EP3011639A1 - Source pour antenne parabolique - Google Patents

Source pour antenne parabolique

Info

Publication number
EP3011639A1
EP3011639A1 EP14736313.9A EP14736313A EP3011639A1 EP 3011639 A1 EP3011639 A1 EP 3011639A1 EP 14736313 A EP14736313 A EP 14736313A EP 3011639 A1 EP3011639 A1 EP 3011639A1
Authority
EP
European Patent Office
Prior art keywords
delta
source
sigma
radiating
reception
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP14736313.9A
Other languages
German (de)
English (en)
Other versions
EP3011639B1 (fr
Inventor
Christophe MELLE
David CHAIMBAULT
Fabien Peleau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Data Systems SAS
Original Assignee
Zodiac Data Systems SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zodiac Data Systems SAS filed Critical Zodiac Data Systems SAS
Publication of EP3011639A1 publication Critical patent/EP3011639A1/fr
Application granted granted Critical
Publication of EP3011639B1 publication Critical patent/EP3011639B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/12Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave
    • H01Q19/17Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave the primary radiating source comprising two or more radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/12Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave
    • H01Q19/13Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave the primary radiating source being a single radiating element, e.g. a dipole, a slot, a waveguide termination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/062Two dimensional planar arrays using dipole aerials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/02Antennas or antenna systems providing at least two radiating patterns providing sum and difference patterns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • H01Q9/285Planar dipole

