EP3547450B1 - Element rayonnant a polarisation circulaire mettant en oeuvre une resonance dans une cavite de fabry perot - Google Patents

Element rayonnant a polarisation circulaire mettant en oeuvre une resonance dans une cavite de fabry perot Download PDF

Info

Publication number
EP3547450B1
EP3547450B1 EP19165394.8A EP19165394A EP3547450B1 EP 3547450 B1 EP3547450 B1 EP 3547450B1 EP 19165394 A EP19165394 A EP 19165394A EP 3547450 B1 EP3547450 B1 EP 3547450B1
Authority
EP
European Patent Office
Prior art keywords
metasurface
excitation
polarization
radiating element
element according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19165394.8A
Other languages
German (de)
English (en)
Other versions
EP3547450A1 (fr
Inventor
Hervé Legay
Antoine CALLEAU
Maria GARCIA VIGUERAS
Mauro Ettorre
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Universite de Rennes 1
Thales SA
Institut National des Sciences Appliquees INSA
Original Assignee
Centre National de la Recherche Scientifique CNRS
Universite de Rennes 1
Thales SA
Institut National des Sciences Appliquees INSA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Universite de Rennes 1, Thales SA, Institut National des Sciences Appliquees INSA filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP3547450A1 publication Critical patent/EP3547450A1/fr
Application granted granted Critical
Publication of EP3547450B1 publication Critical patent/EP3547450B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/24Polarising devices; Polarisation filters 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0013Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0013Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective
    • H01Q15/0026Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective said selective devices having a stacked geometry or having multiple layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/24Polarising devices; Polarisation filters 
    • H01Q15/242Polarisation converters
    • H01Q15/244Polarisation converters converting a linear polarised wave into a circular polarised wave
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/104Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces using a substantially flat reflector for deflecting the radiated beam, e.g. periscopic antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • H01Q5/28Arrangements for establishing polarisation or beam width over two or more different wavebands

