ceux existant entre le dispositif d'alimentation et l'élément rayonnant lui-même.
  • De plus le dispositif de l'invention permet de simplifier considérablement l'architecture de distribution, la technologie de réalisation, et le coût des sous-réseaux des éléments rayonnants.
  • Les caractéristiques et avantages de l'invention ressortiront d'ailleurs de la description qui va suivre, à titre d'exemple non limitatif, en référence aux figures annexées sur lesquelles :
    • - les figures 1 et 2 illustrent le dispositif de l'invention respectivement en vue en coupe et en vue de dessus ;
    • - les figures 3 à 6 illustrent respectivement une réalisation du dispositif de l'invention et plusieurs courbes de fonctionnement ;
    • - Les figures 7 et 8 illustrent une application du dispositif de l'invention à un sous-réseau à quatre éléments.
  • L'excitation de l'élément rayonnant 10, de technologie composite ou non, représenté sur la figure 1, se fait en utilisant une structure multifentes et multicavités. Une telle structure permet d'effectuer en une seule opération :
    • - l'alimentation d'un élément rayonnant selon deux modes orthogonaux avec un haut découplage entre les accès (>-_ 30 dB) ;
    • - les changements de plan nécessaires à l'implantation de circuits formateurs de faisceaux (BFN) de chacune des polarisations.
  • Typiquement deux lignes d'alimentation 11 et 12 correspondant aux terminaisons de deux formateurs de faisceaux sont implantées à des niveaux différents sous un élément rayonnant 10.
  • La première ligne 11 microruban ou triplaque, symétrique ou non, pénètre dans une première cavité 13 cylindrique. Cette cavité "ouverte" est réalisée par l'ensemble d'un cylindre conducteur 15, par exemple métallique, de diamètre 0 a et de deux pistes métalliques 10 au niveau N, et 16 au niveau N-2, qui réalisent ainsi les "couvercles" dudit cylindre. La fenêtre d'accès 20 de la ligne 11 à la cavité 13 est dimensionnée selon des règles connues de l'homme de l'art conformément à la distribution des champs le long de la ligne 11.
  • De la même manière la seconde ligne 12 du second répartiteur, disposée selon une géométrie orthogonale à la première ligne 11, pénètre dans une seconde cavité cylindrique 14 de diamètre 0 b située à un niveau N-3 inférieur à celui de la première cavité 13 et concentrique avec celle-ci. Cette seconde cavité 14 est réalisée par l'ensemble des parois électriques 17 cylindriques, d'un fond métallisé 18 ainsi que de la pièce métallique 16 qui constitue aussi le fond de la première cavité 13.
  • Les deux cavités 13 et 14 sont donc implantées l'une au dessus de l'autre et présentent une partie commune 16 qui a un rôle capital dans le fonctionnement du dispositif à double étage qui est décrit ci-après. Elles contiennent, dans l'exemple représenté, des dispositifs espaceurs en diélectrique 40, 41 et 42, 43 permettant le positionnement des deux lignes 11 et 12, disposés dans deux blocs 44 et 45 par exemple en laiton.
  • Une onde électromagnétique est véhiculée par la première ligne 11 à l'intérieur de la première cavité 13. L'ensemble de cette cavité agit comme un hexapole directif adapté ; ce qui nécessite donc
    • - d'une part une géométrie des conducteurs en présence optimisée de façon à réaliser l'adaptation d'impédance de l'élément rayonnant 10 à chaque ligne d'alimentation ;
    • - d'autre part un soin extrême apporté à la géométrie de la pièce 16 et conséquemment à la nature de la fente de couplage 19 : Cette pièce 16 joue en quelque sorte un rôle de séparateur de polarisation, qui agit comme un court-circuit pour l'onde véhiculée par la première ligne 11 , de sorte que l'on a une condition de fermeture vis-à-vis des étages inférieurs. Typiquement la géométrie du conducteur 16 et de la fente 19 peut comporter une ou plusieurs fentes rectangulaires parallèles au conducteur 11.
  • Ainsi la cavité 13 agit comme un coupleur directif vis-à-vis des étages inférieurs de sorte qu'aucun transfert d'énergie n'a lieu de la première ligne 11 vers la seconde ligne 12 qui présente de ce fait un haut degré de couplage. L'énergie véhiculée par la première ligne 11 est donc transférée totalement à l'élément rayonnant 10 sans couplage à la ligne 12.
  • La seconde ligne 12 qui se trouve au niveau N-3 présente une configuration de lignes de champ compatible de la ou des fentes 19. De ce fait, celles-ci permettent de coupler l'énergie RF contenue dans la seconde cavité 14 à la première cavité 13. A ce niveau la seule sortie adaptée que présente l'ensemble est l'élément rayonnant 10 de sorte qu'aucune énergie initialement véhiculée par la ligne 12 ne puisse se coupler à la ligne 11, en raison des conditions d'orthogonalité imposées des lignes de champ par rapport à la ligne 11. L'excitation de l'élément rayonnant 10 selon la polarisation de la seconde ligne 12 met donc en jeu les deux cavités 13 et 14 ainsi qu'un dispositif de couplage 16 et 19 sélectif en polarisation. L'adaptation de l'élément rayonnant 10 à la ligne 12 met donc en jeu l'ensemble des caractéristiques des conducteurs et leur géométries respectives.
  • Dans une variante de réalisation la cavité 14 a une forme plus élaborée mettant en jeu une troisième cavité de diamètre 0c, implantée sous les deux premières et dans le prolongement de celles-ci avec :
