EP4012834B1 - Source d'antenne pour une antenne réseau à rayonnement direct, panneau rayonnant et antenne comprenant plusieurs sources d'antenne - Google Patents

Source d'antenne pour une antenne réseau à rayonnement direct, panneau rayonnant et antenne comprenant plusieurs sources d'antenne Download PDF

Info

Publication number
EP4012834B1
EP4012834B1 EP21213068.6A EP21213068A EP4012834B1 EP 4012834 B1 EP4012834 B1 EP 4012834B1 EP 21213068 A EP21213068 A EP 21213068A EP 4012834 B1 EP4012834 B1 EP 4012834B1
Authority
EP
European Patent Office
Prior art keywords
polarizer
antenna
ribs
ridges
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21213068.6A
Other languages
German (de)
English (en)
Other versions
EP4012834C0 (fr
EP4012834A1 (fr
Inventor
Thierry Girard
Maïder ETCHARREN
Alexandre COT�
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP4012834A1 publication Critical patent/EP4012834A1/fr
Application granted granted Critical
Publication of EP4012834C0 publication Critical patent/EP4012834C0/fr
Publication of EP4012834B1 publication Critical patent/EP4012834B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/12Hollow waveguides
    • H01P3/123Hollow waveguides with a complex or stepped cross-section, e.g. ridged or grooved waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/165Auxiliary devices for rotating the plane of polarisation
    • H01P1/17Auxiliary devices for rotating the plane of polarisation for producing a continuously rotating polarisation, e.g. circular polarisation
    • H01P1/171Auxiliary devices for rotating the plane of polarisation for producing a continuously rotating polarisation, e.g. circular polarisation using a corrugated or ridged waveguide section
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/165Auxiliary devices for rotating the plane of polarisation
    • H01P1/17Auxiliary devices for rotating the plane of polarisation for producing a continuously rotating polarisation, e.g. circular polarisation
    • H01P1/173Auxiliary devices for rotating the plane of polarisation for producing a continuously rotating polarisation, e.g. circular polarisation using a conductive element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/10Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced with unbalanced lines or devices
    • H01P5/107Hollow-waveguide/strip-line transitions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/06Waveguide mouths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/064Two dimensional planar arrays using horn or slot aerials