Definitions

  • the invention relates to a radiating element with circular polarization, in particular for a planar antenna, and intended to be used in particular in space communications, on board satellites or in user terminals.
  • the invention also relates to an array antenna comprising at least one such radiating element.
  • the so-called "compact" radiating elements make it possible in particular to offer a good compromise between several specifications: good surface efficiency over the entire operating band, sufficient bandwidth for adaptation and in radiation, a small size and a low mass.
  • Congestion is particularly critical in the low frequency bands L (1 to 2 GHz), S (2 to 4 GHz), C (from 3.4 to 4.2 GHz in reception and 5.725 and 7.075 GHz in transmission) penalized by significant wavelengths.
  • the search for compact and wideband elements is particularly active for multispot antennas, associating a reflector and a focal array made up of a large number of sources.
  • Fabry Perot's cavity resonant antennas are linearly polarized. Obtaining circular polarization on such antennas must be achieved without degrading the compactness of the radiating element by adding a device making it possible to obtain radiation in circular polarization.
  • Radiating elements having continuous linear radiating openings make it possible to radiate several fronts.
  • plane waves over a large angular sector. They are formed by a waveguide with parallel plates terminated by a longitudinal horn, which makes the transition between the waveguide with parallel plates and free space.
  • a focusing / collimator device is inserted on the radiofrequency wave propagation path, between the two parallel metal plates, making it possible to convert cylindrical wave fronts from the sources into plane wave fronts.
  • These continuous radiating linear apertures operate over a very wide band (for example at 20 and 30 GHz), due to the absence of resonant propagation modes. They are also capable of radiating over a very large angular sector.
  • the polarization of the radiated wave is that of the wave which propagates in the waveguide with parallel plates, namely linear.
  • a first known solution consists in covering the radiating element with a polarizing radome consisting of several frequency selective surfaces (FSS), the characteristics of which are optimized so as to generate a phase difference of 90 ° between the two orthogonal polarizations, without interfere with the operation of the antenna.
  • Polarizing radomes cascading quarter-wave layers exhibit good bandwidth and oblique incidence performance, however with a thickness (thickness of the order of one wavelength in a vacuum) detrimental to the compactness of the antenna.
  • Fine polarizers have been also developed, but their performances in bandwidth and in oblique incidence are limited.
  • a solution consisting in combining a polarizer and a Fabry Perot cavity can be found in the document “Self polarizing Fabry-Perot antennas based on polarization twisting element” (SA Notice, R. Sauleau, G. Valerio, LL Coq, and H. Legay, IEEE Trans. Antennas Propag., Vol. 61, no. 3, pp. 1032-1040, Mar. 2 ).
  • the solution is illustrated by the figure 1 .
  • the frequency-selective surface Fabry Perot cavity radiates similarly in two subspaces (upper and lower). It consists of two periodic partially reflecting surfaces (FSS1, FSS2) according to a linear polarization Ex, and is excited according to this polarization.
  • Periodic surfaces are transparent to the Ey wave.
  • a polarization reversal ground plane reflects the emitted wave in the lower plane, transforms its linear polarization (for example from Ex to Ey), and returns the wave in the upper direction.
  • This ground plane PM is produced by means of COR corrugations of depth ⁇ / 4, inclined at 45 ° with respect to the grids constituting the periodic partially reflecting surfaces (FSS1, FSS2).
  • a distance of ⁇ / 8 (where ⁇ is the wavelength in the radiating element) between the polarization inverted PM ground plane and the Fabry Perot cavity with periodic partially reflecting surfaces achieves a phase delay of 90 ° on the component Ey, necessary to obtain the circular polarization.
  • the cavity being transparent to the component Ey, the field is radiated in the upper sub-space.
  • the frequency behavior of this solution is however relatively low band. Indeed, as illustrated by figure 4 of the cited document, the rate of ellipticity of the wave at the output of the polarizer is at 1 dB over a frequency band corresponding to approximately 2.5% of the central frequency.
  • This weak band behavior is linked on the one hand to the corrugations of the ground plane PM, the height ( ⁇ / 4) of which is a function of the wavelength. It is also linked to the spacing ( ⁇ / 8) between the lower partially reflecting periodic surface FSS1 and the ground plane PM, which is a function of the wavelength.
  • the invention therefore aims to obtain a radiating element with circular polarization from a linear excitation, both compact in height and very wide band.
  • the cells with metasurfaces of the same row are coupled by an interconnection line with a metasurface elongated along the alignment axis.
  • the rows are connected to one another by means of the metasurface cells, forming with the metasurface interconnection lines a grid pattern with a rectangular mesh.
  • the metasurface cells of the same row are isolated from each other.
  • the metasurface cells of the same row are all spaced periodically.
  • all the metasurface cells of the metasurface have the same dimensions.
  • the frequency selective surface comprises an array of parallel metal wires, spaced periodically, and aligned with the excitation polarization.
  • the frequency selective surface comprises a two-dimensional array of metallic dipoles arranged periodically.
  • the excitation opening comprises at least one waveguide opening opening into the resonant cavity.
  • the excitation opening comprises a double power supply formed by two waveguides opening symmetrically into the resonant cavity, and connected to an impedance matching network.
  • the excitation opening is a horn with a radiating linear opening.
  • the radiating element comprises a plurality of excitation openings, the excitation openings being formed by an array of linear radiating openings.
  • the radiating element comprises at least one second cavity cascaded over the frequency selective surface.
  • the metasurface cells are rectangular in shape.
  • the invention also relates to an array antenna comprising at least one aforementioned radiating element.
  • the figure 2 illustrates a schematic representation, in the yz plane, of the radiating element according to the invention, from the theory of rays.
  • the radiating element comprises an excitation opening OE, which opens onto a metasurface S1.
  • the S1 metasurface comprises an array of conductive planar elements forming metasurface cells (not shown on the figure 1 ), exhibiting a certain pattern repeated periodically in a two-dimensional fashion. Metasurface cells have dimensions less than the operating wavelength of the radiating element (so-called “sub-lambda” dimensions).
  • a wave linearly polarized according to a first excitation polarization is produced at the excitation opening OE.
  • the excitation opening OE is represented by a rectangular waveguide penetrating into the S1 metasurface without protruding from the S1 metasurface, or by slightly protruding from the latter.
  • the linearly polarized wave propagates in the cavity, delimited by the metasurface S1 and by a frequency selective surface S2, comprising an arrangement of metallic wires or of periodically distributed dipoles.
  • the metasurface S1 and the frequency selective surface S2 are spaced from each other by a distance D1.
  • the frequency selective surface S2 is partially reflecting for the excitation polarization Ex (also called polarization TE, for “Transverse Electric”) and transparent for a second polarization Ey orthogonal to the excitation polarization Ex, called orthogonal polarization (also called orthogonal polarization. polarization TM, for "Transverse Magnetic”), and the direction of wave propagation.
  • the frequency selective surface S2 is therefore characterized respectively by reflection and transmission coefficients r 2 x and t 2 x .
  • the wave produced by the excitation opening is partly radiated (Etx), and partly reflected. This reflected part is called the incident wave Eix.
  • the S1 metasurface is fully reflective. It acts in a ground plane, facing the frequency selective surface S2.
  • the metasurface S1 is characterized respectively by the reflection coefficients r 1 xx and r 1 yx , which translate the components of the reflected wave according to the polarizations Ex and Ey for the incident wave Eix.
  • a resonance is established between the two surfaces for the wave in Ex excitation polarization, typical of Fabry Perot resonators.
  • the incident wave Eix which propagates in the cavity, undergoes a series of reflections on the frequency selective surface S2 and on the metasurface S1. At each reflection on the frequency selective surface S2, part of the incident wave Eix is radiated. At each reflection on the metasurface S1, part of the incident wave Eix undergoes a polarization rotation, also called depolarization, producing the polarized wave Er1y according to the orthogonal polarization Ey.
  • the amplitude of the polarized wave Er1y according to the orthogonal polarization Ey is determined by the reflection coefficient r 1 yx .
  • Another one part of the incident wave Eix retains its polarization, producing the polarized wave Er1x according to the excitation polarization Ex.
  • the amplitude of the polarized wave Er1x according to the excitation polarization Ex is determined by the reflection coefficient r 1 xx .
  • the synthesis of a radiation in circular polarization is obtained when the wave radiated E'tx by the selective surface in frequency S2, and coming from the reflected wave Er1x polarized according to the excitation polarization Ex, corresponds in amplitude to l wave polarized Er1y according to the orthogonal polarization Ey, with a phase shift of ⁇ 90 °.
  • the amplitude of the wave radiated E'tx by the frequency selective surface S2 is determined by the transmission coefficient t 2 x .
  • the frequency selective surface S2 being transparent to the orthogonal polarization Ey, the polarized wave Er1y according to the orthogonal polarization Ey is radiated without being attenuated.
  • the wave polarized Er1y according to the orthogonal polarization Ey is denoted E'ty.
  • a first radiation in circular polarization is therefore composed of E'tx and E'ty waves.