    • /c ≦ φb < oa ; Elle a pour objet d'augmenter le nombre de paramètres permettant de réaliser l'adaptation de l'ensemble à la ligne 12. Ainsi une succession de n cavités superposées peut être utilisée de façon à dégager des paramètres d'optimisation.
  • La figure 3 présente la géométrie d'un élément rayonnant à double polarisations orthogonales, réalisé en bande KU, qui correspond aux principes décrits précédemment.
  • Les performances typiques d'un tel dispositif sont présentées sur les figures 4 à 6.
  • Ce dispositif présente les caractéristiques suivantes :
    • - un élément rayonnant 10 à double étage comprenant :
      • . un patch carré 21 en cuivre de longueur 6 mm, et d'épaisseur 0,2 mm qui est actif pour l'accès supérieur ;
      • . une couche 22 en Nida ("Nid d'Abeille") de hauteur 4,2 mm ;
      • . une couche 23 de scotch Kapton ;
      • . un patch 24 circulaire en laiton collé sur la surface inférieure du scotch Kapton de diamètre 6,8 mm, et d'épaisseur 0,3 mm ;
    • - une plaque 25 en laiton d'épaisseur 0,4 mm ;
    • - une fente 26 de largeur 14 mm ;
    • - un triplaque 27 d'épaisseur 0,8 mm ;
    • - une ligne 100 ohms 28 d'épaisseur environ 0,01 mm, de longueur débouchante 5 mm ;
    • - une feuille de quartz polyamide 29 d'épaisseur environ 0,1 mm ;
    • - une première cavité 30 de diamètre 14 mm, de hauteur 5,8 mm réalisée dans un premier bloc de laiton 36 ;
    • - une feuille de quartz polyamide 31 d'épaisseur environ 0,1 mm sur laquelle est disposée un "patch" en laiton de diamètre 7 mm et d'épaisseur 0,3 mm réalisant un court-circuit dans le sens de la polarisation supérieure ;
    • - un triplaque 32 d'épaisseur 0,8 mm ;
    • - une ligne 100 ohms 35 d'épaisseur environ 0,01 mm, de longueur débouchante 5 mm ;
    • - une feuille de quartz polyamide 33 d'épaisseur environ 0,1 mm ;
    • - une seconde cavité 34 de diamètre 14 mm et de hauteur 5,8 mm réalisée dans un second bloc de laiton 37 ; Les figures 4 et 5 représentent des courbes illustrant l'adaptation des polarisations en fonction de la fréquence, soient respectivement :
    • - R.O.S. accès supérieur (figure 4) : -20 dB de 10.50 GHz à 12,75 GHz soit environ 20% de bande passante à R.O.S. = 1,22 ;
    • - R.O.S. accès inférieur (figure 5) performance similaire traduisant 20% de bande passante à R.O.S. = 1,22.
  • La figure 6 est une courbe illustrant le découplage entre accès en fonction de la fréquence. Le dispositif présente un découplage dans toute la bande supérieure à 30 dB et en moyenne voisin de 33 dB entre les accès supérieur et inférieur.
  • Après étude des diagrammes de rayonnement mesurés sur chacun des accès à fréquence centrale, il apparait qu'en raison de l'absence de couplage entre les accès, une excellente pureté de polarisation est obtenue en tout point conforme aux résultats concernant le même type d'élément rayonnant utilisé en monopolarisation.
  • Dans une réalisation d'un sous-réseau de 32 éléments rayonnants, On voit clairement pour un niveau de BFN que :
    • - d'une part l'alimentation des sous-réseaux 1 par 4 est facilement réalisée sous la maille des éléments rayonnants.
    • - d'autre part l'alimentation de chacune des polarisations, réalisées séparément en deux plans distincts, permet de pousser très loin l'intégration du répartiteur associé à chaque polarisation. A titre d'exemple il est possible de réaliser un circuit 1 par 32 implanté en totalité sur le même niveau sans qu'il soit nécessaire d'effectuer une opération de changement de plan autre que celle du dispositif d'excitation de l'élément rayonnant.
  • Un répartiteur similaire pour l'autre polarisation peut être intégré de façon totalement indépendante au niveau correspondant.
  • Ainsi l'approche proposée au niveau de l'élément rayonnant : excitateur à changement de niveau intégré a donc des répercussions très intéressantes au niveau des sous réseaux dont il simplifie considérablement l'architecture de distribution, la technologie de réalisation, et donc, au niveau industriel, le coût.
  • Dans une technologie en version "tout planaire", il apparaît des problèmes fondamentaux d'implantation même au niveau d'un sous-réseau de quatre éléments :
    • - quasi-impossibilité de loger les circuits BFN ("Beam Forming Networks") dans la maille du réseau ;
    • - nécessiter de prévoir des opérations de changement de plan.
  • Alors qu'en utilisant le dispositif de l'invention on résout tous ces problèmes. Ainsi la figure 7 représente le détail des circuits et des cavités situés sous les éléments rayonnants pour un premier répartiteur. La figure 8 représente le détail des circuits et cavités pour un second répartiteur implanté à un second niveau. Les dessins sont les mêmes, seule la topologie a tournée de 90°.
    • Il est bien entendu que la présente invention n'a été décrite et représentée qu'à titre d'exemple préférentiel et que l'on pourra remplacer ses éléments constitutifs par des éléments équivalents sans, pour autant, sortir du cadre de l'invention.
  • Ainsi l'élément rayonnant 10 peut exciter un résonateur passif de façon à réaliser un élément rayonnant large bande.
  • De la même manière, le dispositif ainsi décrit, utilisant ou non un résonateur passif, peut servir à alimenter, de manière connue de l'homme de l'art, un élément hyperfréquence de type guide d'onde ou cornet rayonnant (corrugué, bimode, etc....).