Definitions

  • the present invention relates to a microwave source intended to be placed in the focus of a satellite dish.
  • Antennas used in telemetry generally include a parabolic reflector and a source placed at the focus of the parabolic reflector.
  • the source is able to send a signal to a target (such as a satellite or a flying machine for example) or to receive a signal emitted by the target.
  • the reflector has the function of directing the signal emitted by the source towards the target or of concentrating the signal emitted by the target on the source.
  • the frequency band in which the signals are transmitted or received depends on the type of target.
  • Each source is generally adapted to transmit in a given frequency band corresponding to a target type.
  • dual-band antennas comprising a first source capable of transmitting in a first frequency band, a second source capable of transmitting in a second frequency band, a main reflector and an auxiliary reflector with a dichroic surface.
  • the first source is placed at the focal point of the main reflector while the second source is placed at the focal point of the auxiliary reflector.
  • the reflector auxiliary comprises a dichroic surface adapted to pass the radiation in the first frequency band and to reflect the radiation in the second frequency band.
  • the signals emitted by the target in the first frequency band are reflected by the main reflector towards the first source while passing through the auxiliary reflector.
  • the signals emitted by the target in the second frequency band are successively reflected by the main reflector and the auxiliary reflector towards the second source.
  • Document US201 1/029903 discloses a multiband source adapted to receive or transmit simultaneously in three frequency bands. More precisely, the source is able to emit in the frequency bands L (1 GHz to 2 GHz), S (2 GHz to 4 GHz) and C (4 to 8 GHz).
  • the source comprises a central cylindrical waveguide and three coaxial conductive cylinders extending around the central cylindrical waveguide and forming three respective coaxial waveguides. Each of the three waveguides surrounding the central waveguide is delimited by two successive cylinders.
  • the central cylindrical waveguide is adapted to generate a sum path (or sigma path) radiation in the C band.
  • the first cylindrical waveguide surrounding the central waveguide is adapted to selectively generate difference pathway radiation. (delta) in the C-band or a sum-channel radiation in the S-band.
  • the second cylindrical waveguide surrounding the first waveguide is adapted to selectively generate difference-channel radiation in the S-band or a radiation of sum channel in the L-band.
  • the third cylindrical waveguide surrounding the second waveguide is adapted to generate a difference lane radiation in the L-band.
  • the waveguides are powered by coaxial transitions via a plurality of input ports. Such waveguides are particularly difficult to excite so that their dimensioning is complex.
  • the document US201 1/0291903 provides in particular that the source comprises radial peaks arranged inside the waveguides, each peak being coupled to an input port and to a cylinder.
  • An object of the invention is to provide a source for a dish antenna that is easier to design.
  • a source for a satellite dish comprising:
  • a sigma radiating assembly comprising a sigma radiating element positioned on a main transmission / reception axis of the source, and a sigma supply circuit for supplying the sigma radiating element so that the sigma radiating element generates a sigma path radiation, and
  • a delta radiating assembly comprising eight delta radiating elements, arranged around the main transmission / reception axis of the source, and a delta supply circuit for supplying the delta radiating elements so that the delta radiating elements generate a delta path radiation.
  • the delta path radiation is generated independently of the sigma path radiation.
  • the use of eight delta radiating elements makes it possible to improve the decoupling between the sigma and delta channel radiations.
  • the sigma radiating element extends in a plane perpendicular to the main transmission / reception axis of the source
  • the sigma radiating element comprises a radiating patch and a ground plane having coupling slots, the coupling slots being arranged in an invariant pattern by rotating 90 degrees around the main transmission / reception axis of the source; ,
  • the delta radiating elements are arranged on a circle centered on the main axis of transmission / reception of the source,
  • the delta radiating elements are arranged with an angular spacing of 45 degrees between two successive delta elements
  • each delta radiating element comprises a radiating patch connected to the delta supply circuit by a feed point, the set of patches and their feeding points being arranged in an invariant pattern by rotation of 45 degrees around the axis; main transmission / reception of the source,
  • the delta radiating elements extend in the same plane perpendicular to the main transmission / reception axis of the source
  • the delta radiating elements are polarized radially with respect to the main axis of transmission / reception of the source
  • each delta radiating element comprises a quarter-wave radiating patch
  • each delta radiating element comprises a half-wave radiating patch and a parasitic patch
  • the delta radiating elements each extend in a plane parallel to the main axis of transmission / reception of the source, the delta radiating elements are polarized tangentially with respect to the main axis of transmission / reception of the source,
  • each delta radiating element comprises a half-wave dipole
  • the delta radiating elements comprise two groups of four delta radiating elements, each group being fed by the delta supply circuit in TE21 mode, the delta radiating elements of a group being supplied with a phase shift of 90 degrees with respect to the radiating elements delta of the other group;
  • the source comprises three sigma radiating assemblies each operating in a different frequency band and three delta radiating assemblies each operating in one of said frequency bands; the sigma radiating elements of the three sigma radiating assemblies being arranged in stages and centered on the main axis of the sigma radiator; transmitting / receiving the source, the sigma radiating elements operating in an upper frequency band being stepped, in the direction of propagation of the electromagnetic wave, above the sigma radiators operating in a lower frequency band;
  • the sigma radiating elements operating in a lower frequency band coincide with the ground plane of the sigma radiators operating in a higher frequency band.
  • the invention also relates to an antenna comprising a parabolic reflector having a focus, and a source as defined above, placed in the focus of the parabolic reflector.
  • FIG. 2 is a view of the source on which the first sigma radiating assembly and the first delta radiating assembly are highlighted;
  • FIG. 3 is a view of the source on which the second radiating assembly sigma and the second radiating assembly delta are highlighted;
  • FIG. 4 is a view of the source on which the third sigma radiating assembly and the third delta radiating assembly are highlighted;
  • FIG. 5 is a front view of the source
  • FIG. 6 is a schematic view of a sigma radiating element
  • FIG. 7 is a schematic view of a patch of a delta radiating element of the first delta radiation assembly
  • FIG. 8 is a polarization diagram of the first set of delta radiation
  • FIG. 9 is a schematic view of a patch of a delta radiating element of the second delta radiation assembly.
  • FIG. 10 is a schematic view of a patch of a delta radiating element of the third delta radiation assembly
  • FIG. 11 is a polarization diagram of the second or third delta radiation set
  • FIG. 12 is a sectional view in a plane containing a main axis of transmission / reception of the source.
  • the source S for a parabolic antenna comprises a mechanical base 3 and three sigma 1C, 1S and 1L radiating assemblies providing a sigma diagram for the three frequency bands C, S and L respectively, and three delta radiating sets 2C, 2S and 2L providing a delta pattern for the three frequency bands C, S and L respectively.
  • the radiating assemblies are fixed on the mechanical base.
  • Radiant assemblies include:
  • a first sigma 1 L radiating assembly suitable for generating a sigma radiation pattern for the first frequency band L
  • a first delta radiating assembly 2L capable of generating a delta radiation pattern for the first frequency band L
  • a second sigmal radiating assembly S adapted to provide a sigma radiation pattern for the second frequency band S; a second delta radiating assembly 2S capable of generating a delta radiation pattern for a second frequency band S,
  • a third sigmal radiating assembly C capable of providing a sigma radiation pattern for the third frequency band C
  • a third delta2C radiating assembly capable of providing a delta radiation pattern for the third frequency band C.
  • the delta radiation pattern provides a monotonic function signal from the target to the antenna axis while the sigma radiation pattern gives a maximum signal in the axis.
  • the deviation function is obtained by making the ratio, amplitude and phase, of the delta diagram on the sigma diagram. .
  • the slope of this deviation function is almost constant in the central part of the sigma diagram.
  • the source has a main transmission / reception axis A.
  • Each of the three sigma radiator assemblies 1 C, 1 S and 1 L extends in a plane perpendicular to the main transmission / reception axis A of the source S.
  • Each of the three sigma 1C, 1S and 1L radiating assemblies comprises a sigma radiating element 1 1 positioned on the main transmission / reception axis A of the source S, and a sigma supply circuit 12 for supplying the radiating element sigma 1 1 so as to generate sigma path radiation.
  • the three sigma radiator assemblies 1C, 1S and 1L conform to the sigmal radiator assembly shown generally in FIG. 6.
  • each sigma radiator element 1 1 comprises a radiating circular patch (or pad) 11 and a ground plane
  • the sigma radiator 11 comprises three metallization layers and two substrates.
  • the sigma radiator element 1 1 and the sigma supply circuit 12 are separated by the ground plane 1 12 in which electromagnetic coupling slots
