EP3506429B1 - Formateur de faisceaux quasi-optique, antenne elementaire, systeme antennaire, plateforme et procede de telecommunications associes - Google Patents

Formateur de faisceaux quasi-optique, antenne elementaire, systeme antennaire, plateforme et procede de telecommunications associes Download PDF

Info

Publication number
EP3506429B1
EP3506429B1 EP18215647.1A EP18215647A EP3506429B1 EP 3506429 B1 EP3506429 B1 EP 3506429B1 EP 18215647 A EP18215647 A EP 18215647A EP 3506429 B1 EP3506429 B1 EP 3506429B1
Authority
EP
European Patent Office
Prior art keywords
quasi
antenna
layer
frequency
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18215647.1A
Other languages
German (de)
English (en)
Other versions
EP3506429A1 (fr
Inventor
Friedman Tchoffo Talom
Bertrand BOIN
Guillaume Fondi de Niort
Hervé Legay
Etienne Girard
Mauro Ettorre
Ronan Sauleau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Universite de Rennes 1
Thales SA
Original Assignee
Centre National de la Recherche Scientifique CNRS
Universite de Rennes 1
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Universite de Rennes 1, Thales SA filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP3506429A1 publication Critical patent/EP3506429A1/fr
Application granted granted Critical
Publication of EP3506429B1 publication Critical patent/EP3506429B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • H01Q19/062Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens for focusing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0031Parallel-plate fed arrays; Lens-fed arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/064Two dimensional planar arrays using horn or slot aerials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • H01Q1/288Satellite antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • H01Q15/08Refracting or diffracting devices, e.g. lens, prism formed of solid dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • H01Q15/10Refracting or diffracting devices, e.g. lens, prism comprising three-dimensional array of impedance discontinuities, e.g. holes in conductive surfaces or conductive discs forming artificial dielectric