Claims (8)

1. Dispositif d'alimentation d'un élément rayonnant fonctionnant en double polarisation, caractérisé en ce qu'il comprend une première ligne d'alimentation (11) pénétrant dans une première cavité (13) située sous ledit élément rayonnant (10), et une seconde ligne d'alimentation (12), disposée selon une géométrie orthogonale à la première ligne (11) pénétrant dans une seconde cavité (14) située dans le prolongement de la première, une pièce conductrice (16) formant une fente de couplage (19) entre ces deux cavités (13, 14).
2. Dispositif selon la revendication 1, caractérisé en ce que la pièce conductrice (16) a un rôle de séparateur de polarisation qui agit comme un court-circuit pour l'onde véhiculée par la première ligne (11).
3. Dispositif selon l'une quelconque des revendications 1 ou 2, caractérisé en ce que les deux cavités (13, 14) sont cylindriques et concentriques, la seconde cavité (14) ayant un diamètre (0b) inférieur ou égal à celui (0a) de la première cavité (13).
4. Dispositif selon la revendication 3, caractérisé en ce que la première cavité (13) est réalisée par un cylindre métallique (17) situé entre l'élément rayonnant (10) et la pièce conductrice (16).
5. Dispositif selon la revendication 3, caractérisé en ce que la deuxième cavité (14) est réalisée par un cylindre conducteur (17), un fond métallisé (18) et la pièce (16).
6. Dispositif selon l'une quelconque des revendications 4 ou 5, caractérisé en ce qu'il comprend une troisième cavité concentrique avec les deux premières, située dans le prolongement de celles-ci et de diamètre (φc) inférieur ou égal à celui des deux autres (φa, φb).
7. Dispositif selon la revendication 1, caractérisé en ce qu'il comprend des dispositifs espaceurs (40, 41 ; 42, 43) permettant le positionnement des deux lignes (11, 12) dans les deux premières cavités (13, 14).
8. Dispositif selon la revendication 1, caractérisé en ce que les deux lignes (11, 12) sont des lignes microruban ou triplaque.
EP91117514A 1990-10-18 1991-10-14 Dispositif d'alimentation d'un élément rayonnant fonctionnant en double polarisation Expired - Lifetime EP0481417B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9012896 1990-10-18
FR9012896A FR2668305B1 (fr) 1990-10-18 1990-10-18 Dispositif d'alimentation d'un element rayonnant fonctionnant en double polarisation.