  • Each sigma radiator element 1 1 is coupled with the sigma supply circuit 12 at coupling points 125 via coupling slots 1 13.
  • the coupling slots 1 13 and the coupling points 125 are arranged according to a invariant pattern by rotating 90 degrees around the main transmission / reception axis A of the source S. The symmetry of this configuration minimizes the cross polarization.
  • the four coupling slots 1 13 are arranged in a cross. In other words, the coupling slots 1 13 are arranged in pairs along two perpendicular axes centered on the main axis of transmission / reception of the source.
  • Each sigma power supply circuit 12 comprises two power supply ports 127a and 127b each positioned in two layers on each side of the circular radiating patch 11 in two layers of dielectrics.
  • Each of the power supply ports 127a and 127b feeds two power supply branches 128a1 and 128a2 and 128b1 and 128b2, respectively, positioned on each side of the radiating circular patch 11 1 and coupled with the radiating patch at four coupling points 125a1, 125a2, 125b1. and 125b2.
  • the power ports 127a and 127b each generate a linear polarization mode, the rectilinear polarization modes of the two power supply branches being orthogonal in pairs and in quadrature phase. It is thus possible to generate a circular polarization in both directions, left and right.
  • the radiating elements 11 of the sigma paths all have symmetries on two orthogonal axes. This allows good decoupling between the power ports 127a and 127b having rectilinear and orthogonal polarizations, as well as between the delta and sigma paths.
  • Each of the delta radiating assemblies 2S, 2C, 2L comprises eight delta radiating elements, respectively 21S, 21C, 21L, and a delta supply circuit, respectively 22S, 22C, 22L.
  • the radiating elements delta21 S, 21 C or 21 L of the same set are arranged on a circle centered on the main transmission / reception axis A of the source S.
  • the radiating elements delta21 S, 21 C, 21 L are arranged with an angular spacing of 45 degrees between two delta elements 21 S, 21 C, 21 L successive.
  • Each delta radiating element 21 S, 21 C, 21 L comprises a radiating patch (or pad) 21 1 S, 21 1 C, 21 1 L connected to the delta supply circuit associated 22S, 22C, 22L by a 225S, 225C, 225L feed point.
  • the set of patches 21 1 S, 21 1 C, 21 1 L of the same radiating assembly delta2S, 2C, 2L and their feed points 225S, 225C, 225L are arranged in an invariant pattern by rotation of 45 degrees around of the main transmission / reception axis A of the source S.
  • the delta21 L radiating elements of the first delta radiation assembly 2L each extend in a plane parallel to the main transmission / reception axis A of the source S and tangential to a cylinder of revolution whose axis is the main axis of transmission / reception A of the source S.
  • Each of the eight delta21 L radiating elements of the first delta radiation array 2L comprises a patch 21 1 L having a dielectric substrate 21 1 1 L of rectangular shape and a metal conductor layer 21 13L typically made of copper.
  • the metal conductor 21 13L has a first section 21 131 L extending in the direction of the source axis and a second section 132L extending in the direction perpendicular to the axis of the source. the source and included in the plane of the delta radiating elements 21 L.
  • the second part has a length substantially equal to half the average wavelength ⁇ of the first band of wavelength L.
  • the delta supply circuit 22L of the first set of delta radiation 2L comprises for each of the eight patches 21 1 L a supply line 228L supplying the patch 21 1 L at a feed point 225L positioned in the center of the patch.
  • the current supplied on each line 228L is in phase opposition so that the current is maximum in the center of the patch.
  • Each of the eight patches 21 1 L delta radiating elements 21 L of the first set of delta 2L radiation resonates in half-wave, like a dipole.
  • the delta radiating elements 21 L of the first delta radiation assembly 2L are polarized tangentially with respect to the circle on which the delta radiating elements 21L are arranged.
  • the delta radiating elements 21 C of the second set of delta radiation 2C extend in the same plane perpendicular to the main transmission / reception axis A of the source S.
  • the delta radiating elements 21 S of the second delta radiation assembly 2S also extend in the same plane perpendicular to the main transmission / reception axis A of the source S.
  • the eight delta radiating elements 21 C of the third delta radiation assembly 2C each comprise a ground plane 21 1 C, a first dielectric substrate 212C in contact with the ground plane 21 1 C, a trapezoidal patch copper quarter-wave 21 1 C formed on the first dielectric substrate 212C and short-circuited to the ground plane 213C.
  • the quarter-wave trapezoidal patch 21 1 C is fed by a 216C coaxial cable at a supply point 225C.
  • the eight delta radiating elements 21 S of the second delta radiation assembly 2S each comprise a ground plane 213S, a first dielectric substrate 212S in contact with the ground plane, a half-wave trapezoidal patch 21 1 S copper deposited on the first dielectric substrate 212S, a second dielectric substrate 214S in a plane parallel to the first dielectric substrate 212S and a parasitic patch 215S copper deposited on the second dielectric substrate 214S.
  • the half-wave trapezoidal patch 21 1 S is powered by a 216S coaxial cable at a 225S power point.
  • the parasitic patch 215S plays the role of director and modifies the field radiated by the half-wave trapezoidal patch 21 1 S.
  • the delta radiating elements 21 S and 21 C of the second and third delta radiation assemblies 2S and 2C are radially polarized with respect to the main transmission / reception axis A of the source S.
  • the delta radiating elements 21 S, 21 C, 21 L of the first, second and third delta radiating assemblies comprise two groups of four radiating elements delta21 S, 21 C, 21 L, each group being fed by the delta supply circuit 22S, 22C, 22L in TE21 mode, the radiating elements delta21 S, 21 C, 21 L of a group being supplied in phase quadrature relative to the delta radiating elements 21 S, 21 C, 21 L of the other group.
  • the radiating elements delta21 S, 21 C, 21 L of each delta radiating assembly generate an electromagnetic field map equivalent to that of the TE21 mode existing in the waveguides.
  • the delta radiating elements of the same delta radiating assembly are energized in equi-amplitude and in such a way that the radius of the circle on which the eight delta radiating elements are positioned is less than the wavelength corresponding to the maximum frequency of the frequency band of the delta radiating assembly.
  • the central symmetry of the delta radiating elements 21 S, 21 C, 21 L associated with the central symmetry sigma radiating elements makes it possible to decouple the sigma diagrams and the delta diagrams.
  • the advantage is that the generation of sigma diagrams and delta diagrams in the different frequency bands L, S and C is done independently. In addition, it follows that the sigma and delta diagrams in the different frequency bands L, S are decoupled.
  • the sigma radiating elements 1 S, 1 C, 1 L of the first, second and third sigma radiating assemblies S 1, C 1, L are arranged in stages and centered on the main axis of transmission / reception / reception A of the source, the patches radiating in each frequency band thus serve as a ground plane for the radiating elements sigma 1 S, 1 C, 1 L of the upper stages, the radiating elements sigma 1 S, 1 C, 1 L being staggered, in the direction propagation of the electromagnetic wave, according to their operating frequency band, that is to say, from the lowest frequencies to the highest frequencies.
  • the various elements of the radiating assemblies 1C, 1S, 1L and 2C, 2S, 2L are staggered on the axis A of the source S.
  • the different elements are positioned in the following order, from the top to the bottom of the source:
  • the ground plane 1 12C of the third sigma radiating assembly on which are deposited the branches of a port of the supply circuit 12C;
  • the parasitic patches 215S positioned at the ground plane 1 12L of the first sigma radiating assembly, the ground plane 1 12L of the first sigma radiating assembly and the supply circuit 12L being positioned at the center of the half-wave trapezoidal patches 21S the second set of delta 2S radiation.
  • the radiating elements of the first radiating assembly 2L are positioned around the second radiating assembly 2S.
  • the dielectric constants of the various dielectrics 212C, 214S, 212S, 12S, 12C, 12L are chosen so as to respect the maximum radius of the network.
  • the source described is characterized by a small footprint, low weight and good performance of directivity, G / T merit factor and tracking of a moving target for a multi-band antenna. Moreover, this type of multi-band source is also well suited for equipping small-diameter and large diameter prime-focus dishes.
  • the source can receive in the three frequency bands L, S and C simultaneously and, simultaneously simultaneously, carry out a monopulse type tracking.
  • the tracking or deviation slopes are homogeneous in all planes and do not degrade as a function of the polarization of the received signal.
  • the described source makes it possible, for example, to keep an existing reception system in the S-band and to pre-equip this system for the future band C.
  • the source change operation requiring means, maneuvering time and focus.
  • the invention can also be implemented to generate other telecommunication frequency bands, telemetry, or any other reception frequency band.
  • the described multi-band source is placed at the focus of a parabolic main reflector.
  • the described multi-band source makes it possible to avoid the use of a two-reflector, main reflector and sub-reflector assembly, commonly known as cassegrain mounting, in particular on antennas of small diameters.
  • cassegrain mounting commonly known as cassegrain mounting
  • dichroic subreflector is not required and this also avoids problems of coupling between separate sources.
  • the source allows simultaneous reception and monopulse tracking of moving targets in the three frequency bands L, S and C while being light and compact.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

