FR3117685A1 - Source d'antenne pour une antenne réseau à rayonnement direct, panneau rayonnant comprenant plusieurs sources d'antenne. - Google Patents

Source d'antenne pour une antenne réseau à rayonnement direct, panneau rayonnant comprenant plusieurs sources d'antenne. Download PDF

Info

Publication number
FR3117685A1
FR3117685A1 FR2012951A FR2012951A FR3117685A1 FR 3117685 A1 FR3117685 A1 FR 3117685A1 FR 2012951 A FR2012951 A FR 2012951A FR 2012951 A FR2012951 A FR 2012951A FR 3117685 A1 FR3117685 A1 FR 3117685A1
Authority
FR
France
Prior art keywords
ribs
polarizer
antenna
filter
radiating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR2012951A
Other languages
English (en)
Other versions
FR3117685B1 (fr
Inventor
Thierry Girard
Maïder ETCHARREN
Alexandre COT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Priority to FR2012951A priority Critical patent/FR3117685B1/fr
Priority to EP21213068.6A priority patent/EP4012834B1/fr
Priority to US17/545,923 priority patent/US20220190477A1/en
Priority to CA3141535A priority patent/CA3141535A1/fr
Publication of FR3117685A1 publication Critical patent/FR3117685A1/fr
Application granted granted Critical
Publication of FR3117685B1 publication Critical patent/FR3117685B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/12Hollow waveguides
    • H01P3/123Hollow waveguides with a complex or stepped cross-section, e.g. ridged or grooved waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/165Auxiliary devices for rotating the plane of polarisation
    • H01P1/17Auxiliary devices for rotating the plane of polarisation for producing a continuously rotating polarisation, e.g. circular polarisation
    • H01P1/171Auxiliary devices for rotating the plane of polarisation for producing a continuously rotating polarisation, e.g. circular polarisation using a corrugated or ridged waveguide section
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/165Auxiliary devices for rotating the plane of polarisation
    • H01P1/17Auxiliary devices for rotating the plane of polarisation for producing a continuously rotating polarisation, e.g. circular polarisation
    • H01P1/173Auxiliary devices for rotating the plane of polarisation for producing a continuously rotating polarisation, e.g. circular polarisation using a conductive element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/10Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced lines or devices with unbalanced lines or devices
    • H01P5/107Hollow-waveguide/strip-line transitions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/06Waveguide mouths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/064Two dimensional planar arrays using horn or slot aerials

Landscapes

  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

L’invention concerne une source d’antenne (1) comprenant un guide d’onde ayant une partie principale (10) en forme de cylindre droit creux s’étendant selon une direction (X), un élément rayonnant (2), comprenant des nervures (21) s’étendant vers l’intérieur et plusieurs marches (211, 212, 213) le long de la direction, le nombre, les hauteurs et les épaisseurs des marches étant configurées pour permettre une variation d’impédance de l’élément rayonnant un polariseur (3) comportant deux entrées (EP1, EP2) séparées par une lame interne (30) s'étendant selon la direction, et une sortie (SP) correspondant à l’entrée (EC) de l’élément rayonnant, la lame interne comportant plusieurs paliers (301, 302, 303, 304) configurés pour transformer un champ électromagnétique de polarisation circulaire en polarisation linéaire, le polariseur comprenant des nervures (31, 32) s’étendant vers l’intérieur, l’élément rayonnant et le polariseur étant en une seule pièce, et disposés bout à bout dans la direction,et une troisième portion (4) comprenant un filtre (40, 40’), la lame interne (30, 30’, 30’’) étant prolongée dans toute ou partie de ladite troisième portion, le filtre (40, 40’) comprenant un ensemble (42) de plots de filtration en fréquence (421, 422, 423, 424, 421’, 422’, 423’) disposés à l’intérieur de la troisième portion et sur une seule et même surface de la lame interne, la sortie (SF) du filtre correspondant à une des deux entrées (EP1, EP2) du polariseur, ladite troisième portion comprenant en outre des troisièmes nervures (41) s’étendant vers l’intérieur et sur tout ou partie de la longueur de ladite troisième portion, lesdites troisièmes nervures et la lame interne étant régulièrement réparties autour du périmètre de ladite troisième portion ;l’élément rayonnant, le polariseur et le filtre étant en une seule pièce, de préférence réalisée selon une technique de fabrication additive, et le polariseur et le filtre étant disposés bout à bout dans la direction longitudinale. Figure pour l’abrégé : Fig. 2A