Publications (2)

Publication Number Publication Date
EP0481417A1 true EP0481417A1 (fr) 1992-04-22
EP0481417B1 EP0481417B1 (fr) 1996-08-14

Family

ID=9401356

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91117514A Expired - Lifetime EP0481417B1 (fr) 1990-10-18 1991-10-14 Dispositif d'alimentation d'un élément rayonnant fonctionnant en double polarisation

Country Status (6)

Country Link
US (1) US6091373A (fr)
EP (1) EP0481417B1 (fr)
JP (1) JP3288059B2 (fr)
CA (1) CA2053643C (fr)
DE (1) DE69121352T2 (fr)
FR (1) FR2668305B1 (fr)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0518271A1 (fr) * 1991-06-10 1992-12-16 Alcatel Espace Antenne hyperfréquence élémentaire bipolarisée
FR2700067A1 (fr) * 1992-12-29 1994-07-01 France Telecom Antenne plaquée à double polarisation et dispositif d'émission/réception correspondant.
EP0735611A2 (fr) * 1995-03-31 1996-10-02 Daewoo Electronics Co., Ltd Réseau d'antennes à microbande pour recevoir simultanément des signaux à double polarisation
WO1999066594A1 (fr) * 1998-06-12 1999-12-23 Kunjie Zhuang Element d'antenne en reseau microbande a large gamme de frequences
AU738670B2 (en) * 1997-07-29 2001-09-20 Alcatel Dual polarised patch antenna
WO2003030301A1 (fr) * 2001-10-01 2003-04-10 Raytheon Company Radiateur polarise a couplage par fente
EP1775795A1 (fr) 2005-10-11 2007-04-18 M/A-Com, Inc. Antenne patch à cavité à large bande et couplage par proximité
WO2007046055A2 (fr) * 2005-10-16 2007-04-26 Starling Advanced Communications Ltd. Antenne en reseau plan bipolarisee et elements cellulaires s'y rapportant
US7636063B2 (en) 2005-12-02 2009-12-22 Eswarappa Channabasappa Compact broadband patch antenna
WO2009133448A3 (fr) * 2008-04-30 2009-12-23 Topcon Gps Llc Système d'antenne micropatch large bande à sensibilité réduite à la réception multivoies
US7859835B2 (en) 2009-03-24 2010-12-28 Allegro Microsystems, Inc. Method and apparatus for thermal management of a radio frequency system
US8279131B2 (en) 2006-09-21 2012-10-02 Raytheon Company Panel array
US8355255B2 (en) 2010-12-22 2013-01-15 Raytheon Company Cooling of coplanar active circuits
US8363413B2 (en) 2010-09-13 2013-01-29 Raytheon Company Assembly to provide thermal cooling
US8427371B2 (en) 2010-04-09 2013-04-23 Raytheon Company RF feed network for modular active aperture electronically steered arrays
US8508943B2 (en) 2009-10-16 2013-08-13 Raytheon Company Cooling active circuits
US8537552B2 (en) 2009-09-25 2013-09-17 Raytheon Company Heat sink interface having three-dimensional tolerance compensation
US8810448B1 (en) 2010-11-18 2014-08-19 Raytheon Company Modular architecture for scalable phased array radars
US8981869B2 (en) 2006-09-21 2015-03-17 Raytheon Company Radio frequency interconnect circuits and techniques
US9019166B2 (en) 2009-06-15 2015-04-28 Raytheon Company Active electronically scanned array (AESA) card
US9124361B2 (en) 2011-10-06 2015-09-01 Raytheon Company Scalable, analog monopulse network
US9130278B2 (en) 2012-11-26 2015-09-08 Raytheon Company Dual linear and circularly polarized patch radiator
WO2021128175A1 (fr) * 2019-12-26 2021-07-01 瑞声声学科技(深圳)有限公司 Antenne réseau et station de base