L'invention concerne une source (S) pour antenne parabolique, comprenant : • - un ensemble rayonnant sigma (1S, 1C, 1L) adapté pour générer la voie sigma comprenant un élément rayonnant sigma (11) positionné sur un axe principal d'émission/réception (A) de la source (S), et un circuit d'alimentation sigma (12) pour alimenter l'élément rayonnant sigma (11), et • - un ensemble rayonnant delta (2S, 2C, 2L) adapté pour générer la voie delta comprenant huit éléments rayonnants delta (21S, 21C, 21L), agencés autour de l'axe principal d'émission/réception (S) de la source (S), et un circuit d'alimentation delta (22S, 22C, 22L).

Description

SOURCE POUR ANTENNE PARABOLIQUE
DOMAINE DE L'INVENTION
La présente invention concerne une source hyperfréquence destinée à être placée au foyer d'une antenne parabolique.
ETAT DE LA TECHNIQUE
Les antennes utilisées en télémétrie comprennent généralement un réflecteur parabolique et une source placée au foyer du réflecteur parabolique. La source est propre à émettre un signal à destination d'une cible (tel qu'un satellite ou un engin volant par exemple) ou recevoir un signal émis par la cible. Le réflecteur a pour fonction de diriger le signal émis par la source vers la cible ou de concentrer le signal émis par la cible sur la source.
La bande de fréquence dans laquelle les signaux sont émis ou reçus dépend du type de cible. Chaque source est généralement adaptée pour émettre dans une bande de fréquence donnée correspondant à un type de cible.
Par conséquent, pour pouvoir échanger des données avec différents types de cibles, il est nécessaire de démonter la source de l'antenne et d'installer une nouvelle source à la place. Ces opérations de démontage et de montage prennent du temps et peuvent générer des erreurs d'alignement de la source et du réflecteur qui altèrent le diagramme de rayonnement de l'antenne.
II existe par ailleurs des antennes bi-bande comprenant une première source apte à émettre dans une première bande de fréquence, une deuxième source apte à émettre dans une deuxième bande de fréquence, un réflecteur principal et un réflecteur auxiliaire à surface dichroïque. La première source est placée au point focal du réflecteur principal tandis que la deuxième source est placée au point focal du réflecteur auxiliaire. Le réflecteur auxiliaire comprend une surface dichroïque adaptée pour laisser passer le rayonnement dans la première bande de fréquence et pour réfléchir le rayonnement dans la deuxième bande de fréquence. Les signaux émis par la cible dans la première bande de fréquence sont réfléchis par le réflecteur principal vers la première source en passant à travers le réflecteur auxiliaire. Les signaux émis par la cible dans la deuxième bande de fréquence sont réfléchis successivement par le réflecteur principal et le réflecteur auxiliaire vers la deuxième source.
Cependant, une telle antenne bi-bande est onéreuse, notamment du fait qu'elle requiert l'utilisation d'un réflecteur à surface dichroïque.
On connaît par ailleurs du document US201 1/029903 une source multibande adaptée pour recevoir ou émettre simultanément dans trois bandes de fréquences. Plus précisément, la source est apte à émettre dans les bandes de fréquence L (1 GHz à 2 GHz), S (2 GHz à 4 GHz) et C (4 à 8 GHz). La source comprend un guide d'onde cylindrique central et trois cylindres conducteurs coaxiaux s'étendant autour du guide d'onde cylindrique central et formant trois guides d'onde coaxiaux respectifs. Chacun des trois guides d'onde entourant le guide d'onde central est délimité par deux cylindres successifs.
Le guide d'onde cylindrique central est adapté pour générer un rayonnement de voie somme (ou voie sigma) dans la bande C. Le premier guide d'onde cylindrique entourant le guide d'onde central est adapté pour générer sélectivement un rayonnement de voie différence (delta) dans la bande C ou un rayonnement de voie somme dans la bande S. Le deuxième guide d'onde cylindrique entourant le premier guide d'onde est adapté pour générer sélectivement un rayonnement de voie différence dans la bande S ou un rayonnement de voie somme dans la bande L. Enfin, le troisième guide d'onde cylindrique entourant le deuxième guide d'onde est adapté pour générer un rayonnement de voie différence dans la bande L. Les guides d'ondes sont alimentés par des transitions coaxiales via une pluralité de ports d'entrée. De tels guides d'onde sont particulièrement difficiles à exciter de sorte que leur dimensionnement est complexe. Afin de minimiser les pertes en réflexions, le document US201 1/0291903 prévoit notamment que la source comprend des crêtes radiales agencées à l'intérieur des guides d'onde, chaque crête étant couplée à un port d'entrée et à un cylindre.
Par ailleurs, comme un même guide d'onde est utilisé pour générer un rayonnement dans deux bandes de fréquences, ce type de source ne permet pas de découpler les différentes bandes de fréquence.
RESUME DE L'INVENTION
Un but de l'invention est de proposer une source pour antenne parabolique qui soit plus facile à concevoir.
Ce but est atteint dans le cadre de la présente invention grâce à une source pour antenne parabolique, comprenant :
- un ensemble rayonnant sigma comprenant un élément rayonnant sigma positionné sur un axe principal d'émission/réception de la source, et un circuit d'alimentation sigma pour alimenter l'élément rayonnant sigma de manière à ce que l'élément rayonnant sigma génère un rayonnement de voie sigma, et
- un ensemble rayonnant delta comprenant huit éléments rayonnants delta, agencés autour de l'axe principal d'émission/réception de la source, et un circuit d'alimentation delta pour alimenter les éléments rayonnants delta de manière à ce que les éléments rayonnants delta génèrent un rayonnement de voie delta.
Dans une telle source, le rayonnement de voie delta est généré de manière indépendante du rayonnement de la voie sigma. De plus, l'utilisation de huit élément rayonnants delta permet d'améliorer le découplage entre les rayonnements des voies sigma et delta.
La source peut en outre présenter les caractéristiques suivantes :
- l'élément rayonnant sigma s'étend dans un plan perpendiculaire à l'axe principal d'émission/réception de la source,
- l'élément rayonnant sigma comprend un patch rayonnant et un plan de masse présentant des fentes de couplage, les fentes de couplage étant disposées selon un motif invariant par rotation de 90 degrés autour de l'axe principal d'émission/réception de la source,
- les éléments rayonnants delta sont disposés sur un cercle centré sur l'axe principal d'émission/réception de la source,
- les éléments rayonnants delta sont disposés avec un espacement angulaire de 45 degrés entre deux éléments delta successifs,
- chaque élément rayonnant delta comprend un patch rayonnant relié au circuit d'alimentation delta par un point d'alimentation, l'ensemble des patchs et leurs points d'alimentation étant disposés selon un motif invariant par rotation de 45 degrés autour de l'axe principal d'émission/réception de la source,
- les éléments rayonnants delta s'étendent dans un même plan perpendiculaire à l'axe principal d'émission/réception de la source,
- les éléments rayonnants delta sont polarisés radialement par rapport à l'axe principal d'émission/réception de la source,
- chaque élément rayonnant delta comprend un patch rayonnant quart d'onde,
- chaque élément rayonnant delta comprend un patch rayonnant demi-onde et un patch parasite,
- les éléments rayonnants delta s'étendent chacun dans un plan parallèle à l'axe principal d'émission/réception de la source, - les éléments rayonnants delta sont polarisés tangentiellement par rapport à l'axe principal d'émission/réception de la source,
- chaque élément rayonnant delta comprend un dipôle demi-onde,
- les éléments rayonnant delta comprennent deux groupes de quatre éléments rayonnants delta, chaque groupe étant alimenté par le circuit d'alimentation delta en mode TE21 , les éléments rayonnants delta d'un groupe étant alimentés avec un déphasage de 90 degrés par rapport aux éléments rayonnants delta de l'autre groupe ;
- la source comporte trois ensembles rayonnants sigma fonctionnant chacun dans une bande de fréquence différente et trois ensembles rayonnants delta fonctionnant chacun dans une desdites bandes de fréquence les éléments rayonnants sigma des trois ensembles rayonnants sigma étant disposés en étage et centrés sur l'axe principal d'émission/réception de la source, les éléments rayonnants sigma fonctionnant dans une bande de fréquence supérieure étant étagés, dans le sens de propagation de l'onde électromagnétique, au-dessus des éléments rayonnants sigma fonctionnant dans une bande de fréquence inférieure ;
-les éléments rayonnants sigma fonctionnant dans une bande de fréquence inférieure sont confondus avec le plan de masse des éléments rayonnants sigma fonctionnant dans une bande de fréquence supérieure.