Description

Source d’antenne pour une antenne réseau à rayonnement direct, panneau rayonnant et antenne comprenant plusieurs sources d’antenne
DOMAINE TECHNIQUE DE L’INVENTION
L’invention se situe dans le domaine des satellites et plus particulièrement pour des satellites en orbite basse qui doivent transmettre des données partout sur la Terre, notamment dans les bandes K et Ka (les bandes K et Ka sont regroupées dans les télécommunications spatiales), dans la bande Ku, voire dans la bande V. L’invention peut trouver une application par exemple pour l’internet haut débit.
La bande Ka correspond à une bande de fréquences comprise entre 27 et 40 GHz. Elle est utilisée notamment pour l’Internet par satellite. Pour les télécommunications spatiales, et selon la définition de l’ITU (Union Internationale des Télécommunications), la bande Ka est regroupée avec la bande K et s’étend en réception de 27,5 à 30 GHz et en émission de 17,7 à 20,2 GHz.
Selon la définition de l’ITU, et pour les télécommunications spatiale, la bande V est divisée en deux bandes de fréquences : la bande Q (37,5-42,5 GHz) et la bande V (47,2 – 50,2 GHz), avec des dimensions plus petites.
L’invention concerne plus précisément le domaine des antennes spatiales pour les satellites en orbite basse ou l’on doit transmettre des données dans un grand domaine angulaire, et en particulier des antennes réseau à rayonnement direct. On entend ici par « antenne réseau à rayonnement direct » ou « DRA » en anglais une antenne pouvant fonctionner en émission et/ou en réception et comprenant un réseau de sources élémentaires de rayonnement relié par un formateur de faisceau (dit « BFN » pour « Beam Forming Network » en anglais).
ETAT DE LA TECHNIQUE
Deux types de satellites en orbite peuvent être utilisés pour fournir le haut débit sur Terre.
Un premier type concerne les satellites géostationnaires (36 000 km) qui vont permettre de fournir le haut débit sur Terre dans une région ou zone donnée. Sur cette orbite le satellite se déplace de manière exactement synchrone avec la Terre et reste constamment au-dessus du même point de la surface.
Un second type repose sur l’utilisation d’une constellation de satellites en orbite basse (nommés satellites « LEO » pour « Low Earth Orbit » en anglais) configurés pour permettre de fournir le haut débit sur toute la Terre. Une constellation de satellites est un ensemble de satellites artificiels qui travaillent de concert. Les satellites orbitent selon des orbites choisies et synchronisées de sorte que leurs couvertures au sol respectives se chevauchent et se complètent au lieu d’interférer entre elles. Un des avantages de la constellation de satellites en orbite basse est le temps de latence entre l’émission et la réception des données car les satellites en orbite basse utilisés sont plus proches de la terre (généralement entre 500 et 1200 km). La réduction du temps de latence est un avantage pour des domaines demandant une réponse très rapide (par exemple : pour une voiture autonome, pour un accès plus rapide aux données, pour des appels vidéo ou visioconférences avec une meilleure réactivité …). La Terre est vue depuis le satellite LEO suivant un cône qui peut varier entre +/- 45° et +/- 55° selon l’altitude du satellite. Ce domaine est en fort développement, avec de nombreuses missions et/ou projets de constellations de satellites en orbite basse( Starlink , Kuiper, Télésat , Leosat , Oneweb ). Les données transmises entre ces satellites et la Terre pour les communications internet haut débit utilisent les bandes Ka (regroupant K et Ka pour le spatial), les bandes Q, V mais aussi la bande Ku. Il est donc recherché des antennes qui peuvent fonctionner dans ces bandes et en particulier dans la bande Ka.
L’antenne généralement retenue pour les satellites LEO est une antenne réseau à rayonnement direct dite « DRA » (« Direct Radiating Array » en anglais que l’on traduit en français par « réseau à rayonnement direct »).