Definitions

  • the invention is located in the field of satellites and more particularly for satellites in low orbit which must transmit data everywhere on the Earth, in particular in the K and Ka bands (the K and Ka bands are grouped together in space telecommunications), in the Ku band, or even in the V band.
  • the invention can find an application for example for high-speed internet.
  • the Ka band corresponds to a frequency band between 27 and 40 GHz. It is used in particular for satellite Internet.
  • the Ka band is grouped with the K band and extends in reception from 27.5 to 30 GHz and in transmission from 17.7 to 20.2GHz.
  • the V band is divided into two frequency bands: the Q band (37.5-42.5 GHz) and the V band (47.2 - 50.2 GHz), with smaller dimensions.
  • Table 1 Literal symbol Use for radar (GHz) Space radiocommunications Spectrum regions Examples Nominal designation Examples (GHz) L 1-2 1.215-1.4 1.5 GHz band 1,525-1,710 S 2-4 2.3-2.5 2.5 GHz band 2.5-2.690 2.7-3.4 VS 4-8 5.25-5.85 4/6 GHz band 3.4-4.2 4.5-4.8 5.85-7.075 X 8-12 8.5-10.5 - - Ku 12-18 13.4-14.0 11/14 GHz band 10.7-13.25 15.3-17.3 12/14 GHz band 14.0-14.5 K (1) 18-27 24.05-24.25 20 GHz band 17.7-20.2 Ka (1) 27-40 33.4-36.0 30 GHz band 27.5-30.0 V - - 40 GHz band 37.5-42.5 47.2-50.2 (1) In space radiocommunications, the K and Ka bands are often designated by the K and Ka bands are often designated by the K and Ka
  • the invention relates more precisely to the field of space antennas for satellites in low orbit where data must be transmitted in a large angular range, and in particular direct radiation array antennas.
  • direct radiation array antenna or “DRA” in English is an antenna that can operate in transmission and/or reception and comprising a network of elementary radiation sources connected by a beamformer (called “BFN” for “ Beam Forming Network” in English).
  • Two types of orbiting satellites can be used to provide broadband on Earth.
  • a first type concerns geostationary satellites (36,000 km) which will make it possible to provide broadband on Earth in a given region or area. In this orbit the satellite moves exactly synchronously with the Earth and remains constantly above the same point on the surface.
  • a second type is based on the use of a constellation of satellites in low orbit (called “LEO” satellites for “Low Earth Orbit” in English) configured to provide broadband throughout the Earth.
  • a satellite constellation is a collection of artificial satellites that work together. The satellites orbit in selected, synchronized orbits so that their respective ground coverage overlaps and complements each other instead of interfering with each other.
  • One of the advantages of the low orbit satellite constellation is the latency time between transmission and reception of data because the low orbit satellites used are closer to the earth (generally between 500 and 1200 km).
  • the reduction in latency time is an advantage for areas requiring a very rapid response (for example: for an autonomous car, for faster access to data, for video calls or videoconferences with better responsiveness, etc.).
  • the Earth is seen from the LEO satellite following a cone which can vary between +/- 45° and +/- 55° depending on the altitude of the satellite.
  • This field is in strong development, with numerous missions and/or satellite constellation projects in low orbit (Starlink, Kuiper, Telecommunicationsat, Leosat, Oneweb, etc.).
  • the data transmitted between these satellites and the Earth for high-speed internet communications use the Ka bands (grouping K and Ka for space), the Q and V bands but also the Ku band. It is therefore sought for antennas that can operate in these bands and in particular in the Ka band.
  • the antenna generally used for LEO satellites is a direct radiating array antenna called “DRA” (“Direct Radiating Array” in English which is translated into French as “direct radiation network”).
  • DPA Direct Radiating Array
  • DRA antennas in the field of the invention have a large number of sources (generally from 128 to 512 sources) and each source is composed of at least one radiating element, a polarizer and a filter which must easily connect to the amplifiers (or loads). All the sources form a radiating panel.
  • DRA antennas called “printed antennas” or “patch antennas”, allowing the transmission of data between LEO satellites and the Earth. They include elements (or “patches”) printed on a flat substrate, and are suitable for frequency bands such as L band or S band, which are lower than the Ka band and for low bandwidths (less than 1 %).
  • the sources (radiating element, polarizer, filter) of these antennas are manufactured using printed circuit type technology, so they are easily manufactured, they are compact and of limited mass. Losses are not prohibitive in frequency bands such as L band or S band.
  • patch antennas are well suited for low bandwidths (less than 1%).
  • riddled waveguide is defined as a waveguide of any shape (square, circular, rectangular) capable of transmitting a microwave signal and comprising one or more ribs inside it.
  • the problem with the waveguide radiating element with a horn shape, whether wrinkled or not, is that it requires a system to circularly polarize the wave.
  • a diverter is generally used to connect the horn to the system which allows the wave to be circularly polarized.
  • systems of the OrthoMode transducer (OMT) type with coupler or septum polarizer as a guide do not respect this mesh or size constraint.
  • the diverter allows, with a set of waveguides (as many as the number of radiating elements) which are curved, to change the size of a mesh between its entrance and its exit.
  • the major constraint consists of having guides of identical lengths. This constraint implies that the diverter is difficult to design.
  • the use of a diverter implies a much larger footprint for the radiating panel and significant RF losses due to the diverter.
  • a diverter structure is difficult to produce in a single part, even using an additive manufacturing technique.
  • the invention aims to overcome the aforementioned drawbacks of the prior art.
  • an antenna source to produce a DRA network antenna, a source which is as compact as possible, which generates circular polarization without using a diverter, which is adapted for the Ka frequency band (or K, Q, V, Ku ...), whose elementary radiating element has a small aperture compared to the wavelength ⁇ , and which has low RF losses (typically less than 0.3 dB, or even 0.2 dB an Ka band).
  • the invention aims to have such an antenna source which can integrate a filter and which can easily connect to an amplifier.
  • the antenna source must be able to be manufactured easily and at low cost.
  • end to end we mean that the elements are joined at their ends.
  • the waveguide has a constant thickness over its entire length.
  • the impedance between the input and output of the radiating element generally increases between a hundred ohms (in the waveguide) and 377 ohms (in air or vacuum).
  • cylinder or “cylindrical”, we mean the general definition, namely a solid generated by a straight line which moves parallel to an axis, based on two fixed isometric and parallel planes.
  • a right cylinder designates a cylinder whose generators are perpendicular to the bases.
  • the base can be a circle or a polygon (square, hexagon, octagon, decagon). In the case where the base is a polygon, we can also speak of a prism. The base must have an axis of symmetry in its own plane. This is why we will speak of a polygon of even order (that is to say with an even number of sides).
  • polarizer is meant an element intended to convert, on the one hand, the signals received in circular polarization into signals in linear polarization and, on the other hand, the signals to be transmitted from a linear polarization to a circular polarization.
  • input or “output” are defined according to the direction of circulation of the radiofrequency (RF) waves in the source when it operates in transmission, that is to say from the filter or the polarizer towards the horn.
  • RF radiofrequency
  • a radiating element may be designated by “horn” which is a term commonly used in the field of the invention and which designates an antenna element in the shape of a cylinder, and which may comprise a complementary part in the shape of a cone or pyramid. truncated. In the case of a horn comprising a complementary part in the shape of a cone or truncated pyramid, the most flared part always corresponds to the outlet of the radiating element.
  • a waveguide comprising ribs inside said waveguide may be referred to as a “riddled waveguide”.
  • the term “length” is to be understood with reference to the longitudinal direction of the antenna source.
  • the term “radial” is to be understood by reference to a plane perpendicular to said longitudinal direction, called “transverse plane”, and the term “orthoradial” designates the direction perpendicular to the radial direction in said transverse plane.
  • the width of the blade designates the radial dimension of the blade, more generally the dimension of the blade which allows the polarizer input to be separated in two.
  • the thickness of the blade designates the other dimension in the transverse plane.
  • the height of a rib designates the radial dimension.
  • the thickness of a rib designates the dimension in the orthoradial direction.
  • the height of a stud designates the dimension substantially in the radial direction and the thickness of a stud designates the dimension substantially in the orthoradial direction.
  • the solution consists of forming a radiating element in waveguide with internal ribs, and a polarizer in waveguide with septum and internal ribs connected to the radiating element in continuity with it (in a single piece) , the septum polarizer allowing two waveguide accesses.
  • a ribbed waveguide pad filter can be placed on one of the polarizer ports.
  • the antenna source integrates a radiating element with internal ribs compatible with a very low DRA array antenna mesh (0.5 to 0.7 ⁇ ), but also a low-loss septum polarizer compatible with the same mesh.
  • DRA network antenna and which generates circular polarization without using a diverter.
  • the antenna source according to the invention may also include one or more of the following characteristics taken in isolation or in any possible technical combination.
  • the number of first ribs and/or second ribs is preferably an even number, both at the input and output of the radiating element and/or the polarizer.
  • An even number favors symmetry of the antenna source.
  • the even number also favors the introduction of the blade of the septum polarizer which in this case attaches to two opposite ribs and makes it possible to simplify the dimensioning of the septum polarizer.
  • the second ribs can be in continuity with the first ribs at the entrance to the radiating element (corresponding to the last step), which facilitates the design and manufacture of the source.
  • the second ribs may not be in continuity with the first ribs at the entrance to the radiating element.
  • the base of the right cylinder is a regular polygon of even order, preferably a hexagon.
  • the internal blade and all or part of the first ribs and/or the second ribs can be arranged at the level of the edges of the straight polygonal cylinder.
  • the internal blade and all or part of the first ribs and/or the second ribs can be arranged on the interior lateral surfaces of the straight polygonal cylinder.
  • the first and second variants can be combined such that the internal blade can be arranged at two opposite edges of the straight polygonal cylinder or on two opposite interior side surfaces of the straight polygonal cylinder, and the first ribs and/or the second ribs can be arranged both at the edges of the straight polygonal cylinder and on the interior side surfaces of the straight polygonal cylinder.
  • the base of the right cylinder is a circle.
  • the number of third ribs is an even number, and both at the inlet and outlet of the filter.
  • An even number favors symmetry of the antenna source.
  • the third ribs can be continuous with the second ribs of the polarizer, which facilitates the design and manufacture of the source.
  • the third ribs may not be continuous with the second ribs.
  • the waveguide is entirely in the shape of a hollow straight cylinder over its entire length.
  • the main part represents the entire length of the waveguide.
  • the waveguide comprises a main part in the shape of a hollow right cylinder and a complementary part at the outlet of the radiating element, said complementary part being able to be in the shape of a cone or truncated pyramid, the most flared part being arranged at the outlet of the radiating element.
  • the complementary part is free of grooves. Furthermore, the length of the complementary part is very small compared to the length of the main part of the waveguide.
  • a second object of the invention is a radiating panel for a direct radiating array antenna, said panel comprising a plurality of sources according to the invention comprising a plurality of antenna sources according to the first object of the invention; said radiating panel being in a single piece, preferably produced using an additive manufacturing technique.
  • the sources of the same radiating panel are all substantially identical.
  • the radiating panel comprises sources each having small-sized radiating elements (0.5 to 0.7 ⁇ ) with very low RF losses (typically less than 0.3 dB, or even 0.2 dB in Ka band) and is easily manufactured.
  • the radiating panel is connected to the at least one amplifier and/or the at least one load via at least one Vivaldi antipodal transition, and preferably by at least one adapted transition/adaptation to change the position, dimensions and/or shape of the ribs of the waveguide at the input of the source so as to be able to position the Vivaldi transition within said waveguide.
  • the antenna source, the radiating panel and the direct radiation array antenna according to the invention may comprise any of the characteristics previously stated, taken in isolation or in any technically possible combination with other characteristics.
  • the radiating element may be designated by the term "horn".
  • the longitudinal direction is marked by the reference X and the arrow is oriented in the direction of entry towards exit of each of the elements (horn, polarizer, filter).
  • the longitudinal direction X also corresponds to the cylinder axis.
  • the polarizer is arranged end to end with the horn in the longitudinal direction, and the filter, if applicable, is arranged end to end with the polarizer in the longitudinal direction.
  • the antenna source can be made of metallic, metallized, or metallizable material.
  • it may be aluminum, titanium, or any other material which can be metallized on the surface.
  • the material of the antenna source is suitable for manufacturing the antenna source, and for manufacturing the radiating panel of the array antenna. (comprising a plurality of sources in a single part) by an additive manufacturing technique.
  • a source comprises a waveguide having at least one main part in the form of a hollow straight cylinder extending in a longitudinal direction X, the base of said cylinder having at least one axis of symmetry in its plane.
  • the external transverse dimensions of this main part are constant in the longitudinal direction X.
  • the sources represented in the figures and described in the following description are in the shape of a hollow right cylinder, over their entire length (in other words, the main part extends over the entire length of the guide). wave).
  • the source may comprise, at the outlet of the radiating element, a complementary part in the shape of a cone or truncated pyramid, the most flared part being arranged at the outlet of the radiating element.
  • the source may comprise, at the outlet of the radiating element, a complementary part of cylindrical shape with external transverse dimensions and/or basic shape different from the main part.
  • the complementary part is free of grooves.
  • the length of the complementary part is very short compared to the main part of the waveguide. For example, it represents around 1/10 or even 1/20 of the length of the horn and can represent 1/100 of the total length of the source.
  • FIGS. 1A and 1B represent an antenna source according to a first embodiment of the invention (embodiment not covered by the appended claims), the Figure 1A being a 3D view and the Figure 1B being a side view (seen from the exit of the horn).
  • the antenna source 1 illustrated is in the form of a waveguide which comprises a first portion forming a horn 2 and a second portion forming a polarizer 3, the two forming a single part (waveguide) whose external shape is a cylinder straight with hexagonal base 10, the cylinder being hollow.
  • the horn 2 shown includes an input E C (marked in Figure 3A ) and an S C output. It has an external shape as a hexagonal cylinder 10, and comprises six ribs 21 (first ribs), which project towards the inside of said horn from of each edge 10A of the hexagonal cylinder 10 and extend in the longitudinal direction are staggered according to three steps 211, 212, 213 whose dimensions (heights, thicknesses and/or lengths) vary along the longitudinal direction entry and exit of the radiating element.
  • an important characteristic of the invention is that the external transverse dimensions of the main cylindrical part of the waveguide (here the hexagonal cylinder) do not vary in the longitudinal direction X and in particular do not decrease. These are the ribs inside the horn, with their steps, which make it possible to vary the impedance in said horn. Thus, this makes it possible to have the largest possible opening at the horn input to then be able to produce the septum polarizer which connects to the horn input. This makes it possible to introduce the polarizer blade and push the first upper mode as far as possible from the operating band of the array antenna. This particularity is even more true for cylindrical (or prismic) horns with a square base for which the cut-off frequency of the first higher mode appears for a lower frequency.
  • the horn is described in more detail in the remainder of the present description, according to different (non-limiting) variants, each of the variants being able to be implemented in the first embodiment, or in the second embodiment described below.
  • the polarizer 3 has two inputs E P1 , E P2 separated by an internal blade 30, or septum, extending in the longitudinal direction Figure 4A ) which corresponds to the input E C of the horn 2.
  • the internal blade comprises several bearings 301, 302, 303, 304 in the longitudinal direction linear polarization electromagnetic field at the polarizer output, and vice versa.
  • the second ribs 31, 32 have the same thicknesses and heights as the first steps 211 of the first ribs 21. In other words, at the output of the polarizer, the second ribs 31, 32 are in continuity with the first corresponding ribs 21 at the input of the horn 2.
  • the dimensions of the second ribs are shown constant in the longitudinal direction, and are substantially equal to each other.
  • the ribs in the polarizer make it possible to reduce its minimum operating frequency and allow the propagation of the wave in it.
  • the dimensions of the ribs are such that the main mode propagates in the polarizer.
  • the cut-off frequency of the first higher mode must be greater than the maximum operating frequency so that it cannot propagate in the structure.
  • this makes it possible to reduce the transverse dimensions of the polarizer compared to a conventional septum polarizer, in order to make it compatible with the opening of the horn.
  • the polarizer is described in more detail in the remainder of the present description, according to different (non-limiting) variants, each of the variants being able to be implemented in the first embodiment, or in the second embodiment described below.
  • FIGS. 2A , 2B , 2C And 2D represent an antenna source according to a second embodiment of the invention which differs from the first mode in that it also comprises a third portion 4 which comprises a filter 40.
  • Figure 2A is a 3D view
  • the Figure 2B is a sectional view along a plane passing through the X axis and the Y axis (corresponding to the plane of the blade)
  • the Figure 2C is a sectional view along a plane passing through the X axis and the Z axis and the 2D figure being a side view (seen from the exit of the horn).
  • the antenna source 1' illustrated thus comprises a first portion forming a horn 2, a second portion forming a polarizer 3 and a third portion 4 comprising a filter 40, the three portions forming a single piece whose external shape is a straight cylinder with a base hexagonal 10.
  • the filter 40 corresponds to half of the right hexagonal cylinder in the third portion 4 (the output of the filter corresponds to one of the two inputs of the polarizer).
  • the filter comprises, in continuity with one of the two inputs of the polarizer, a series 42 of frequency filtering pads, the pads being positioned one after the other in the longitudinal direction X and arranged on the central blade. Filter pads are chosen to allow certain frequencies to pass while other frequencies are retained.
  • the pads have an inclination of 45° so that the antenna source is produced by additive manufacturing in a single piece, therefore in the same material as the horn and the polarizer.
  • the different pads have dimensions (lengths, thicknesses and/or heights) which may differ from one pad to another. In addition, the distances between two adjacent pads may differ.
  • a classic “combline” type filter is generally made by introducing metal rods into a rectangular guide, the size of the rods as well as the distance from the upper wall of the guide making it possible to transmit or reject certain frequencies. This type of filter is well known to those skilled in the art. According to the invention, the filter is dimensioned to produce a low-pass filter.
  • the third portion 4 further comprises third ribs 41 extending towards the interior thereof and over all or part of the length of said third portion.
  • said third ribs are a continuation of the second ribs. These third ribs are dimensioned in such a way that the wave can propagate in the waveguide.
  • the filter is described in more detail in the remainder of this description, according to different possible variants (non-limiting). Any variation can be implemented in the second embodiment.
  • THE figures 3A (3D view) and 3B (side view) represent in detail a hexagonal horn 2 according to a first variant of the invention, which corresponds to the hexagonal horn of the figures 1A, 1B , 2A And 2B .
  • the hexagonal horn 2 comprises six first ribs 21 which project towards the inside of said horn from each edge of the hexagonal cylinder.
  • the first six ribs all have the same shapes, and they are shaped in steps along the longitudinal direction ) vary along the longitudinal direction, the thicknesses of the steps decreasing in the direction going from the entrance E C towards the exit S C of the horn (direction of circulation).
  • the thickness e 211 of the first step 211 is greater than the thickness e 212 of the second step 212, itself greater than the thickness e 213 of the third step. Furthermore, the height h 211 of the first step 211 is slightly greater than the height h 212 of the second step 212, itself greater than the height h 213 of the third step 213.
  • the number of steps as well as the dimensions of the steps of the first ribs are parameters configurable by those skilled in the art, so as to allow a given impedance variation between the entrance and exit of the horn.
  • the number of steps can be equal to three as illustrated or four.
  • first ribs and their locations are not limited to the modes and variants illustrated.
  • the first ribs may have all the same shapes, as shown, or may have different shapes.
  • the number of first ribs is an even number, both at the inlet and outlet of the horn, and they are arranged regularly around the perimeter of the cylinder.
  • An even number favors symmetry of the antenna source.
  • the even number then favors the introduction of the blade of the septum polarizer which in this case attaches to two opposite ribs and makes it possible to simplify the dimensioning of the septum polarizer.
  • a final section without rib can be added at the level of the outlet of the horn in order to improve the efficiency and directivity of the latter (these two notions are well known of those skilled in the art).
  • the horn has a complementary part, for example in the shape of a cone or a truncated pyramid, at the outlet of said horn, this complementary part does not have a rib.
  • THE figures 4A (3D view in the input-output direction of the polarizer), 4B (3D view in the output-input direction of the polarizer) and 4C (side view) represent a hexagonal polarizer according to the first variant of the invention, which corresponds to the polarizer hexagonal figures 1A, 1B , 2A And 2B .
  • the hexagonal polarizer 3 has two inputs E P1 , E P2 separated by an internal blade 30, or septum, extending in the longitudinal direction a width l 30 .
  • the internal blade 30 comprises four bearings 301, 302, 303, 304 configured to transform an electromagnetic field of circular polarization at the input into an electromagnetic field of linear polarization at the output, and vice versa. But this number of levels is not limiting and can be less than four (two or three) or five or more.
  • the thicknesses e 31 and the heights h 31 of the four second ribs 31 are constant in the longitudinal direction and are substantially equal to each other.
  • the thicknesses e 32 and the heights h 32 of the two second complementary ribs 32 are constant in the longitudinal direction and are substantially equal to each other and to those of the four second ribs 31.
  • the number of bearings of the internal blade, as well as the thickness of the blade, and the dimensions of the bearings are configurable by those skilled in the art.
  • the polarizer blade may also have shapes different from that shown.
  • we find in the literature a large number of shapes other than the stepped shape, shapes which can also be used in the context of the invention.
  • there are a very large number of possible configurations not all of which can be described in the present description.
  • the thickness e 30 of the internal blade 30 is substantially equal to the thickness e 31 , e 32 of the second ribs 31, 32. This makes it possible to facilitate the design and manufacture of the antenna source, and to the network antenna, and to promote the symmetry of the whole.
  • the thickness e 31 , e 32 (and/or the height h 31 , h 32 ) of the second ribs 31, 32 is substantially equal to the thickness e 211 (and/or the height h 211 ) of the first ribs 21 (first step 211) at the entrance to the horn.
  • the second ribs 31 can thus be positioned in continuity with the first ribs 21 at the entrance E C of the horn 2.
  • THE figures 5A (3D view), 5B (side view) and 5C (another 3D view) represent in detail a filter, which corresponds to filter 40 of the figures 2A And 2B .
  • the filter is only formed on one of the polarizer inputs because the antenna operates in mono-polarization.
  • the filter 40 corresponds to half of the right hexagonal cylinder in the third portion 4 (the output of the filter corresponds to one of the two inputs of the polarizer).
  • the filter comprises, in continuity with one of the two inputs of the polarizer, a series 42 of four frequency filtering pads 421, 422, 423, 424, the pads being positioned one after the other in the longitudinal direction X and arranged on the internal blade 30 (extended between the polarizer and the third portion). Filter pads are chosen to allow certain frequencies to pass while other frequencies are retained.
  • the different pads have dimensions (lengths, thicknesses and/or heights) which may differ from one pad to another. In addition, the distances between two adjacent pads may differ.
  • the second and third studs 422, 423 have equivalent dimensions (thickness e 422 , height h 422 , length L 422 ), and the first and fourth studs 421, 424 also have equivalent dimensions (thickness e 421 , height h 421 , length L 421 ) but different from the second and third studs.
  • the four studs are spaced from each other by distances which are not necessarily equal.
  • the number of pads illustrated is not limiting, the same goes for the dimensions of the pads as well as the distances between adjacent pads.
  • the dimensions of the pads as well as the distance between two adjacent pads are defined to make it possible to produce a filter of the "combline filter” type of low-pass filter, the shape of which can be adapted in order to integrate it into the wrinkled waveguide.
  • the dimensions and number of pads depend on the desired value for filter rejection. If we want to increase the rejection level, we increase the number of pads.
  • the third portion 4 further comprises third ribs 41 extending inwards and over all or part of the length of said third portion, said third ribs being in continuity with the second ribs 31, 32. These third ribs are dimensioned in such a way that the wave can propagate in the waveguide.
  • the shape of the polarizer being very variable, and depending on the shape of the horn (cylinder with circular or polygonal base, etc.), we can have a wide variety of shapes for the ribbed waveguide forming the filter. Possible, non-limiting forms are illustrated in the Figure 11 (shown with the ribs but without the studs).
  • the transition can be made by removing ribs ( Figure 12A ), adding ribs ( Figure 12B ), or by bending existing ribs ( Figure 12C ), or even by combining several of these solutions.
  • THE figures 6A (3D view) and 6B (side view) represent a hexagonal horn 2' according to a second variant of the invention, which differs from the first variant in that the first ribs 21' are not arranged at the level of the edges of the cylinder hexagonal 10 but in the middle of the side surfaces 10B of said cylinder.
  • first ribs and steps are not limiting. Preferably there is an even number of first ribs, both at the entrance and exit of the horn.
  • THE figures 7A (3D view in the input-output direction of the polarizer), 7B (3D view in the output-input direction of the polarizer) and 7C (side view) represent a hexagonal polarizer 3' according to the second variant of the invention, which differs of the first variant in that the second ribs 31', 32' as well as the internal blade 30 are not arranged at the level of the edges of the hexagonal cylinder but in the middle of the lateral surfaces of said cylinder.
  • the first and second variants can be combined with each other, so that the first ribs (and the second ribs) can be arranged both at the edges of the hexagonal cylinder and in the middle of the side surfaces of said cylinder.
  • We can thus obtain, for example, 12 first ribs in the horn and 12 second ribs at the polarizer output.
  • the second ribs are generally arranged at the same locations over the entire length occupied by said second ribs.
  • the first ribs can be arranged in the same locations along the entire length occupied by the first ribs, as illustrated.
  • the first ribs can be positioned in a first configuration on a first length (or first section), then in a second configuration on a second length (or second section), then possibly again in a third configuration on a third length (or third section) etc.
  • figure 8 represents a horn 3′′′ in which first ribs 21 (configured in a single step) are positioned on the edges of a straight hexagonal cylinder at the entrance E C of the horn on a first section L1 then first ribs 21' (configured in three steps) are positioned in the middle of the lateral surfaces of the hexagonal cylinder on a second section L2 which can go as far as the outlet S C of the horn.
  • first ribs 21 (configured in a single step) are positioned on the edges of a straight hexagonal cylinder at the entrance E C of the horn on a first section L1 then first ribs 21' (configured in three steps) are positioned in the middle of the lateral surfaces of the hexagonal cylinder on a second section L2 which can go as far as the outlet S C of the horn.
  • This configuration is obviously not limiting.
  • the second ribs at the output of the polarizer are positioned in continuity with the first ribs at the input of the horn.
  • THE figures 9A (3D view) and 9B (side view) represent a 2" horn according to a fourth variant of the invention, which differs from the first, the second variant and the third variant in that the right cylinder 10' is circular and no hexagonal.
  • the first 21" ribs are positioned regularly around the circle. In the example shown, there are six first 21" ribs with three steps each. But the number of ribs and steps is not limiting. Preferably there is an even number of first ribs, both at the entrance and exit of the horn.
  • FIG. 10A 3D view in the input-output direction of the polarizer
  • 10B 3D view in the output-input direction of the polarizer
  • 10C side view
  • the second ribs 31", 32" and the internal blade 30" are positioned regularly around the perimeter of the circle .
  • the number of ribs is not limiting, preferably there is a number pair of second ribs, both at the input and output of the polarizer.
  • the shape of the right cylinder is not limited to hexagonal or circular shape.
  • the shape of the right cylinder can be square, octagonal, decagonal, and more generally in the shape of a regular polygon of even order (even number of sides), in order to present the most symmetrical shape possible.
  • the ribs must be positioned symmetrically around the perimeter of the cylinder.
  • first ribs indicated above is given for the entrance and exit of the horn.
  • the number of second ribs indicated above corresponds to the number of ribs at the output of it (at the input of polarizer there are two less corresponding to the blade).
  • the ribs (and the internal blade) can be positioned at the interior edges and/or on the interior side surfaces of the polygon, preferably in the middle of the interior side surfaces of the polygon.
  • the ribs (and the internal blade) are also distributed regularly around the perimeter of the circle, inside said circular cylinder.
  • the number of first ribs, second ribs, or even third ribs when there is a filter, can be 4, 6, 8, 10...
  • first ribs at the entrance and exit of the horn there are preferably 6 first ribs at the entrance and exit of the horn, 6 second ribs at the outlet of the polarizer (corresponding to the entrance to the horn), 4 second ribs at the entrance to the polarizer, and 4 third ribs at inlet and outlet of the filter, if applicable.
  • the number of first ribs, as well as second ribs, or even third ribs when there is a filter is preferably an even number, preferably at the input and output of the horn, the polarizer, and the filter if applicable.
  • the shape of the horn determines the shape of the polarizer. So, if the horn is hexagonal, square, circular, the polarizer is too. Likewise, when a filter is added, the external shape of the third portion which includes the filter respects the external shape of the horn and the polarizer.
  • FIG 13 represents in 3D view (view from the outlet of the horns) a radiating panel 110 for an array antenna, comprising a plurality of sources according to the invention.
  • the sources 1 all have the shape of a straight hexagonal cylinder 10, the first ribs 21' being on the middle of the side surfaces of said cylinder.
  • the radiant panel shown is in one piece.
  • the number of sources represented here is 37 but it is not in nothing limiting, and it is generally much higher.
  • the sources can be chosen according to any of the modes, variants, alternatives described above.
  • the sources of the same radiating panel are all substantially identical.
  • the structure of the radiating panel being complex, and the sources having small dimensions (of the order of 10 cm in height, 15 cm in width and 20 cm in length), a preferred solution for manufacturing the radiating panel is additive manufacturing.
  • SLM selective laser melting technique
  • LBM selective Laser Melting
  • the SLM technique consists of depositing a layer of metal powder of controlled thickness (and generally under a controlled atmosphere) on a manufacturing plate, using a laser source to carry out selective fusion of the powder in the manufacturing plane, then depositing another layer of powder on the previous layer, the manufacturing iteration continuing to form the desired part.
  • a titanium or aluminum metal powder can be used, although this is not limiting.
  • the SLM technique allows the manufacturing of complex parts, while reducing manufacturing time and costs.
  • Such a radiating panel with a plurality of sources is not achievable with certain conventional manufacturing methods (milling type, etc.) or involves a complex, long manufacturing process with high manufacturing costs with other manufacturing methods. conventional (electric erosion type, etc.).
  • an additive manufacturing technique based on the use of polymers for example the additive manufacturing technique by material extrusion (“Material Extrusion” also called “Fused Deposition Modeling” or “FDM” in English) according to which at least one heated print head extrudes a polymer matrix filament so as to manufacture a part; moving the print head along the three axes allows small volumes of molten polymer to be deposited locally and build a piece layer by layer.
  • material extrusion also called “Fused Deposition Modeling” or “FDM” in English
  • FDM Fusion Modeling
  • a metallization layer is preferably produced on the part.
  • the metallization layer can be produced using an electrolytic deposition or a chemical deposition, for example depending on the shape of the part and/or the intended field of use.
  • the pads 421, 422, 423 of the filters 4 can have an inclination (maximum inclination of 45°), as illustrated in the figures 14A (filter 4' comprising pads 421', 422', 423' without inclination) and 14B (filter 4 with inclination).
  • a solution for manufacturing a radiant panel is the die casting technique.
  • Die Casting is a metal casting process that involves forcing molten metal under high pressure into a mold cavity.
  • the mold cavity is created using two hardened steel dies that have been machined into shape and function similar to an injection mold during the process.
  • Most castings pressure are made from non-ferrous metals, particularly zinc, copper, aluminum, magnesium, lead, tin and tin-based alloys.
  • a hot or cold chamber machine is used.
  • FIG. 16 schematizes a functional architecture of a direct radiation network antenna 100 which comprises a radiating panel 110 comprising several sources 1' (each source 1' is represented with a horn 2, a polarizer 3 and a filter 4), such as the radiating panel illustrated in the figure 13 .
  • the radiating panel 110 is connected to amplifiers 120 and/or loads 121.
  • the assembly is connected to a network former 140 or “BFN” for “Beam Forming Network” which makes it possible to distribute the energy (in amplitude and in phase) between the different sources to direct the antenna beam in a given direction.
  • a load absorbs the RF energy it receives and dissipates it in the form of heat.
  • the thickness of metal (or metallization) of the sources of the radiating panel being low (generally one millimeter or less), it is difficult to make these connections in said thickness, so we use locations in the network of sources. In the case of a limited number of sources (typically around fifty sources), the connections can be placed on the edges of the network. If the number of sources is greater, the connections will be placed more inside the network.
  • THE figures 17 And 18 illustrate a radiating panel 110, such as the radiating panel illustrated in the figure 13 (with more sources), seen from the filter input.
  • the radiant panel shown has 256 radiating elements. It therefore has 512 input ports to the septum polarizers.
  • access E P1 see identification for example in figure 4A
  • access E P2 see marking for example in figure 4A
  • PCD right circular polarization
  • 256 accesses at the input of the radiating panel generate right circular polarization
  • 256 accesses generate left circular polarization.
  • the antenna is generally designed to operate in mono-polarization and for the case presented in this example in right-hand polarization. In the case considered, the right polarization is called “main polarization" and the left polarization "cross polarization".
  • the 256 E P2 accesses are followed by filters then they must be connected to the amplifiers to generate the signal.
  • the 256 E P1 ports are not followed by filters and must be connected to loads to limit the cross component which corresponds to noise.
  • the first connection mode 131 illustrated in Figure 17 uses some cross polarization ports (access E P1 of the polarizers in the case considered) which are filled with material to be able to have a tapping in order to connect the amplifiers to the radiating panels with screws.
  • the second connection mode 132 illustrated in Figure 18 uses the 2 ports of the same source (access E P1 and E P2 of the polarizers in the case considered) which are filled with material to be able to have a tapping in order to connect the amplifiers to the radiating panels with screws.
  • the 256 accesses E P1 are followed by filters then connected to the amplifiers and the 256 accesses E P2 are not followed by filters and are connected to loads.
  • the amplifiers are preferably grouped into block(s) of several amplifiers, a block which can be designated as an “amplification module”.
  • the connection of the amplification modules to the radiating panel is therefore done via fixings which are fixed at the level of the connections made, for example screws which are screwed into the threads of the connections.
  • the connections can be made at the time of manufacturing the radiant panel (for example during additive manufacturing) or after manufacturing (for example by tapping once the radiant panel has been manufactured).
  • the first connection mode does not degrade RF performance too much compared to the second connection mode but requires more compact amplification modules.
  • the second connection method is easier to achieve.
  • the number of amplifiers in an amplification module depends on several parameters and objectives: it may be to facilitate the production and assembly of the antenna with the aim of reducing the cost of the antenna, or to target RF performance for the antenna (the greater the number of short circuits, the more the RF performance is degraded), or even to integrate thermal control (the aim of thermal control being to evacuate the power dissipated by the amplifiers out of the antenna).
  • microwave (HF) waves in the amplifiers and in the radiating panel are different.
  • the waves at the output of the radiating panel are transmitted via a wave guide (ridged) while the waves in the amplifier generally propagate using a line called a “microstrip line”. » or “microstrip line” which is a microwave transmission line known to those skilled in the art and will not be developed here.
  • the transition from the HF wave propagation mode to a wrinkled waveguide from the radiating panel to the microstrip line of the amplifiers must be carried out via a suitable transition.
  • the so-called “Vivaldi” antipodal transition makes it possible to make a transition between a waveguide and a microstrip line, but it is generally implemented for a classic, non-ridged waveguide. Its principle illustrated in figures 19A And 19B .
  • a so-called “Vivaldi” antipodal transition 50 consists of the insertion of a substrate 51 inside the waveguide 55 (generally in the middle of the waveguide).
  • Two different metal engravings are formed on the substrate, a first engraving 51 on its upper face (its end farthest from the entrance of the waveguide is refined in the form of a conductive ribbon 51A) and a second engraving 52 on its lower face (its end farthest from the entrance to the waveguide is widened to become the ground plane 52A).
  • the electric field E arrives at the level of the engraved substrate which captures the electric field, then between the two metal engravings.
  • the shape of the metal engravings makes it possible to rotate the electric field and transmit it to the conductive ribbon.
  • the inventors have developed a new transition based on the Vivaldi antipodal transition.
  • the principle is to create a preliminary transition part making it possible to change the position, dimensions and/or shapes of the ribs of the waveguide at the input of the source (at the input of the polarizer or filter) to free up space for the center of it.
  • An example of carrying out such a preliminary transition 60 is illustrated in figures 20A , 20B and 20C .
  • FIG 20A shows a side view of the output 60A of the transition (for example at the filter input) where the ribs 41 of the filter 4 appear.
  • figure 20B represents in side view the input 60B of the transition/adaptation (amplifier side).
  • Figure 20C represents in 3D view the transition/adaptation 60 in the continuity of the filter.
  • Loads can be connected to radiant panels in the same way.
  • the loads are in fact generally integrated into the amplification module and can be connected in the same way as the amplifiers to the radiating panel, with the same guide transition/adaptation and the same Vivaldi transition.
  • the load can be connected to the end of the microstrip line as a surface mounted component (SMT).
  • SMT surface mounted component
  • the invention finds applications in the field of network space antennas for satellites in low orbit where data must be transmitted in a large angular range, in particular in the K, Ka, Ku, Q, V bands, etc. by example for high-speed internet.