L'invention se rapporte également à une antenne comprenant un réflecteur parabolique présentant un foyer, et une source telle que définie précédemment, placée au foyer du réflecteur parabolique.
DESCRIPTION DES FIGURES
D'autres objectifs, caractéristiques et avantages ressortiront de la description détaillée qui suit en référence aux dessins donnés à titre illustratif et non limitatif parmi lesquels : - la figure 1 est une vue d'une source conforme à un mode de réalisation de l'invention;
- la figure 2 est une vue de la source sur laquelle le premier ensemble rayonnant sigma et le premier ensemble rayonnant delta sont en surbrillance;
- la figure 3 est une vue de la source sur laquelle le second ensemble rayonnant sigma et le second ensemble rayonnant delta sont en surbrillance;
- la figure 4 est une vue de la source sur laquelle le troisième ensemble rayonnant sigma et le troisième ensemble rayonnant delta sont en surbrillance;
- la figure 5 est une vue frontale de la source;
- la figure 6 est une vue schématique d'un l'élément rayonnant sigma;
- la figure 7 est une vue schématique d'un patch d'un élément rayonnant delta du premier ensemble de rayonnement delta;
- la figure 8 est un diagramme de polarisation du premier ensemble de rayonnement delta;
- la figure 9 est une vue schématique d'un patch d'un élément rayonnant delta du second ensemble de rayonnement delta;
- la figure 10 est une vue schématique d'un patch d'un élément rayonnant delta du troisième ensemble de rayonnement delta;
- la figure 1 1 est un diagramme de polarisation du deuxième ou du troisième ensemble de rayonnement delta;
- la figure 12 est une vue en coupe dans un plan contenant un axe principal d'émission/réception de la source.
DESCRIPTION DETAILLEE DE L'INVENTION
En référence aux figures 1 à 5, la source S pour antenne parabolique, comprend une base mécanique 3 et trois ensembles rayonnants sigma 1 C, 1 S et 1 L fournissant un diagramme sigma pour les trois bandes de fréquence C, S et L respectivement, et trois ensembles rayonnants delta 2C, 2S et 2L fournissant un diagramme delta pour les trois bandes de fréquence C, S et L respectivement. Les ensembles rayonnants sont fixés sur la base mécanique.
Les ensembles rayonnants comprennent :
- un premier ensemble rayonnant sigma 1 L propre à générer un diagramme de rayonnement sigma pour la première bande de fréquence L,
- un premier ensemble rayonnant delta 2L propre à générer un diagramme de rayonnement delta pour la première bande de fréquence L,
- un deuxième ensemble rayonnant sigmal S propre à fournir un diagramme de rayonnement sigma pour la deuxième bande de fréquence S, - un deuxième ensemble rayonnant delta 2S propre à générer un diagramme de rayonnement delta pour une deuxième bande de fréquence S,
- un troisième ensemble rayonnant sigmal C propre à fournir un diagramme de rayonnement sigma pour la troisième bande de fréquence C, et
- un troisième ensemble rayonnant delta2C propre à fournir un diagramme de rayonnement delta pour la troisième bande de fréquence C.
Le diagramme de rayonnement delta fournit un signal fonction monotone de l'écart de la cible à l'axe de l'antenne tandis que le diagramme de rayonnement sigma donne un signal maximal dans l'axe. Ces diagrammes permettent d'obtenir une écartométrie avec signe et de normaliser la mesure. La fonction d'écartométrie est obtenue en faisant le rapport, d'amplitude et de phase, du diagramme delta sur le diagramme sigma. . La pente de cette fonction d'écartométrie est quasi constante dans la partie centrale du diagramme sigma. De manière connue, il est possible d'extraire un écart angulaire entre la position de la cible et l'axe de l'antenne, à partir des deux signaux reçus simultanément par l'antenne sur ses deux voies sigma et delta et ceci, pour toutes les bandes de fréquence L, S et C. La source présente un axe principal d'émission/réception A. Chacun des trois ensembles rayonnants sigma 1 C, 1 S et 1 L s'étend dans un plan perpendiculaire à l'axe principal d'émission/réception A de la source S.
Chacun des trois ensembles rayonnants sigma 1 C, 1 S et 1 L comprend un élément rayonnant sigma 1 1 positionné sur l'axe principal d'émission/réception A de la source S, et un circuit d'alimentation sigma 12 pour alimenter l'élément rayonnant sigma 1 1 de manière à générer un rayonnement de voie sigma.
Les trois ensembles rayonnants sigma 1 C, 1 S et 1 L sont conformes à l'ensemble rayonnant sigmal représenté de manière générale sur la figure 6.
En référence à la figure 6, chaque élément rayonnant sigma 1 1 comprend un patch (ou pavé) circulaire rayonnant 1 11 et un plan de masse
1 12 présentant des fentes de couplage 1 13. L'élément rayonnant sigma 1 1 comprend trois couches de métallisation et deux substrats. L'élément rayonnant sigma 1 1 et le circuit d'alimentation sigma 12 sont séparés par le plan de masse 1 12 dans lequel des fentes de couplage électromagnétique
1 13 sont gravées de façon à assurer l'alimentation de l'élément rayonnant sigma 1 1.
Chaque élément rayonnant sigma 1 1 est couplé avec le circuit d'alimentation sigma 12 au niveau de points de couplage 125 par l'intermédiaire des fentes de couplage 1 13. Les fentes de couplage 1 13 et les points de couplage 125 sont disposées selon un motif invariant par rotation de 90 degrés autour de l'axe principal d'émission/réception A de la source S. La symétrie de cette configuration permet de minimiser la polarisation croisée. Les quatre fentes de couplage 1 13 sont disposées en croix. Autrement dit, les fentes de couplages 1 13 sont disposées deux à deux selon deux axes perpendiculaires centrés sur l'axe principal d'émission/réception de la source. Chaque circuit d'alimentation sigma 12 comprend deux ports d'alimentation 127a et 127b positionnés chacun dans deux couches de chaque côté du patch circulaire rayonnant 1 1 1 dans deux couches de diélectriques. Ces deux ports d'alimentation 127a et 127b sont en phase. Chacun des ports d'alimentation 127a et 127b alimente deux branches d'alimentation respectivement 128a1 et 128a2 et 128b1 et 128b2 positionnées de chaque côté du patch circulaire rayonnant 1 1 1 et couplées avec le patch rayonnant en quatre points de couplage 125a1 , 125a2, 125b1 et 125b2. les ports d'alimentation 127a et 127b génèrent chacun un mode de polarisation rectiligne, les modes de polarisation rectilignes des deux branches d'alimentation étant orthogonaux deux à deux et en quadrature de phase. Il est ainsi possible de générer une polarisation circulaire dans les deux sens, gauche et droite.
Les éléments rayonnants 1 1 des voies sigma possèdent tous des symétries sur deux axes orthogonaux. Cela permet un bon découplage entre les ports d'alimentation 127a et 127b ayant des polarisations rectilignes et orthogonales, ainsi qu'entre les voies delta et sigma.
Chacun des ensembles rayonnants delta 2S, 2C, 2L comprend huit éléments rayonnants delta, respectivement 21 S, 21 C, 21 L, et un circuit d'alimentation delta, respectivement 22S, 22C, 22L. Les éléments rayonnants delta21 S, 21 C ou 21 L d'un même ensemble sont disposés sur un cercle centré sur l'axe principal d'émission/réception A de la source S. De plus, les éléments rayonnants delta21 S, 21 C, 21 L sont disposés avec un espacement angulaire de 45 degrés entre deux éléments delta 21 S, 21 C, 21 L successifs.
Chaque élément rayonnant delta 21 S, 21 C, 21 L comprend un patch (ou pavé) rayonnant 21 1 S, 21 1 C, 21 1 L relié au circuit d'alimentation delta associé 22S, 22C, 22L par un point d'alimentation 225S, 225C, 225L. L'ensemble des patchs 21 1 S, 21 1 C, 21 1 L d'un même ensemble rayonnant delta2S, 2C, 2L et leurs points d'alimentation 225S, 225C, 225L sont disposés selon un motif invariant par rotation de 45 degrés autour de l'axe principal d'émission/réception A de la source S.
Les éléments rayonnants delta21 L du premier ensemble de rayonnement delta 2L s'étendent chacun dans un plan parallèle à l'axe principal d'émission/réception A de la source S et tangentiel à un cylindre de révolution ayant pour axe l'axe principal d'émission/réception A de la source S.
Chacun des huit éléments rayonnants delta21 L du premier ensemble de rayonnement delta 2L comprend un patch 21 1 L comportant un substrat diélectrique 21 1 1 L de forme rectangulaire et une couche de conducteur métallique 21 13L typiquement réalisé en cuivre.