Les antennes DRA du domaine de l’invention comportent un grand nombre de sources (généralement de 128 à 512 sources) et chaque source est composée au moins d’un élément rayonnant, d’un polariseur et d’un filtre qui doit se connecter facilement aux amplificateurs (ou aux charges). L’ensemble des sources forment un panneau rayonnant. Un élément rayonnant élémentaire d’une antenne DRA doit présenter une ouverture de petite dimension par rapport à la fréquence de fonctionnement de celui-ci (on parle de dimensions de l’ordre de 0,55 à 0,7 λ avec λ=c/f où λ est la longueur d'onde, c la célérité de propagation de l'onde, et f représente la fréquence de fonctionnement maximale de l’antenne. Ceci dans le but de ne pas émettre un signal parasite (lobe de réseau) sur une autre zone de la terre qui viendrait dégrader les performances du système. Ceci engendre des sources très petites dimensions, de l’ordre de 5 à 9 mm de diamètre en bande Ka.
Il est généralement recherché que les sources respectent les contraintes suivantes :
- être facile à fabriquer, notamment pour minimiser le coût ;
- comporter le moins de pertes RF possibles, en particulier pour avoir le moins de puissance à dissiper dans une petite surface ;
- être le plus compact possible pour limiter la masse ;
- faciliter la connexion aux amplificateurs.
Il existe des antennes DRA dites « antennes imprimées » ou « antennes patch », permettant la transmission de données entre des satellites LEO et la Terre. Elles comprennent des éléments (ou « patchs ») imprimés sur un substrat plat, et sont adaptées pour des bandes de fréquences de type bande L ou bande S, qui sont plus basses que la bande Ka et pour des bandes passantes faibles (inférieures à 1%). Les sources (élément rayonnant, polariseur, filtre) de ces antennes sont fabriquées en technologie de type circuit imprimé, donc elles sont facilement fabricables, elles sont compactes et de masse limitée. Les pertes ne sont pas rédhibitoires dans les bandes de fréquence de type bande L ou bande S. De plus les antennes patchs sont bien adaptées pour des bandes passantes faibles (inférieures à 1%).
En revanche, pour des bandes de fréquences plus importantes (bande Ka par exemple), les antennes imprimées ne conviennent plus, ou sinon il faut empiler plusieurs patchs de petites dimensions sur un substrat, ce qui d’une part est limité ou difficilement réalisable. Et d’autre part, même en empilant les patchs, les pertes RF deviennent trop importantes dans ces bandes de fréquence (environ 2 dB avec un substrat pour de la bande Ka), au moins du fait de la présence du substrat. Ces pertes sont rédhibitoires pour les applications spatiales, on évite en effet de dissiper inutilement de la puissance dans ce milieu où l’énergie disponible est très limitée.
Il existe d’autres antennes dans lesquelles les éléments rayonnants sont à base de guides d’onde en cornet chargés de diélectrique ou encore de guides d’ondes en cornet dits « ridgés » comme décrit par exemple dans la publication« A compacted dual linearly polarization wideband feed for parabolic reflector antenna » Wen -Juan Ye et al.On définit par « guide d’onde ridgé », un guide d’onde de forme quelconque (carré, circulaire, rectangulaire) pouvant transmettre un signal hyperfréquence et comportant une ou plusieurs nervures à l’intérieur de celui-ci. Le problème de l’élément rayonnant en guide d’onde avec une forme de cornet qu’il soit ridgé ou non, est qu’il nécessite un système pour polariser circulairement l’onde. Comme la taille de l’élément rayonnant est dans la plage de 0,55 à 0,7 λ, on utilise généralement un dévoyeur pour connecter le cornet au système qui permet de polariser circulairement l’onde. En effet, les systèmes du type transducteur OrthoMode (OMT) avec coupleur ou polariseur à septum