  • the reflected wave Er1x undergoes a new reflection on the frequency selective surface S2, with a reflection coefficient r 2 x , and, according to the same principle, a second radiation in circular polarization is composed of the waves E "tx and E" ty , then a third radiation in circular polarization, composed of the waves E '"tx and E'" ty.
  • a circularly polarized beam is thus obtained, which is attenuated more and more as one moves away from the excitation opening OE.
  • T x t 2 x + t 2 x r 1 xx r 2 x e - jk 0 2 D 1 cos ⁇ + t 2 x r 1 xx 2 r 2 x 2 e - jk 0 4 D 1 cos ⁇ + ⁇
  • T x t 2 x 1 - r 1 xx r 2 x e - jk 0 2 D 1 cos ⁇
  • ⁇ r 1 xx represents the in-phase component of the reflection coefficient r 1 xx
  • ⁇ r 2 x represents the in-phase component of the reflection coefficient r 2 x
  • N any integer.
  • N ' is any integer.
  • Equation (16) does not depend on the first order of the frequency (the wave number k 0 is not found in the equation), but relates only the components of the reflection and transmission matrices of the selective surface in frequency S2 and metasurface S1.
  • the band pass-through is no longer limited by the mechanism for generating the circular polarization, but by the operating mechanism of the Fabry Pérot cavity. The bandwidth widening techniques for the latter can then be used, without effects on the circular polarization.
  • the cascading of a second cavity, above the frequency selective surface S2 makes it possible to widen the pass band, without this degrading the quality of the circular polarization.
  • phase component of the transmission coefficient t 2 x of the frequency selective surface S2 determines the directivity of the radiating element; it is therefore predetermined and known, as a function of the desired directivity.
  • equation (16) in order to produce pure circular polarization, the in-phase components of the reflection coefficients r 1 yx and r 1 xx should be appropriately selected.
  • the metasurface S1 does not receive in incidence any wave in orthogonal polarization Ey, insofar as the frequency selective surface S2 is transparent to the orthogonal polarization.
  • the reflection coefficients r 1 xy and r 1 yy which respectively translate the reflection coefficient in excitation polarization Ex and in orthogonal polarization Ey for an incident wave in orthogonal polarization Ey, are therefore irrelevant for the dimensioning of the metasurface S1. Only the reflection coefficients r 1 xx and r 1 yx must be taken into account for the dimensioning of the metasurface S1, and determined by relation (16).
  • An Ox'y'z coordinate system is defined as being the result of the rotation of an angle ⁇ around the Oz axis of the Oxyz coordinate system (the Ox axis is defined by the excitation polarization Ex, and the Oy axis by the orthogonal polarization Ey).
  • diagonal reflection coefficients e j ⁇ 1 and e j ⁇ 2 respectively represent the phase components of the waves reflected respectively in excitation polarization and in orthogonal polarization, in the frame Ox'y'z.
  • the amplitude components of the waves reflected in excitation polarization and in orthogonal polarization are equal to 1, reflecting the lossless character of the S1 metasurface.
  • each incident wave in linear polarization is reflected with an excitation polarization component Ex and an orthogonal polarization component Ey.
  • an S1 metasurface made up of an arrangement of planar conductive elements rectangular (also called “patches” according to Anglo-Saxon terminology)
  • the phase responses according to the Ex or Ey polarization are controlled in the first order by the dimensions of the conducting planar element.
  • the S1 metasurface may include an array of MS metasurface cells, as shown in figure 3 .
  • the dimensions of MS metasurface cells can be obtained relatively independently as a function of the in-phase components of the diagonal reflection coefficients.
  • the dimensions of each cell with a metasurface MS are adjusted as a function of the in-phase components of the diagonal reflection coefficients e j ⁇ 1 and e j ⁇ 2 previously determined.
  • the metasurface cells can advantageously be rectangular.
  • the S1 metasurface can therefore be made up of several rows RA of cells with an MS metasurface.
  • the MS metasurface cells of the same row RA are isolated from one another, and placed on a substrate SUB1. These elements are arranged between the ground plane crossed by the excitation opening, and the frequency selective surface S2. Each cell with an MS metasurface therefore forms a dipole, having a mainly capacitive behavior for the excitation polarization Ex and for the orthogonal polarization Ey. All CE centers of MS metasurface cells are aligned along an AX alignment axis. The alignment axis AX is therefore oriented by the angle ⁇ with respect to the excitation polarization Ex.
  • MS metasurface cells can all have the same length (ly dimension on the figure 3 ), and there can be the same spacing between two MS metasurface cells (px dimension on the figure 3 ).
  • the S1 metasurface can include LG metasurface interconnection lines.
  • LG metasurface interconnection lines interconnect all MS metasurface cells of the same row RA. They advantageously allow to evacuate the electrostatic charges present in the MS metasurface cells, and thus improve the overall behavior of the radiating element.
  • MS metasurface cells have remarkably stable properties in incidence, since particularly small patterns can be used, in order to obtain broadband or even dual-band characteristics.
  • the cells with a metasurface MS in the same row RA are coupled at their center CE, orthogonally, to an interconnection line with a metasurface LG.
  • the interconnection line with metasurface LG is oriented by the angle ⁇ with respect to the excitation polarization Ex.
  • the assembly formed by the interconnection line LG and by the cells with metasurface MS constitutes therefore a grid with stubs (or with adaptation elements).
  • the stub gate has a mainly inductive behavior for the Ex excitation polarization, and capacitive for the orthogonal Ey polarization.
  • the frequency selective surface S2 partially reflecting, consists of an array of metallic wires FI spaced periodically, and oriented according to the excitation polarization Ex.
  • the frequency selective surface S2 can consist of dipoles, of slot types or "patches” (or “plaques” in French).
  • the slits can be made in a metal plate, and the patches placed on an electrically transparent substrate.
  • the network of cells with a metasurface MS is placed on a substrate SUB1, itself placed on a ground plane PM.
  • the ground plane PM is crossed by the excitation opening OE.
  • the substrate SUB1 may for example be composed of two layers of Astroquartz TM, between which there is a layer of nidaquartz.
  • the rows RA are connected to one another via the cells with a metasurface MS. Together with the LG metasurface interconnection lines, they thus form a pattern rectangular mesh netting.
  • the metasurface S1 thus has an inductive behavior for the excitation polarization Ex and for the orthogonal polarization Ey.
  • the figure 8 illustrates the case where the excitation opening OE is a CRN horn with a radiating linear opening.
  • the radiating linear opening crossing the metasurface S1 and opening into the cavity, can constitute the radiative part of a quasi-optical beam former, characterized in particular by a large lateral opening.
  • This solution therefore makes it possible to maintain a wide spectral opening, while radiating the circular polarization.
  • the figure 9 illustrates the case where there is a plurality of excitation openings OE.
  • the excitation openings OE are formed by an array RES of linear radiating openings, resulting for example from a divider with parallel plates.
  • the use of a divider with parallel plates makes it possible in particular to better distribute the field on the excitation openings OE.
  • it is advisable to strongly limit the coupling between the ports for example to -15 dB.
  • the figures 10A , 10B and 10C illustrate an embodiment of the invention, in which the excitation opening OE is doubled. It comprises a double power supply formed by two waveguide openings (WG1, WG2) opening symmetrically into the resonant cavity, and connected to an impedance matching network RAD.
  • the RAD impedance matching network comprises at least one IR iris, in order to widen the matching band.
  • This embodiment makes it possible to cancel a possible parasitic TEM mode present in the radiating element.
  • This TEM mode which generates cross-polarized lobes, is independent of the OE excitation aperture type.
  • the figure 10C illustrates such an opening excitation, integrated in a radiating element according to the invention. In the figure 10C , each MS metasurface cell forms a dipole, with no interconnection line.
  • the splitting of the excitation opening can be achieved in the same way when the MS metasurface cells are connected by an interconnection line, or when they form a rectangular mesh grid.
  • the figures 11A and 11B illustrate the frequency behavior of the directivity and the rate of ellipticity ("axial ratio" in English terminology), for several antennas integrating the radiating elements in accordance with the invention, and comprising a double feed formed by two guide openings waves, in accordance with the embodiment described above.
  • the radiating elements are distinguished by different values of the width (a) and of the length (b) of the excitation opening, and for different values of the reflectivity coefficient r 2 x .
  • the values of the reflectivity coefficient r 2 x are noted “+", "++” or "+++” to indicate their relative value.
  • the bandwidth at -3 dB is of the order of 10% of the center frequency.
  • the bandwidth at ⁇ 3 dB is greater than 10% for the four antennas, and remains of the order of 10% at -1 dB, which is clearly superior to the performance of the radiating elements of the state of the art.
  • the circular polarization generation technique operates over a wide bandwidth, and does not limit the operation of the radiating element.
  • the broadband behavior can be further improved by cascading a second cavity on the frequency selective surface S2.
  • a second resonant cavity is placed on the cavity which is the subject of the invention.
  • the second resonant cavity has as its lower surface the frequency selective surface of the lower cavity, and as its upper surface a partially reflecting surface.
  • the cross section of the upper cavity may be larger than that of the first lower cavity, as described in the document FR2959611 , or, alternatively, have a cross section substantially identical to that of the lower cavity.
  • the so-called “two-cavity” embodiment makes it possible to lower the reflectivity of the frequency-selective surface of the lower cavity, which favors the broadband behavior of the radiating element, and without however having any influence. on the quality of circular polarization.