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2778802B1 (fr) * 1998-05-15 2000-09-08 Alsthom Cge Alcatel Dispositif d'emission et de reception d'ondes hyperfrequences polarisees circulairement
DE10023497A1 (de) * 2000-05-13 2001-11-15 Endress Hauser Gmbh Co Füllstandsmeßgerät
EP1430563A4 (fr) * 2001-01-06 2005-02-09 Telisar Corp Systeme d'antenne integre
US6727776B2 (en) * 2001-02-09 2004-04-27 Sarnoff Corporation Device for propagating radio frequency signals in planar circuits
FR2827430A1 (fr) * 2001-07-11 2003-01-17 France Telecom Antenne a couplage reactif comportant deux elements rayonnants
DE10154839A1 (de) * 2001-11-08 2003-05-22 Bosch Gmbh Robert Antennenanordnung für eine Radar-Sende- und Empfangseinrichtung und Verfahren zu ihrer Herstellung
IL154525A (en) 2003-02-18 2011-07-31 Starling Advanced Comm Ltd Low profile satellite communications antenna
US7973733B2 (en) * 2003-04-25 2011-07-05 Qualcomm Incorporated Electromagnetically coupled end-fed elliptical dipole for ultra-wide band systems
US7158089B2 (en) * 2004-11-29 2007-01-02 Qualcomm Incorporated Compact antennas for ultra wide band applications
US7864113B2 (en) * 2005-03-31 2011-01-04 Georgia Tech Research Corporation Module, filter, and antenna technology for millimeter waves multi-gigabits wireless systems
IL171450A (en) * 2005-10-16 2011-03-31 Starling Advanced Comm Ltd Antenna board
US7586410B2 (en) * 2006-03-09 2009-09-08 Zih Corp. RFID UHF stripline coupler
DE102006014010B4 (de) * 2006-03-27 2009-01-08 Vega Grieshaber Kg Hohlleiterübergang mit Entkopplungselement für planare Hohlleitereinkopplungen
JP5028068B2 (ja) * 2006-05-31 2012-09-19 キヤノン株式会社 アクティブアンテナ発振器
US9172145B2 (en) 2006-09-21 2015-10-27 Raytheon Company Transmit/receive daughter card with integral circulator
EP2097945A4 (fr) * 2006-12-21 2010-01-20 Ericsson Telefon Ab L M Agencement d'alimentation d'un guide d'onde polarisé double
US7825868B2 (en) * 2007-06-15 2010-11-02 Emag Technologies, Inc. Hand held reader antenna for RFID and tire pressure monitoring system
NL2001238C2 (nl) * 2008-01-30 2009-08-03 Cyner Substrates B V Antenne-inrichting en werkwijze.
US8120536B2 (en) * 2008-04-11 2012-02-21 Powerwave Technologies Sweden Ab Antenna isolation
JP5184562B2 (ja) * 2010-02-02 2013-04-17 日本電信電話株式会社 フィンライン型導波管構造、偏波分離器およびフィンライン型導波管構造の製造方法
DE102010040809A1 (de) * 2010-09-15 2012-03-15 Robert Bosch Gmbh Planare Gruppenantenne mit in mehreren Ebenen angeordneten Antennenelementen
CA2831325A1 (fr) 2012-12-18 2014-06-18 Panasonic Avionics Corporation Calibrage de systeme d'antenne
CA2838861A1 (fr) 2013-02-12 2014-08-12 Panasonic Avionics Corporation Optimisation d'antennes a profil bas pour utilisation a l'equateur
US10186775B2 (en) * 2015-08-11 2019-01-22 The United States Of America, As Represented By The Secretary Of The Army Patch antenna element with parasitic feed probe
KR102589762B1 (ko) * 2016-06-20 2023-10-17 주식회사 에이치엘클레무브 레이더 장치 및 레이더 신호 처리 방법
EP3622583B1 (fr) * 2017-05-12 2024-02-14 Tongyu Communication Inc. Élément d'antenne intégré, unité d'antenne, antenne multi-réseau, procédés de transmission et de réception associés
KR102425821B1 (ko) * 2017-11-28 2022-07-27 삼성전자주식회사 커플링 급전을 이용한 이중 대역 안테나 및 그것을 포함하는 전자 장치
US10693235B2 (en) * 2018-01-12 2020-06-23 The Government Of The United States, As Represented By The Secretary Of The Army Patch antenna elements and parasitic feed pads
US10854978B2 (en) * 2018-04-23 2020-12-01 Samsung Electro-Mechanics Co., Ltd. Antenna apparatus and antenna module
CN110400779B (zh) * 2018-04-25 2022-01-11 华为技术有限公司 封装结构
US10770781B1 (en) 2019-02-26 2020-09-08 Microsoft Technology Licensing, Llc Resonant cavity and plate hybrid antenna
CN110212300B (zh) * 2019-05-22 2021-05-11 维沃移动通信有限公司 一种天线单元及终端设备
WO2023089207A1 (fr) * 2021-11-17 2023-05-25 Airbus Defence And Space, S.A. Antenne à plaques empilées