Description

    DOMAINE TECHNIQUE DE L'INVENTION
  • L'invention se situe dans le domaine des satellites et plus particulièrement pour des satellites en orbite basse qui doivent transmettre des données partout sur la Terre, notamment dans les bandes K et Ka (les bandes K et Ka sont regroupées dans les télécommunications spatiales), dans la bande Ku, voire dans la bande V. L'invention peut trouver une application par exemple pour l'internet haut débit.
  • La bande Ka correspond à une bande de fréquences comprise entre 27 et 40 GHz. Elle est utilisée notamment pour l'Internet par satellite. Pour les télécommunications spatiales, et selon la définition de l'ITU (Union Internationale des Télécommunications), la bande Ka est regroupée avec la bande K et s'étend en réception de 27,5 à 30 GHz et en émission de 17,7 à 20,2 GHz.
  • Selon la définition de l'ITU, et pour les télécommunications spatiale, la bande V est divisée en deux bandes de fréquences : la bande Q (37,5-42,5 GHz) et la bande V (47,2 - 50,2 GHz), avec des dimensions plus petites. Tableau 1
    Symbole littéral Utilisation pour radar (GHz) Radiocommunications spatiales
    Régions du spectre Exemples Désignation nominale Exemples (GHz)
    L 1-2 1,215-1,4 Bande des 1,5 GHz 1,525-1,710
    S 2-4 2,3-2,5 Bande des 2,5 GHz 2,5-2,690
    2,7-3,4
    C 4-8 5,25-5,85 Bande des 4/6 GHz 3,4-4,2
    4,5-4,8
    5,85-7,075
    X 8-12 8,5-10,5 - -
    Ku 12-18 13,4-14,0 Bande des 11/14 GHz 10,7-13,25
    15,3-17,3 Bande des 12/14 GHz 14,0-14,5
    K(1) 18-27 24,05-24,25 Bande des 20 GHz 17,7-20,2
    Ka(1) 27-40 33,4-36,0 Bande des 30 GHz 27,5-30,0
    V - - Bande des 40 GHz 37,5-42,5
    47,2-50,2
    (1) Dans les radiocommunications spatiales, les bandes K et Ka sont souvent désignées par le seul symbole Ka.
  • L'invention concerne plus précisément le domaine des antennes spatiales pour les satellites en orbite basse ou l'on doit transmettre des données dans un grand domaine angulaire, et en particulier des antennes réseau à rayonnement direct. On entend ici par « antenne réseau à rayonnement direct » ou « DRA » en anglais une antenne pouvant fonctionner en émission et/ou en réception et comprenant un réseau de sources élémentaires de rayonnement relié par un formateur de faisceau (dit « BFN » pour « Beam Forming Network » en anglais).
  • ETAT DE LA TECHNIQUE
  • Deux types de satellites en orbite peuvent être utilisés pour fournir le haut débit sur Terre.
  • Un premier type concerne les satellites géostationnaires (36 000 km) qui vont permettre de fournir le haut débit sur Terre dans une région ou zone donnée. Sur cette orbite le satellite se déplace de manière exactement synchrone avec la Terre et reste constamment au-dessus du même point de la surface.
  • Un second type repose sur l'utilisation d'une constellation de satellites en orbite basse (nommés satellites « LEO » pour « Low Earth Orbit » en anglais) configurés pour permettre de fournir le haut débit sur toute la Terre. Une constellation de satellites est un ensemble de satellites artificiels qui travaillent de concert. Les satellites orbitent selon des orbites choisies et synchronisées de sorte que leurs couvertures au sol respectives se chevauchent et se complètent au lieu d'interférer entre elles. Un des avantages de la constellation de satellites en orbite basse est le temps de latence entre l'émission et la réception des données car les satellites en orbite basse utilisés sont plus proches de la terre (généralement entre 500 et 1200 km). La réduction du temps de latence est un avantage pour des domaines demandant une réponse très rapide (par exemple : pour une voiture autonome, pour un accès plus rapide aux données, pour des appels vidéo ou visioconférences avec une meilleure réactivité ...). La Terre est vue depuis le satellite LEO suivant un cône qui peut varier entre +/- 45° et +/- 55° selon l'altitude du satellite. Ce domaine est en fort développement, avec de nombreuses missions et/ou projets de constellations de satellites en orbite basse (Starlink, Kuiper, Télésat, Leosat, Oneweb ...). Les données transmises entre ces satellites et la Terre pour les communications internet haut débit utilisent les bandes Ka (regroupant K et Ka pour le spatial), les bandes Q, V mais aussi la bande Ku. Il est donc recherché des antennes qui peuvent fonctionner dans ces bandes et en particulier dans la bande Ka.
  • L'antenne généralement retenue pour les satellites LEO est une antenne réseau à rayonnement direct dite « DRA » (« Direct Radiating Array » en anglais que l'on traduit en français par « réseau à rayonnement direct »).
  • Les antennes DRA du domaine de l'invention, par exemple WO2020/194270 A1 , comportent un grand nombre de sources (généralement de 128 à 512 sources) et chaque source est composée au moins d'un élément rayonnant, d'un polariseur et d'un filtre qui doit se connecter facilement aux amplificateurs (ou aux charges). L'ensemble des sources forment un panneau rayonnant. Un élément rayonnant élémentaire d'une antenne DRA doit présenter une ouverture de petite dimension par rapport à la fréquence de fonctionnement de celui-ci (on parle de dimensions de l'ordre de 0,55 à 0,7 λ avec λ=c/f où λ est la longueur d'onde, c la célérité de propagation de l'onde, et f représente la fréquence de fonctionnement maximale de l'antenne. Ceci dans le but de ne pas émettre un signal parasite (lobe de réseau) sur une autre zone de la terre qui viendrait dégrader les performances du système. Ceci engendre des sources très petites dimensions, de l'ordre de 5 à 9 mm de diamètre en bande Ka.
  • Il est généralement recherché que les sources respectent les contraintes suivantes :
    • être facile à fabriquer, notamment pour minimiser le coût ;
    • comporter le moins de pertes RF possibles, en particulier pour avoir le moins de puissance à dissiper dans une petite surface ;
    • être le plus compact possible pour limiter la masse ;
    • faciliter la connexion aux amplificateurs.
  • Il existe des antennes DRA dites « antennes imprimées » ou « antennes patch », permettant la transmission de données entre des satellites LEO et la Terre. Elles comprennent des éléments (ou « patchs ») imprimés sur un substrat plat, et sont adaptées pour des bandes de fréquences de type bande L ou bande S, qui sont plus basses que la bande Ka et pour des bandes passantes faibles (inférieures à 1%). Les sources (élément rayonnant, polariseur, filtre) de ces antennes sont fabriquées en technologie de type circuit imprimé, donc elles sont facilement fabricables, elles sont compactes et de masse limitée. Les pertes ne sont pas rédhibitoires dans les bandes de fréquence de type bande L ou bande S. De plus les antennes patchs sont bien adaptées pour des bandes passantes faibles (inférieures à 1%).
  • En revanche, pour des bandes de fréquences plus importantes (bande Ka par exemple), les antennes imprimées ne conviennent plus, ou sinon il faut empiler plusieurs patchs de petites dimensions sur un substrat, ce qui d'une part est limité ou difficilement réalisable. Et d'autre part, même en empilant les patchs, les pertes RF deviennent trop importantes dans ces bandes de fréquence (environ 2 dB avec un substrat pour de la bande Ka), au moins du fait de la présence du substrat. Ces pertes sont rédhibitoires pour les applications spatiales, on évite en effet de dissiper inutilement de la puissance dans ce milieu où l'énergie disponible est très limitée.
  • Il existe d'autres antennes dans lesquelles les éléments rayonnants sont à base de guides d'onde en cornet chargés de diélectrique ou encore de guides d'ondes en cornet dits « ridgés » comme décrit par exemple dans la publication « A compacted dual linearly polarization wideband feed for parabolic reflector antenna » Wen-Juan Ye et al. On définit par « guide d'onde ridgé », un guide d'onde de forme quelconque (carré, circulaire, rectangulaire) pouvant transmettre un signal hyperfréquence et comportant une ou plusieurs nervures à l'intérieur de celui-ci. Le problème de l'élément rayonnant en guide d'onde avec une forme de cornet qu'il soit ridgé ou non, est qu'il nécessite un système pour polariser circulairement l'onde. Comme la taille de l'élément rayonnant est dans la plage de 0,55 à 0,7 λ, on utilise généralement un dévoyeur pour connecter le cornet au système qui permet de polariser circulairement l'onde. En effet, les systèmes du type transducteur OrthoMode (OMT) avec coupleur ou polariseur à septum en guide ne respectent pas cette contrainte de maille ou d'encombrement. Le dévoyeur permet, avec un ensemble de guides d'ondes (autant que le nombre d'éléments rayonnants) qui sont courbés, de changer la taille d'une maille entre son entrée et sa sortie. La contrainte majeure consiste à avoir des guides de longueurs identiques. Cette contrainte implique que le dévoyeur est difficile à concevoir. De plus l'utilisation d'un dévoyeur implique un encombrement beaucoup plus grand du panneau rayonnant, des pertes RF importantes dues au dévoyeur. En outre, une structure à dévoyeur est difficile à réaliser en une seule pièce, même en utilisant une technique de fabrication additive.
  • L'invention vise à surmonter les inconvénients précités de l'art antérieur.
  • Plus particulièrement elle vise à disposer d'une source d'antenne pour réaliser une antenne réseau DRA, source qui soit la plus compacte possible, qui génère de la polarisation circulaire sans utiliser de dévoyeur, qui soit adaptée pour la bande de fréquence Ka (ou K,Q,V, Ku ...), dont l'élément rayonnant élémentaire présente une ouverture de petite dimension par rapport à la longueur d'onde λ, et qui présente des faibles pertes RF (typiquement inférieures à 0.3 dB, voire 0.2 dB an bande Ka). En outre, l'invention vise à disposer d'une telle source d'antenne qui puisse intégrer un filtre et qui puisse se connecter facilement à un amplificateur. Enfin, la source d'antenne doit pouvoir être fabriquée facilement, et à faible coût
  • EXPOSE DE L'INVENTION
  • Un premier objet de l'invention permettant de remédier à ces inconvénients est une source d'antenne pour antenne réseau à rayonnement direct, dite antenne DRA, pour l'émission et la réception d'ondes hyperfréquence, ladite source comprenant un guide d'onde ayant au moins une partie principale en forme de cylindre droit creux s'étendant selon une direction longitudinale, la base dudit cylindre présentant au moins un axe de symétrie dans son plan et les dimensions transversales extérieures de ladite partie principale étant constantes selon la direction longitudinale ;
    • la partie principale du guide d'onde comprenant dans ladite direction longitudinale :
      • une première portion formant un élément rayonnant, ou la majeure partie d'un élément rayonnant, ledit élément rayonnant comprenant des premières nervures s'étendant vers l'intérieur et sur tout ou partie de la longueur dudit élément rayonnant, lesdites premières nervures étant régulièrement réparties autour du périmètre dudit élément rayonnant et présentant plusieurs marches le long de la direction longitudinale, le nombre, les hauteurs et les épaisseurs desdites marches étant configurées pour permettre une variation, de préférence une augmentation, d'impédance donnée entre l'entrée et la sortie de l'élément rayonnant ;
      • une deuxième portion formant un polariseur, ledit polariseur comportant deux entrées séparées par une lame interne s'étendant selon la direction longitudinale et une sortie correspondant à l'entrée de l'élément rayonnant, la lame interne comportant plusieurs paliers le long de la direction longitudinale (X), lesdits paliers étant configurés pour transformer un champ électromagnétique de polarisation circulaire en entrée en un champ électromagnétique de polarisation linéaire en sortie, et inversement pour transformer un champ électromagnétique de polarisation linéaire en sortie en un champ électromagnétique de polarisation circulaire en entrée, le polariseur comprenant en outre des deuxièmes nervures s'étendant vers l'intérieur et sur toute ou partie de la longueur dudit polariseur, lesdites deuxièmes nervures et ladite lame interne étant régulièrement réparties autour du périmètre dudit polariseur ;
    • l'élément rayonnant et le polariseur étant en une seule pièce, de préférence réalisée selon une technique de fabrication additive, et étant disposés bout à bout dans la direction longitudinale.
  • Par disposés « bout à bout », on entend que les éléments sont joints par leurs extrémités.
  • Selon un mode de réalisation préféré, le guide d'onde présente une épaisseur constante sur toute sa longueur.
  • Il est précisé que l'impédance entre l'entrée et la sortie de l'élément rayonnant augmente généralement entre une centaine d'ohms (dans le guide d'onde) et 377 ohms (dans l'air ou le vide).
  • Par « cylindre » ou « cylindrique », on entend la définition générale, à savoir un solide engendré par une droite qui se déplace parallèlement à un axe, en s'appuyant sur deux plans fixes isométriques et parallèles. Un cylindre droit désigne un cylindre dont les génératrices sont perpendiculaires aux bases. La base peut être un cercle ou un polygone (carré, hexagone, octogone, décagone ...). Dans le cas où la base est un polygone, on peut également parler de prisme. La base doit présenter un axe de symétrie dans son propre plan. C'est pourquoi on parlera d'un polygone d'ordre pair (c'est-à-dire à nombre de côtés pair).
  • On entend par « polariseur » un élément destiné à convertir, d'une part, les signaux reçus en polarisation circulaire en des signaux en polarisation linéaire et, d'autre part, les signaux à émettre d'une polarisation linéaire en une polarisation circulaire.
  • Les termes « entrée » ou « sortie » sont définis selon le sens de circulation des ondes radiofréquence (RF) dans la source quand celle-ci fonctionne en émission, c'est-à-dire depuis le filtre ou le polariseur vers le cornet.
  • Un élément rayonnant peut être désigné par « cornet » qui est un terme couramment utilisé dans le domaine de l'invention et qui désigne un élément d'antenne en forme de cylindre, et qui peut comprendre une partie complémentaire en forme de cône ou de pyramide tronquée. Dans le cas d'un cornet comprenant une partie complémentaire en forme de cône ou de pyramide tronquée, la partie la plus évasée correspond toujours à la sortie de l'élément rayonnant.
  • Un guide d'onde comprenant des nervures à l'intérieur dudit guide d'onde peut être désigné par le terme « guide d'onde ridgé ».
  • Selon l'invention, pour l'ensemble des éléments constituant la source d'antenne, le terme « longueur » est à comprendre par référence à la direction longitudinale de la source d'antenne. Le terme « radial » est à comprendre par référence à un plan perpendiculaire à ladite direction longitudinale, dit « plan transversal », et le terme « orthoradial » désigne la direction perpendiculaire à la direction radiale dans ledit plan transversal. La largeur de la lame désigne la dimension radiale de la lame, plus généralement la dimension de la lame qui permet de séparer l'entrée de polariseur en deux. L'épaisseur de la lame désigne l'autre dimension dans le plan transversal. La hauteur d'une nervure désigne la dimension radiale. L'épaisseur d'une nervure désigne la dimension selon la direction orthoradiale. La hauteur d'un plot désigne la dimension sensiblement selon la direction radiale et l'épaisseur d'un plot désigne la dimension sensiblement selon la direction orthoradiale.
  • La solution consiste à former un élément rayonnant en guide d'onde à nervures internes, et un polariseur en guide d'onde à septum et à nervures internes connecté à l'élément rayonnant dans la continuité de celui-ci (en une seule pièce), le polariseur à septum permettant d'avoir deux accès en guide d'onde. On peut disposer sur l'un des accès du polariseur un filtre à plots en guide d'onde à nervures.
  • Ainsi, la source d'antenne intègre un élément rayonnant à nervures internes compatible avec une maille d'antenne réseau DRA très faible (0,5 à 0,7 λ), mais également un polariseur à septum à faible pertes compatible avec la même maille d'antenne réseau DRA, et qui génère de la polarisation circulaire sans utiliser de dévoyeur.
  • La solution permet ainsi :
    • d'avoir une source élémentaire (cornet, polariseur, plus éventuellement un filtre) qui reste dans la maille (gain en masse et en compacité) ;
    • de conserver une technologie guide (et non patch) pour réduire les pertes, même en bande Ka (et aussi en bande K, Ku, Q, V ...);
    • d'être réalisable à faible coût, en particulier par une technique de fabrication additive ;
    • de se connecter facilement aux amplificateurs et/ou charges de l'antenne, comme décrit plus après.
  • La source d'antenne selon l'invention peut en outre comporter l'une ou plusieurs des caractéristiques suivantes prises isolément ou suivant toutes combinaisons techniques possibles.
  • Le nombre de premières nervures et/ou de deuxièmes nervures est de préférence un nombre pair, à la fois en entrée et en sortie de l'élément rayonnant et/ou du polariseur. Un nombre pair favorise la symétrie de la source d'antenne. Le nombre pair favorise également l'introduction de la lame du polariseur à septum qui vient dans ce cas se raccrocher à deux nervures opposées et permet de simplifier le dimensionnement du polariseur à septum.
  • Les deuxièmes nervures peuvent être dans la continuité des premières nervures en entrée de l'élément rayonnant (correspondant à la dernière marche), ce qui facilite le design et la fabrication de la source. Alternativement, les deuxièmes nervures peuvent ne pas être dans la continuité des premières nervures en entrée de l'élément rayonnant.