Description

  • L'invention porte sur un élément rayonnant a polarisation circulaire, notamment pour une antenne plane, et destiné à être utilisé notamment dans des communications spatiales, à bord de satellites ou dans des terminaux utilisateurs. L'invention se rapporte aussi à une antenne réseau comportant au moins un tel élément rayonnant.
  • Différents types d'éléments rayonnants ont récemment été développés, répondant aux contraintes et aux spécificités des communications spatiales.
  • Les éléments rayonnants dits « compacts », comme par exemple les antennes à cavités résonantes de Fabry Perot, permettent notamment d'offrir un bon compromis entre plusieurs spécifications : une bonne efficacité de surface sur toute la bande de fonctionnement, une bande passante suffisante en adaptation et en rayonnement, un faible encombrement et une faible masse. L'encombrement est particulièrement critique dans les bandes de fréquences basses L (1 à 2 GHz), S (2 à 4 GHz), C (de 3,4 à 4,2 GHz en réception et de 5,725 et 7,075 GHz en émission) pénalisées par des longueurs d'onde significatives. Aussi, la recherche d'éléments compacts et large bande est particulièrement active pour les antennes multispots, associant un réflecteur et un réseau focal constitué d'un grand nombre de sources. Les antennes à cavités résonantes de Fabry Perot, actuellement utilisées dans les communications spatiales, sont polarisées linéairement. L'obtention d'une polarisation circulaire sur de telles antennes doit être réalisée sans dégrader la compacité de l'élément rayonnant par l'adjonction d'un dispositif permettant d'obtenir un rayonnement en polarisation circulaire.
  • Les éléments rayonnants disposant d'ouvertures linéaires rayonnantes continues, comme le sont par exemple les formateurs de faisceaux quasi-optiques, permettent quant à eux de rayonner plusieurs fronts d'ondes plans sur un large secteur angulaire. Elles sont formées d'un guide d'onde à plaques parallèles terminées par un cornet longitudinal, qui réalise la transition entre le guide d'onde à plaques parallèles et l'espace libre. Un dispositif focalisant/collimateur est inséré sur le trajet de propagation des ondes radiofréquences, entre les deux plaques métalliques parallèles, permettant de convertir des fronts d'ondes cylindriques issus des sources en des fronts d'ondes plans. Ces ouvertures linéaires rayonnantes continues fonctionnent sur une très large bande (par exemple à 20 et à 30 GHz), en raison de l'absence de modes de propagation résonants. Elles sont par ailleurs capables de rayonner sur un très vaste secteur angulaire. Toutefois, dans leur fonctionnement nominal, la polarisation de l'onde rayonnée est celle de l'onde qui se propage dans le guide d'onde à plaques parallèles, à savoir linéaire.
  • Pour obtenir des largeurs de faisceaux identiques selon les deux plans, il est par ailleurs connu d'élargir l'ouverture linéaire rayonnante continue en utilisant un diviseur à plaques parallèles. Ces réseaux d'ouvertures linéaires rayonnent également en polarisation linéaire, comme chaque ouverture linéaire rayonnante.
  • Il y a donc un besoin actuel de trouver des dispositifs capables de convertir une polarisation linéaire en polarisation circulaire, compatibles avec les ouvertures rayonnantes existantes, et pouvant faire par ailleurs fonction d'élément rayonnant à polarisation circulaire.
  • Une première solution connue consiste à recouvrir l'élément rayonnant d'un radôme polarisant constitué de plusieurs surfaces sélectives en fréquence (FSS), dont les caractéristiques sont optimisées de sorte à générer une différence de phase de 90° entre les deux polarisations orthogonales, sans perturber le fonctionnement de l'antenne. Des radômes polarisants mettant en cascade des couches quart d'onde présentent des bonnes performances en bande passante et en incidence oblique, avec toutefois une épaisseur (épaisseur de l'ordre d'une longueur d'onde dans le vide) nuisant à la compacité de l'antenne. Des polariseurs fins ont été également développés, mais leurs performances en bande passante et en incidence oblique sont limitées.
  • Une solution consistant à combiner un polariseur et une cavité de Fabry Perot, se retrouve dans le document « Self polarizing Fabry-Perot antennas based on polarization twisting element » (S. A. Muhammad, R. Sauleau, G. Valerio, L. L. Coq, and H. Legay, IEEE Trans. Antennas Propag. , vol. 61, no. 3, pp. 1032-1040, Mar. 2). La solution est illustrée par la figure 1. La cavité de Fabry Perot à surfaces sélectives en fréquence rayonne de façon similaire dans deux sous espaces (supérieur et inférieur). Elle est constituée de deux surfaces périodiques partiellement réfléchissantes (FSS1, FSS2) selon une polarisation linéaire Ex, et est excitée selon cette polarisation. Les surfaces périodiques sont transparentes à l'onde Ey. Un plan de masse à inversion de sens de polarisation réfléchit l'onde émise dans le plan inférieur, transforme sa polarisation linéaire (par exemple de Ex à Ey), et renvoie l'onde dans la direction supérieure. Ce plan de masse PM est réalisé au moyen de corrugations COR de profondeur λ/4, inclinées à 45° par rapport aux grilles constituant les surfaces périodiques partiellement réfléchissantes (FSS1, FSS2). Une distance de λ/8 (où λ est la longueur d'onde dans l'élément rayonnant) entre le plan de masse PM à inversion de polarisation et la cavité de Fabry Perot à surfaces périodiques partiellement réfléchissantes réalise un retard de phase de 90° sur la composante Ey, nécessaire pour l'obtention de la polarisation circulaire. La cavité étant transparente à la composante Ey, le champ est rayonné dans le sous espace supérieur. Le comportement en fréquence de cette solution est cependant relativement faible bande. En effet, comme l'illustre la figure 4 du document cité, le taux d'ellipticité de l'onde à la sortie du polariseur est à 1 dB sur une bande de fréquence correspondant à environ 2,5% de la fréquence centrale. Ce comportement faible bande est lié d'une part aux corrugations du plan de masse PM, dont la hauteur (λ/4) est fonction de la longueur d'onde. Il est lié également à l'espacement (λ/8) entre la surface périodique partiellement réfléchissante inférieure FSS1 et le plan de masse PM, qui est fonction de la longueur d'onde.
  • D'autres éléments rayonnants de l'état de la technique sont divulgués dans l'article « Design method for circularly polarized Fabry-Perot cavity antennas » (Robert Orr et al.), et dans la demande de brevet WO 2011134666 A1 .
  • L'invention vise donc à obtenir un élément rayonnant à polarisation circulaire à partir d'une excitation linéaire, à la fois compact en hauteur et très large bande.
  • Un objet de l'invention est donc un élément rayonnant à polarisation circulaire, comprenant :
    • au moins une ouverture d'excitation d'une onde polarisée linéairement selon une première polarisation dite d'excitation ;
    • une surface sélective en fréquence, partiellement réfléchissante pour la polarisation d'excitation et transparente pour une deuxième polarisation orthogonale à la polarisation d'excitation, dite polarisation orthogonale, et à la direction de propagation de l'onde, et disposée dans un plan défini par la polarisation d'excitation et par la polarisation orthogonale ;
    • l'élément rayonnant comprenant en outre une métasurface, totalement réfléchissante, faisant face à la surface sélective en fréquence, et comprenant un réseau bidimensionnel et périodique d'éléments planaires conducteurs formant cellules à métasurface,
    • l'ouverture d'excitation débouchant sur la métasurface,
    • la surface sélective en fréquence et la métasurface formant une cavité résonante pour la polarisation d'excitation,
    • les cellules à métasurface étant toutes orientées de façon identique vis-à-vis de la polarisation d'excitation et configurées pour :
      • o réfléchir une onde incidente selon la polarisation d'excitation pour former une onde réfléchie polarisée selon la polarisation d'excitation, et
      • o dépolariser et réfléchir l'onde incidente pour former une onde réfléchie polarisée selon la polarisation orthogonale avec une différence de phase sensiblement égale à ± 90° par rapport l'onde réfléchie polarisée selon la polarisation d'excitation, et avec une amplitude sensiblement égale à l'amplitude d'une onde rayonnée par la surface sélective en fréquence, issue de l'onde réfléchie polarisée selon la polarisation d'excitation.
  • Avantageusement, la métasurface comprend un plan de masse sur lequel sont disposés un substrat et le réseau de cellules à métasurface agencées en rangées, les centres de chaque cellule à métasurface d'une même rangée étant alignés selon un axe d'alignement, l'axe d'alignement étant orienté d'un angle de rotation (Ψ) par rapport à la polarisation d'excitation, l'angle de rotation (Ψ) étant déterminé de sorte à obtenir une matrice [S'] de type diagonale, où : S ' = t R S R ,
    Figure imgb0001
    [S] étant la matrice de répartition de la métasurface, et [R] une matrice de rotation d'angle Ψ.
  • Avantageusement, les cellules à métasurfaces d'une même rangée sont couplées par une ligne d'interconnexion à métasurface allongée selon l'axe d'alignement.
  • Avantageusement, les rangées sont connectées entre elles par l'intermédiaire des cellules à métasurface, formant avec les lignes d'interconnexion à métasurface un motif de grillage à maille rectangulaire.
  • En variante, les cellules à métasurface d'une même rangée sont isolées les unes des autres.
  • Avantageusement, les cellules à métasurface d'une même rangée sont toutes espacées périodiquement.
  • Avantageusement, toutes les cellules à métasurface de la métasurface ont les mêmes dimensions.
  • Avantageusement, la surface sélective en fréquence comprend un réseau de fils métalliques parallèles, espacés périodiquement, et alignés avec la polarisation d'excitation.
  • En variante, la surface sélective en fréquence comprend un réseau bidimensionnel de dipôles métalliques agencés de façon périodique.
  • Avantageusement, l'ouverture d'excitation comprend au moins une ouverture de guide d'ondes débouchant dans la cavité résonante.
  • Avantageusement, l'ouverture d'excitation comprend une alimentation double formée par deux guides d'ondes débouchant de manière symétrique dans la cavité résonante, et connectés à un réseau d'adaptation d'impédance.
  • Avantageusement, l'ouverture d'excitation est un cornet d'une ouverture linéaire rayonnante.
  • Avantageusement, l'élément rayonnant comprend une pluralité d'ouvertures d'excitation, les ouvertures d'excitation étant formées par un réseau d'ouvertures rayonnantes linéaires.
  • Avantageusement, l'élément rayonnant comprend au moins une deuxième cavité mise en cascade sur la surface sélective en fréquence.
  • Avantageusement, les cellules à métasurface sont de forme rectangulaire.
  • L'invention se rapporte également à une antenne réseau comprenant au moins un élément rayonnant précité.
  • D'autres caractéristiques, détails et avantages de l'invention ressortiront à la lecture de la description faite en référence aux dessins annexés donnés à titre d'exemple et qui représentent, respectivement :
    • figure 1, un élément rayonnant à polarisation circulaire de l'état de l'art ;
    • figure 2, une représentation schématique, dans le plan yz, de l'élément rayonnant selon l'invention, à partir de la théorie des rayons ;