Definitions

  • the present invention relates to a quasi-optical beamformator for an elementary telecommunications antenna, in particular satellite and preferably in the Ka band.
  • the invention also relates to an elementary antenna comprising such a beam former, to an antenna system comprising such an elementary antenna, a platform, in particular terrestrial, air or space, comprising at least one elementary antenna or one above-mentioned antenna system, and a method of telecommunication between two stations using the elementary antenna or the above-mentioned antenna system.
  • obtaining a good quality communication implies performance for the electromagnetic waves produced by the antenna system used in the communication in terms of gain and level of the sidelobes (ratio between the intensity of side lobes and the intensity of the main lobe).
  • the electromagnetic waves of the Ka band have a frequency between 27.5 GigaHertzs (GHz) and 31 GHz while in reception, the electromagnetic waves of the Ka band have a frequency between 17.3 GHz and 21.2 GHz.
  • the polarizations of the waves in transmission and in reception are generally of the circular type, whether or not they are opposed.
  • the antenna should be oriented in order to point to the satellite allowing the link to be established.
  • solutions of the parabolic antenna type are generally not preferred, particularly in a land or air context.
  • an electronic scanning antenna comprising two separate antenna panels respectively for the transmission of a wave at a frequency around 30 GHz and for the reception of a wave at a frequency around 20 GHz.
  • the electronic scanning antenna obtained has a significant size corresponding to the radiating surfaces of each of the modes. operation (transmission / reception).
  • the efficiency of such an antenna is often insufficient because unit antennas of the patch type are most often used.
  • a circular polarization in a first direction in the emissive part and of a circular polarization in a second direction opposite to the first direction for the reception part proves to be difficult.
  • the use of a polarizer reduces the flexibility of use of the scanning antenna considered.
  • the antenna obtained has a large bulk due to the use of a polarizer and especially of two panels used for transmission and reception.
  • an antenna structure capable of receiving waves at a frequency distinct from the waves emitted while being compact has been proposed in the application.
  • FR 3 013 909 A1 Such an antenna structure is based on the implementation of a radiating guide horn loaded with dielectric and incorporating a polarizer for the generation of the necessary circular polarization.
  • the subject of the invention is also an elementary antenna comprising at least one radiating element and a quasi-optical beam former as described above, the output of the quasi-optical beam former being suitable for supplying the input of said at least one element. beaming.
  • the subject of the invention is also an antenna system comprising at least one elementary antenna as described above.
  • the invention also relates to a platform, in particular aerial, comprising at least one elementary antenna as described above or an antenna system as described above.
  • a subject of the present invention is also a method for telecommunications, in particular by satellite, between two stations, the method comprising the use of at least one elementary antenna as described above or an antenna system as described above.
  • the elementary antenna A according to the present invention comprises a quasi-optical beam former 10, or FFQO, of which exemplary embodiments are represented respectively on the figures 1 and 2 .
  • the parallel plate waveguide 12 (PPW standing for “Parallel Plate Waveguide”) is a transmission guide comprising two stacked metal plates, spaced apart. 'one from the other along a layer thickness E C and extending in two longitudinal X and transverse Y directions.
  • Such a PPW waveguide 12 is suitable for concentrating the energy supplied by a power source 16 suitable for producing one or more electromagnetic waves.
  • the PPW waveguide 12 comprises a focusing plane structure corresponding to a wafer 14 of a gradient-index lens (ie having a refractive index varying as a function of the position within the lens) whose thickness E L extends in the Z direction orthogonal to the XY plane and whose rear face rests on one of the metal plates of the waveguide 12.
  • a gradient-index lens ie having a refractive index varying as a function of the position within the lens
  • the term “slice” (14) means a portion of thickness E L taken along a meridian sampling plane in an ellipsoid of revolution or a semi-ellipsoid of revolution.
  • the contour along the thickness E L of the wafer is elliptical, respectively semi-elliptical.
  • the wafer 14 of the gradient-index lens of the first layer C 1 rests on the metal plate 15 common to both the first waveguide 12 1 of the first layer C 1 and to the second waveguide 12 2 of the first layer C 2 , this common metal plate corresponding to the polarizer of the quasi-optical beam former 10 according to the present invention.
  • the wafer 14 of the gradient-index lens is oriented in the longitudinal direction X of diffusion of the energy supplied by the source 16 towards a radiating element 18 or a plurality of M identical radiating elements 18 contiguous to each other in the direction transverse Y (with M ⁇ 2), so that the diameter D of the gradient index lens, opposite the pole P of the slice 14 of the gradient index lens, is in contact with the entrance of a plurality of radiating elements 18.
  • the elementary antenna A corresponds to a radiating line of identical radiating elements 18 contiguous.
  • Each radiating element 18 has a parallelepipedal shape, and comprises, at the level of the diameter D of the wafer 14 of the gradient-index lens, a first polarizing part 20 in which the polarizer 15 of the quasi-optical beam former 10 extends according to the invention, the polarizer 15 being suitable for delivering for each layer C 1 or C 2 a circularly polarized plane wave from the spherical electromagnetic wave delivered at the output of the source 16, and a second part or output 22 dedicated to the 'transmission / reception as such.
  • a radiating element 18 of cylindrical shape shown in relation to the figure 4 is also suitable for use according to the present invention.
  • the thickness E L of the wafer 14 of the gradient-index lens is less than or equal to the thickness E C of the waveguide 12 with parallel plates, which makes it possible to guarantee a compactness of each planar layer C 1 or C 2 .
  • Such a wafer 14 of a gradient-index lens makes it possible to focus the spherical radiofrequency wave emitted by the source 16 by transforming it into a plane wave in the waveguide 12 PPW.
  • the law of the index in the slice of the gradient-index lens being by definition discrete (and not continuous), the gradient-index lens delivers a focal spot allowing a large range of depointing.
  • the quasi-optical beam former 10 comprising within a layer C 1 or C 2 such a combination is therefore suitable for concentrating the energy and focusing the wave produced within a parallel guide 12 wideband compatible with the plurality of radiating elements 18 while avoiding the machining difficulties of the solutions of the prior art.
  • the implementation of the wafer 14 of a gradient index lens allows a significant reduction in mass of the order of two to three times less than the solutions of the prior art.
  • the supply of radiating element (s) 18 according to the present invention presents a simplification of production suitable for reducing the impact of machining tolerances on the performance inherent in the solutions of the prior art.
  • Different types of gradient index lenses can be used to extract the wafer 14 according to the present invention.
  • the slice 14 has an outline along the thickness of elliptical, semi-elliptical, or even hemispherical shape as shown in the examples of figures 1 and 2 .
  • the semi-elliptical or hemispherical shapes make it possible to limit the dimensions of the quasi-optical beam former 10
  • the material used to form the gradient index lens is for example dielectric or metallic.
  • the lens slice 14 is inhomogeneous hemispherical with an index gradient of the Maxwell fish-eye type (HMFE standing for “half Maxwell's fish-eye”).
  • HMFE Maxwell fish-eye type
  • the slice 14 of the HMFE lens is taken along a meridian plane of the hemisphere of the lens (ie hemisphere plane including the pole P), and suitable for being placed in each waveguide 12 1 and 12 2 with plates parallels.
  • the wafer 14 of HMFE lens is formed from a plurality of N materials 14 1 to 14 N , exhibiting distinct discrete dielectric characteristics, and distributed continuously, successively, and concentrically along the radius R of the wafer, with 3 ⁇ N ⁇ 10.
  • the quasi-optical beamformer layer 10 structure according to the invention is easily scalable, ie capable of adapting to the number M of elements.
  • the wafer 14 C1 , 14 C2 of HMFE lens of each layer C 1 and C 2 is formed of a diffractive dielectric material having a plurality of orifices H whose density increases concentrically along the radius R of the wafer.
  • the index gradient in terms of dielectric constant of the wafer 14 of the HMFE lens is obtained by considering strata distributed continuously, successively and concentrically of the same material but having a density of different materials per stratum, the material density being increasing from the layer of material comprising the pole P to the layer of material comprising the center O of the HMFE lens.
  • the wafer 14 of the HMFE lens is devoid of dielectric material and formed of a metallic material corresponding to a set of metallic pads for example arranged in the air instead of the orifices H of the figure 2 so as to also obtain an index gradient along the radius R of the slice 14.
  • the quasi-optical beam former 10 is particularly suitable for use in an electromagnetic band Ka, because it comprises the two superimposed layers C 1 and C 2 (in other words two waveguides 12 1 and 12 2 superimposed and having a metal plate common 15) of quasi-optical beamforming, each layer being able to operate according to at least two distinct operating frequencies f 1 and f 2 (ie each layer C 1 and C 2 being at least dual-band).
  • each layer C 1 and C 2 is associated with a distinct operating polarization state so that the quasi-optical beamformator 10 is adapted to output a circularly polarized wave when the two layers C 1 and C 2 are activated simultaneously, a separate circular polarization state being produced for each layer C 1 and C 2 .
  • the quasi-optical beam former 10 comprises the polarizer 15 (not shown in the figures 1 and 2 ) placed parallel between these two layers C 1 and C 2 and also able to extend, in the X direction in a polarizing part 20 of each radiating element 18.
  • the quasi-optical beam former 10 is dual-band and able to implement a distinct linear polarization for each layer C 1 or C 2 if only one layer is activated at the same time selectively by the source 16 (ie excited) or a circular polarization when the two layers C 1 and C 2 are activated simultaneously and distinctly circularly polarized by means of the polarizer 15, which makes it suitable for use in the Ka electromagnetic band, where the dedicated frequencies transmission and reception are distinct, in particular for a SATCOM satellite application.
  • each layer C 1 or C 2 provides a circular polarization state which is specific to it, for example left circular for C 1 and right circular for C 2 .
  • each layer C 1 and C 2 is able to receive two distinct radiofrequency waves supplied by one or the other of the two parts 16 1 and 16 2 of source 16.
  • the two parts 16 1 and 16 2 of source operating identically, are each suitable for supplying electromagnetic waves according to at least two distinct frequencies, and to do this are each provided with a duplexer suitable for selecting at least the generation of an electromagnetic wave at a first frequency f 1 , dedicated, for example, on the emission of electromagnetic waves of the Ka band, f 1 then being between 27.5 GHz and 31 GHz, or the generation of an electromagnetic wave at a second frequency f 2 , dedicated, for example, to the reception of the electromagnetic waves of the Ka band, f 2 then being between 17.3 GHz and 21.2 GHz.
  • the polarizer 15 is arranged so as to polarize the waves electromagnetic that the first part 16 1 of source 16 and the second part 16 2 of source 16 are suitable for providing so as to supply the radiating element (s) 18.
  • the polarizer 15 itself comprises two parts, not shown, arranged so as to circularly polarize in a first direction the electromagnetic waves that the first part 16 1 of source 16 is able to emit, and to circularly polarize the waves that the second part 16 2 source 16 is suitable for transmitting in a direction opposite to the first direction.
  • such a polarizer 15 is for example a polarizer 15 based on a septum.
  • the quasi-optical beam former 10 is suitable for supplying in a compact manner one or more radiating element (s) 18 suitable for emitting and / or receiving waves in two polarization states. different, in this case for the example of figure 1 or the figure 2 , left and right circular polarizations.
  • An antenna system 100 according to one embodiment is shown in figure 3 .
  • the antenna system 100 is an assembly of elementary antennas A (or radiating lines) assembled so as to obtain V lines each grouping together M adjacent identical radiating elements 18.
  • the antenna system 100 is more compact and lighter compared to the antenna systems of the prior art. This effect is amplified by the lightness of the power supply to each elementary antenna A, such a power supply corresponding, as described above, to the quasi-optical beamformer 10 according to the invention.
  • each of the first and second parts of sources 16 1 , 16 2 of the various elementary antennas A 1 to A V are suitable for being connected. to a duplexer (not shown) in order to guarantee good insulation between the layers C 1 and C 2 of the quasi-optical beam former 10 according to the present invention.
  • a duplexer is a device allowing the use of the same antenna for the transmission and reception of a signal. Switches inserted between the duplexer and the first and second parts of sources 16 1 , 16 2 can allow easy selection of the source part 16 1 , 16 2 and the desired operation for the antenna system 100.
  • each elementary antenna A is associated with a phase control circuit.
  • phase control circuits associated with each of the elementary antennas A, for example it is possible to carry out a depointing according to the Z axis in the XZ plane.
  • one or more complementary motorized systems along an axis is associated with the antenna system 100.
  • Such an antenna system 100 can advantageously be used in a platform, in particular terrestrial, aerial or satellite.
  • the compactness and lightness of the antenna system 100 makes it possible to reduce the constraints at the level of the installations of equipment on the platform.
  • the radiating element 18 supplied by the quasi-optical beam former according to the invention is cylindrical and conforms to the subject of the application. FR 3 013 909 A1 as illustrated by figure 4 .
  • the radiating element 18 comprises a horn 24, a polarizing part 20 comprising an end 25, dielectric elements 26 and two ports 28, 30 for the waves emitted or received by the radiating element 18.
  • the horn 24 comprises a first transmission-reception part 22 1 suitable for transmitting and receiving a wave according to a state of polarization and a second part according to another state of polarization 22 2 , distinct from the first transmission-reception part 22 1 .
  • each part 22 1 and 22 2 is respectively associated via the accesses 28 and 30 respectively, with the first supply layer C 1 and with the second supply layer C 2 of the quasi-optical beam former 10 according to the present invention.
  • the parts 22 1 and 22 2 are suitable for being associated in a single block.
  • Each of the first and second transmission-reception parts 22 1 , 22 2 is suitable for transmitting and receiving an electromagnetic wave at a first frequency f 1 or at a second frequency f 2 , the ratio between the second frequency f 2 and the first frequency f 1 is greater than 1.2, and preferably greater than 1.5.
  • the horn 24 has a cylindrical shape giving the emission of the elementary antenna A a broadband character.
  • the band covered by a horn typically extends 40% on either side of the operating frequency.
  • the first transmission-reception part 22 1 and the second transmission-reception part 22 2 each have the shape of a half-disc, the association of the two transmission-reception parts forming the cornet 24.
  • a horn dimensioned to operate over a wide frequency band has external dimensions which are constrained by the operating wavelength corresponding to the lowest of the frequencies to be transmitted or received.
  • the interior of it is empty.
  • the inside of the horn 24 is filled with a dielectric material in order to reduce the physical dimensions of the horn 24.
  • the wavelength in a dielectric material is smaller. than in the corresponding wavelength in air.
  • This dielectric material is a substrate having a permittivity of between two and five depending on the production constraints.
  • the polarizer 15 extends both in the polarizing part 20 of the radiating element 18 and in the quasi-optical beam former 10.
  • the polarizer 15 is arranged so as to polarize the waves that the first transmission-reception part 22 1 and the second transmission-reception part 22 2 are suitable for emitting.
  • the polarizer 15 comprises two parts arranged, not shown, so as to circularly polarize in a first direction the waves that the first transmission-reception part 22 1 is able to emit and to circularly polarize the waves that the second transmission part -reception 22 2 is suitable for sending in a direction opposite to the first direction.
  • the first meaning is right-hand polarization.
  • such a radiating element 18 in accordance with the subject of the application FR 3 013 909 A1 is for example suitable for emitting and / or receiving waves having a polarization right circular at the first frequency f 1 .
  • Such a radiating element 18 is also suitable for emitting and / or receiving waves having a left-hand circular polarization at the second frequency f 2 .
  • the polarizer 15 is also part of the horn 24 (i.e. also extends into the horn 24).
  • the constituent elements of the elementary antenna A namely the quasi-optical beam former 10 and the one or more radiating elements 18 are machined together so as to form a single part in which the polarizer 15 extends over the entire dimension along the longitudinal direction X of diffusion of the energy supplied by the source (s) 16 towards the radiating element 18 or the plurality of M identical radiating elements 18 contiguous to each other according to the transverse direction Y (with M ⁇ 2).
  • the dielectric elements 26 are inserted in order to reduce the electrical dimension with respect to the wavelength and thus to obtain an elementary antenna A with dimensions making it possible to bring the radiating elements 18 sufficiently together during the networking in order to facilitate angular scanning over a sufficiently large range while keeping radiation performance compatible with the envisaged satellite link type application.
  • the dielectric elements 26 are preferably only located at the level of the accesses 28, 30 as well as in the polarizer 15. As a variant, the dielectric elements 26 are extended in the parts 22 1 and 22 2 .
  • Each access 28, 30 is opposite a transmission-reception part of the horn 24.
  • an access 28 for a left circular polarized wave is therefore provided opposite the first transmission-reception part 22 1 of the. horn 24 while an access 30 for a right circular polarized wave is provided opposite the second transceiver part 22 2 .
  • the first transmission-reception part 22 1 receives electromagnetic waves in a state of polarization as soon as the horn 24 is electrically excited. This wave is left circular polarized by the polarizer 15. This wave then passes through the port 28 provided for a left circular polarized wave.
  • a right circular polarized wave passes through the port 30 provided for a right circular polarized wave. This wave then passes through the polarizer 15 before being emitted by the second transmission-reception part 22 2 . This transmission-reception operation can be reversed between accesses 28 and 30.
  • a single radiating element 18 makes it possible to ensure both the transmission and reception functions, for two frequencies f 1 and f 2 whose ratio is greater than to 1.2. It is a compact dual-band horn 24 with circular polarization which makes each radiating element 18 dual-band.
  • each radiating element 18 is suitable for emitting and / or receiving waves in two different states of polarization, for example, left and right circular polarizations.
  • a linearly polarized wave is desired, either the two accesses 28, 30 are used simultaneously by applying them, via the layers C 1 and C 2 of the quasi-optical beam former 10 and the parts of sources 16 1 and 16 2 , a certain phase shift depending on the orientation of the desired polarization, or a single port 28 or 30 is used and only one of the two layers C 1 or C 2 is selectively excited by the source 16.
  • the horn 24 alternately has a parallelepipedal shape as illustrated in the figures 1 and 2 previously described.
  • the specific feed based on the use of the quasi-optical beam former 10 according to the present invention allows in association with one or more radiating elements 18 such as those of the application FR 3 013 909 A1 or parallelepipedal radiating elements 18 to obtain a very effective antenna system because it mainly focuses, with machining constraints and associated production costs lower than the power supplies according to the prior art, while ensuring a radiation pattern in accordance with standards, a use for both passive and active antennas and an implementation scalability suitable for adapting to a variation in the number of radiating elements to be implemented so as to optimize the resulting antenna gain.