En référence à la figure 7, le conducteur métallique 21 13L présente une première section 21 131 L s'étendant dans la direction de l'axe de la source et une seconde section 21 132L s'étendant dans la direction perpendiculaire à l'axe de la source et comprise dans le plan des éléments rayonnant delta 21 L. La seconde partie présente une longueur sensiblement égale à la moitié de la longueur d'onde moyenne λ de la première bande de longueur d'onde L. Le circuit d'alimentation delta 22L du premier ensemble de rayonnement delta 2L comprend pour chacun des huit patchs 21 1 L une ligne d'alimentation 228L alimentant le patch 21 1 L au niveau d'un point d'alimentation 225L positionné au centre du patch. Le courant amené sur chaque ligne 228L est en opposition de phase de façon à ce que le courant soit maximum au centre du patch. Chacun des huit patchs 21 1 L des éléments rayonnants delta 21 L du premier ensemble de rayonnement delta 2L résonne en demi-onde, comme un dipôle. En référence à la figure 8, les éléments rayonnants delta 21 L du premier ensemble de rayonnement delta 2L sont polarisés tangentiellement par rapport au cercle sur lequel les éléments rayonnants delta 21 L sont disposés.
Les éléments rayonnants delta 21 C du deuxième ensemble de rayonnement delta 2C s'étendent dans un même plan perpendiculaire à l'axe principal d'émission/réception A de la source S.
Les éléments rayonnants delta 21 S du deuxième ensemble de rayonnement delta 2S s'étendent également dans un même plan perpendiculaire à l'axe principal d'émission/réception A de la source S.
En référence à la figure 9, les huit éléments rayonnants delta 21 C du troisième ensemble de rayonnement delta 2C comprennent chacun un plan de masse 21 1 C, un premier substrat diélectrique 212C en contact avec le plan de masse 21 1 C, un patch trapézoïdal quart-onde 21 1 C en cuivre formé sur le premier substrat diélectrique 212C et raccordé en court-circuit avec le plan de masse 213C. Le patch trapézoïdal quart-onde 21 1 C est alimenté par un câble coaxial 216C au niveau d'un point d'alimentation 225C.
En référence à la figure 10, les huit éléments rayonnants delta 21 S du deuxième ensemble de rayonnement delta 2S comprennent chacun un plan de masse 213S, un premier substrat diélectrique 212S en contact avec le plan de masse, un patch trapézoïdal demi-onde 21 1 S en cuivre déposé sur le premier substrat diélectrique 212S, un second substrat diélectrique 214S dans un plan parallèle au premier substrat diélectrique 212S et un patch parasite 215S en cuivre déposé sur le second substrat diélectrique 214S. Le patch trapézoïdal demi-onde 21 1 S est alimenté par un câble coaxial 216S au niveau d'un point d'alimentation 225S. Le patch parasite 215S joue le rôle de directeur et modifie le champ rayonné par le patch trapézoïdal demi-onde 21 1 S.
En référence à la figure 1 1 , les éléments rayonnants delta 21 S et 21 C du deuxième et troisième ensemble de rayonnement delta 2S et 2C sont polarisés radialement par rapport à l'axe principal d'émission/réception A de la source S.
Les éléments rayonnant delta 21 S, 21 C, 21 L des premiers, deuxième et troisième ensembles rayonnants delta comprennent deux groupes de quatre éléments rayonnants delta21 S, 21 C, 21 L, chaque groupe étant alimenté par le circuit d'alimentation delta 22S, 22C, 22L en mode TE21 , les éléments rayonnants delta21 S, 21 C, 21 L d'un groupe étant alimentés en quadrature de phase par rapport aux éléments rayonnants delta 21 S, 21 C, 21 L de l'autre groupe. Les éléments rayonnants delta21 S, 21 C, 21 L de chaque ensemble rayonnant delta génèrent une carte de champs électromagnétiques équivalente à celle du mode TE21 existant dans les guides d'onde.
Les éléments rayonnants delta d'un même ensemble rayonnant delta sont alimentés en équi-amplitude et de manière à ce que le rayon du cercle sur lequel sont positionnés les huit éléments rayonnants delta soit inférieur à la longueur d'onde correspondant à la fréquence maximum de la bande de fréquence de l'ensemble rayonnant delta.
La symétrie centrale des éléments rayonnant delta 21 S, 21 C, 21 L associés aux éléments rayonnants sigma à symétrie centrale permet de découpler les diagrammes sigma et les diagrammes delta. L'avantage qui en découle est que la génération des diagrammes sigma et des diagrammes delta dans les différentes bandes de fréquence L, S et C se fait de manière indépendante. De plus, il en résulte que les diagrammes sigma et delta dans les différentes bandes de fréquence L, S sont découplés.
II est ainsi possible d'imbriquer les différents éléments rayonnants fonctionnant dans des bandes de fréquence différentes et ainsi de générer des diagrammes sigma et delta pour les trois bandes de fréquence différentes sans que les rayonnements ne se perturbent, et le tout dans un espace réduit, en évitant d'utiliser des structures en guide d'onde lourdes et coûteuses.
Les éléments rayonnants sigma 1 S, 1 C, 1 L des premier, deuxième et troisième ensembles rayonnants sigma 1 S, 1 C, 1 L sont disposés en étage et centrés sur l'axe principal d'émission/réception/réception A de la source, les patchs rayonnant dans chaque bande de fréquence servent ainsi de plan de masse aux éléments rayonnants sigma 1 S, 1 C, 1 L des étages supérieurs, les éléments rayonnants sigma 1 S, 1 C, 1 L étant étagés, dans le sens de propagation de l'onde électromagnétique, selon leur bande de fréquences de fonctionnement, c'est-à-dire, des fréquences les plus basses vers les fréquences les plus hautes.
En référence à la figure 12, les différents éléments des ensembles rayonnants 1 C, 1 S, 1 L et 2C, 2S, 2L sont étagés sur l'axe A de la source S. En parcourant l'axe de la source dans le sens inverse de propagation de l'onde électromagnétique, les différents éléments sont positionnés dans l'ordre suivant, du haut vers le bas de la source:
- le patch circulaire rayonnant 1 1 1 C du troisième ensemble rayonnant sigma;
- le plan de masse 1 12C du troisième ensemble rayonnant sigma sur lequel sont déposées les branches d'un port du circuit d'alimentation 12C ;
- les patchs trapézoïdaux quart-onde 213C du troisième ensemble de rayonnement delta 2C déposés sur le plan de masse 21 1 C du troisième ensemble de rayonnement delta 2C
- le patch circulaire rayonnant 1 1 1 S du second ensemble de rayonnement delta 2S positionné au centre des patchs trapézoïdaux quart- onde 213C du troisième ensemble de rayonnement delta 2C ; - le plan de masse 1 12S du second ensemble rayonnant sigma sur chacune des faces duquel sont déposées les branches d'un port du circuit d'alimentation 12S;
- le patch circulaire rayonnant 1 1 1 L du premier ensemble rayonnant sigma;
- les patchs parasites 215S positionnés au niveau du plan de masse 1 12L du premier ensemble rayonnant sigma, le plan de masse 1 12L du premier ensemble rayonnant sigma et le circuit d'alimentation 12L étant positionnés au centre des patchs trapézoïdaux demi-onde 21 S du deuxième ensemble de de rayonnement delta 2S .
Les éléments rayonnants du premier ensemble rayonnant 2L sont positionnés autour du deuxième ensemble rayonnant 2S.
Les constantes diélectriques des différents diélectriques 212C, 214S, 212S, 12S, 12C, 12L sont choisies de manière à respecter le rayon maximum du réseau.
La source décrite se caractérise par un faible encombrement, un faible poids et des bonnes performances de directivité, de facteur de mérite G/T et de poursuite d'une cible mobile pour une antenne multi-bande. Par ailleurs, ce type de source multi-bande est aussi bien adapté pour équiper des paraboles prime-focus de petit diamètre que de grand diamètre. La source peut recevoir dans les trois bandes de fréquence L, S et C simultanément et, toujours simultanément, faire une poursuite de type monopulse.
Le fait de minimiser le diamètre des cercles sur lesquels sont positionnés les éléments rayonnant 2C, 2S, 2L permet d'avoir une pente de poursuite forte, or plus la pente de poursuite est forte, meilleure sera la poursuite. D'autre part dans la source décrite, les pentes de poursuite ou écartométriques sont homogènes dans tous les plans et ne se dégradent pas en fonction de la polarisation du signal reçu. La source décrite est particulièrement bien adaptée pour fonctionner dans les bandes de fréquence L = [1.4 ; 1.55 GHz], S = [2.2 ; 2.4GHz] et C = [5.0 ; 5.25GHz]. La source décrite permet, par exemple, de garder un système de réception déjà existant en bande S et de pré-équiper ce système pour la future bande C. D'autre part, avec la source décrite, il n'est plus nécessaire de changer de source pour changer de bande de fréquence, l'opération de changement de source demandant des moyens, du temps de manœuvre et de mise au point.
L'invention peut également être mise en œuvre pour générer d'autres bandes de fréquence de télécommunication, de télémesure, ou toute autre bande de fréquence de réception.
La source multi-bande décrite est placée au foyer d'un réflecteur principal parabolique. La source multi-bande décrite permet d'éviter l'utilisation d'un montage à deux réflecteurs, réflecteur principal et sub- réflecteur, communément appelé montage cassegrain, notamment sur des antennes de petits diamètres. Ainsi, l'utilisation d'un sub-réflecteur dichroïque n'est pas requise et cela permet aussi d'éviter des problèmes de couplage entre sources séparées.
La source permet de faire, simultanément, de la réception et de la poursuite monopulse de cibles mobiles dans les trois bandes de fréquence L, S et C tout en étant légère et compacte.