    • figure 3, une vue d'ensemble et une vue détaillée, dans le plan xy, de plusieurs rangées de cellules à métasurface constitutives de la métasurface et isolées l'une de l'autre;
    • figure 4, une vue en perspective des cellules à métasurface isolées l'une de l'autre, illustrant plus particulièrement l'orientation entre l'axe d'alignement des cellules à métasurface par rapport à la polarisation d'excitation ;
    • figure 5, une vue d'ensemble et une vue détaillée, dans le plan xy, de plusieurs rangées de cellules à métasurface constitutives de la métasurface et reliées par une ligne d'interconnexion;
    • figure 6, une vue en perspective des cellules à métasurface couplées les unes aux autres par une ligne d'interconnexion ;
    • figure 7, une vue en perspective des cellules à métasurface formant un grillage à maille rectangulaire ;
    • figure 8, une application de l'élément rayonnant selon l'invention, où l'ouverture d'excitation est un cornet d'ouverture linéaire rayonnante ;
    • figure 9, une application de l'élément rayonnant selon l'invention, où les d'ouvertures d'excitation sont des ouvertures linéaires rayonnante mises en réseau ;
    • figures 10A, 10B et 10C, un mode de réalisation dans lequel l'ouverture d'excitation comprend une alimentation double ;
    • figures 11A et 11B, des courbes illustrant la directivité et le taux d'ellipticité en fonction de la fréquence, pour plusieurs configurations d'éléments rayonnants.
  • La figure 2 illustre une représentation schématique, dans le plan yz, de l'élément rayonnant selon l'invention, à partir de la théorie des rayons. L'élément rayonnant comprend une ouverture d'excitation OE, qui débouche sur une métasurface S1. La métasurface S1 comprend un réseau d'éléments planaires conducteurs formant des cellules à métasurface (non représentées sur la figure 1), présentant un certain motif répété périodiquement de façon bidimensionnelle. Les cellules à métasurface ont des dimensions inférieures à la longueur d'onde de fonctionnement de l'élément rayonnant (dimensions dites « sub-lambda »).
  • Une onde polarisée linéairement selon une première polarisation d'excitation est produite au niveau de l'ouverture d'excitation OE. L'ouverture d'excitation OE est représentée par un guide d'ondes rectangulaire pénétrant dans la métasurface S1 sans dépasser de la métasurface S1, ou en dépassant légèrement de celle-ci. L'onde polarisée linéairement se propage dans la cavité, délimitée par la métasurface S1 et par une surface sélective en fréquence S2, comprenant un agencement de fils métalliques ou de dipôles répartis périodiquement. La métasurface S1 et la surface sélective en fréquence S2 sont espacées l'une de l'autre d'une distance D1. La surface sélective en fréquence S2 est partiellement réfléchissante pour la polarisation d'excitation Ex (également appelée polarisation TE, pour « Transverse Electric ») et transparente pour une deuxième polarisation Ey orthogonale à la polarisation d'excitation Ex, dite polarisation orthogonale (également appelée polarisation TM, pour « Transverse Magnetic »), et à la direction de propagation de l'onde. La surface sélective en fréquence S2 est donc caractérisée respectivement par des coefficients de réflexion et de transmission r 2x et t 2 x. L'onde produite par l'ouverture d'excitation est rayonnée en partie (Etx), et en partie réfléchie. Cette partie réfléchie est appelée onde incidente Eix.
  • La métasurface S1 est totalement réfléchissante. Elle agit en plan de masse, faisant face à la surface sélective en fréquence S2. La métasurface S1 est caractérisée respectivement par les coefficients de réflexion r 1xx et r 1yx , qui traduisent les composantes de l'onde réfléchie selon les polarisations Ex et Ey pour l'onde incidente Eix.
  • Une résonance s'établit entre les deux surfaces pour l'onde en polarisation d'excitation Ex, typique des résonateurs de Fabry Perot. L'onde incidente Eix, qui se propage dans la cavité, subit une série de réflexions sur la surface sélective en fréquence S2 et sur la métasurface S1. A chaque réflexion sur la surface sélective en fréquence S2, une partie de l'onde incidente Eix est rayonnée. A chaque réflexion sur la métasurface S1, une partie de l'onde incidente Eix subit une rotation de polarisation, également appelée dépolarisation, produisant l'onde polarisée Er1y selon la polarisation orthogonale Ey. L'amplitude de l'onde polarisée Er1y selon la polarisation orthogonale Ey est déterminée par le coefficient de réflexion r 1 yx. Une autre partie de l'onde incidente Eix conserve sa polarisation, produisant l'onde polarisée Er1x selon la polarisation d'excitation Ex. L'amplitude de l'onde polarisée Er1x selon la polarisation d'excitation Ex est déterminée par le coefficient de réflexion r 1 xx. La synthèse d'un rayonnement en polarisation circulaire s'obtient lorsque l'onde rayonnée E'tx par la surface sélective en fréquence S2, et issue de l'onde réfléchie Er1x polarisée selon la polarisation d'excitation Ex, correspond en amplitude à l'onde polarisée Er1y selon la polarisation orthogonale Ey, avec un déphasage de ±90°. L'amplitude de l'onde rayonnée E'tx par la surface sélective en fréquence S2 est déterminée par le coefficient de transmission t 2 x. La surface sélective en fréquence S2 étant transparente à la polarisation orthogonale Ey, l'onde polarisée Er1y selon la polarisation orthogonale Ey est rayonnée sans être atténuée. L'onde polarisée Er1y selon la polarisation orthogonale Ey est notée E'ty. Un premier rayonnement en polarisation circulaire est donc composé des ondes E'tx et E'ty.
  • L'onde réfléchie Er1x subit une nouvelle réflexion sur la surface sélective en fréquence S2, avec un coefficient de réflexion r 2x , et, selon le même principe, un deuxième rayonnement en polarisation circulaire est composé des ondes E"tx et E"ty, puis un troisième rayonnement en polarisation circulaire, composé des ondes E'"tx et E'"ty.
  • On obtient ainsi un faisceau en polarisation circulaire, de plus en plus atténué à mesure que l'on s'éloigne de l'ouverture d'excitation OE.
  • Un pré-dimensionnement de cet élément rayonnant peut être réalisé à partir de la théorie des rayons, traditionnellement utilisé pour cette catégorie d'élément rayonnant. On suppose que :
    • la taille de cavité est infinie dans le plan xy ;
    • la surface sélective en fréquence S2 est caractérisée respectivement par les coefficients de réflexion et de transmission r 2x et t 2 x. Elle est complètement transparente à l'onde polarisée Ey ;
    • la distance entre la surface sélective en fréquence S2 et la métasurface S1 est égale à D1 ;
    • la métasurface S1 est caractérisée respectivement par les coefficients de réflexion r 1xx et r 1yx traduisant les composantes de l'onde réfléchie selon les polarisations Ex et Ey pour une onde incidente Eix.
  • De ce qui précède, les fonctions de transfert Tx et Ty pour les ondes transmises polarisées Etrans (x) et Etrans (y) peuvent être écrites comme étant la somme de tous les champs transmis en champ lointain : T x = E trans x E inc = E tx + E tx + E tx +
    Figure imgb0002
    T y = E trans y E inc = E ty + E ty + E inc = 1
    Figure imgb0003
    Où E inc = 1
  • De (1) la fonction de transfert Tx peut être déterminée : T x = t 2 x + t 2 x r 1 xx r 2 x e jk 0 2 D 1 cos θ + t 2 x r 1 xx 2 r 2 x 2 e jk 0 4 D 1 cos θ +
    Figure imgb0004
  • k 0 est le nombre d'onde dans l'espace libre, à savoir 2π/λ0, et θ l'angle d'incidence de l'onde d'excitation. T x = t 2 x n = 0 r 1 xx r 2 x n e jk 0 2 nD 1 cos θ
    Figure imgb0005
    T x = t 2 x 1 r 1 xx r 2 x e jk 0 2 D 1 cos θ
    Figure imgb0006
  • De (2), la fonction de transfert Ty peut être déterminée : T y = r 2 x r 1 yx e jk 0 2 D 1 cos θ + r 2 x 2 r 1 xx r 1 yx e jk 0 4 D 1 cos θ + r 2 x 3 r 1 xx 2 r 1 yx e jk 0 6 D 1 cos θ +
    Figure imgb0007
    T y = r 1 yx r 2 x e jk 0 2 D 1 cos θ n = 0 r 1 xx r 2 x n e jk 0 2 nD 1 cos θ
    Figure imgb0008
    T y = r 1 yx r 2 x e jk 0 2 D 1 cos θ 1 r 1 xx r 2 x e jk 0 2 D 1 cos θ
    Figure imgb0009
  • La condition de résonance est réalisée lorsque : r 1 xx + r 2 x + 2 = 2 k 0 D 1 cos θ
    Figure imgb0010
  • Où ∠r 1xx représente la composante en phase du coefficient de réflexion r 1xx , ∠r 2x représente la composante en phase du coefficient de réflexion r 2x , et N un entier quelconque.
  • En utilisant les fonctions de transfert calculées en (5) et (8) pour les deux polarisations, il est possible de calculer le taux d'ellipticité (AR Axial Ratio) pour l'antenne entière, en utilisant la relation suivante : AR = G + G 2 4 sin 2 φ G G 2 4 sin 2 φ
    Figure imgb0011
    Où : G = ρ L + 1 ρ L
    Figure imgb0012
    φ = T x T y
    Figure imgb0013
    ρ L = T x T y
    Figure imgb0014
  • Partant des relations (12) et (13), et en utilisant les fonctions de transfert calculées en (5) et (8), il est donc possible d'écrire la condition pour produire une polarisation circulaire pure avec les relations suivantes : t 2 x = r 1 yx r 2 x
    Figure imgb0015
    t 2 x = r 1 yx + r 2 x 2 k 0 D 1 cos θ + π 2 + 2
    Figure imgb0016
  • En combinant l'équation (9), décrivant la condition de résonance, et l'équation (15), décrivant la condition de polarisation circulaire, la relation suivante peut être obtenue : t 2 x = r 1 yx r 1 xx + π 2 + 2 N π
    Figure imgb0017
  • Où N' est un entier quelconque.
  • L'équation (16) ne dépend pas au premier ordre de la fréquence (le nombre d'onde k0 ne se trouve pas dans l'équation), mais relie uniquement les composantes des matrices de réflexion et de transmission de la surface sélective en fréquence S2 et de la métasurface S1. La bande passante n'est plus limitée par le mécanisme de génération de la polarisation circulaire, mais par le mécanisme de fonctionnement de la cavité de Fabry Pérot. Les techniques d'élargissement de bande passante pour cette dernière peuvent alors être utilisées, sans effets sur la polarisation circulaire. En particulier, la mise en cascade d'une deuxième cavité, au-dessus de la surface sélective en fréquence S2, permet d'élargir la bande passante, sans que cela ne dégrade la qualité de la polarisation circulaire.
  • La composante en phase du coefficient de transmission t 2x de la surface sélective en fréquence S2 détermine la directivité de l'élément rayonnant ; elle est donc prédéterminée et connue, en fonction de la directivité souhaitée. Ainsi, d'après l'équation (16), pour produire une polarisation circulaire pure, il convient de sélectionner de façon appropriée les composantes en phase des coefficients de réflexion r 1yx et r 1 xx.
  • La matrice de répartition [S] (ou « scattering matrix » en terminologie anglo-saxonne) de la métasurface S1 peut s'écrire de façon classique sous la forme : S = r 1 xx r 1 xy r 1 yx r 1 yy
    Figure imgb0018
  • Or, la métasurface S1 ne reçoit en incidence aucune onde en polarisation orthogonale Ey, dans la mesure où la surface sélective en fréquence S2 est transparente à la polarisation orthogonale. Les coefficients de réflexion r 1xy et r 1yy , qui traduisent respectivement le coefficient de réflexion en polarisation d'excitation Ex et en polarisation orthogonale Ey pour une onde incidente en polarisation orthogonale Ey, sont donc indifférents pour le dimensionnement de la métasurface S1. Seuls les coefficients de réflexion r 1xx et r 1yx doivent être pris en considération pour le dimensionnement de la métasurface S1, et déterminés par la relation (16).