  • Selon un mode de réalisation, la base du cylindre droit est un polygone régulier d'ordre pair, de préférence un hexagone.
  • Selon une première variante, la lame interne et tout ou partie des premières nervures et/ou des deuxièmes nervures peuvent être disposées au niveau des arêtes du cylindre droit polygonal.
  • Selon une deuxième variante, la lame interne et tout ou partie des premières nervures et/ou des deuxièmes nervures peuvent être disposées sur les surfaces latérales intérieures du cylindre droit polygonal.
  • Les première et deuxième variantes peuvent être combinées de telle sorte que la lame interne peut être disposée au niveau de deux arêtes opposées du cylindre droit polygonal ou sur deux surfaces latérales intérieures opposées du cylindre droit polygonal, et les premières nervures et/ou les deuxièmes nervures peuvent être disposées à la fois au niveau des arêtes du cylindre droit polygonal et sur les surfaces latérales intérieures du cylindre droit polygonal.
  • Selon un mode de réalisation alternatif, la base du cylindre droit est un cercle.
  • La source d'antenne comprend en outre :
    • une troisième portion comprenant un filtre, la lame interne étant prolongée dans toute ou partie de ladite troisième portion, ledit filtre comprenant un ensemble de plots de filtration en fréquence disposés à l'intérieur de la troisième portion et sur une seule et même surface de la lame interne, la sortie du filtre correspondant à une des deux entrées du polariseur, ladite troisième portion comprenant en outre des troisièmes nervures s'étendant vers l'intérieur et sur tout ou partie de la longueur de ladite troisième portion, lesdites troisièmes nervures et la lame interne étant régulièrement réparties autour du périmètre de ladite troisième portion ;
    l'élément rayonnant, le polariseur et le filtre étant en une seule pièce, de préférence réalisée selon une technique de fabrication additive, et le polariseur et le filtre étant disposés bout à bout dans la direction longitudinale.
  • De préférence, le nombre de troisièmes nervures est un nombre pair, et à la fois en entrée et en sortie du filtre. Un nombre pair favorise la symétrie de la source d'antenne.
  • Les troisièmes nervures peuvent être dans la continuité des secondes nervures du polariseur, ce qui facilite le design et la fabrication de la source. Alternativement, les troisièmes nervures peuvent ne pas être dans la continuité des deuxièmes nervures.
  • Selon un mode de réalisation, le guide d'onde est entièrement en forme de cylindre droit creux sur toute sa longueur. En d'autres termes, la partie principale représente toute la longueur du guide d'onde.
  • Selon un mode alternatif de réalisation, le guide d'onde comprend une partie principale en forme de cylindre droit creux et une partie complémentaire en sortie de l'élément rayonnant, ladite partie complémentaire pouvant être en forme de cône ou de pyramide tronquée , la partie la plus évasée étant disposée en sortie de l'élément rayonnant. La partie complémentaire est exempte de rainures. En outre, la longueur de la partie complémentaire est très faible par rapport à la longueur de la partie principale du guide d'onde.
  • Un deuxième objet de l'invention est un panneau rayonnant pour une antenne réseau à rayonnement direct, ledit panneau comportant une pluralité de sources selon l'invention comprenant une pluralité de sources d'antennes selon le premier objet de l'invention ; ledit panneau rayonnant étant en une seule pièce, de préférence réalisée selon une technique de fabrication additive.
  • De préférence, les sources d'un même panneau rayonnant sont toutes sensiblement identiques.
  • Le panneau rayonnant comporte des sources présentant chacune des éléments rayonnants de petites dimensions (0,5 à 0,7 λ) à très faible pertes RF (typiquement inférieures à 0.3 dB, voire 0.2 dB en bande Ka) et est facilement fabricable.
  • Un troisième objet de l'invention est une antenne réseau à rayonnement direct, dite antenne DRA, comprenant :
    • un panneau rayonnant selon le deuxième objet de l'invention;
    • au moins un amplificateur et/ou une charge connecté au panneau rayonnant, au niveau de l'entrée d'au moins un filtre et/ou d'une entrée d'au moins un polariseur.
  • Selon un mode de réalisation avantageux, le panneau rayonnant est connecté à le au moins un amplificateur et/ou la au moins une charge par l'intermédiaire d'au moins une transition antipodale Vivaldi, et de préférence par au moins une transition/adaptation adaptée pour changer la position, les dimensions et/ou la forme des nervures du guide d'onde en entrée de la source de manière à pouvoir positionner la transition Vivaldi au sein dudit guide d'onde.
  • La source d'antenne, le panneau rayonnant et l'antenne réseau à rayonnement direct selon l'invention peuvent comporter l'une quelconque des caractéristiques précédemment énoncées, prises isolément ou selon toutes combinaisons techniquement possibles avec d'autres caractéristiques.
  • BREVE DESCRIPTION DES FIGURES
  • D'autres caractéristiques, détails et avantages de l'invention ressortiront à la lecture de la description faite en référence aux dessins annexés donnés à titre d'exemple et qui représentent, respectivement :
    • [Fig.1A] et
      [Fig.1B] représentent une source d'antenne selon un premier mode de réalisation de l'invention (mode de realisation non couvert par les revendications annexées).
    • [Fig.2A],
      [Fig.2B],
      [Fig.2C] et
      [Fig.2D] représentent une source d'antenne selon un deuxième mode de réalisation de l'invention.
    • [Fig.3A] et
      [Fig.3B] représentent en détail un cornet hexagonal selon une première variante de l'invention.
    • [Fig.4A],
      [Fig.4B] et
      [Fig.4C] représentent en détail un polariseur hexagonal selon la première variante de l'invention.
    • [Fig.5A],
      [Fig.5B] et
      [Fig. 5C] représentent en détail un filtre selon la première variante de l'invention.
    • [Fig.6A] et
      [Fig.6B] représentent en détail un cornet hexagonal selon une deuxième variante de l'invention.
    • [Fig.7A],
      [Fig.7B] et
      [Fig.7C] représentent en détail un polariseur hexagonal selon la deuxième variante de l'invention.
    • [Fig.8] représente en détail un cornet hexagonal selon une troisième variante de l'invention.
    • [Fig.9A] et
      [Fig.9B] représentent en détail un cornet circulaire selon une quatrième variante de l'invention.
    • [Fig.10A],
      [Fig.10B] et
      [Fig.10C] représentent en détail un polariseur circulaire selon la quatrième variante de l'invention.
    • [Fig.11] illustre plusieurs formes de filtres pour une source selon l'invention.
    • [Fig.12A],
      [Fig.12B] et
      [Fig.12C] illustrent plusieurs transitions optionnelles entre le filtre et le polariseur pour une source selon l'invention.
    • [Fig.13] représente en vue 3D un panneau rayonnant pour une antenne réseau à rayonnement direct comprenant une pluralité de sources selon l'invention.
    • [Fig.14A] et
      [Fig.14B] illustrent un mode particulier de réalisation d'un filtre d'une source selon l'invention.
    • [Fig.15A] et
      [Fig.15B] illustrent un mode particulier de réalisation d'un élément rayonnant selon l'invention.
    • [Fig.16] schématise une architecture fonctionnelle d'une antenne réseau à rayonnement direct.
    • [Fig.17] illustre un premier mode de connexion entre un panneau rayonnant et des amplificateurs et/ou des charges.
    • [Fig.18] illustre un deuxième mode de connexion entre un panneau rayonnant et des amplificateurs et/ou des charges.
    • [Fig.19A] et
      [Fig.19B] sont des schémas de principe d'une transition Vivaldi.
    • [Fig.20A],
      [Fig.20B] et
      [Fig.20C] illustrent une adaptation/transition du guide d'onde d'une source selon l'invention permettant d'intégrer une transition Vivaldi vers des amplificateurs et/ou des charges.
    • [Fig. 21] illustre un guide d'onde d'une source selon l'invention intégrant une transition Vivaldi vers des amplificateurs et/ou des charges.
  • Dans l'ensemble de ces figures, des références identiques peuvent désigner des éléments identiques ou analogues.
  • De plus, les différentes parties représentées sur les figures ne le sont pas nécessairement selon une échelle uniforme, pour rendre les figures plus lisibles.
  • DESCRIPTION DETAILLEE DE L'INVENTION
  • Dans la description détaillée, l'élément rayonnant peut être désigné par le terme « cornet ».
  • La direction longitudinale est repérée par la référence X et la flèche est orientée dans le sens entrée vers sortie de chacun des éléments (cornet, polariseur, filtre). La direction longitudinale X correspond également à l'axe du cylindre. Le polariseur est disposé bout à bout avec le cornet dans la direction longitudinale, et le filtre, le cas échéant, est disposé bout à bout avec le polariseur dans la direction longitudinale.
  • Pour l'ensemble des modes et variantes présentés dans la suite de la description, et plus généralement selon l'invention, la source d'antenne peut être en matériau métallique, métallisé, ou métallisable. Par exemple, il peut s'agir de l'aluminium, du titane, ou de toute autre matière qui peut être métallisée en surface. De préférence, le matériau de la source d'antenne est adapté pour fabriquer la source d'antenne, et pour fabriquer le panneau rayonnant de l'antenne réseau (comprenant une pluralité de sources en une seule pièce) par une technique de fabrication additive.
  • Selon l'invention, une source comprend un guide d'onde ayant au moins une partie principale en forme de cylindre droit creux s'étendant selon une direction longitudinale X, la base dudit cylindre présentant au moins un axe de symétrie dans son plan. Les dimensions transversales extérieures de cette partie principale sont constantes selon la direction longitudinale X. Dans la suite de la description détaillée, il est convenu que la forme de la source correspond à la forme du guide d'onde.
  • Les sources représentées dans les figures et décrites dans la suite de la description sont en forme de cylindre droit creux, et ce, sur toute leur longueur (en d'autres termes, la partie principale s'étend sur toute la longueur du guide d'onde).
  • Alternativement, selon une variante de réalisation non représentée, la source peut comprendre, en sortie de l'élément rayonnant, une partie complémentaire en forme de cône ou pyramide tronquée, la partie la plus évasée étant disposée en sortie de l'élément rayonnant. Au lieu d'un cône ou d'une pyramide tronquée, la source peut comprendre, en sortie de l'élément rayonnant, une partie complémentaire de forme cylindrique de dimensions transversales extérieures et/ou de forme de base différentes de la partie principale. La partie complémentaire est exempte de rainures. En outre, la longueur de la partie complémentaire est très faible par rapport à la partie principale du guide d'onde. Par exemple, elle représente de l'ordre de 1/10 voire 1/20 de la longueur du cornet et peut représenter 1/100 de la longueur totale de la source.
  • Les figures 1A et 1B représentent une source d'antenne selon un premier mode de réalisation de l'invention (mode de réalisation non couvert par les revendications annexées), la figure 1A étant une vue en 3D et la figure 1B étant une vue de côté (vue depuis la sortie du cornet). La source d'antenne 1 illustrée est sous forme de guide d'onde qui comprend une première portion formant cornet 2 et une deuxième portion formant polariseur 3, les deux formant une seule pièce (guide d'onde) dont la forme extérieure est un cylindre droit à base hexagonale 10, le cylindre étant creux.
  • Le cornet 2 représenté comprend une entrée EC (repérée en figure 3A) et une sortie SC. Il présente une forme extérieure en cylindre hexagonal 10, et comprend six nervures 21 (premières nervures), qui font saillie vers l'intérieur dudit cornet à partir de chaque arête 10A du cylindre hexagonal 10 et s'étendent dans la direction longitudinale X. Les six premières nervures présentent toutes les mêmes formes et elles sont conformées en marches le long de la direction longitudinale X. Dans l'exemple représenté, les premières nervures sont échelonnées selon trois marches 211, 212, 213 dont les dimensions (hauteurs, épaisseurs et/ou longueurs) varient le long de la direction longitudinale X. Le nombre et les dimensions des marches sont configurées pour permettre une variation d'impédance donnée entre l'entrée et la sortie de l'élément rayonnant.
  • Une caractéristique importante de l'invention est que les dimensions extérieures transversales de la partie principale cylindrique du guide d'onde (ici le cylindre hexagonal) ne varient pas selon la direction longitudinale X et notamment ne diminuent pas. Ce sont les nervures intérieures au cornet, avec leurs marches, qui permettent de faire varier l'impédance dans ledit cornet. Ainsi, cela permet d'avoir en entrée de cornet une ouverture la plus grande possible pour pouvoir ensuite réaliser le polariseur à septum qui se connecte en entrée de cornet. Cela permet d'introduire la lame du polariseur et de repousser le premier mode supérieur le plus loin possible de la bande de fonctionnement de l'antenne réseau. Cette particularité est encore plus vraie pour des cornets cylindriques (ou prismiques) à base carrée pour laquelle la fréquence de coupure du premier mode supérieur apparaît pour une fréquence plus faible.
  • Le cornet est décrit plus en détail dans la suite de la présente description, selon différentes variantes (non limitatives), chacune des variantes pouvant être mise en oeuvre dans le premier mode de réalisation, ou dans le deuxième mode de réalisation décrit ci-après.
  • Le polariseur 3 comporte deux entrées EP1, EP2 séparées par une lame interne 30, ou septum, s'étendant selon la direction longitudinale X, et une sortie SP (repérée en figure 4A) qui correspond à l'entrée EC du cornet 2. La lame interne comporte plusieurs paliers 301, 302, 303, 304 dans la direction longitudinale X. Les paliers sont configurés pour transformer un champ électromagnétique de polarisation circulaire en entrée de polariseur en un champ électromagnétique de polarisation linéaire en sortie de polariseur, et inversement. Régulièrement réparties de part et d'autre de la lame 30, en entrées EP1, EP2 de polariseur, quatre nervures 31 (deuxièmes nervures) font saillie vers l'intérieur dudit polariseur à partir de chaque arête 10A du cylindre hexagonal 10 et s'étendent dans la direction longitudinale X. En outre, en sortie SP du polariseur, deux autres deuxièmes nervures 32 (repérées en figure 4A et 4B) sont formées, qui correspondent aux deux extrémités radiales de la lame 30 qui disparait en sortie de polariseur. Les deuxièmes nervures 31, 32 présentent les mêmes épaisseurs et hauteurs que les premières marches 211 des premières nervures 21. En d'autres termes, en sortie du polariseur, les deuxièmes nervures 31, 32 sont dans la continuité des premières nervures correspondantes 21 en entrée du cornet 2. Les dimensions des deuxièmes nervures sont représentées constantes dans la direction longitudinale, et sont sensiblement égales entre elles.
  • Les nervures dans le polariseur permettent de diminuer la fréquence de fonctionnement minimum de celui-ci et permettent la propagation de l'onde dans celui-ci. Les dimensions des nervures sont telles que le mode principal se propage dans le polariseur. En revanche la fréquence de coupure du premier mode supérieur doit être supérieure à la fréquence maximale de fonctionnement pour que celui-ci ne puisse pas se propager dans la structure. En outre, cela permet de diminuer les dimensions transversales du polariseur par rapport à un polariseur à septum classique, afin de le rendre compatible avec l'ouverture du cornet.
  • Le polariseur est décrit plus en détail dans la suite de la présente description, selon différentes variantes (non limitatives), chacune des variantes pouvant être mise en oeuvre dans le premier mode de réalisation, ou dans le deuxième mode de réalisation décrit ci-après.
  • Les figures 2A, 2B, 2C et 2D représentent une source d'antenne selon un deuxième mode de réalisation de l'invention qui diffère du premier mode en ce qu'elle comprend un outre une troisième portion 4 qui comprend un filtre 40. La figure 2A est une vue en 3D, la figure 2B est une vue en coupe selon un plan passant par l'axe X et l'axe Y (correspondant au plan de la lame), la figure 2C est une vue en coupe selon un plan passant par l'axe X et l'axe Z et la figure 2D étant une vue de côté (vue depuis la sortie du cornet).
  • La source d'antenne 1' illustrée comprend ainsi une première portion formant cornet 2, une deuxième portion formant polariseur 3 et une troisième portion 4 comprenant un filtre 40, les trois portions formant une seule pièce dont la forme extérieure est un cylindre droit à base hexagonale 10.
  • Le filtre 40 correspond à la moitié du cylindre droit hexagonal dans la troisième portion 4 (la sortie du filtre correspond à l'une des deux entrées du polariseur). A l'intérieur du demi-cylindre, le filtre comprend, dans la continuité d'une des deux entrées du polariseur, une série 42 de plots de filtrage en fréquence, les plots étant positionnés l'un après l'autre dans la direction longitudinale X et disposés sur la lame centrale. Les plots de filtrage sont choisis pour permettre à certaines fréquences de passer tandis que d'autres fréquences sont retenues.