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Optical Integrated Circuits (AREA)

Description

  • La présente invention concerne un formateur de faisceaux quasi-optique pour antenne élémentaire de télécommunications, notamment satellitaires et de préférence dans la bande Ka. L'invention se rapporte aussi à une antenne élémentaire comportant un tel formateur de faisceaux, à un système antennaire comportant une telle antenne élémentaire, une plateforme, notamment terrestre, aérienne ou spatiale, comportant au moins une antenne élémentaire ou un système antennaire précités, et un procédé de télécommunication entre deux stations utilisant l'antenne élémentaire ou le système antennaire précités.
  • Dans le domaine des communications satellitaires, l'obtention d'une communication de bonne qualité implique des performances pour les ondes électromagnétiques produites par le système antennaire utilisé dans la communication en termes de gain et de niveau des lobes secondaires (rapport entre l'intensité des lobes secondaires et l'intensité du lobe principal).
  • Dans le cas particulier de la bande électromagnétique Ka, deux bandes de fréquences distinctes sont impliquées. En effet, en émission, les ondes électromagnétiques de la bande Ka ont une fréquence comprise entre 27,5 GigaHertzs (GHz) et 31 GHz tandis qu'en réception, les ondes électromagnétiques de la bande Ka ont une fréquence comprise entre 17,3 GHz et 21,2 GHz. En outre, les polarisations des ondes en émission et en réception sont généralement de type circulaires opposées ou non.
  • Ces fréquences et ces polarisations circulaires en réception et en émission imposent des contraintes sur le système antennaire. De plus, dans le contexte de liaison satellitaire, il convient d'orienter l'antenne afin de pointer le satellite permettant d'établir la liaison. En outre, pour réduire la signature visuelle (l'encombrement physique), les solutions de type antenne parabolique ne sont généralement pas privilégiées notamment en contexte terrestre ou aérien.
  • Parmi les systèmes antennaires permettant de respecter ces différentes contraintes, il est connu d'utiliser une antenne à balayage électronique comprenant deux panneaux antennaires disjoints respectivement pour l'émission d'une onde à une fréquence autour de 30 GHz et pour la réception d'une onde à une fréquence autour de 20 GHz. Toutefois, l'antenne à balayage électronique obtenue présente un encombrement important correspondant aux surfaces rayonnantes de chacun des modes de fonctionnement (émission/réception). En outre, l'efficacité d'une telle antenne est souvent insuffisante car sont utilisées le plus souvent des antennes unitaires de type patch.
  • De plus, la mise en œuvre d'une polarisation circulaire dans un premier sens dans la partie émissive et d'une polarisation circulaire dans un deuxième sens opposé au premier sens pour la partie de réception s'avère difficile. Notamment, l'emploi d'un polariseur réduit la flexibilité d'utilisation de l'antenne à balayage considérée.
  • Afin de limiter les pertes de l'antenne à balayage électronique, il est également connu d'utiliser des structures de type cornet pour obtenir une meilleure efficacité.
  • Néanmoins, dans ce cas également, l'antenne obtenue présente un encombrement important du fait de l'emploi d'un polariseur et surtout de deux panneaux utilisés pour l'émission et la réception.
  • Pour remédier à ces inconvénients, une structure antennaire pouvant recevoir des ondes à une fréquence distincte des ondes émises tout en étant compacte a été proposée dans la demande FR 3 013 909 A1 . Une telle structure antennaire est basée sur la mise en œuvre d'un cornet en guide rayonnant chargé avec du diélectrique et intégrant un polariseur pour la génération de la polarisation circulaire nécessaire.
  • Cependant, une telle structure requiert la mise en œuvre d'une alimentation complexe d'un cornet, ou d'une pluralité de cornets, notamment, au moyen d'un réseau de distribution en guide. En effet, l'utilisation d'un guide implique un usinage présentant des tolérances, une masse et un coût importants imposant le recours à des dispositifs d'entrainement volumineux.
  • Des solutions à base de formateurs de faisceaux ont été proposées notamment dans la demande FR 3 038 457 basée sur une structure à excroissance(s) correspondant à une structure parabolique intégrée à l'alimentation. Cependant, une telle structure n'est pas adaptée pour une utilisation en bande électromagnétique Ka, car impropre à générer une polarisation circulaire, et présentant une structure à excroissance(s) dont l'épaisseur est propre à réduire la capacité de dépointage d'un système antennaire monodimensionnel actif à balayage électronique. Un autre formateur de faisceau est divulgué dans le document US 6,426,726 B1 .
  • Il existe donc un besoin pour une alimentation simplifiée, compacte allégée et propre à permettre la génération d'une polarisation circulaire tout en étant compacte et en conservant la capacité de dépointage d'une structure antennaire propre à recevoir des ondes à une fréquence distincte des ondes émises.
  • A cet effet, l'invention a pour objet un formateur de faisceaux quasi-optique pour antenne élémentaire de télécommunications, notamment satellitaires, le formateur de faisceaux quasi-optique présentant une entrée propre à être connectée à une source d'onde électromagnétique et une sortie propre à alimenter au moins un élément rayonnant,
    le formateur de faisceaux quasi-optique comprenant au moins :
    • une première couche et une deuxième couche superposées de formation de faisceaux quasi-optique, chaque couche étant associée à un état de polarisation d'onde distinct, chaque couche comprenant :
      • un guide d'onde à plaques parallèles, et
      • une tranche de lentille à gradient d'indice dont la forme correspond à un ellipsoïde de révolution ou à un demi-ellipsoïde de révolution, la tranche étant, prélevée selon un plan méridien de l'ellipsoïde de révolution, ou du demi-ellipsoïde de révolution, et placée parallèlement entre les plaques parallèles du guide d'onde à plaques parallèles, et
    • un polariseur placé parallèlement entre les deux couches superposées.
  • Selon des modes de réalisation particuliers de l'invention, le formateur de faisceaux quasi-optique présente également l'une ou plusieurs des caractéristiques suivantes, prise(s) isolément ou suivant toute(s) combinaison(s) techniquement possible(s) :
    • la lentille à gradient d'indice est formée d'un matériau diélectrique ;
    • la lentille est une lentille hémisphérique inhomogène à gradient d'indice de type œil de poisson de Maxwell, dont la tranche est formée :
      • d'une pluralité de N matériaux diélectriques, présentant des caractéristiques diélectriques discrètes distinctes, et répartis en continu, successivement, et concentriquement selon le rayon de la tranche, avec 3≤N≤10, ou
      • d'un matériau diélectrique diffractif présentant une pluralité d'orifices dont la densité augmente concentriquement selon le rayon de la tranche ;
      • la lentille à gradient d'indice est formée à partir d'un matériau correspondant à un ensemble de plots métalliques.
  • L'invention a également pour objet une antenne élémentaire comprenant au moins un élément rayonnant et un formateur de faisceaux quasi-optique tel que précédemment décrit, la sortie du formateur de faisceaux quasi-optique étant propre à alimenter l'entrée dudit au moins un élément rayonnant.
  • Suivant des modes de réalisation particuliers, l'antenne élémentaire présente également l'une ou plusieurs des caractéristiques suivantes, prise(s) isolément ou suivant toute(s) combinaison(s) techniquement possible(s) :
    • ledit au moins un élément rayonnant comprend un cornet comprenant une première partie d'émission-réception alimentée par la première couche du formateur de faisceaux quasi-optique, et une deuxième partie d'émission-réception alimentée par la deuxième couche du formateur de faisceaux quasi-optique,
    chacune des première et deuxième parties d'émission-réception étant propre à émettre et recevoir une onde électromagnétique à une première fréquence ou à une deuxième fréquence, le rapport entre la deuxième fréquence et la première fréquence étant supérieur à 1,2, de préférence supérieur à 1,5, la première fréquence et la deuxième fréquence appartenant à la bande Ka du spectre électromagnétique,
    le polariseur du formateur de faisceaux quasi-optique étant propre à s'étendre entre la première partie d'émission-réception et la deuxième partie d'émission-réception.
    • le polariseur est propre à polariser circulairement dans un premier sens les ondes électromagnétiques que la première partie d'émission-réception est propre à émettre et à polariser circulairement les ondes électromagnétiques que la deuxième partie d'émission-réception est propre à émettre dans un sens opposé au premier sens.
  • L'invention a également pour objet un système antennaire comportant au moins une antenne élémentaire telle que précédemment décrite.
  • En outre, l'invention se rapporte aussi à une plateforme, notamment aérienne, comportant au moins une antenne élémentaire telle que précédemment décrite ou un système antennaire telle que précédemment décrit.