  • Un repère Ox'y'z est défini comme étant le résultat de la rotation d'un angle Ψ autour de l'axe Oz du repère Oxyz (l'axe Ox est défini par la polarisation d'excitation Ex, et l'axe Oy par la polarisation orthogonale Ey).
  • On cherche donc à obtenir, à partir de la matrice de répartition [S] dans le repère Oxyz, une matrice de répartition [S'] de type diagonale dans le repère Ox'y'z, pouvant s'écrire sous la forme : S = e 1 0 0 e 2
    Figure imgb0019
  • Où les coefficients de réflexion diagonaux e 1 et e 2 représentent respectivement les composantes en phase des ondes réfléchies respectivement en polarisation d'excitation et en polarisation orthogonale, dans le repère Ox'y'z. Les composantes en amplitude des ondes réfléchies en polarisation d'excitation et en polarisation orthogonale sont égales à 1, traduisant le caractère sans pertes de la métasurface S1.
  • Sous condition d'incidence normale (θ=0°), il existe ainsi une relation de congruence entre la matrice de répartition [S] dans le plan Oxy, et la matrice de répartition [S'] dans le plan Ox'y', qui peut donc s'écrire sous la forme : S ' = t R S R
    Figure imgb0020
  • Où [R] est une matrice de rotation d'angle Ψ : R = cos Ψ sin Ψ sin Ψ cos Ψ
    Figure imgb0021
  • Il convient donc d'identifier l'angle Ψ qui permet de transformer la matrice de répartition requise [S] en matrice diagonale. Pour ce calcul, qui n'est pas détaillé ici, seuls les coefficients de réflexion r 1xx et r 1yx sont spécifiés pour le fonctionnement de l'antenne, les coefficients de réflexion r 1xy et r 1yy n'étant que des variables d'ajustement. Ainsi, une fois que l'angle Ψ a été identifié pour obtenir une matrice diagonale, les coefficients de réflexion diagonaux e 1 et e 2 sont déterminés à partir des relations (17) et (18).
  • En raison du désalignement de la métasurface S1 par rapport à la polarisation d'excitation Ex, chaque onde incidente en polarisation linéaire est réfléchie avec une composante en polarisation d'excitation Ex et une composante en polarisation orthogonale Ey. Dans le cas d'une métasurface S1 constituée d'un agencement d'éléments planaires conducteurs rectangulaires (également appelés « patches » selon la terminologie anglo-saxonne), les réponses en phase selon la polarisation Ex ou Ey sont contrôlées au premier ordre par les dimensions de l'élément planaire conducteur.
  • La métasurface S1 peut comprendre un réseau de cellules à métasurface MS, telles qu'illustrées en figure 3. Les dimensions des cellules à métasurface MS peuvent être obtenues de façons relativement indépendantes en fonction des composantes en phase des coefficients de réflexions diagonaux. Ainsi, les dimensions de chaque cellule à métasurface MS (longueur ly et largeur wy), sont réglées en fonction des composantes en phase des coefficients de réflexion diagonaux e 1 et e 2 déterminés précédemment.
  • Les cellules à métasurface peuvent être avantageusement rectangulaires. La métasurface S1 peut donc être constituée de plusieurs rangées RA de cellules à métasurface MS.
  • Comme l'illustre la figure 4, les cellules à métasurface MS d'une même rangée RA sont isolées les unes des autres, et disposées sur un substrat SUB1. Ces éléments sont disposés entre le plan de masse traversé par l'ouverture d'excitation, et la surface sélective en fréquence S2. Chaque cellule à métasurface MS forme donc un dipôle, ayant un comportement principalement capacitif pour la polarisation d'excitation Ex et pour la polarisation orthogonale Ey. Tous les centres CE des cellules à métasurface MS sont alignés selon un axe d'alignement AX. L'axe d'alignement AX est donc orienté de l'angle Ψ par rapport à la polarisation d'excitation Ex.
  • Les cellules à métasurface MS peuvent toutes avoir la même longueur (dimension ly sur la figure 3), et il peut y avoir le même espacement entre deux cellules à métasurface MS (dimension px sur la figure 3).
  • Selon une variante, illustrée par la figure 5, la métasurface S1 peut comprendre des lignes d'interconnexion à métasurface LG. Les lignes d'interconnexion à métasurface LG connectent entre elles toutes les cellules à métasurface MS d'une même rangée RA. Elles permettent avantageusement d'évacuer les charges électrostatiques présentes dans les cellules à métasurface MS, et améliorent ainsi le comportement global de l'élément rayonnant. Les cellules à métasurface MS ont des propriétés remarquablement stables en incidence, car des motifs particulièrement petits peuvent être utilisés, afin d'obtenir des caractéristiques larges bandes ou même bi-bande. Les cellules à métasurface MS d'une même rangée RA sont couplées en leur centre CE, de façon orthogonale, à une ligne d'interconnexion à métasurface LG.
  • Comme l'illustre la figure 6, la ligne d'interconnexion à métasurface LG est orientée de l'angle Ψ par rapport à la polarisation d'excitation Ex. Pour chaque rangée RA, l'ensemble formé par la ligne d'interconnexion LG et par les cellules à métasurface MS constitue donc une grille à stubs (ou à éléments d'adaptations). La grille à stubs a un comportement principalement inductif pour la polarisation d'excitation Ex, et capacitif pour la polarisation orthogonale Ey.
  • La surface sélective en fréquence S2, partiellement réfléchissante, est constituée d'un réseau de fils métalliques FI espacés de façon périodique, et orientés selon la polarisation d'excitation Ex. En variante, la surface sélective en fréquence S2 peut être constituée de dipôles, de types fentes ou « patches » (ou « plaques » en français). Les fentes peuvent être réalisées dans une plaque métallique, et les patches disposés sur un substrat électriquement transparent.
  • Le réseau de cellules à métasurface MS est disposé sur un substrat SUB1, lui-même placé sur un plan de masse PM. Le plan de masse PM est traversé par l'ouverture d'excitation OE. Le substrat SUB1 peut être par exemple composé de deux couches d'Astroquartz™, entre lesquelles se trouve une couche de nidaquartz.
  • Selon une variante, illustrée par la figure 7, les rangées RA sont connectées entre elles par l'intermédiaire des cellules à métasurface MS. Elles forment ainsi avec les lignes d'interconnexion à métasurface LG un motif de grillage à maille rectangulaire. La métasurface S1 a ainsi un comportement inductif pour la polarisation d'excitation Ex et pour la polarisation orthogonale Ey.
  • La figure 8 illustre le cas où l'ouverture d'excitation OE est un cornet CRN d'une ouverture linéaire rayonnante. L'ouverture linéaire rayonnante, traversant la métasurface S1 et débouchant dans la cavité, peut constituer la partie radiative d'un formateur de faisceaux quasi-optique, caractérisé notamment par une large ouverture latérale. Cette solution permet donc de conserver une large ouverture spectrale, tout en rayonnant la polarisation circulaire. Plus la taille de l'ouverture linéaire rayonnante est importante, plus la bande passante en adaptation ou en rayonnement est réduite. Cela n'a toutefois pas d'influence sur la qualité de la polarisation circulaire, comme indiqué dans la relation (16).
  • La figure 9 illustre le cas où il y a une pluralité d'ouvertures d'excitation OE. Les ouvertures d'excitation OE sont formées par un réseau RES d'ouvertures rayonnantes linéaires, issues par exemple d'un diviseur à plaques parallèles. L'utilisation d'un diviseur à plaques parallèles permet notamment de mieux distribuer le champ sur les ouvertures d'excitation OE. Afin de limiter les couplages entre les ouvertures rayonnantes linéaires, il convient de limiter fortement le couplage entre les accès, par exemple à -15 dB.
  • Les figures 10A, 10B et 10C illustrent un mode de réalisation de l'invention, dans lequel l'ouverture d'excitation OE est dédoublée. Elle comprend une alimentation double formée par deux ouvertures de guides d'ondes (WG1, WG2) débouchant de manière symétrique dans la cavité résonante, et connectés à un réseau d'adaptation d'impédance RAD. Le réseau d'adaptation d'impédance RAD comprend au moins un iris IR, afin d'élargir la bande d'adaptation. Ce mode de réalisation permet d'annuler un éventuel mode TEM parasite présent dans l'élément rayonnant. Ce mode TEM, qui génère des lobes de polarisation croisée, est indépendant du type ouverture d'excitation OE. La figure 10C illustre une telle ouverture d'excitation, intégrée dans un élément rayonnant selon l'invention. Dans la figure 10C, chaque cellule à métasurface MS forme un dipôle, sans ligne d'interconnexion. Le dédoublement de l'ouverture d'excitation peut être réalisé de la même manière lorsque les cellules à métasurface MS sont reliées par une ligne d'interconnexion, ou lorsqu'elles forment une grillage à maille rectangulaire.
  • Les figures 11A et 11B illustrent le comportement en fréquence de la directivité et du taux d'ellipticité (« axial ratio » en terminologie anglo-saxonne), pour plusieurs antennes intégrant les éléments rayonnants conformes à l'invention, et comprenant une alimentation double formée par deux ouvertures de guides d'ondes, conformément au mode de réalisation précédemment décrit. Les éléments rayonnants se distinguent par différentes valeurs de la largeur (a) et de la longueur (b) de l'ouverture d'excitation, et pour différentes valeurs du coefficient de réflectivité r 2 x. Les valeurs du coefficient de réflectivité r 2x sont notées « + », « ++ » ou « +++ » pour indiquer leur valeur relative.
    a (mm) b (mm) Réflectivité de la surface sélective en fréquence S2
    Elément rayonnant 1 5 15 +++
    Elément rayonnant 2 5 15 ++
    Elément rayonnant 3 10 15 ++
    Elément rayonnant 4 10 15 +
  • La figure 11A illustre le comportement en fréquence de la directivité des éléments rayonnants, pour un angle θ=0°. Plus l'élément rayonnant est directif (donc plus grande est la réflectivité de la surface sélective en fréquence S2), moins le comportement en fréquence est large bande, ce qui est typique des antennes cavités de Fabry Perot. Pour les éléments rayonnants 2, 3 et 4, la largeur de bande à -3 dB est de l'ordre de 10% de la fréquence centrale. La figure 11B illustre le comportement en fréquence du taux d'ellipticité des éléments rayonnants, pour un angle θ=0°. La largeur de bande à ―3 dB est supérieure à 10% pour les quatre antennes, et reste de l'ordre de 10% à -1 dB, ce qui est nettement supérieur aux performances des éléments rayonnants de l'état de la technique. Comme démontré dans la relation (16), la technique de génération de la polarisation circulaire fonctionne sur une large bande passante, et ne limite pas le fonctionnement de l'élément rayonnant.
  • Le comportement large bande peut être encore amélioré en mettant en cascade une deuxième cavité sur la surface sélective en fréquence S2. Pour réaliser cette mise en cascade, au moins une deuxième cavité résonante est placée sur la cavité objet de l'invention. La deuxième cavité résonante a comme surface inférieure la surface sélective en fréquence de la cavité inférieure, et comme surface supérieure une surface partiellement réfléchissant. La section transverse de la cavité supérieure peut être plus grande que celle de la première cavité inférieure, comme décrit dans le document FR2959611 , ou, en alternative, avoir une section transverse sensiblement identique à celle de la cavité inférieure. Le mode de réalisation, dit « en bi-cavité », permet de faire baisser la réflectivité de la surface sélective en fréquence de la cavité inférieure, ce qui favorise le comportement large bande de l'élément rayonnant, et sans toutefois avoir d'influence sur la qualité de la polarisation circulaire.