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4208660A (en) * 1977-11-11 1980-06-17 Raytheon Company Radio frequency ring-shaped slot antenna
EP0123350A1 (fr) * 1983-04-22 1984-10-31 Laboratoires D'electronique Et De Physique Appliquee L.E.P. Antenne plane hyperfréquences à réseau de lignes microruban complètement suspendues
FR2603744A1 (fr) * 1986-09-05 1988-03-11 Matsushita Electric Works Ltd Antenne plane

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3974462A (en) * 1972-03-07 1976-08-10 Raytheon Company Stripline load for airborne antenna system
US4596047A (en) * 1981-08-31 1986-06-17 Nippon Electric Co., Ltd. Satellite broadcasting receiver including a parabolic antenna with a feed waveguide having a microstrip down converter circuit
FR2523376A1 (fr) * 1982-03-12 1983-09-16 Labo Electronique Physique Element rayonnant ou recepteur de signaux hyperfrequences a polarisations circulaires gauche et droite et antenne plane comprenant un reseau de tels elements juxtaposes
FR2592233B1 (fr) * 1985-12-20 1988-02-12 Radiotechnique Compelec Antenne plane hyperfrequences recevant simultanement deux polarisations.
FR2641133B1 (fr) * 1988-12-26 1991-05-17 Alcatel Espace

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4208660A (en) * 1977-11-11 1980-06-17 Raytheon Company Radio frequency ring-shaped slot antenna
EP0123350A1 (fr) * 1983-04-22 1984-10-31 Laboratoires D'electronique Et De Physique Appliquee L.E.P. Antenne plane hyperfréquences à réseau de lignes microruban complètement suspendues
FR2603744A1 (fr) * 1986-09-05 1988-03-11 Matsushita Electric Works Ltd Antenne plane

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1988 INTERNATIONAL SYMPOSIUM DIGEST ANTENNAS ANDPROPAGATION vol. 3, Juin 1988, SYRACUSE,NY pages 936 - 939; TSAO ET AL.: 'Aperture-coupled Patch Antennas with Wide-bandwith and Dual -polarization Capabilities' *