  • La présente invention a également pour objet un procédé de télécommunications, notamment par satellite, entre deux stations, le procédé comprenant l'emploi d'au moins une antenne élémentaire telle que précédemment décrit ou un système antennaire tel que décrit précédemment.
  • D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée qui suit, de modes de réalisation de l'invention, donnés à titre d'exemple uniquement et en références aux dessins qui sont :
    • figure 1, une vue schématique en perspective d'une antenne élémentaire comprenant un formateur de faisceaux quasi-optique selon un premier mode de réalisation ;
    • figure 2, une vue schématique en perspective d'une antenne élémentaire comprenant un formateur de faisceaux quasi-optique selon un deuxième mode de réalisation ;
    • figure 3, une vue schématique en perspective d'un système antennaire selon un mode de réalisation de l'invention ;
    • figure 4, une vue schématique en perspective d'un exemple d'élément rayonnant d'antenne élémentaire selon la présente invention.
  • Dans la suite de la description, l'expression « sensiblement » exprimera une relation d'égalité à plus ou moins 10%.
  • L'antenne élémentaire A selon la présente invention comprend un formateur de faisceaux quasi-optique 10, ou FFQO, dont des exemples de réalisation sont représentés respectivement sur les figures 1 et 2.
  • De manière générale, un tel formateur de faisceaux quasi-optique 10 comprend au moins une première couche C1 et une deuxième couche C2 superposées de formation de faisceaux quasi-optique, chaque couche C1 ou C2 étant associée à un état de polarisation d'onde distinct, chaque couche C1 ou C2 comprenant :
    • un guide d'onde 12 à plaques parallèles, et
    • une tranche 14 de lentille à gradient d'indice dont la forme correspond à un ellipsoïde de révolution ou un demi-ellipsoïde de révolution, la tranche étant, prélevée selon un plan méridien de l'ellipsoïde de révolution, ou du demi-ellipsoïde de révolution, et propre à être placée parallèlement entre les plaques parallèles du guide d'onde 12 à plaques parallèles, et
    • un polariseur 15 placé parallèlement entre les deux couches superposées.
  • Plus précisément, de manière connue, pour chaque couche C1 ou C2, le guide d'onde 12 à plaques parallèles (PPW de l'anglais « Parallel Plate Waveguide ») est un guide de transmission comprenant deux plaques métalliques empilées, espacées l'une de l'autre selon une épaisseur de couche EC et s'étendant, selon deux directions longitudinale X et transversale Y.
  • Un tel guide d'onde 12 PPW est propre à concentrer l'énergie fournie par une source d'alimentation 16 propre à produire une ou plusieurs ondes électromagnétiques.
  • Selon la présente invention, pour une couche C1 ou C2 considérée, le guide d'onde 12 PPW comprend une structure plane focalisante correspondant à une tranche 14 de lentille à gradient d'indice (i.e. présentant un indice de réfraction variant en fonction de la position au sein de la lentille) dont l'épaisseur EL s'étend selon la direction Z orthogonale au plan XY et dont la face arrière repose sur une des plaques métalliques du guide d'onde 12.
  • Par « tranche » (14) on entend une portion d'épaisseur EL prélevée selon un plan de prélèvement méridien dans un ellipsoïde de révolution ou un demi-ellipsoïde de révolution. Autrement, dit le contour selon l'épaisseur EL de la tranche est elliptique, respectivement demi-elliptique.
  • Plus précisément, la tranche 14 de lentille à gradient d'indice de la première couche C1 repose sur la plaque métallique 15 commune à la fois au premier guide d'onde 121 de la première couche C1 et au deuxième guide d'onde 122 de la première couche C2, cette plaque métallique commune correspondant au polariseur du formateur de faisceaux quasi-optique 10 selon la présente invention.
  • La tranche 14 de lentille à gradient d'indice est orientée selon la direction longitudinale X de diffusion de l'énergie fournie par la source 16 vers un élément rayonnant 18 ou une pluralité de M éléments rayonnants 18 identiques accolés les uns aux autres selon la direction transversale Y (avec M≥2), de sorte que le diamètre D de la lentille à gradient d'indice, opposé au pôle P de la tranche 14 de lentille à gradient d'indice, est en contact avec l'entrée d'une pluralité d'éléments rayonnants 18. Autrement dit, l'antenne élémentaire A, selon les modes de réalisation des figures 1 et 2, correspond à une ligne rayonnante d'éléments rayonnants 18 identiques accolés.
  • Chaque élément rayonnant 18 présente une forme parallélépipédique, et comprend, au niveau du diamètre D de la tranche 14 de lentille à gradient d'indice, une première partie 20 polarisante dans laquelle se prolonge le polariseur 15 du formateur de faisceaux quasi-optique 10 selon l'invention, le polariseur 15 étant propre à délivrer pour chaque couche C1 ou C2 une onde plane polarisée circulairement à partir de l'onde électromagnétique sphérique délivrée en sortie de la source 16, et une deuxième partie ou sortie 22 dédiée à l'émission/réception en tant que telle.
  • A titre d'alternative, un élément rayonnant 18 de forme cylindrique représenté en relation avec la figure 4, détaillée par la suite, est également propre à être utilisé selon la présente invention.
  • Selon la présente invention, l'épaisseur EL de la tranche 14 de lentille à gradient d'indice, est inférieure ou égale à l'épaisseur EC du guide d'onde 12 à plaques parallèles, ce qui permet de garantir une compacité de chaque couche planaire C1 ou C2.
  • Une telle tranche 14 de lentille à gradient d'indice, permet de focaliser l'onde radiofréquence sphérique émise par la source 16 en la transformant en onde plane dans le guide d'onde 12 PPW. La loi de l'indice dans la tranche de lentille à gradient d'indice étant par définition discrète (et non pas continue), la lentille à gradient d'indice délivre une tâche focale permettant une gamme de dépointage importante.
  • Le formateur de faisceaux quasi-optique 10 comprenant au sein d'une couche C1 ou C2 une telle combinaison est donc propre à concentrer l'énergie et focaliser l'onde produite au sein d'un guide 12 parallèle large bande compatible de la pluralité d'élément rayonnants 18 tout en évitant les difficultés d'usinage des solutions de l'art antérieur.
  • Par ailleurs, la mise en œuvre de la tranche 14 de lentille à gradient d'indice permet une réduction de masse significative de l'ordre de deux à trois fois inférieure aux solutions de l'art antérieur.
  • Ainsi, l'alimentation d'élément(s) rayonnant(s) 18 selon la présente invention présente une simplification de réalisation propre à réduire l'impact des tolérances d'usinage sur les performances inhérent aux solutions de l'art antérieur.
  • Différents types de lentilles à gradient d'indice sont propres à être utilisées pour en extraire la tranche 14 selon la présente invention.
  • Selon un mode de réalisation, non représenté, la tranche 14 présente un contour selon l'épaisseur de forme elliptique, demi-elliptique, ou encore hémisphérique tel que représenté sur les exemples des figures 1 et 2. Les formes demi-elliptique, ou encore hémisphérique permettent de limiter les dimensions du formateur de faisceaux quasi-optique 10
  • De plus, le matériau utilisé pour former la lentille à gradient d'indice est par exemple diélectrique ou métallique.
  • En relation avec les figures 1 et 2 deux variantes de lentilles à base de matériau diélectrique sont représentées. Plus précisément, sur ces deux figures, la tranche 14 de lentille est hémisphérique inhomogène à gradient d'indice de type œil de poisson de Maxwell (HMFE de l'anglais « half Maxwell's fish-eye »). La tranche 14 de lentille HMFE est, prélevée selon un plan méridien de l'hémisphère de la lentille (i.e. plan d'hémisphère comprenant le pole P), et propre à être placée dans chaque guide d'onde 121 et 122 à plaques parallèles.
  • Selon le premier mode de réalisation illustré par la figure 1, la tranche 14 de lentille HMFE est formée d'une pluralité de N matériaux 141 à 14N, présentant des caractéristiques diélectriques discrètes distinctes, et répartis en continu, successivement, et concentriquement selon le rayon R de la tranche, avec 3≤N≤10.
  • Sur la figure 1, une configuration à N=6 strates concentriques de matériaux distincts est mise en œuvre, les constantes diélectriques ε1 à εN associées respectivement à chaque strate étant conformes à une distribution diélectrique prédéterminée, leur valeur étant par exemple, comprise entre deux et quatre, et décroissante de 1 à N pour les strates concentriques correspondantes partant du centre O au pôle P de la tranche de lentille HMFE.
  • Un nombre maximal de strates de matériaux diélectriques par exemple N=10 permet d'améliorer la continuité de la distribution des constantes diélectriques discrètes associées à chaque strate de matériau diélectrique par rapport à la configuration à N=6 strates distinctes de matériaux diélectriques.