Claims (16)

  1. Elément rayonnant à polarisation circulaire, comprenant :
    - au moins une ouverture d'excitation (OE) d'une onde polarisée linéairement selon une première polarisation dite d'excitation (Ex) ;
    - une surface sélective en fréquence (S2), partiellement réfléchissante pour la polarisation d'excitation (Ex) et transparente pour une deuxième polarisation (Ey) orthogonale à la polarisation d'excitation (Ex), dite polarisation orthogonale, et à la direction de propagation de l'onde, et disposée dans un plan défini par la polarisation d'excitation (Ex) et par la polarisation orthogonale (Ey) ;
    et comprenant en outre une métasurface (S1), totalement réfléchissante, faisant face à la surface sélective en fréquence (S2), et comprenant un réseau bidimensionnel et périodique d'éléments planaires conducteurs formant cellules à métasurface(MS), l'ouverture d'excitation (OE) débouchant sur la métasurface (S1),
    la surface sélective en fréquence (S2) et la métasurface (S1) formant une cavité résonante pour la polarisation d'excitation (Ex),
    les cellules à métasurface (MS) étant toutes orientées de façon identique vis-à-vis de la polarisation d'excitation (Ex) et configurées pour :
    o réfléchir une onde incidente (Eix) selon la polarisation d'excitation (Ex) pour former une onde réfléchie (Er1x) polarisée selon la polarisation d'excitation (Ex), et
    o dépolariser et réfléchir l'onde incidente (Eix) pour former une onde réfléchie (Er1y) polarisée selon la polarisation orthogonale (Ey) avec une différence de phase sensiblement égale à ± 90° par rapport l'onde réfléchie (Er1x) polarisée selon la polarisation d'excitation (Ex), et avec une amplitude sensiblement égale à l'amplitude d'une onde rayonnée (E'tx) par la surface sélective en fréquence (S2), issue de l'onde réfléchie (Er1x) polarisée selon la polarisation d'excitation (Ex).
  2. Elément rayonnant selon la revendication 1, la métasurface (S1) comprenant un plan de masse (PM) sur lequel sont disposés un substrat (SUB1) et le réseau de cellules à métasurface (MS) agencées en rangées (RA), les centres (CE) de chaque cellule à métasurface (MS) d'une même rangée (RA) étant alignés selon un axe d'alignement (AX), l'axe d'alignement (AX) étant orienté d'un angle de rotation (Ψ) par rapport à la polarisation d'excitation (Ex), l'angle de rotation (Ψ) étant déterminé de sorte à obtenir une matrice [S'] de type diagonale, où : S ' = t R S R ,
    Figure imgb0022
    [S] étant la matrice de répartition de la métasurface (S1), et [R] une matrice de rotation d'angle Ψ.
  3. Elément rayonnant selon la revendication 2, les cellules à métasurfaces (MS) d'une même rangée (RA) étant couplées par une ligne d'interconnexion à métasurface (LG) allongée selon l'axe d'alignement (AX).
  4. Elément rayonnant selon la revendication 3, les rangées (RA) étant connectées entre elles par l'intermédiaire des cellules à métasurface (MS), formant avec les lignes d'interconnexion à métasurface (LG) un motif de grillage à maille rectangulaire.
  5. Elément rayonnant selon la revendication 2, les cellules à métasurface (MS) d'une même rangée (RA) étant isolées les unes des autres.
  6. Elément rayonnant selon l'une des revendications 2 à 5, les cellules à métasurface (MS) d'une même rangée (RA) étant toutes espacées périodiquement.
  7. Elément rayonnant selon l'une des revendications 2 à 6, toutes les cellules à métasurface (MS) de la métasurface (S1) ayant les mêmes dimensions.
  8. Elément rayonnant selon l'une des revendications précédentes, la surface sélective en fréquence (S2) comprenant un réseau de fils métalliques (FI) parallèles, espacés périodiquement, et alignés avec la polarisation d'excitation (Ex).
  9. Elément rayonnant selon l'une des revendications 1 à 7, la surface sélective en fréquence (S2) comprenant un réseau bidimensionnel de dipôles métalliques agencés de façon périodique.
  10. Elément rayonnant selon l'une des revendications précédentes, l'ouverture d'excitation (OE) comprenant au moins une ouverture de guide d'ondes débouchant dans la cavité résonante.
  11. Elément rayonnant selon la revendication 10, l'ouverture d'excitation (OE) comprenant une alimentation double formée par deux guides d'ondes (WG1, WG2) débouchant de manière symétrique dans la cavité résonante, et connectés à un réseau d'adaptation d'impédance (RAD).
  12. Elément rayonnant selon l'une des revendications 1 à 9, l'ouverture d'excitation (OE) étant un cornet (CRN) d'une ouverture linéaire rayonnante.
  13. Elément rayonnant selon l'une des revendications 1 à 9, comprenant une pluralité d'ouvertures d'excitation, les ouvertures d'excitation étant formées par un réseau (RES) d'ouvertures rayonnantes linéaires.
  14. Elément rayonnant selon l'une des revendications précédentes, comprenant au moins une deuxième cavité mise en cascade sur la surface sélective en fréquence (S2).
  15. Elément rayonnant selon l'une des revendications précédentes, les cellules à métasurface (MS) étant de forme rectangulaire.
  16. Antenne réseau comprenant au moins un élément rayonnant selon l'une des revendications précédentes.
EP19165394.8A 2018-03-29 2019-03-27 Element rayonnant a polarisation circulaire mettant en oeuvre une resonance dans une cavite de fabry perot Active EP3547450B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1800260A FR3079678B1 (fr) 2018-03-29 2018-03-29 Element rayonnant a polarisation circulaire mettant en oeuvre une resonance dans une cavite de fabry perot

Publications (2)

Publication Number Publication Date
EP3547450A1 EP3547450A1 (fr) 2019-10-02
EP3547450B1 true EP3547450B1 (fr) 2021-10-27

Family

ID=62873390

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19165394.8A Active EP3547450B1 (fr) 2018-03-29 2019-03-27 Element rayonnant a polarisation circulaire mettant en oeuvre une resonance dans une cavite de fabry perot