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0518271A1 (fr) * 1991-06-10 1992-12-16 Alcatel Espace Antenne hyperfréquence élémentaire bipolarisée
FR2700067A1 (fr) * 1992-12-29 1994-07-01 France Telecom Antenne plaquée à double polarisation et dispositif d'émission/réception correspondant.
EP0605338A1 (fr) * 1992-12-29 1994-07-06 France Telecom Antenne plaquée à double polarisation et dispositif d'émission/réception correspondant
EP0735611A2 (fr) * 1995-03-31 1996-10-02 Daewoo Electronics Co., Ltd Réseau d'antennes à microbande pour recevoir simultanément des signaux à double polarisation
EP0735611A3 (fr) * 1995-03-31 1998-05-06 Daewoo Electronics Co., Ltd Réseau d'antennes à microbande pour recevoir simultanément des signaux à double polarisation
AU738670B2 (en) * 1997-07-29 2001-09-20 Alcatel Dual polarised patch antenna
WO1999066594A1 (fr) * 1998-06-12 1999-12-23 Kunjie Zhuang Element d'antenne en reseau microbande a large gamme de frequences
WO2003030301A1 (fr) * 2001-10-01 2003-04-10 Raytheon Company Radiateur polarise a couplage par fente
US6624787B2 (en) 2001-10-01 2003-09-23 Raytheon Company Slot coupled, polarized, egg-crate radiator
EP1764863A1 (fr) 2001-10-01 2007-03-21 Raython Company Radiateur polarisé à couplage par fente
AU2002334695B2 (en) * 2001-10-01 2007-07-12 Raytheon Company Slot coupled, polarized radiator
EP1775795A1 (fr) 2005-10-11 2007-04-18 M/A-Com, Inc. Antenne patch à cavité à large bande et couplage par proximité
WO2007046055A2 (fr) * 2005-10-16 2007-04-26 Starling Advanced Communications Ltd. Antenne en reseau plan bipolarisee et elements cellulaires s'y rapportant
WO2007046055A3 (fr) * 2005-10-16 2007-12-06 Starling Advanced Comm Ltd Antenne en reseau plan bipolarisee et elements cellulaires s'y rapportant
US7636063B2 (en) 2005-12-02 2009-12-22 Eswarappa Channabasappa Compact broadband patch antenna
US8279131B2 (en) 2006-09-21 2012-10-02 Raytheon Company Panel array
US8981869B2 (en) 2006-09-21 2015-03-17 Raytheon Company Radio frequency interconnect circuits and techniques
US8174450B2 (en) 2008-04-30 2012-05-08 Topcon Gps, Llc Broadband micropatch antenna system with reduced sensitivity to multipath reception
WO2009133448A3 (fr) * 2008-04-30 2009-12-23 Topcon Gps Llc Système d'antenne micropatch large bande à sensibilité réduite à la réception multivoies
US7859835B2 (en) 2009-03-24 2010-12-28 Allegro Microsystems, Inc. Method and apparatus for thermal management of a radio frequency system
US9019166B2 (en) 2009-06-15 2015-04-28 Raytheon Company Active electronically scanned array (AESA) card
US8537552B2 (en) 2009-09-25 2013-09-17 Raytheon Company Heat sink interface having three-dimensional tolerance compensation
US8508943B2 (en) 2009-10-16 2013-08-13 Raytheon Company Cooling active circuits
US8427371B2 (en) 2010-04-09 2013-04-23 Raytheon Company RF feed network for modular active aperture electronically steered arrays
US8363413B2 (en) 2010-09-13 2013-01-29 Raytheon Company Assembly to provide thermal cooling
US8810448B1 (en) 2010-11-18 2014-08-19 Raytheon Company Modular architecture for scalable phased array radars
US8355255B2 (en) 2010-12-22 2013-01-15 Raytheon Company Cooling of coplanar active circuits
US9124361B2 (en) 2011-10-06 2015-09-01 Raytheon Company Scalable, analog monopulse network
US9397766B2 (en) 2011-10-06 2016-07-19 Raytheon Company Calibration system and technique for a scalable, analog monopulse network
US9130278B2 (en) 2012-11-26 2015-09-08 Raytheon Company Dual linear and circularly polarized patch radiator
WO2021128175A1 (fr) * 2019-12-26 2021-07-01 瑞声声学科技(深圳)有限公司 Antenne réseau et station de base