  • Selon la figure 1, M=13 éléments rayonnants 18 sont représentés. Avantageusement, la structure de couche de formateur 10 de faisceaux quasi-optique selon l'invention est aisément scalable, i.e. propre à s'adapter au nombre M d'éléments rayonnants 18 considérés en modifiant uniquement le diamètre D de la lentille HMFE à concevoir pour en extraire la ou les tranches utilisées selon la présente invention.
  • Ainsi, lorsqu'une augmentation du gain de l'antenne élémentaire A est requis, une augmentation du nombre d'éléments rayonnants 18 est nécessaire et pour se faire le dimensionnement de l'alimentation correspondant formateur 10 de faisceaux quasi-optique selon l'invention est opérée de sorte à en augmenter proportionnellement le diamètre D de lentille HMFE et, selon la direction Y, la largeur de guide d'onde 12 contenant la tranche de lentille HMFE utilisée.
  • Par exemple, pour un diamètre D=60 mm associé à M=13 éléments rayonnants 18 un gain supérieur à 13,5 dB est par exemple obtenu en émission pour l'antenne élémentaire A, tandis que des gains de 15,5 dB et de 17 dB sont respectivement obtenus pour des diamètres D=100 mm associé à M=21 éléments rayonnants 18 et D=200 mm associé à M=43 éléments rayonnants 18.
  • A titre d'alternative, selon le deuxième mode de réalisation illustré par la figure 2, la tranche 14C1, 14C2 de lentille HMFE de chaque couche C1 et C2 est formée d'un matériau diélectrique diffractif présentant une pluralité d'orifices H dont la densité augmente concentriquement selon le rayon R de la tranche.
  • Autrement dit, selon ce deuxième mode de réalisation de la figure 2, le gradient d'indice en termes de constante diélectrique de la tranche 14 de lentille HMFE est obtenu en considérant des strates réparties en continu, successivement et concentriquement de même matériau mais présentant une densité de matériaux distinctes par strate, la densité en matériau étant croissante de la strate de matériau comprenant le pôle P vers la strate de matériau comprenant le centre O de la lentille HMFE.
  • Selon une autre alternative, non représentée, la tranche 14 de lentille HMFE est dépourvue de matériau diélectrique et formée d'un matériau métallique correspondant à un ensemble de plots métalliques par exemple disposés dans l'air en lieu et place des orifices H de la figure 2 de sorte à obtenir également un gradient d'indice selon le rayon R de la tranche 14.
  • Le formateur 10 de faisceaux quasi-optique est particulièrement adapté à une utilisation en bande électromagnétique Ka, car il comprend les deux couches C1 et C2 superposées (autrement dit deux guides d'ondes 121 et 122 superposés et présentant une plaque metallique commune 15) de formation de faisceaux quasi-optique, chaque couche étant propre à fonctionner selon au moins deux fréquences f1 et f2 de fonctionnement distinctes (i.e. chaque couche C1 et C2 étant au moins bi-bande).
  • De plus, chaque couche C1 et C2 est associée à un état de polarisation de fonctionnement distinct de sorte que le formateur 10 de faisceaux quasi-optique est adapté pour fournir en sortie une onde polarisée circulairement lorsque les deux couches C1 et C2 sont activées simultanément, un état de polarisation circulaire distinct étant produit pour chaque couche C1 et C2. Pour ce faire, le formateur 10 de faisceaux quasi-optique comprend le polariseur 15 (non représenté sur les figures 1 et 2) placé parallèlement entre ces deux couches C1 et C2 et propre également à s'étendre, selon la direction X dans une partie 20 polarisante de chaque élément rayonnant 18.
  • En d'autres termes, selon cet aspect le formateur 10 de faisceaux quasi-optique est bi-bande et propre à mettre en œuvre une polarisation linéaire distincte pour chaque couche C1 ou C2 si une seule couche est activée à la fois sélectivement par la source 16 (i.e. excitée) ou une polarisation circulaire lorsque les deux couches C1 et C2 sont activées simultanément et polarisées circulairement distinctement au moyen du polariseur 15, ce qui le rend propre à une utilisation en bande électromagnétique Ka, où les fréquences dédiées à l'émission et à la réception sont distinctes, notamment pour une application satellitaire SATCOM.
  • Autrement dit, lorsque les deux couches C1 et C2 sont associées (i.e. jointes en superposition) via le polariseur 15 et activées simultanément, chaque couche C1 ou C2 fournit un état de polarisation circulaire qui lui est propre, par exemple circulaire gauche pour C1 et circulaire droite pour C2.
  • Plus précisément, chaque couche C1 et C2 est propre à recevoir deux ondes radiofréquences distinctes fournies par l'une ou l'autre des deux parties 161 et 162 de source 16. Les deux parties 161 et 162 de source, fonctionnant identiquement, sont chacune propre à fournir des ondes électromagnétiques selon au moins deux fréquences distinctes, et sont pour ce faire dotées chacune d'un duplexeur propre à sélectionner au moins la génération d'une onde électromagnétique à une première fréquence f1, dédiée, par exemple, à l'émission des ondes électromagnétiques de la bande Ka, f1 étant alors comprise entre 27,5 GHz et 31 GHz, ou la génération d'une onde électromagnétique à une deuxième fréquence f2, dédiée, par exemple, à la réception des ondes électromagnétiques de la bande Ka, f2 étant alors comprise entre 17,3 GHz et 21,2 GHz.
  • Selon un exemple de mise en œuvre pour la bande Ka, l'épaisseur de couches C1 et C2 est telle que EC1=EC2=2,2 mm et l'épaisseur du polariseur 15 est de l'ordre de 0,1mm, ce qui aboutit à une hauteur globale du formateur 10 de faisceaux quasi-optique selon la présente invention de 4,5 mm, rendant l'alimentation d'éléments rayonnants compacte et adaptée pour un assemblage en superposition de V lignes rayonnantes (i.e. niveaux) d'un système antennaire 100 tel que représenté et décrit ci-après en relation avec la figure 3. Le polariseur 15 est agencé de manière à polariser les ondes électromagnétiques que la première partie 161 de source 16 et la deuxième partie 162 de source 16 sont propres à fournir de sorte à alimenter le ou les éléments rayonnants 18.
  • Le polariseur 15 comporte lui-même deux parties non représentées agencées de manière à polariser circulairement dans un premier sens les ondes électromagnétiques que la première partie 161 de source 16 est propre à émettre, et à polariser circulairement les ondes que la deuxième partie 162 de source 16 est propre à émettre dans un sens opposé au premier sens.
  • En particulier, un tel polariseur 15 est par exemple un polariseur 15 basé sur un septum.
  • Ainsi, le formateur 10 de faisceaux quasi-optique selon la présente invention est propre à alimenter de manière compacte un ou plusieurs élément(s) rayonnant(s) 18 propre(s) à émettre et/ou recevoir des ondes dans deux états de polarisation différents, en l'occurrence pour l'exemple de la figure 1 ou de la figure 2, des polarisations circulaires gauche et droite.
  • Un système antennaire 100 selon un mode de réalisation est représenté sur la figure 3.
  • Le système antennaire 100 est un assemblage d'antennes élémentaires A (ou lignes rayonnantes) assemblées de manière à obtenir V lignes regroupant chacune M éléments rayonnants 18 identiques accolés.
  • Il est aisé de dissocier la partie dédiée au rayonnement dans le système antennaire 100 des autres éléments du système antennaire 100 et notamment, la partie dédiée à la commutation, au filtrage et au circuit de répartition. Cette dissociation permet de minimiser les pertes globales du système antennaire 100.
  • Le système antennaire 100 est plus compact et allégé au regard des systèmes antennaires de l'art antérieur. Cet effet est amplifié par la légèreté de l'alimentation de chaque antenne élémentaire A, une telle alimentation correspondant, telle que décrite précédemment, au formateur de faisceaux quasi-optique 10 selon l'invention. Par exemple, pour V=54 et M=21 le système antennaire 100 présente par exemple une profondeur sensiblement égale à 250mm correspondant à l'empilement des 54 antennes élémentaires A, chaque antenne élémentaire A présentant une longueur sensiblement égale à 150 mm correspondant au diamètre D de la tranche 14 de lentille HMFE du formateur de faisceaux quasi-optique 10 selon l'invention alimentant M=21 éléments rayonnants 18, et une largeur sensiblement égale à 112 mm correspondant à la largeur du guide 12 d'onde à plaques métalliques.
  • Dans ce mode de réalisation, chacune des première et deuxième parties de sources 161, 162 des différentes antennes élémentaires A1 à AV sont propres à être reliées à un duplexeur non représenté afin de garantir une bonne isolation entre les couches C1 et C2 du formateur 10 de faisceaux quasi-optique selon la présente invention. Un duplexeur est un dispositif permettant l'emploi d'une même antenne pour l'émission et la réception d'un signal. Des commutateurs insérés entre le duplexeur et les première et deuxième parties de sources 161, 162 peuvent permettre une sélection aisée de la partie de source 161, 162 et du fonctionnement désiré pour le système antennaire 100.
  • De plus, chaque antenne élémentaire A est associée à un circuit de contrôle de phase. Ainsi, il est possible d'orienter le faisceau du système antennaire 100 dans des directions quelconques dans un hémisphère, en fonction des circuits de contrôle de phase associés à chacune des antennes élémentaires A, par exemple il est possible de réaliser un dépointage selon l'axe Z dans le plan XZ.