Claims

REVENDICATIONS
1. Source (S) pour antenne parabolique, comprenant :
- un ensemble rayonnant sigma (1 S, 1 C, 1 L) adapté pour générer la voie sigma comprenant un élément rayonnant sigma (1 1 ) positionné sur un axe principal d'émission/réception (A) de la source (S), et un circuit d'alimentation sigma (12) pour alimenter l'élément rayonnant sigma(1 1 ) , et
- un ensemble rayonnant delta (2S, 2C, 2L) adapté pour générer la voie delta comprenant huit éléments rayonnants delta (21 S, 21 C, 21 L), agencés autour de l'axe principal d'émission/réception (A) de la source (S), et un circuit d'alimentation delta (22S, 22C, 22L).
2. Source selon la revendication 1 , dans laquelle l'élément rayonnant sigma (1 1 ) s'étend dans un plan perpendiculaire à l'axe principal d'émission/réception (A) de la source (S).
3. Source selon l'une des revendications 1 et 2, dans laquelle l'élément rayonnant sigma (1 1 ) comprend un patch (pavé ou plaque) rayonnant (1 1 1 ) et un plan de masse (1 12) présentant des fentes de couplage (1 13), les fentes de couplage (1 13) étant disposées selon un motif invariant par rotation de 90 degrés autour de l'axe principal d'émission/réception (A) de la source (S).
4. Source selon l'une des revendications 1 à 3, dans laquelle les éléments rayonnants delta (21 S, 21 C, 21 L) sont disposés sur un cercle centré sur l'axe principal d'émission/réception (A) de la source (S).
5. Source selon la revendication 4, dans laquelle les éléments rayonnants delta (21 S, 21 C, 21 L) sont disposés avec un espacement angulaire de 45 degrés entre deux éléments delta (21 S, 21 C, 21 L) successifs.
6. Source selon l'une des revendications 1 à 5, dans laquelle chaque élément rayonnant delta (21 S, 21 C, 21 L) comprend un patch (pavé ou plaque) rayonnant (21 1 S, 21 1 C, 21 1 L) relié au circuit d'alimentation delta (22S, 22C, 22L) par un point d'alimentation (225S, 225C, 225L), l'ensemble des patchs (21 1 S, 21 1 C, 21 1 L) et leurs points d'alimentation (225S, 225C, 225L) étant disposés selon un motif invariant par rotation de 45 degrés autour de l'axe principal d'émission/réception (A) de la source (S).
7. Source selon l'une des revendications 1 à 6, dans laquelle les éléments rayonnants delta (21 C, 21 S) s'étendent dans un même plan perpendiculaire à l'axe principal d'émission/réception (A) de la source (S).
8. Source selon la revendication 7, dans laquelle les éléments rayonnants delta (21 C, 21 S) sont polarisés radialement par rapport à l'axe principal d'émission/réception (A) de la source (S).
9. Source selon l'une des revendications 7 et 8, dans laquelle chaque élément rayonnant delta (21 C) comprend un patch rayonnant quart d'onde (213C).
10. Source selon l'une des revendications 7 et 8, dans laquelle chaque élément rayonnant delta (21 S) comprend un patch rayonnant demi- onde (21 1 S) et un patch parasite (215S).
1 1. Source selon l'une des revendications 1 à 6, dans laquelle les éléments rayonnants delta (21 L) s'étendent chacun dans un plan parallèle à l'axe principal d'émission/réception (A) de la source (S).
12. Source selon la revendication 1 1 , dans laquelle les éléments rayonnants delta (21 L) sont polarisés tangentiellement par rapport à l'axe principal d'émission/réception (A) de la source (S).
13. Source selon l'une des revendications 1 1 et 12, dans laquelle chaque élément rayonnant delta (21 L) comprend un dipôle demi-onde (21 1 L).
14. Source selon l'une des revendications qui précèdent, dans laquelle les éléments rayonnant delta (21 S, 21 C, 21 L) comprennent deux groupes de quatre éléments rayonnants delta (21 S, 21 C, 21 L), chaque groupe étant alimenté par le circuit d'alimentation delta (22S, 22C, 22L) en mode TE21 , les éléments rayonnants delta(21 S, 21 C, 21 L) d'un groupe étant alimentés avec un déphasage de 90 degrés par rapport aux éléments rayonnants delta (21 S, 21 C, 21 L) de l'autre groupe.
15. Source selon l'une des revendications qui précèdent, comportant trois ensembles rayonnants sigma (1 S, 1 C, 1 L) fonctionnant chacun dans une bande de fréquence différente et trois ensembles rayonnants delta (2S, 2C, 2L) fonctionnant chacun dans une desdites bandes de fréquence les éléments rayonnants sigma (1 S, 1 C, 1 L) des trois ensembles rayonnants sigma (1 S, 1 C, 1 L) étant disposés en étage et centrés sur l'axe principal d'émission/réception (A) de la source, les éléments rayonnants sigma (1 S, 1 C, 1 L) fonctionnant dans une bande de fréquence supérieure étant étagés, dans le sens de propagation de l'onde électromagnétique, au-dessus des éléments rayonnants sigma (1S, 1C, 1L) fonctionnant dans une bande de fréquence inférieure.
16. Source selon les revendications 3 et 15 prises en combinaison, dans laquelle les éléments rayonnants sigma (1S, 1C, 1L) fonctionnant dans une bande de fréquence inférieure sont confondus avec le plan de masse des éléments rayonnants sigma (1S, 1C, 1L) fonctionnant dans une bande de fréquence supérieure.
EP14736313.9A 2013-06-17 2014-06-16 Source pour antenne parabolique Active EP3011639B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1355655A FR3007215B1 (fr) 2013-06-17 2013-06-17 Source pour antenne parabolique
PCT/EP2014/062497 WO2014202498A1 (fr) 2013-06-17 2014-06-16 Source pour antenne parabolique

Publications (2)

Publication Number Publication Date
EP3011639A1 true EP3011639A1 (fr) 2016-04-27
EP3011639B1 EP3011639B1 (fr) 2018-03-21

Family

ID=49378389

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14736313.9A Active EP3011639B1 (fr) 2013-06-17 2014-06-16 Source pour antenne parabolique

Country Status (8)