  • Dans l'exemple représenté, les plots ont une inclinaison à 45° afin que la source antenne soit réalisée en fabrication additive en une seule et même pièce, donc en le même matériau que le cornet et le polariseur. Les différents plots présentent des dimensions (longueurs, épaisseurs et/ou des hauteurs) pouvant différer d'un plot à l'autre. En outre, les distances entre deux plots adjacents peuvent différer.
  • Les dimensions des plots ainsi que la distance entre deux plots adjacents sont définis pour permettre de réaliser un filtre du type « combline filter ». Un filtre de type « combline » classique est en général réalisé en introduisant des tiges métalliques dans un guide rectangulaire, la taille des tiges ainsi que la distance par rapport à la paroi supérieure du guide permettant de transmettre ou de rejeter certaines fréquences. Ce type de filtre est bien connu par l'homme du métier. Selon l'invention, le filtre est dimensionné pour réaliser un filtre passe-bas.
  • La troisième portion 4 comprend en outre des troisièmes nervures 41 s'étendant vers l'intérieur de celle-ci et sur tout ou partie de la longueur de ladite troisième portion. Dans l'exemple représenté, lesdites troisièmes nervures sont dans la continuité des deuxièmes nervures. Ces troisièmes nervures sont dimensionnées de telle manière à ce que l'onde puisse se propager dans le guide d'onde.
  • Le filtre est décrit plus en détail dans la suite de la présente description, selon différentes variantes possibles (non limitatives). Toute variante peut être mise en oeuvre dans le deuxième mode de réalisation.
  • Les figures 3A (vue 3D) et 3B (vue de côté) représentent en détail un cornet hexagonal 2 selon une première variante de l'invention, qui correspond au cornet hexagonal des figures 1A, 1B, 2A et 2B. Le cornet hexagonal 2 comprend six premières nervures 21 qui font saillie vers l'intérieur dudit cornet à partir de chaque arête du cylindre hexagonal. Les six premières nervures présentent toutes les mêmes formes, et elles sont conformées en marches le long de la direction longitudinale X. Dans l'exemple illustré, sont représentées trois marches 211, 212, 213 dont les dimensions (hauteurs, épaisseurs et/ou longueurs) varient le long de la direction longitudinale, les épaisseurs des marches diminuant dans le sens allant de l'entrée EC vers la sortie SC du cornet (sens de circulation). Ainsi, l'épaisseur e211 de la première marche 211 est supérieure à l'épaisseur e212 de la deuxième marche 212, elle-même supérieure à l'épaisseur e213 de la troisième marche. Par ailleurs la hauteur h211 de la première marche 211 est légèrement supérieure à la hauteur h212 de la deuxième marche 212, elle-même supérieure à la hauteur h213 de la troisième marche 213.
  • De manière générale, il n'est pas nécessaire que les épaisseurs et les hauteurs des marches varient de façon croissante ou décroissante dans le sens de circulation, celles-ci pouvant prendre n'importe quelles valeurs du moment que cela permet de réaliser la variation impédance souhaitée.
  • Quelle que soit la variante de réalisation, et plus généralement selon l'invention, le nombre de marches ainsi que les dimensions des marches des premières nervures sont des paramètres configurables par l'homme du métier, de manière à permettre une variation d'impédance donnée entre l'entrée et la sortie du cornet. Ainsi, il existe un très grand nombre de configurations possibles, qui ne peuvent pas toutes être décrites dans la présente description. A titre d'exemple, le nombre de marches peut être égal à trois comme illustré ou quatre.
  • En outre, le nombre de premières nervures et leurs emplacements ne sont pas limités aux modes et variantes illustrés.
  • Les premières nervures peuvent avoir toutes les mêmes formes, comme illustré, ou présenter des formes différentes.
  • De préférence, le nombre de premières nervures est un nombre pair, à la fois en entrée et en sortie du cornet, et elles sont disposées de manière régulière autour du périmètre du cylindre. Un nombre pair favorise la symétrie de la source d'antenne. Le nombre pair favorise ensuite l'introduction de la lame du polariseur à septum qui vient dans ce cas se raccrocher à deux nervures opposées et permet de simplifier le dimensionnement du polariseur à septum.
  • Selon un mode de réalisation particulier, une dernière section sans nervure (marche de hauteur nulle) peut-être ajoutée au niveau de la sortie du cornet afin d'améliorer l'efficacité et la directivité de celui-ci (ces deux notions sont bien connues de l'homme du métier). En particulier si le cornet présente une partie complémentaire, par exemple en forme en cône ou de pyramide tronquée, en sortie dudit cornet, cette partie complémentaire ne comporte de nervure.
  • Les figures 4A (vue 3D dans le sens entrée-sortie du polariseur), 4B (vue 3D dans le sens sortie-entrée du polariseur) et 4C (vue de côté) représentent un polariseur hexagonal selon la première variante de l'invention, qui correspond au polariseur hexagonal des figures 1A, 1B, 2A et 2B. Le polariseur hexagonal 3 comporte deux entrées EP1, EP2 séparées par une lame interne 30, ou septum, s'étendant selon la direction longitudinale X. Transversalement, la lame interne 30 s'étend entre deux arêtes du cylindre opposées radialement, soit sur une largeur l30. La lame interne 30 comporte quatre paliers 301, 302, 303, 304 configurés pour transformer un champ électromagnétique de polarisation circulaire en entrée en un champ électromagnétique de polarisation linéaire en sortie, et inversement. Mais ce nombre de paliers n'est pas limitatif et peut être moins de quatre (deux ou trois) ou de cinq ou plus.
  • De part et d'autre de la lame 30, en entrées EP1, EP2 de polariseur, quatre deuxièmes nervures 31 font saillie vers l'intérieur dudit polariseur à partir de chaque arête du cylindre hexagonal et s'étendent dans la direction longitudinale X. En outre, en sortie SP du polariseur, deux paliers supplémentaires sur les deux extrémités radiales de la lame interne (extrémités situées sur les arêtes du cylindre) forment deux deuxièmes nervures 32 complémentaires en sortie SP de polariseur. En d'autres termes, en sortie du polariseur, ces deux deuxièmes nervures complémentaires 32 formées en sortie de polariseur correspondent aux deux extrémités de la lame 30 qui disparait en sortie dudit polariseur.
  • Les épaisseurs e31 et les hauteurs h31 des quatre deuxièmes nervures 31 sont constantes dans la direction longitudinale et sont sensiblement égales entre elles. Les épaisseurs e32 et les hauteurs h32 des deux deuxièmes nervures complémentaires 32 sont constantes dans la direction longitudinale et sont sensiblement égales entre elles et à celles des quatre deuxièmes nervures 31.
  • Quelle que soit la variante de réalisation, et plus généralement selon l'invention, le nombre de paliers de la lame interne, ainsi que l'épaisseur de la lame, et les dimensions des paliers sont configurables par l'homme du métier. La lame du polariseur peut en outre présenter des formes différentes de celle représentée. Outre la forme en escalier illustrée, on trouve dans la littérature un grand nombre de formes autres que la forme en escalier, formes qui peuvent aussi être utilisées dans le cadre de l'invention. On peut citer par exemple une lame dont la forme a été approximée par une équation mathématique du type polynôme de Legendre. Toute autre forme adaptée à la fonction de transformer un champ électromagnétique de polarisation linéaire en un champ électromagnétique de polarisation circulaire, et inversement peut être envisagée. Ainsi, il existe un très grand nombre de configurations possibles, qui ne peuvent pas toutes être décrites dans la présente description.
  • De préférence, l'épaisseur e30 de la lame interne 30 est sensiblement égale à l'épaisseur e31, e32 des deuxièmes nervures 31, 32. Ceci permet de faciliter le design et la fabrication de la source d'antenne, et de l'antenne réseau, et de favoriser la symétrie de l'ensemble.
  • De préférence, l'épaisseur e31, e32 (et/ou la hauteur h31, h32) des deuxièmes nervures 31, 32 est sensiblement égale à l'épaisseur e211 (et/ou à la hauteur h211) des premières nervures 21 (première marche 211) au niveau de l'entrée du cornet. Les deuxièmes nervures 31 peuvent être ainsi positionnées dans la continuité des premières nervures 21 en entrée EC du cornet 2.
  • Les figures 5A (vue en 3D), 5B (vue de côté) et 5C (autre vue en 3D) représentent en détail un filtre, qui correspond au filtre 40 des figures 2A et 2B.
  • Le filtre n'est formé que sur une des entrées du polariseur car l'antenne fonctionne en mono-polarisation.
  • Le filtre 40 correspond à la moitié du cylindre droit hexagonal dans la troisième portion 4 (la sortie du filtre correspond à l'une des deux entrées du polariseur). A l'intérieur du demi-cylindre, le filtre comprend, dans la continuité d'une des deux entrées du polariseur, une série 42 de quatre plots 421, 422, 423, 424 de filtrage en fréquence, les plots étant positionnés l'un après l'autre dans la direction longitudinale X et disposés sur la lame interne 30 (prolongée entre le polariseur et la troisième portion). Les plots de filtrage sont choisis pour permettre à certaines fréquences de passer tandis que d'autres fréquences sont retenues.
  • Les différents plots présentent des dimensions (longueurs, épaisseurs et/ou hauteurs) pouvant différer d'un plot à l'autre. En outre, les distances entre deux plots adjacents peuvent différer.
  • Sur l'exemple illustré, les deuxième et troisième plots 422, 423 ont des dimensions équivalentes (épaisseur e422, hauteur h422, longueur L422), et les premier et quatrième plots 421, 424 ont également des dimensions équivalentes (épaisseur e421, hauteur h421, longueur L421) mais différentes des deuxième et troisième plots. En outre, les quatre plots sont espacés les uns les autres de distances qui ne sont pas obligatoirement égales.
  • Le nombre de plots illustré n'est pas limitatif, de même pour les dimensions des plots ainsi que les distances entre les plots adjacents.
  • Comme indiqué précédemment, les dimensions des plots ainsi que la distance entre deux plots adjacents sont définis pour permettre de réaliser un filtre du type « combline filter » de type filtre passe-bas, dont la forme peut être adaptée afin de l'intégrer dans le guide d'onde ridgé.
  • En outre, les dimensions et le nombre de plots dépendent de la valeur voulue pour la réjection du filtre. Si on veut augmenter le niveau de réjection, on augmente le nombre de plots.
  • La troisième portion 4 comprend en outre des troisièmes nervures 41 s'étendant vers l'intérieur et sur tout ou partie de la longueur de ladite troisième portion, lesdites troisièmes nervures étant dans la continuité des deuxièmes nervures 31, 32. Ces troisièmes nervures sont dimensionnées de telle manière à ce que l'onde puisse se propager dans le guide d'onde.
  • La forme du polariseur étant très variable, et dépendant de la forme du cornet (cylindre à base circulaire ou polygonale ...), on peut avoir une grande variété de formes pour le guide d'onde à nervures formant le filtre. Des formes possibles, non limitatives sont illustrées dans la figure 11 (illustrées avec les nervures mais sans les plots).
  • En outre, afin de faciliter l'insertion des plots au centre du filtre, on peut prévoir de réaliser une transition entre le polariseur et le filtre qui permettra de changer la disposition des nervures à l'intérieur de la troisième portion comprenant du guide d'onde comprenant le filtre. Une condition est de faire en sorte que la fréquence de fonctionnement du guide d'onde soit inférieure à la fréquence minimale de fonctionnement, autant avant qu'après la transition. Comme illustré dans les figures 12A à 12C, la transition peut être réalisée en enlevant des nervures (figure 12A), en ajoutant des nervures (figure 12B), ou encore en courbant des nervures existantes (figure 12C), voire en combinant plusieurs de ces solutions.
  • Les figures 6A (vue 3D) et 6B (vue de côté) représentent un cornet hexagonal 2' selon une deuxième variante de l'invention, qui diffère de la première variante en ce que les premières nervures 21' ne sont pas disposées au niveau des arêtes du cylindre hexagonal 10 mais au milieu des surfaces latérales 10B dudit cylindre. Dans l'exemple représenté, il y a six premières nervures avec trois marches chacune, les marches diminuant entre l'entrée et la sortie du cornet mais, comme indiqué précédemment, il n'est pas nécessaire que les épaisseurs et les hauteurs des marches varient de façon croissante ou décroissante dans le sens de circulation, celles-ci pouvant prendre n'importe quelles valeurs du moment que cela permet de réaliser la variation impédance souhaitée.
  • Le nombre de premières nervures et de marches n'est pas limitatif. De préférence il y a un nombre pair de premières nervures, à la fois en entrée et en sortie du cornet.
  • Les figures 7A (vue 3D dans le sens entrée-sortie du polariseur), 7B (vue 3D dans le sens sortie-entrée du polariseur) et 7C (vue de côté) représentent un polariseur hexagonal 3' selon la deuxième variante de l'invention, qui diffère de la première variante en ce que les deuxièmes nervures 31', 32' ainsi que la lame interne 30 ne sont pas disposées au niveau des arêtes du cylindre hexagonal mais au milieu des surfaces latérales dudit cylindre. Dans l'exemple représenté, il y a six premières nervures avec trois marches chacune. Mais le nombre de nervures n'est pas limitatif. De préférence il y a un nombre pair de deuxièmes nervures, à la fois en entrée et en sortie du polariseur.
  • Les premières et secondes variantes peuvent être combinées entre elles, de sorte que les premières nervures (et les deuxièmes nervures) peuvent être disposées à la fois au niveau des arêtes du cylindre hexagonal et au milieu des surfaces latérales dudit cylindre. On peut ainsi obtenir par exemple 12 premières nervures dans le cornet et 12 deuxièmes nervures en sortie en polariseur.
  • Les deuxièmes nervures sont généralement disposées aux mêmes emplacements sur toute la longueur occupée par lesdites deuxièmes nervures.
  • Les premières nervures peuvent être disposées aux mêmes emplacements sur toute la longueur occupée par les premières nervures, comme illustré.
  • Alternativement, les premières nervures peuvent être positionnées selon une première configuration sur une première longueur (ou première section), puis selon une deuxième configuration sur une deuxième longueur (ou deuxième section), puis éventuellement encore selon une troisième configuration sur une troisième longueur (ou troisième section) etc. Il est cependant important de respecter les échelons d'impédance et de respecter la meilleure symétrie possible du cornet (et de la source d'antenne) par rapport à l'axe longitudinal X.
  • Un exemple de cette alternative (troisième variante) est illustré en figure 8 qui représente un cornet 3‴ dans lequel des premières nervures 21 (configurées en une seule marche) sont positionnées sur les arêtes d'un cylindre droit hexagonal en entrée EC du cornet sur une première section L1 puis des premières nervures 21' (configurées en trois marches) sont positionnées au milieu des surfaces latérales du cylindre hexagonal sur une deuxième section L2 pouvant aller jusqu'à la sortie SC du cornet. Cette configuration n'est évidemment pas limitative.
  • Dans un mode de réalisation préférentiel, les deuxièmes nervures en sortie du polariseur sont positionnées dans la continuité des premières nervures en entrée du cornet. Alternativement, il est possible d'envisager un changement d'emplacement des nervures entre la sortie du polariseur et l'entrée du cornet (par exemple au niveau des arêtes en polariseur puis sur le milieu des surfaces en cornet ou inversement), toujours dans la limite du respect des impédances souhaitées.
  • Les figures 9A (vue 3D) et 9B (vue de côté) représentent un cornet 2" selon une quatrième variante de l'invention, qui diffère de la première, de la deuxième variante et de la troisième variante en ce que le cylindre droit 10' est circulaire et non hexagonal. Les premières nervures 21" sont positionnées de manière régulière autour du cercle. Dans l'exemple représenté, il y a six premières nervures 21" avec trois marches chacune. Mais le nombre de nervures et de marches n'est pas limitatif. De préférence il y a un nombre pair de premières nervures, à la fois en entrée et en sortie du cornet.
  • Les figures 10A (vue 3D dans le sens entrée-sortie du polariseur), 10B (vue 3D dans le sens sortie-entrée du polariseur) et 10C (vue de côté) représentent un polariseur 3" selon la quatrième variante de l'invention, qui diffère de la première, de la deuxième variante et de la troisième variante en ce que le cylindre droit 10' est circulaire et non hexagonal. Les deuxièmes nervures 31", 32" et la lame interne 30" sont positionnées de manière régulière autour du périmètre du cercle. Dans l'exemple représenté, il y a quatre deuxièmes nervures 31" en entrée du polariseur et six deuxièmes nervures 31", 32" en sortie de polariseur. Mais le nombre de nervures n'est pas limitatif, de préférence il y a un nombre pair de deuxièmes nervures, à la fois en entrée et en sortie du polariseur.
  • La forme du cylindre droit ne se limite pas à la forme hexagonale ou circulaire. Alternativement, la forme du cylindre droit peut être carrée, octogonale, décagonale, et plus généralement en forme de polygone régulier d'ordre pair (nombre de côtés pair), afin de présenter une forme la plus symétrique possible.