  • Dans le vocabulaire du spécialiste du domaine des antennes, cela s'appelle réaliser un balayage électronique à une dimension ou balayage unidirectionnel. Dans cette configuration, pour obtenir un balayage multi directionnel, un ou plusieurs systèmes motorisés complémentaires selon un axe, par exemple au moyen d'un plateau tournant est associé au système antennaire 100.
  • Un tel système antennaire 100 est avantageusement utilisable dans une plateforme, notamment terrestre, aérienne ou satellitaire. Dans le cadre de cette utilisation, la compacité et la légèreté du système antennaire 100 permet de réduire les contraintes au niveau des implantations d'équipements sur la plateforme.
  • Selon un aspect particulier, l'élément rayonnant 18 alimenté par le formateur de faisceaux quasi-optique selon l'invention, est cylindrique et conforme à l'objet de la demande FR 3 013 909 A1 tel qu'illustré par la figure 4.
  • Plus précisément, tel qu'illustré par la figure 4, l'élément rayonnant 18 comporte un cornet 24, une partie polarisante 20 comprenant une extrémité 25, des éléments diélectriques 26 et deux accès 28, 30 pour les ondes émises ou reçues par l'élément rayonnant 18.
  • Le cornet 24 comporte une première partie d'émission-réception 221 propre à émettre et recevoir une onde selon un état de polarisation et une deuxième partie selon un autre état de polarisation 222, distinct de la première partie d'émission-réception 221.
  • Comme indiqué précédemment, chaque partie 221 et 222 est respectivement associée via les accès 28 et 30 respectivement, à la première couche C1 d'alimentation et à la deuxième couche C2 d'alimentation du formateur 10 de faisceaux quasi-optique selon la présente invention.
  • Les parties 221 et 222 selon une variante de réalisation sont propres à être associées en un seul bloc.
  • Chacune des première et deuxième parties d'émission-réception 221, 222 est propre à émettre et recevoir une onde électromagnétique à une première fréquence f1 ou à une deuxième fréquence f2, le rapport entre la deuxième fréquence f2 et la première fréquence f1 est supérieur à 1,2, et de préférence supérieur à 1,5.
  • Selon une caractéristique particulière, le cornet 24 a une forme cylindrique conférant à l'émission de l'antenne élémentaire A un caractère large bande. La bande couverte par un cornet s'étend typiquement à 40% de part et d'autre de la fréquence de fonctionnement.
  • Ainsi, dans cette variante, la première partie d'émission-réception 221 et la deuxième partie d'émission-réception 222 ont chacune la forme d'un demi-disque, l'association des deux parties d'émission-réception formant le cornet 24.
  • De façon classique, un cornet dimensionné pour fonctionner sur une large bande de fréquence présente des dimensions extérieures qui sont contraintes par la longueur d'onde de fonctionnement correspondant à la plus faible des fréquences à émettre ou recevoir. De plus, l'intérieur de celui-ci est vide.
  • Dans l'exemple présenté, identiquement aux éléments diélectriques 26, l'intérieur du cornet 24 est rempli d'un matériau diélectrique afin de réduire les dimensions physiques du cornet 24. En effet, la longueur d'onde dans un matériau diélectrique est plus petite que dans la longueur d'onde correspondante dans l'air. Ainsi, pour une structure de cornet donné, un élargissement vers la bande de fréquence de fonctionnement est réalisé. Ce matériau diélectrique est un substrat présentant une permittivité comprise entre deux et cinq en fonction des contraintes de réalisation.
  • Tel qu'indiqué précédemment, selon un aspect particulier de l'invention le polariseur 15 s'étend à la fois dans la partie polarisante 20 de l'élément rayonnant 18 et dans le formateur 10 de faisceaux quasi-optique.
  • Dans la partie polarisante 20 de l'élément rayonnant 18, le polariseur 15 est agencé de manière à polariser les ondes que la première partie d'émission-réception 221 et la deuxième partie d'émission-réception 222 sont propres à émettre.
  • Le polariseur 15 comporte deux parties agencées, non représentées, de manière à polariser circulairement dans un premier sens les ondes que la première partie d'émission-réception 221 est propre à émettre et à polariser circulairement les ondes que la deuxième partie d'émission-réception 222 est propre à émettre dans un sens opposé au premier sens.
  • Pour la suite de la description, le premier sens est la polarisation droite.
  • Ainsi, un tel élément rayonnant 18 conforme à l'objet de la demande FR 3 013 909 A1 est par exemple propre à émettre et/ou recevoir des ondes présentant une polarisation circulaire droite à la première fréquence f1. Un tel élément rayonnant 18 est également propre à émettre et/ou recevoir des ondes présentant une polarisation circulaire gauche à la deuxième fréquence f2.
  • Selon une variante, le polariseur 15 fait également partie du cornet 24 (i.e. se prolonge également dans le cornet 24).
  • Selon une variante de réalisation, les éléments constitutifs de l'antenne élémentaire A, à savoir le formateur de faisceaux quasi-optique 10 et le ou la pluralité d'éléments rayonnants 18 sont usinés ensemble de sorte à former une seule pièce dans laquelle le polariseur 15 s'étend sur toute la dimension selon la direction longitudinale X de diffusion de l'énergie fournie par la ou les source(s) 16 vers l'élément rayonnant 18 ou la pluralité de M éléments rayonnants 18 identiques accolés les uns aux autres selon la direction transversale Y (avec M≥2). Dans l'élément rayonnant 18, les éléments diélectriques 26 sont insérés afin de réduire la dimension électrique par rapport à la longueur d'onde et ainsi d'obtenir une antenne élémentaire A avec des dimensions permettant de rapprocher les éléments rayonnants 18 suffisamment lors de la mise en réseau afin de faciliter le balayage angulaire sur une plage suffisamment grande tout en gardant des performances de rayonnement compatibles de l'application de type liaison satellitaire envisagée. Les éléments diélectriques 26 sont préférentiellement uniquement localisés au niveau des accès 28, 30 ainsi que dans le polariseur 15. En variante, les éléments diélectriques 26 sont prolongés dans les parties 221 et 222.
  • Chaque accès 28, 30 est en regard d'une partie d'émission-réception du cornet 24. Par exemple, un accès 28 pour une onde polarisée circulaire gauche est donc prévu en regard de la première partie d'émission-réception 221 du cornet 24 tandis qu'un accès 30 pour une onde polarisée circulaire droite est prévu en regard de la deuxième partie d'émission-réception 222.
  • En fonctionnement, la première partie d'émission-réception 221 reçoit des ondes électromagnétiques selon un état de polarisation dès que le cornet 24 est excité électriquement. Cette onde est polarisée circulaire gauche par le polariseur 15. Cette onde passe ensuite par l'accès 28 prévu pour une onde polarisée circulaire gauche.
  • Une onde polarisée circulaire droite passe par l'accès 30 prévu pour une onde polarisée circulaire droite. Cette onde passe ensuite à travers le polariseur 15 avant d'être émise par la deuxième partie d'émission-réception 222. Ce fonctionnement émission-réception peut être inversé entre les accès 28 et 30.
  • Il apparaît ainsi qu'un seul élément rayonnant 18 permet d'assurer à la fois les fonctions émission et réception, pour deux fréquences f1 et f2 dont le rapport est supérieur à 1,2. C'est un cornet 24 bi-bande compact à polarisation circulaire qui rend chaque élément rayonnant 18 bi-bande.
  • En outre, chaque élément rayonnant 18 est propre à émettre et/ou recevoir des ondes dans deux états de polarisation différents, par exemple, des polarisations circulaires gauche et droite. Dans le cas où une onde à polarisation linéaire est souhaitée, soit les deux accès 28, 30 sont utilisés simultanément en leur appliquant, via les couches C1 et C2 du formateur 10 de faisceaux quasi optique et les parties de sources 161 et 162, un certain déphasage en fonction de l'orientation de la polarisation souhaitée, ou un seul accès 28 ou 30 est utilisé et une seule des deux couches C1 ou C2 est excitée sélectivement par la source 16.
  • Le cornet 24 présente alternativement une forme parallélépipédique comme illustré sur les figures 1 et 2 décrites précédemment.
  • Ainsi, l'alimentation spécifique basée sur l'utilisation du formateur 10 de faisceaux quasi-optique selon la présente invention permet en association avec un ou plusieurs éléments rayonnants 18 tels que ceux de la demande FR 3 013 909 A1 ou des éléments rayonnants 18 parallélépipédiques d'obtenir un système antennaire très efficace car principalement focalisant, avec des contraintes d'usinage et des coûts de réalisation associés abaissés par rapport aux alimentations selon l'art antérieur, tout en garantissant un diagramme de rayonnement conforme aux normes, une utilisation pour des antennes aussi bien passives qu'actives et une scalabilité de réalisation propre à s'adapter à une variation du nombre d'éléments rayonnants à mettre en œuvre de sorte à optimiser le gain antennaire résultant.