Country Link
US (1) US9520654B2 (fr)
EP (1) EP3011639B1 (fr)
JP (1) JP6047673B2 (fr)
KR (1) KR101656204B1 (fr)
CN (1) CN105531872B (fr)
FR (1) FR3007215B1 (fr)
IL (1) IL243105A (fr)
WO (1) WO2014202498A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101675790B1 (ko) * 2015-01-29 2016-11-15 한국과학기술원 쿼시 야기 안테나 및 이를 이용한 넓은 방향의 원형 편파 발생 안테나
FR3042917B1 (fr) 2015-10-22 2018-12-07 Zodiac Data Systems Dispositif d'antenne d'aide a l'acquisition et systeme d'antenne pour le suivi d'une cible en mouvement associe
CN106099364B (zh) * 2016-08-03 2021-03-30 成都锦江电子系统工程有限公司 一种高精度多馈源全自动换馈系统
CN107565217A (zh) * 2017-07-31 2018-01-09 中国电子科技集团公司第三十九研究所 一维钟摆式换馈机构
US11658379B2 (en) * 2019-10-18 2023-05-23 Lockheed Martin Corpora Tion Waveguide hybrid couplers
CN112563732B (zh) * 2020-12-01 2021-12-31 中国人民解放军63923部队 一种uhf-s双频段抛物面天线改造方法
CN115101930B (zh) * 2022-07-15 2022-11-15 广东工业大学 边缘加载谐振枝节的双频卫星导航天线

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3633208A (en) * 1968-10-28 1972-01-04 Hughes Aircraft Co Shaped-beam antenna for earth coverage from a stabilized satellite
US4042935A (en) * 1974-08-01 1977-08-16 Hughes Aircraft Company Wideband multiplexing antenna feed employing cavity backed wing dipoles
US4283728A (en) * 1978-03-10 1981-08-11 Harris Corporation Five-horn cassegrain antenna
FR2442519A1 (fr) * 1978-11-24 1980-06-20 Thomson Csf Source primaire monopulse imprimee pour antenne de radar aeroporte et antenne comportant une telle source
US4434425A (en) * 1982-02-02 1984-02-28 Gte Products Corporation Multiple ring dipole array
US4649391A (en) * 1984-02-01 1987-03-10 Hughes Aircraft Company Monopulse cavity-backed multipole antenna system
JPH0535605Y2 (fr) * 1987-02-06 1993-09-09
JPH0195608A (ja) * 1987-10-08 1989-04-13 Nec Corp 複反射鏡アンテナ
US5231406A (en) * 1991-04-05 1993-07-27 Ball Corporation Broadband circular polarization satellite antenna
CN101483277B (zh) * 2008-12-30 2012-07-25 清华大学 一种三极化的共形天线
DE102010011867B4 (de) * 2010-03-18 2011-12-22 Kathrein-Werke Kg Breitbandige omnidirektionale Antenne
US8593362B2 (en) * 2010-05-27 2013-11-26 Orbit Communication System Ltd. Multi band telemetry antenna feed
WO2012167283A2 (fr) * 2011-06-02 2012-12-06 Brigham Young University Alimentation en réseau plan pour communications satellites
CN102610927B (zh) * 2012-03-30 2016-05-11 星动通讯科技(苏州)有限公司 一种双频双圆极化抛物反射面天线馈源
US9461367B2 (en) * 2013-01-23 2016-10-04 Overhorizon Llc Creating low cost multi-band and multi-feed passive array feed antennas and low-noise block feeds

Also Published As

Publication number Publication date
WO2014202498A1 (fr) 2014-12-24
CN105531872A (zh) 2016-04-27
IL243105A (en) 2016-06-30
FR3007215A1 (fr) 2014-12-19
FR3007215B1 (fr) 2015-06-05
US20160141764A1 (en) 2016-05-19
JP6047673B2 (ja) 2016-12-21
KR20160011704A (ko) 2016-02-01
US9520654B2 (en) 2016-12-13
JP2016524822A (ja) 2016-08-18
CN105531872B (zh) 2018-03-02
EP3011639B1 (fr) 2018-03-21
KR101656204B1 (ko) 2016-09-08

Similar Documents

Publication Publication Date Title
EP3011639B1 (fr) Source pour antenne parabolique
EP1325537B1 (fr) Perfectionnement aux sources d'emission / reception d'ondes electromagnetiques pour antenne a multireflecteurs
EP2532050B1 (fr) Antenne plane directive embarquée, véhicule comportant une telle antenne et système de télécommunication par satellite comportant un tel véhicule
EP2194602B1 (fr) Antenne à partage de sources et procède d'élaboration d'une antenne à partage de sources pour l'élaboration de multi-faisceaux
EP2532046B1 (fr) Antenne plane à balayage pour application mobile terrestre, véhicule comportant une telle antenne et système de télécommunication par satellite comportant un tel véhicule
EP0899814B1 (fr) Structure rayonnante
EP2807702B1 (fr) Formateur multi-faisceaux à deux dimensions, antenne comportant un tel formateur multi-faisceaux et système de télécommunication par satellite comportant une telle antenne
EP0012055B1 (fr) Source primaire monopulse imprimée et antenne comportant une telle source
EP0403910A1 (fr) Elément rayonnant diplexant
FR2810163A1 (fr) Perfectionnement aux antennes-sources d'emission/reception d'ondes electromagnetiques
EP0315141A1 (fr) Dispositif d'excitation d'un guide d'onde en polarisation circulaire par une antenne plane
EP3180816B1 (fr) Source multibande a cornet coaxial avec systemes de poursuite monopulse pour antenne a reflecteur
EP0377155B1 (fr) Dispositif rayonnant bifréquence
EP0045254A1 (fr) Source rayonnante bi-bande compacte fonctionnant dans le domaine des hyperfréquences
CA2808511C (fr) Antenne plane pour terminal fonctionnant en double polarisation circulaire, terminal aeroporte et systeme de telecommunication par satellite comportant au moins une telle antenne
EP0520908B1 (fr) Antenne réseau linéaire
EP3506429B1 (fr) Formateur de faisceaux quasi-optique, antenne elementaire, systeme antennaire, plateforme et procede de telecommunications associes
EP0477102A1 (fr) Réseau directif pour radiocommunications, à éléments rayonnants adjacents et ensemble de tels réseaux directifs
EP3506426B1 (fr) Dispositif de pointage de faisceau pour systeme antennaire, systeme antennaire et plateforme associes
EP0088681B1 (fr) Antenne à double réflecteur à transformateur de polarisation incorporé
WO2023218008A1 (fr) Antenne faible profil à balayage electronique bidimensionnel
FR2952759A1 (fr) Antenne a reflecteurs et reseau focal
FR2703516A1 (fr) Antenne à ondes progressives.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160114

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602014022630

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H01Q0005000000

Ipc: H01Q0005400000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H01Q 19/13 20060101ALI20170921BHEP

Ipc: H01Q 13/10 20060101ALI20170921BHEP

Ipc: H01Q 5/40 20150101AFI20170921BHEP

Ipc: H01Q 25/02 20060101ALI20170921BHEP

Ipc: H01Q 9/28 20060101ALI20170921BHEP

Ipc: H01Q 21/06 20060101ALI20170921BHEP

Ipc: H01Q 21/24 20060101ALI20170921BHEP

Ipc: H01Q 21/20 20060101ALI20170921BHEP

INTG Intention to grant announced

Effective date: 20171019

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ZODIAC DATA SYSTEMS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 982029

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014022630

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180621

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180321

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180321

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180321

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180321

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 982029

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180622

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180621

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180321

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180321

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180321

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180321

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180321

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180321

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180321

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180321

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180321

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180321

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180321

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180723

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014022630

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180321

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20190102

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180630

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180321

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180321

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180321

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180721

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602014022630

Country of ref document: DE

Representative=s name: KILIAN KILIAN & PARTNER MBB PATENTANWAELTE, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 602014022630

Country of ref document: DE

Owner name: SAFRAN DATA SYSTEMS S.A.S., FR

Free format text: FORMER OWNER: ZODIAC DATA SYSTEMS, COURTABOEUF, FR

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230523

Year of fee payment: 10

Ref country code: DE

Payment date: 20230523

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230523

Year of fee payment: 10