  • En outre, afin de conserver la polarisation circulaire, les nervures doivent être positionnées de manière symétrique autour du périmètre du cylindre.
  • Ainsi, de préférence pour un cylindre à base polygonale, le nombre de premières nervures dans le cornet est égal au nombre de côtés du polygone, ou à un multiple du nombre de côtés. Par exemple :
    • pour un cylindre carré, le nombre de premières nervures peut être de 4, 8, 12 ... ;
    • pour un cylindre hexagonal, le nombre de premières nervures peut être de 6, 12 ...
    • pour un cylindre octogonal, le nombre de premières nervures peut être de 8, 16....
    • pour un cylindre décagonal, le nombre de premières nervures peut être de 10, 20
  • Le nombre de premières nervures indiqué ci-dessus est donné pour l'entrée et la sortie du cornet. Pour le polariseur, le nombre de deuxièmes nervures indiqué ci-dessus correspond au nombre de nervures en sortie de celui-ci (en entrée de polariseur il y en a deux en moins correspondant à la lame). De même, lorsqu'il y a un filtre, il y deux troisièmes nervures en moins correspondant à la lame qui se prolonge dans le filtre. Ainsi, pour un cylindre hexagonal, on a de préférence 6 premières nervures en entrée et en sortie du cornet, 6 deuxièmes nervures en sortie du polariseur (correspondant à l'entrée du cornet), 4 deuxièmes nervures en entrée du polariseur, et 4 troisièmes nervures en entrée et en sortie du filtre, le cas échéant.
  • Les nervures (et la lame interne) peuvent être positionnées au niveau des arêtes intérieures et/ou sur les surfaces latérales intérieures du polygone, de préférence au milieu des surfaces latérales intérieures du polygone.
  • Pour un cylindre circulaire, les nervures (et la lame interne) sont également réparties régulièrement autour du périmètre du cercle, à l'intérieur dudit cylindre circulaire. Le nombre de premières nervures, de secondes nervures, voire de troisièmes nervures lorsqu'il y a un filtre, peut être de 4, 6, 8, 10 ...
  • Pour un cylindre circulaire, on a de préférence 6 premières nervures en entrée et en sortie du cornet, 6 deuxièmes nervures en sortie du polariseur (correspondant à l'entrée du cornet), 4 deuxièmes nervures en entrée du polariseur, et 4 troisièmes nervures en entrée et en sortie du filtre, le cas échéant.
  • Plus généralement, le nombre de premières nervures, ainsi que de secondes nervures, voire de troisièmes nervures lorsqu'il y a un filtre, est de préférence un nombre pair, de préférence en entrée et en sortie du cornet, du polariseur, et du filtre le cas échéant.
  • Le cornet et le polariseur étant en une seule pièce (guide d'onde), avec la même forme extérieure, la forme du cornet conditionne la forme du polariseur. Ainsi, si le cornet est hexagonal, carré, circulaire, le polariseur l'est aussi. De même, lorsqu'un filtre est ajouté, la forme extérieure de la troisième portion qui comprend le filtre respecte la forme extérieure du cornet et du polariseur.
  • La figure 13 représente en vue 3D (vue depuis le sortie des cornets) un panneau rayonnant 110 pour une antenne réseau, comprenant une pluralité de sources selon l'invention. Dans l'exemple représenté, les sources 1 présentent toutes une forme en cylindre droit hexagonal 10, les premières nervures 21' étant sur le milieu des surfaces latérales dudit cylindre. Le panneau rayonnant représenté est en une seule pièce. Le nombre de sources représentées est ici de 37 mais il n'est en rien limitatif, et il est généralement beaucoup plus élevé. En outre, les sources peuvent être choisies selon l'un quelconque des modes, variantes, alternatives décrits précédemment.
  • De préférence, les sources d'un même panneau rayonnant sont toutes sensiblement identiques.
  • La structure du panneau rayonnant étant complexe, et les sources présentant des petites dimensions (de l'ordre de 10 cm de hauteur, 15 cm de largeur et 20 cm de longueur), une solution privilégiée pour fabriquer le panneau rayonnant est la fabrication additive.
  • Une technique de fabrication additive particulièrement adaptée pour fabriquer le panneau rayonnant est la technique de fusion sélective par laser dite « SLM » (pour « Selective Laser Melting » en anglais), également nommée « LBM » (pour « Laser Beam Melting » en anglais). La technique SLM consiste à déposer une couche de poudre métallique d'épaisseur contrôlée (et généralement sous atmosphère contrôlée) sur un plateau de fabrication, utiliser une source laser pour réaliser une fusion sélective de la poudre dans le plan de fabrication, puis déposer une autre couche de poudre sur la couche précédente, l'itération de fabrication se poursuivant de manière à former la pièce souhaitée. On peut utiliser une poudre en métallique en titane ou en aluminium, bien que cela ne soit pas limitatif.
  • La technique SLM permet la fabrication de pièces complexes, et ce, en réduisant le temps et les coûts de fabrication. Un tel panneau rayonnant avec une pluralité de sources n'est pas réalisable avec certaines méthodes de fabrication conventionnelles (de type fraisage ...) ou implique un procédé de fabrication complexe, long et à coût de fabrication élevé avec d'autres méthodes de fabrication conventionnelles (de type électroérosion ...).
  • Alternativement à la technique SLM, on peut envisager une technique de fabrication additive basée sur l'utilisation de polymères, par exemple la technique de fabrication additive par extrusion de matière (« Material Extrusion » également nommée « Fused Déposition Modeling » ou « FDM » en anglais) selon laquelle au moins une tête d'impression chauffée extrude un filament à matrice polymère de manière à fabriquer une pièce ; le déplacement de la tête d'impression selon les trois axes permet de déposer de petits volumes de polymère fondu localement et de construire une pièce couche par couche. On peut également citer la fabrication additive par jet de matière (« Material Jetting » en anglais) qui est un procédé dans lequel au moins une tête d'impression mobile selon les trois axes projette un polymère photosensible, qui joue le rôle d'une encre, qui est ensuite polymérisé par un rayonnement UV. D'autres techniques existent qui ne sont pas citées ici mais qui sont bien connues de l'homme du métier. Quelle que soit la technique de fabrication additive basée sur l'utilisation de polymères, la pièce réalisée doit être métallisée (dépôt d'une couche de métallisation).
  • Même avec la technique SLM, et afin de réduire les pertes RF, on réalise de préférence une couche de métallisation sur la pièce.
  • La couche de métallisation peut être réalisée à l'aide d'un dépôt électrolytique ou un dépôt chimique, par exemple selon la forme de la pièce et/ou le domaine d'utilisation visé.
  • Afin de faciliter la fabrication additive d'un panneau rayonnant, il est possible d'adapter la réalisation de certains éléments des sources.
  • Ainsi, les plots 421, 422, 423 des filtres 4 peuvent présenter une inclinaison (inclinaison maximale de 45°), comme illustré dans les figures 14A (filtre 4' comprenant des plots 421', 422', 423' sans inclinaison) et 14B (filtre 4 avec inclinaison).
  • En outre, sous tout ou partie des marches 211, 212, 213 des cornets 2, on peut prévoir d'ajouter de la matière pour réaliser un support 221, 222 comme illustré dans les figures 15A (sans support) et 15B (avec support). Un tel support pour une telle pièce qui est fabriquée à la verticale permet d'éviter un effondrement lors de la fabrication. Un tel support est une technique couramment utilisée en fabrication additive.
  • Alternativement à une technique de fabrication additive, une solution pour fabriquer un panneau rayonnant est la technique de moulage sous pression (« Die Casting » en anglais). La technique Die Casting est un procédé de coulée de métal qui se caractérise par le fait de forcer du métal fondu sous haute pression dans une cavité de moule. La cavité du moule est créée à l'aide de deux matrices en acier trempées qui ont été usinées en forme et fonctionnent de manière similaire à un moule d'injection au cours du processus. La plupart des pièces moulées sous pression sont fabriquées à partir de métaux non ferreux, en particulier le zinc, le cuivre, l'aluminium, le magnésium, le plomb, l'étain et les alliages à base d'étain. Selon le type de métal coulé, une machine à chambre chaude ou froide est utilisée.
  • La figure 16 schématise une architecture fonctionnelle d'une antenne réseau 100 à rayonnement direct qui comprend un panneau rayonnant 110 comportant plusieurs sources 1' (chaque source 1' est représentée avec un cornet 2, un polariseur 3 et un filtre 4), tel que le panneau rayonnant illustré dans la figure 13. Le panneau rayonnant 110 est connecté à des amplificateurs 120 et/ou des charges 121. L'ensemble est relié à un formateur de réseau 140 ou « BFN » pour « Beam Forming Network » qui permet de répartir l'énergie (en amplitude et en phase) entre les différentes sources pour diriger le faisceau de l'antenne dans une direction donnée.
  • Une charge permet d'absorber l'énergie RF qu'elle reçoit et qu'elle dissipe sous forme de chaleur.
  • Il s'agit de réaliser des connexions 130 conductrices électriquement entre tout ou partie des sources du panneau rayonnant et les amplificateurs et/ou les charges. L'épaisseur de métal (ou de métallisation) des sources du panneau rayonnant étant faible (généralement un millimètre ou moins), il est difficile de réaliser ces connexions dans ladite épaisseur, aussi on utilise des emplacements dans le réseau de sources. Dans le cas d'un nombre limité de sources (typiquement une cinquantaine de sources), on peut disposer les connexions sur les bords du réseau. Si le nombre de sources est plus important, on disposera les connexions plutôt à l'intérieur du réseau.
  • Les figures 17 et 18 illustrent un panneau rayonnant 110, tel que le panneau rayonnant illustré dans la figure 13 (avec plus de sources), vu depuis l'entrée filtre.
  • Le panneau rayonnant illustré comporte 256 éléments rayonnants. Il a par conséquent 512 accès en entrée des polariseurs à septum. Par exemple, l'accès EP1 (voir repérage par exemple en figure 4A) du polariseur à septum génère de la polarisation circulaire gauche (PCG) et l'accès EP2 (voir repérage par exemple en figure 4A) du polariseur à septum génère de la polarisation circulaire droite (PCD) : ainsi 256 accès en entrée du panneau rayonnant génèrent de la polarisation circulaire droite et 256 accès génèrent de la polarisation circulaire gauche. L'antenne est généralement conçue pour fonctionner en mono-polarisation et pour le cas présenté dans cet exemple en polarisation droite. Dans le cas considéré, la polarisation droite est appelée « polarisation principale » et la polarisation gauche « polarisation croisée ». Dans le cas considéré, les 256 accès EP2 sont suivis par des filtres puis ils doivent être connectés aux amplificateurs pour générer le signal. Les 256 accès EP1 ne sont pas suivis par des filtres et doivent être connectés à des charges pour limiter la composante croisée qui correspond à du bruit.
  • Pour connecter les amplificateurs au panneau rayonnant, il est nécessaire d'avoir des emplacements avec des taraudages à l'intérieur du panneau rayonnant. Pour cela deux solutions ont été envisagées dont la figure 17 illustre une première solution (connexion 131), la deuxième solution étant illustrée en figure 18 (connexion 132).
  • Le premier mode de connexion 131 illustré en figure 17 utilise quelques accès de la polarisation croisée (accès EP1 des polariseurs dans le cas considéré) qui sont remplis de matière pour pouvoir disposer un taraudage afin de connecter les amplificateurs aux panneaux rayonnants avec des vis.
  • Le deuxième mode de connexion 132 illustré en figure 18 utilise les 2 accès d'une même source (accès EP1 et EP2 des polariseurs dans le cas considéré) qui sont remplis de matière pour pouvoir disposer un taraudage afin de connecter les amplificateurs aux panneaux rayonnants avec des vis.
  • Dans les deux modes, les connexions forment des courts-circuits.
  • Dans le cas où l'antenne est prévue pour fonctionner en polarisation gauche, alors les 256 accès EP1 sont suivis par des filtres puis connectés aux amplificateurs et les 256 accès EP2 ne sont pas suivi pas des filtres et sont connectés à des charges.
  • Quel que soit le mode de connexion utilisé, les amplificateurs sont de préférence regroupés par bloc(s) de plusieurs amplificateurs, bloc que l'on peut désigner par « module amplification ». La liaison des modules amplifications au panneau rayonnant se fait donc via l'intermédiaire de fixations qui viennent se fixer au niveau des connexions réalisées, par exemple de vis qui viennent se visser dans les taraudages des connexions. Les connexions peuvent être réalisées au moment de la fabrication du panneau rayonnant (par exemple pendant la fabrication additive) ou après fabrication (par exemple par taraudage une fois le panneau rayonnant fabriqué).
  • Le premier mode de connexion permet ne pas trop dégrader les performances RF par rapport au deuxième mode de connexion mais exige d'avoir des modules amplification plus compacts. Le deuxième mode de connexion est plus facile à réaliser.
  • Le nombre d'amplificateurs dans un module amplification (et par conséquent le nombre de courts-circuits à la sortie de panneau rayonnant) dépend de plusieurs paramètres et objectifs : il peut s'agir de faciliter la production et l'assemblage de l'antenne dans le but de réduire le coût de l'antenne, ou de viser des performances RF pour l'antenne (plus le nombre de courts-circuits est important, plus les performances RF sont dégradées), ou encore d'intégrer un contrôle thermique (le but du contrôle thermique étant d'évacuer la puissance dissipée par les amplificateurs hors de l'antenne).
  • Le mode de transmission des ondes hyperfréquences (HF) dans les amplificateurs et dans le panneau rayonnant sont différents. En effet, les ondes à la sortie du panneau rayonnant sont transmises par l'intermédiaire d'un guide d'onde (ridgé) alors que les ondes dans l'amplificateur se propagent généralement à l'aide d'une ligne dite « ligne microruban » ou « ligne microstrip » (« microstrip line » en anglais) qui est une ligne de transmission hyperfréquences connue de l'homme du métier et ne sera pas développée ici.
  • Le passage du mode de propagation des ondes HF en guide d'ondes ridgé depuis le panneau rayonnant vers la ligne microstrip des amplificateurs doit être réalisé via l'intermédiaire d'une transition adaptée. La transition antipodale dite « Vivaldi » permet de réaliser une transition entre un guide d'onde et une ligne microstrip, mais elle est généralement mise en oeuvre pour un guide d'onde classique et non ridgé. Son principe illustré en figures 19A et 19B.
  • Une transition antipodale dite « Vivaldi » 50 consiste en l'insertion d'un substrat 51 à l'intérieur du guide d'onde 55 (généralement au milieu du guide d'onde). Sur le substrat sont formées deux gravures métalliques différentes, une première gravure 51 sur sa face supérieure (son extrémité la plus éloignée de l'entrée du guide d'onde est affinée en forme de ruban conducteur 51A) et une seconde gravure 52 sur sa face inférieure (son extrémité la plus éloignée de l'entrée du guide d'onde est élargie pour devenir le plan de masse 52A). Le champ électrique E arrive au niveau du substrat gravé qui capte le champ électrique, alors compris entre les deux gravures métalliques. La forme des gravures métalliques permet de faire tourner le champ électrique, et de le transmettre vers le ruban conducteur.
  • Les inventeurs ont développé une nouvelle transition basée sur la transition antipodale Vivaldi. Le principe est de réaliser une pièce de transition préalable permettant de changer la position, les dimensions et/ou les formes des nervures du guide d'onde en entrée de la source (en entrée de polariseur ou de filtre) pour libérer de la place au centre de celui-ci. Un exemple de réalisation d'une telle transition 60 préalable est illustrée en figures 20A, 20B et 20C. La figure 20A représente en vue de côté de la sortie 60A de la transition (par exemple en entrée de filtre) où apparaissent les nervures 41 du filtre 4. La figure 20B représente en vue de côté l'entrée 60B de la transition/adaptation (côté amplificateur). La figure 20C représente en vue 3D la transition/adaptation 60 dans la continuité du filtre.
  • Ceci permet de disposer le substrat de la transition Vivaldi 50 au centre du guide d'onde, avec les deux gravures métalliques, comme illustré en figure 21.
  • On peut connecter de la même manière les charges aux panneaux rayonnants. Les charges sont en effet généralement intégrées dans le module amplification et peuvent être connectées de la même manière que les amplificateurs au panneau rayonnant, avec la même transition/adaptation en guide et la même transition Vivaldi. La charge peut être connectée à la fin de la ligne microstrip comme composant monté en surface (CMS).
  • Cela permet ainsi de former l'antenne réseau, avec les performances RF visées.
  • La présente invention n'est pas limitée aux modes de réalisation précédemment décrits mais s'étend à tout mode de réalisation entrant dans la portée des revendications.
  • L'invention trouve des applications dans le domaine des antennes spatiales réseau pour les satellites en orbite basse ou l'on doit transmettre des données dans un grand domaine angulaire, notamment dans les bandes K, Ka, Ku, Q, V ... par exemple pour l'internet haut débit.