Claims (10)

  1. Formateur (10) de faisceaux quasi-optique pour antenne élémentaire (A) de télécommunications, notamment satellitaires, le formateur (10) de faisceaux quasi-optique présentant une entrée propre à être connectée à une source (16) d'onde électromagnétique et une sortie propre à alimenter au moins un élément rayonnant (18), le formateur (10) de faisceaux quasi-optique comprenant au moins :
    - une première couche (C1) et une deuxième couche (C2) superposées de formation de faisceaux quasi-optique, chaque couche étant associée à un état de polarisation d'onde distinct, chaque couche comprenant :
    - un guide d'onde (12) à plaques parallèles, et
    - une tranche (14) de lentille à gradient d'indice dont la forme correspond à un ellipsoïde de révolution ou à un demi-ellipsoïde de révolution, la tranche étant, prélevée selon un plan méridien de l'ellipsoïde de révolution, ou du demi-ellipsoïde de révolution, et placée parallèlement entre les plaques parallèles du guide d'onde (12) à plaques parallèles, et
    - un polariseur placé parallèlement entre les deux couches superposées.
  2. Formateur (10) de faisceaux quasi-optique selon la revendication 1, dans lequel la lentille à gradient d'indice est formée d'un matériau diélectrique.
  3. Formateur (10) de faisceaux quasi-optique selon la revendication 2, dans lequel la lentille est une lentille hémisphérique inhomogène à gradient d'indice de type œil de poisson de Maxwell, dont la tranche (14) est formée :
    - d'une pluralité de N matériaux diélectriques, présentant des caractéristiques diélectriques discrètes distinctes, et répartis en continu, successivement, et concentriquement selon le rayon (R) de la tranche, avec 3≤N≤10, ou
    - d'un matériau diélectrique diffractif présentant une pluralité d'orifices (H) dont la densité augmente concentriquement selon le rayon (R) de la tranche (14).
  4. Formateur (10) de faisceaux quasi-optique selon la revendication 1, dans lequel la lentille à gradient d'indice est formée à partir d'un matériau correspondant à une pluralité de plots métalliques.
  5. Antenne élémentaire (A) comprenant au moins un élément rayonnant (18) et un formateur (10) de faisceaux quasi-optique selon l'une quelconque des revendications 1 à 4, la sortie du formateur (10) de faisceaux quasi-optique étant propre à alimenter l'entrée dudit au moins un élément rayonnant (18).
  6. Antenne élémentaire (A) selon la revendication 5, dans lequel ledit au moins un élément rayonnant (18) comprend un cornet (24) comprenant une première partie d'émission-réception (221) alimentée par la première couche (C1) du formateur (10) de faisceaux quasi-optique, et une deuxième partie d'émission-réception (222) alimentée par la deuxième couche (C2) du formateur (10) de faisceaux quasi-optique,
    chacune des première et deuxième parties d'émission-réception (221, 222) étant propre à émettre et recevoir une onde électromagnétique à une première fréquence (f1) ou à une deuxième fréquence (f2), le rapport entre la deuxième fréquence et la première fréquence étant supérieur à 1,2, de préférence supérieur à 1,5, la première fréquence (f1) et la deuxième fréquence (f2) appartenant à la bande Ka du spectre électromagnétique,
    le polariseur du formateur (10) de faisceaux quasi-optique étant propre à s'étendre entre la première partie d'émission-réception (221) et la deuxième partie d'émission-réception (222).
  7. Antenne élémentaire (A) selon la revendication 6, dans lequel le polariseur est propre à polariser circulairement dans un premier sens les ondes électromagnétiques que la première partie d'émission-réception (221) est propre à émettre et à polariser circulairement les ondes électromagnétiques que la deuxième partie d'émission-réception (222) est propre à émettre dans un sens opposé au premier sens.
  8. Système antennaire (100) comportant au moins une antenne élémentaire (A) selon l'une quelconque des revendications 5 à 7.
  9. Plateforme comportant au moins une antenne élémentaire (A) selon l'une quelconque des revendications 5 à 7 ou un système antennaire (100) selon la revendication 8.
  10. Procédé de télécommunications, notamment par satellite, entre deux stations de télécommunications, le procédé comprenant l'emploi d'au moins une antenne élémentaire (A) selon l'une quelconque des revendications 5 à 7 ou un système antennaire (100) selon la revendication 8.
EP18215647.1A 2017-12-26 2018-12-21 Formateur de faisceaux quasi-optique, antenne elementaire, systeme antennaire, plateforme et procede de telecommunications associes Active EP3506429B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1701368A FR3076088B1 (fr) 2017-12-26 2017-12-26 Formateur de faisceaux quasi-optique, antenne elementaire, systeme antennaire, plateforme et procede de telecommunications associes