Country Status (6)

Country Link
US (1) US11217896B2 (fr)
EP (1) EP3547450B1 (fr)
CA (1) CA3038392A1 (fr)
ES (1) ES2902431T3 (fr)
FR (1) FR3079678B1 (fr)
WO (1) WO2020109676A2 (fr)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102302466B1 (ko) 2014-11-11 2021-09-16 주식회사 케이엠더블유 도파관 슬롯 어레이 안테나
US11460620B1 (en) * 2018-07-05 2022-10-04 Triad National Security, Llc Reflective metasurfaces for broadband terahertz linear-to-circular polarization conversion and circular dichroism spectroscopy
CN112688052B (zh) * 2019-10-18 2022-04-26 华为技术有限公司 共孔径天线及通信设备
CN110797649B (zh) * 2019-11-11 2021-08-24 中国电子科技集团公司第十四研究所 一种具有滤波和定标功能的宽带双极化微带天线子阵
CN110808461B (zh) * 2019-11-22 2021-11-05 东南大学 基于法布里-珀罗谐振腔式结构的低剖面全息成像天线
CN111129782B (zh) * 2019-12-31 2021-04-02 哈尔滨工业大学 基于超表面的双圆极化三通道逆向反射器
CN111737777B (zh) * 2020-06-04 2024-03-01 陕西亿杰宛鸣科技有限公司 基于非均匀透射宽带pb超表面的设计方法
CN111900538A (zh) * 2020-08-17 2020-11-06 上海交通大学 一种Ka波段卫星通信天线罩
CN112117545B (zh) * 2020-09-02 2021-08-06 南京航空航天大学 一种基于水的极化可重构多功能频率选择吸波体
CN112525095A (zh) * 2020-11-25 2021-03-19 重庆大学 利用极化—相位—形变关系实现超表面双轴应变传感的方法
EP4016735A1 (fr) * 2020-12-17 2022-06-22 INTEL Corporation Antenne à plaque multibandes
CN112886272B (zh) * 2021-01-14 2022-03-04 西安电子科技大学 双频双极化Fabry-Perot谐振腔天线
US11322831B1 (en) * 2021-06-30 2022-05-03 King Abdulaziz University Radio cross-section reduction of conformal antennas mounted on vehicles
CN114430117B (zh) * 2022-01-29 2023-08-01 中国人民解放军空军工程大学 一种低雷达散射横截面谐振腔天线及其制备方法
CN114843761B (zh) * 2022-04-13 2023-03-24 南昌大学 一种基于圆极化机载微波辐射计天线
CN114552199B (zh) * 2022-04-25 2022-08-16 南京华成微波技术有限公司 具有RCS缩减的Fabry-Perot谐振腔天线
CN114709626B (zh) * 2022-06-07 2022-11-08 电子科技大学 一种基于超表面的法布里-珀罗谐振腔涡旋电磁波天线
CN114824834B (zh) * 2022-06-29 2022-10-14 电子科技大学 全集成的大频比双频双馈折叠反射阵天线
US11575429B1 (en) 2022-07-08 2023-02-07 Greenerwave Multi-beam and multi-polarization electromagnetic wavefront shaping
CN115810892B (zh) * 2022-11-28 2023-08-25 北京星英联微波科技有限责任公司 毫米波全金属高增益折叠反射阵天线

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3001193A (en) * 1956-03-16 1961-09-19 Pierre G Marie Circularly polarized antenna system
WO2009115870A1 (fr) * 2008-03-18 2009-09-24 Universite Paris Sud (Paris 11) Antenne hyperfréquence orientable
FR2959611B1 (fr) * 2010-04-30 2012-06-08 Thales Sa Element rayonnant compact a cavites resonantes.
US9385436B2 (en) * 2013-07-18 2016-07-05 Thinkom Solutions, Inc. Dual-band dichroic polarizer and system including same

Also Published As

Publication number Publication date
US20190305436A1 (en) 2019-10-03
WO2020109676A2 (fr) 2020-06-04
CA3038392A1 (fr) 2019-09-29
US11217896B2 (en) 2022-01-04
EP3547450A1 (fr) 2019-10-02
FR3079678B1 (fr) 2020-04-17
ES2902431T3 (es) 2022-03-28
FR3079678A1 (fr) 2019-10-04

Similar Documents

Publication Publication Date Title
EP3547450B1 (fr) Element rayonnant a polarisation circulaire mettant en oeuvre une resonance dans une cavite de fabry perot
EP2564466B1 (fr) Element rayonnant compact a cavites resonantes
CA2793126C (fr) Antenne reseau reflecteur a compensation de polarisation croisee et procede de realisation d'une telle antenne
EP0899814B1 (fr) Structure rayonnante
EP2869400B1 (fr) Répartiteur de puissance compact bipolarisation, réseau de plusieurs répartiteurs, élément rayonnant compact et antenne plane comportant un tel répartiteur
EP2710676B1 (fr) Element rayonnant pour antenne reseau active constituee de tuiles elementaires
EP1387437A1 (fr) Antenne multisources notamment pour système à reflecteur
EP3179551B1 (fr) Ensemble d'excitation compact bipolarisation pour un element rayonnant d'antenne et reseau compact comportant au moins quatre ensembles d'excitation compacts
EP1416586A1 (fr) Antenne pourvue d'un assemblage de matériaux filtrant
EP3843202B1 (fr) Cornet pour antenne satellite bi-bande ka a polarisation circulaire
CA2460820C (fr) Antenne a large bande ou multi-bandes
EP0430745A1 (fr) Antenne à polarisation circulaire, notamment pour réseau d'antennes
EP0048190B1 (fr) Antenne réseau non dispersive, et son application à la réalisation d'une antenne à balayage électronique
FR2518828A1 (fr) Filtre spatial de frequences et antenne comportant un tel filtre
EP3900113B1 (fr) Antenne microruban élémentaire et antenne réseau
EP3506429B1 (fr) Formateur de faisceaux quasi-optique, antenne elementaire, systeme antennaire, plateforme et procede de telecommunications associes
EP0477102B1 (fr) Réseau directif pour radiocommunications, à éléments rayonnants adjacents et ensemble de tels réseaux directifs
FR2552273A1 (fr) Antenne hyperfrequence omnidirectionnelle
EP0083885B1 (fr) Dispositif sélectif accordable à ondes magnétostatiques de volume
FR3102311A1 (fr) Antenne-reseau
FR3134659A1 (fr) Dispositif de contrôle de faisceaux électromagnétiques RF selon leur bande de fréquence et procédé de fabrication
EP4199258A1 (fr) Antenne élémentaire de type micro-ruban et antenne réseau ameliorées
FR2830987A1 (fr) Perfectionnement aux antennes-sources alimentees par guide d'ondes
CH436403A (fr) Elément d'antenne pour ondes ultra-courtes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200130

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210604

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019008596

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1442678

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20211027

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1442678

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211027

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2902431

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20220328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220127

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220227

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220228

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220127

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220128

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602019008596

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220327

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220327

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230221

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230216

Year of fee payment: 5

Ref country code: DE

Payment date: 20230214

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230405

Year of fee payment: 5

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20231019 AND 20231025

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602019008596

Country of ref document: DE

Owner name: UNIVERSITE DE RENNES, FR

Free format text: FORMER OWNERS: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, PARIS CEDEX 16, FR; INSTITUT NATIONAL DES SCIENCES APPLIQUEES (INSA), RENNES, FR; THALES, COURBEVOIE, FR; UNIVERSITE DE RENNES 1, RENNES, FR

Ref country code: DE

Ref legal event code: R081

Ref document number: 602019008596

Country of ref document: DE

Owner name: THALES, FR

Free format text: FORMER OWNERS: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, PARIS CEDEX 16, FR; INSTITUT NATIONAL DES SCIENCES APPLIQUEES (INSA), RENNES, FR; THALES, COURBEVOIE, FR; UNIVERSITE DE RENNES 1, RENNES, FR

Ref country code: DE

Ref legal event code: R081

Ref document number: 602019008596

Country of ref document: DE

Owner name: INSTITUT NATIONAL DES SCIENCES APPLIQUEES (INS, FR

Free format text: FORMER OWNERS: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, PARIS CEDEX 16, FR; INSTITUT NATIONAL DES SCIENCES APPLIQUEES (INSA), RENNES, FR; THALES, COURBEVOIE, FR; UNIVERSITE DE RENNES 1, RENNES, FR

Ref country code: DE

Ref legal event code: R081

Ref document number: 602019008596

Country of ref document: DE

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, FR

Free format text: FORMER OWNERS: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, PARIS CEDEX 16, FR; INSTITUT NATIONAL DES SCIENCES APPLIQUEES (INSA), RENNES, FR; THALES, COURBEVOIE, FR; UNIVERSITE DE RENNES 1, RENNES, FR