Claims (13)

  1. Source d'antenne (1') pour une antenne réseau à rayonnement direct, pour l'émission et la réception d'ondes hyperfréquence, ladite source comprenant un guide d'onde ayant au moins une partie principale (10, 10') en forme de cylindre droit creux s'étendant selon une direction longitudinale (X), la base dudit cylindre présentant au moins un axe de symétrie dans son plan et les dimensions transversales extérieures de ladite partie principale étant constantes selon la direction longitudinale (X) ;
    la partie principale du guide d'onde comprenant dans ladite direction longitudinale :
    - une première portion formant un élément rayonnant (2, 2', 2", 2'"), ou la majeure partie dudit élément rayonnant, ledit élément rayonnant comprenant des premières nervures (21, 21', 21") s'étendant vers l'intérieur et sur tout ou partie de la longueur dudit élément rayonnant, lesdites premières nervures étant régulièrement réparties autour du périmètre dudit élément rayonnant et présentant chacune plusieurs marches (211, 212, 213) le long de la direction longitudinale (X), le nombre, les hauteurs (h211, h212, h213) et les épaisseurs (e211, e212, e213) desdites marches étant configurées pour permettre une variation, de préférence une augmentation, d'impédance donnée entre une entrée (EC) et une sortie (SC) de l'élément rayonnant ;
    - une deuxième portion formant polariseur (3, 3', 3"), ledit polariseur comportant deux entrées (EP1, EP2) séparées par une lame interne (30, 30', 30") s'étendant selon la direction longitudinale (X), et une sortie (SP) correspondant à l'entrée (EC) de l'élément rayonnant (2, 2', 2", 2'"), la lame interne comportant plusieurs paliers (301, 302, 303, 304) le long de la direction longitudinale (X), lesdits paliers étant configurés pour transformer un champ électromagnétique de polarisation circulaire en entrée en un champ électromagnétique de polarisation linéaire en sortie, et inversement pour transformer un champ électromagnétique de polarisation linéaire en sortie en un champ électromagnétique de polarisation circulaire en entrée, le polariseur comprenant en outre des deuxièmes nervures (31, 32, 31', 32', 31", 32") s'étendant vers l'intérieur et sur toute ou partie de la longueur dudit polariseur, lesdites deuxièmes nervures et ladite lame interne étant régulièrement réparties autour du périmètre dudit polariseur ;
    - une troisième portion (4) comprenant un filtre (40, 40'), la lame interne (30, 30', 30") étant prolongée dans toute ou partie de ladite troisième portion, le filtre (40, 40') comprenant un ensemble (42) de plots de filtration en fréquence (421, 422, 423, 424, 421', 422', 423') disposés à l'intérieur de la troisième portion et sur une seule et même surface de la lame interne, la sortie (SF) du filtre correspondant à une des deux entrées (EP1, EP2) du polariseur, ladite troisième portion comprenant en outre des troisièmes nervures (41) s'étendant vers l'intérieur et sur tout ou partie de la longueur de ladite troisième portion, lesdites troisièmes nervures et la lame interne étant régulièrement réparties autour du périmètre de ladite troisième portion ;
    l'élément rayonnant, le polariseur et le filtre étant en une seule pièce, de préférence réalisée selon une technique de fabrication additive, et le polariseur et le filtre étant disposés bout à bout dans la direction longitudinale.
  2. Source d'antenne (1') selon la revendication 1, le guide d'onde présentant une épaisseur constante sur toute sa longueur.
  3. Source d'antenne (1') selon la revendication 1 ou la revendication 2, le nombre de premières nervures et/ou de deuxièmes nervures étant un nombre pair, de préférence à la fois en entrée et en sortie de l'élément rayonnant et/ou du polariseur.
  4. Source d'antenne (1') selon l'une des revendications 1 à 3, la base du cylindre droit (10) étant un polygone régulier d'ordre pair, de préférence un hexagone.
  5. Source d'antenne (1') selon la revendication 4, la lame interne et tout ou partie des premières nervures et/ou des deuxièmes nervures étant disposées au niveau des arêtes du cylindre droit polygonal.
  6. Source d'antenne (1') selon la revendication 4, la lame interne et tout ou partie des premières nervures et/ou des deuxièmes nervures étant disposées sur les surfaces latérales intérieures du cylindre droit polygonal.
  7. Source d'antenne (1') selon l'une des revendications 1 à 3, la base du cylindre droit (10') étant un cercle.
  8. Source d'antenne (1') selon l'une quelconque des revendications 1 à 7, le nombre de troisièmes nervures étant un nombre pair, de préférence à la fois en entrée et en sortie du filtre.
  9. Source d'antenne (1') selon l'une quelconque des revendications 1 à 8, le guide d'onde étant entièrement en forme de cylindre droit creux sur toute sa longueur.
  10. Source d'antenne selon l'une quelconque des revendications 1 à 8, le guide d'onde comprenant la partie principale en forme de cylindre droit creux et une partie complémentaire, ladite partie complémentaire pouvant être en forme de cône ou de pyramide tronquée en sortie de l'élément rayonnant, la partie la plus évasée étant disposée en sortie de l'élément rayonnant, la partie complémentaire étant exempte de rainures.
  11. Panneau rayonnant (110) pour une antenne réseau à rayonnement direct, comprenant :
    - une pluralité de sources d'antennes (1') choisies selon l'une quelconque des revendications 1 à 10 ;
    ledit panneau rayonnant étant en une seule pièce, de préférence réalisée selon une technique de fabrication additive.
  12. Antenne réseau à rayonnement direct (100) comprenant :
    - un panneau rayonnant (110) selon la revendication 11 ;
    - au moins un amplificateur (120) et/ou une charge (121) connecté au panneau rayonnant, au niveau de l'entrée (EF) d'au moins un filtre (40) de l'une des sources d'antenne (1') de la pluralité de sources d'antenne.
  13. Antenne réseau (100) selon la revendication 12, le panneau rayonnant (110) étant connecté à le au moins un amplificateur (120) et/ou la au moins une charge (121) par l'intermédiaire d'au moins une transition antipodale Vivaldi (50), et de préférence par au moins une transition/adaptation (60) adaptée pour changer la position, les dimensions et/ou la forme des nervures du guide d'onde en entrée de la source de manière à pouvoir positionner la transition Vivaldi (50) au sein dudit guide d'onde.
EP21213068.6A 2020-12-10 2021-12-08 Source d'antenne pour une antenne réseau à rayonnement direct, panneau rayonnant et antenne comprenant plusieurs sources d'antenne Active EP4012834B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR2012951A FR3117685B1 (fr) 2020-12-10 2020-12-10 Source d'antenne pour une antenne réseau à rayonnement direct, panneau rayonnant comprenant plusieurs sources d'antenne.