Publications (2)

Publication Number Publication Date
EP3506429A1 EP3506429A1 (fr) 2019-07-03
EP3506429B1 true EP3506429B1 (fr) 2020-11-18

Family

ID=61873354

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18215647.1A Active EP3506429B1 (fr) 2017-12-26 2018-12-21 Formateur de faisceaux quasi-optique, antenne elementaire, systeme antennaire, plateforme et procede de telecommunications associes

Country Status (3)

Country Link
EP (1) EP3506429B1 (fr)
ES (1) ES2856222T3 (fr)
FR (1) FR3076088B1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112768950B (zh) * 2020-12-24 2022-05-17 北京理工大学 一种全金属部分麦克斯韦鱼眼透镜宽角覆盖多波束天线

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6426726B1 (en) * 2001-08-15 2002-07-30 Northrop Grumman Corporation Polarized phased array antenna
US9515370B2 (en) * 2012-11-15 2016-12-06 The Aerospace Corporation Antenna assembly and methods of assembling same
US9397407B2 (en) * 2012-12-20 2016-07-19 Canon Kabushiki Kaisha Antenna system
FR3034262B1 (fr) * 2015-03-23 2018-06-01 Thales Matrice de butler compacte, formateur de faisceaux bidimensionnel planaire et antenne plane comportant une telle matrice de butler
FR3038457B1 (fr) * 2015-07-03 2017-07-28 Thales Sa Formateur de faisceaux quasi-optique a lentille et antenne plane comportant un tel formateur de faisceaux

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
FR3076088B1 (fr) 2020-01-10
EP3506429A1 (fr) 2019-07-03
FR3076088A1 (fr) 2019-06-28
ES2856222T3 (es) 2021-09-27

Similar Documents

Publication Publication Date Title
EP3547450B1 (fr) Element rayonnant a polarisation circulaire mettant en oeuvre une resonance dans une cavite de fabry perot
EP2564466B1 (fr) Element rayonnant compact a cavites resonantes
EP2869400B1 (fr) Répartiteur de puissance compact bipolarisation, réseau de plusieurs répartiteurs, élément rayonnant compact et antenne plane comportant un tel répartiteur
EP3179551B1 (fr) Ensemble d'excitation compact bipolarisation pour un element rayonnant d'antenne et reseau compact comportant au moins quatre ensembles d'excitation compacts
EP2706613B1 (fr) Antenne multibande à inclinaison électrique variable
CA2821250C (fr) Antenne d'emission et de reception multifaisceaux a plusieurs sources par faisceau, systeme d'antennes et systeme de telecommunication par satellite comportant une telle antenne
WO2013110793A1 (fr) Formateur multi-faisceaux à deux dimensions, antenne comportant un tel formateur multi-faisceaux et système de télécommunication par satellite comportant une telle antenne
EP4012834B1 (fr) Source d'antenne pour une antenne réseau à rayonnement direct, panneau rayonnant et antenne comprenant plusieurs sources d'antenne
EP3011639B1 (fr) Source pour antenne parabolique
EP3843202A1 (fr) Cornet pour antenne satellite bi-bande ka a polarisation circulaire
FR3035546A1 (fr) Module structural d'antenne integrant des sources rayonnantes elementaires a orientation individuelle, panneau rayonnant, reseau rayonnant et antenne multifaisceaux comportant au moins un tel module
EP3176875B1 (fr) Architecture d'antenne active a formation de faisceaux hybride reconfigurable
EP3506429B1 (fr) Formateur de faisceaux quasi-optique, antenne elementaire, systeme antennaire, plateforme et procede de telecommunications associes
CA2808511C (fr) Antenne plane pour terminal fonctionnant en double polarisation circulaire, terminal aeroporte et systeme de telecommunication par satellite comportant au moins une telle antenne
CA2327371C (fr) Source rayonnante pour antenne d'emission et de reception destinee a etre installee a bord d'un satellite
FR3013909A1 (fr) Cornet, antennaire elementaire, structure antennaire et procede de telecommunication associes
EP3506426B1 (fr) Dispositif de pointage de faisceau pour systeme antennaire, systeme antennaire et plateforme associes
EP4046241A1 (fr) Antenne-reseau
EP2889955B1 (fr) Structure antennaire compacte pour télécommunications par satellites
EP3075031B1 (fr) Agencement de structures antennaires pour télécommunications par satellites
WO2023218008A1 (fr) Antenne faible profil à balayage electronique bidimensionnel
EP4092831A1 (fr) Antenne à réseau de distribution lacunaire
EP3075032B1 (fr) Structure antennaire compacte pour télécommunications par satellites

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191203

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H01Q 19/06 20060101ALI20200527BHEP

Ipc: H01Q 1/28 20060101ALN20200527BHEP

Ipc: H01Q 15/10 20060101ALN20200527BHEP

Ipc: H01Q 21/00 20060101AFI20200527BHEP

Ipc: H01Q 21/06 20060101ALI20200527BHEP

Ipc: H01Q 15/08 20060101ALN20200527BHEP

INTG Intention to grant announced

Effective date: 20200619

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018009854

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1336777

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201215

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1336777

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201118

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210318

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210219

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210218

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210318

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018009854

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2856222

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210927

26N No opposition filed

Effective date: 20210819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201221

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201221

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210318

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231221

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231211

Year of fee payment: 6

Ref country code: FR

Payment date: 20231220

Year of fee payment: 6

Ref country code: DE

Payment date: 20231208

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240108

Year of fee payment: 6