Also Published As

Publication number Publication date
JP3288059B2 (ja) 2002-06-04
FR2668305A1 (fr) 1992-04-24
DE69121352D1 (de) 1996-09-19
DE69121352T2 (de) 1996-12-12
CA2053643C (fr) 1995-03-21
US6091373A (en) 2000-07-18
EP0481417B1 (fr) 1996-08-14
JPH04271605A (ja) 1992-09-28
FR2668305B1 (fr) 1992-12-04

Similar Documents

Publication Publication Date Title
EP0481417B1 (fr) Dispositif d&#39;alimentation d&#39;un élément rayonnant fonctionnant en double polarisation
EP1325537B1 (fr) Perfectionnement aux sources d&#39;emission / reception d&#39;ondes electromagnetiques pour antenne a multireflecteurs
EP0205212B1 (fr) Modules unitaires d&#39;antenne hyperfréquences et antenne hyperfréquences comprenant de tels modules
EP0108463B1 (fr) Elément rayonnant ou récepteur de signaux hyperfréquences à polarisations orthogonales et antenne plane comprenant un réseau de tels éléments juxtaposés
EP2564466B1 (fr) Element rayonnant compact a cavites resonantes
FR2810163A1 (fr) Perfectionnement aux antennes-sources d&#39;emission/reception d&#39;ondes electromagnetiques
EP1145379B1 (fr) Antenne pourvue d&#39;un assemblage de materiaux filtrant
EP0012055B1 (fr) Source primaire monopulse imprimée et antenne comportant une telle source
EP1605546A1 (fr) Dispositif rayonnant à alimentation orthogonale
EP0667984B1 (fr) Antenne fil-plaque monopolaire
LU86727A1 (fr) Antennes a microbandes a couplage electromagnetique,a plaquettes de transmission couplees capacitivement a des lignes de transmission
FR2648626A1 (fr) Element rayonnant diplexant
EP2710676B1 (fr) Element rayonnant pour antenne reseau active constituee de tuiles elementaires
EP0315141A1 (fr) Dispositif d&#39;excitation d&#39;un guide d&#39;onde en polarisation circulaire par une antenne plane
FR2909486A1 (fr) Antenne multi secteurs
EP2869400A1 (fr) Répartiteur de puissance compact bipolarisation, réseau de plusieurs répartiteurs, élément rayonnant compact et antenne plane comportant un tel répartiteur
EP3011639A1 (fr) Source pour antenne parabolique
EP0430745A1 (fr) Antenne à polarisation circulaire, notamment pour réseau d&#39;antennes
FR2677491A1 (fr) Antenne hyperfrequence elementaire bipolarisee.
EP1346442A1 (fr) Antenne imprimee pastille compacte
FR3024802A1 (fr) Source multibande a cornet coaxial avec systemes de poursuite monopulse pour antenne a reflecteur
EP0377155B1 (fr) Dispositif rayonnant bifréquence
EP0520908B1 (fr) Antenne réseau linéaire
EP2432072B1 (fr) Symétriseur large bande sur circuit multicouche pour antenne réseau
EP0477102B1 (fr) Réseau directif pour radiocommunications, à éléments rayonnants adjacents et ensemble de tels réseaux directifs

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI SE

17P Request for examination filed

Effective date: 19921015

17Q First examination report despatched

Effective date: 19940907

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI SE

REF Corresponds to:

Ref document number: 69121352

Country of ref document: DE

Date of ref document: 19960919

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19961004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19961031

Ref country code: LI

Effective date: 19961031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20091007

Year of fee payment: 19

Ref country code: DE

Payment date: 20091008

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20091017

Year of fee payment: 19

Ref country code: GB

Payment date: 20091014

Year of fee payment: 19

Ref country code: FR

Payment date: 20091029

Year of fee payment: 19

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20101014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101102

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69121352

Country of ref document: DE

Effective date: 20110502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110502