Publications (3)

Publication Number Publication Date
EP4012834A1 EP4012834A1 (fr) 2022-06-15
EP4012834C0 EP4012834C0 (fr) 2024-02-21
EP4012834B1 true EP4012834B1 (fr) 2024-02-21

Family

ID=75850247

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21213068.6A Active EP4012834B1 (fr) 2020-12-10 2021-12-08 Source d'antenne pour une antenne réseau à rayonnement direct, panneau rayonnant et antenne comprenant plusieurs sources d'antenne

Country Status (4)

Country Link
US (1) US20220190477A1 (fr)
EP (1) EP4012834B1 (fr)
CA (1) CA3141535A1 (fr)
FR (1) FR3117685B1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3561947A1 (fr) * 2018-04-25 2019-10-30 Rosenberger Hochfrequenztechnik GmbH & Co. KG Polariseur pour un guide d'ondes et système de transmission de signaux électromagnétiques haute fréquence
US11881607B1 (en) * 2021-10-05 2024-01-23 Lockheed Martin Corporation Longitudinally ridged septum orthomode transducer polarizer
KR102510434B1 (ko) * 2022-08-17 2023-03-16 국방과학연구소 안테나 장치

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2497146B1 (fr) * 2009-11-04 2018-11-14 Raytheon Company Ligne de transmission plane large bande a faibles pertes vers une transition de guide d'onde

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH668507A5 (de) * 1984-10-10 1988-12-30 Huber+Suhner Ag Hohlleiter mit einem strahler.
DE3445399A1 (de) * 1984-12-13 1986-06-19 Wilhelm Sihn jun. KG, 7532 Niefern-Öschelbronn Septum-polarisationsweiche
JP3692273B2 (ja) * 2000-02-03 2005-09-07 アルプス電気株式会社 一次放射器
FR3094575B1 (fr) * 2019-03-28 2022-04-01 Swissto12 Sa Composant radiofréquence comportant un ou plusieurs dispositifs à guide d’onde muni de stries

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2497146B1 (fr) * 2009-11-04 2018-11-14 Raytheon Company Ligne de transmission plane large bande a faibles pertes vers une transition de guide d'onde

Also Published As

Publication number Publication date
FR3117685B1 (fr) 2024-03-15
EP4012834C0 (fr) 2024-02-21
US20220190477A1 (en) 2022-06-16
CA3141535A1 (fr) 2022-06-10
EP4012834A1 (fr) 2022-06-15
FR3117685A1 (fr) 2022-06-17

Similar Documents

Publication Publication Date Title
EP4012834B1 (fr) Source d'antenne pour une antenne réseau à rayonnement direct, panneau rayonnant et antenne comprenant plusieurs sources d'antenne
EP2564466B1 (fr) Element rayonnant compact a cavites resonantes
EP0064313B1 (fr) Elément rayonnant ou récepteur de signaux hyperfréquences à polarisations circulaires et antenne plane hyperfréquence comprenant un réseau de tels éléments
EP3073569B1 (fr) Matrice de butler compacte, formateur de faisceaux bidimensionnel planaire et antenne plane comportant une telle matrice de butler
EP2869400B1 (fr) Répartiteur de puissance compact bipolarisation, réseau de plusieurs répartiteurs, élément rayonnant compact et antenne plane comportant un tel répartiteur
FR3079678A1 (fr) Element rayonnant a polarisation circulaire mettant en oeuvre une resonance dans une cavite de fabry perot
FR2683952A1 (fr) Dispositif d'antenne microruban perfectionne, notamment pour transmissions telephoniques par satellite.
EP3179551B1 (fr) Ensemble d'excitation compact bipolarisation pour un element rayonnant d'antenne et reseau compact comportant au moins quatre ensembles d'excitation compacts
FR2655204A1 (fr) Antenne-reseau d'alimentation de guides d'onde.
FR2556510A1 (fr) Antenne periodique plane
EP2807702A1 (fr) Formateur multi-faisceaux à deux dimensions, antenne comportant un tel formateur multi-faisceaux et système de télécommunication par satellite comportant une telle antenne
EP3235058B1 (fr) Antenne fil-plaque ayant un toit capacitif incorporant une fente entre la sonde d'alimentation et le fil de court-circuit
EP3843202A1 (fr) Cornet pour antenne satellite bi-bande ka a polarisation circulaire
FR3035546A1 (fr) Module structural d'antenne integrant des sources rayonnantes elementaires a orientation individuelle, panneau rayonnant, reseau rayonnant et antenne multifaisceaux comportant au moins un tel module
EP3540853A1 (fr) Antenne à réseau transmetteur large bande
FR2794290A1 (fr) Antenne a polarisation verticale
WO2019229515A1 (fr) Module radiofréquence
EP2637254B1 (fr) Antenne plane pour terminal fonctionnant en double polarisation circulaire, terminal aéroporté et système de télécommunication par satellite comportant au moins une telle antenne
FR2552273A1 (fr) Antenne hyperfrequence omnidirectionnelle
EP3506429B1 (fr) Formateur de faisceaux quasi-optique, antenne elementaire, systeme antennaire, plateforme et procede de telecommunications associes
FR2901062A1 (fr) Dispositif rayonnant a cavite(s) resonnante(s) a air a fort rendement de surface, pour une antenne reseau
FR2919433A1 (fr) Module d'antenne compact.
EP4046241A1 (fr) Antenne-reseau
WO2019110651A1 (fr) Composant micro-ondes et procédé de fabrication associé
EP3537542B1 (fr) Antenne tridimensionnelle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221114

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230919

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THALES

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602021009582

Country of ref document: DE

U01 Request for unitary effect filed

Effective date: 20240314