en guide ne respectent pas cette contrainte de maille ou d’encombrement. Le dévoyeur permet, avec un ensemble de guides d’ondes (autant que le nombre d’éléments rayonnants) qui sont courbés, de changer la taille d’une maille entre son entrée et sa sortie. La contrainte majeure consiste à avoir des guides de longueurs identiques. Cette contrainte implique que le dévoyeur est difficile à concevoir. De plus l’utilisation d’un dévoyeur implique un encombrement beaucoup plus grand du panneau rayonnant, des pertes RF importantes dues au dévoyeur. En outre, une structure à dévoyeur est difficile à réaliser en une seule pièce, même en utilisant une technique de fabrication additive.
L’invention vise à surmonter les inconvénients précités de l’art antérieur.
Plus particulièrement elle vise à disposer d’une source d’antenne pour réaliser une antenne réseau DRA, source qui soit la plus compacte possible, qui génère de la polarisation circulaire sans utiliser de dévoyeur, qui soit adaptée pour la bande de fréquence Ka (ou K,Q,V, Ku …), dont l’élément rayonnant élémentaire présente une ouverture de petite dimension par rapport à la longueur d’onde λ, et qui présente des faibles pertes RF (typiquement inférieures à 0.3 dB, voire 0.2 dB an bande Ka). En outre, l’invention vise à disposer d’une telle source d’antenne qui puisse intégrer un filtre et qui puisse se connecter facilement à un amplificateur. Enfin, la source d’antenne doit pouvoir être fabriquée facilement, et à faible coût
Un premier objet de l’invention permettant de remédier à ces inconvénients est une source d’antenne pour antenne réseau à rayonnement direct, dite antenne DRA, pour l’émission et la réception d’ondes hyperfréquence, ladite source comprenant un guide d’onde ayant au moins une partie principale en forme de cylindre droit creux s’étendant selon une direction longitudinale, la base dudit cylindre présentant au moins un axe de symétrie dans son plan et les dimensions transversales extérieures de ladite partie principale étant constantes selon la direction longitudinale ;
la partie principale du guide d’onde comprenant dans ladite direction longitudinale :
- une première portion formant un élément rayonnant, ou la majeure partie d’un élément rayonnant, ledit élément rayonnant comprenant des premières nervures s’étendant vers l’intérieur et sur tout ou partie de la longueur dudit élément rayonnant, lesdites premières nervures étant régulièrement réparties autour du périmètre dudit élément rayonnant et présentant plusieurs marches le long de la direction longitudinale, le nombre, les hauteurs et les épaisseurs desdites marches étant configurées pour permettre une variation, de préférence une augmentation, d’impédance donnée entre l’entrée et la sortie de l’élément rayonnant ;
- une deuxième portion formant un polariseur, ledit polariseur comportant deux entrées séparées par une lame interne s'étendant selon la direction longitudinale et une sortie correspondant à l’entrée de l’élément rayonnant, la lame interne comportant plusieurs paliers le long de la direction longitudinale (X), lesdits paliers étant configurés pour transformer un champ électromagnétique de polarisation circulaire en entrée en un champ électromagnétique de polarisation linéaire en sortie, et inversement pour transformer un champ électromagnétique de polarisation linéaire en sortie en un champ électromagnétique de polarisation circulaire en entrée, le polariseur comprenant en outre des deuxièmes nervures s’étendant vers l’intérieur et sur toute ou partie de la longueur dudit polariseur, lesdites deuxièmes nervures et ladite lame interne étant régulièrement réparties autour du périmètre dudit polariseur ;
l’élément rayonnant et le polariseur étant en une seule pièce, de préférence réalisée selon une technique de fabrication additive, et étant disposés bout à bout dans la direction longitudinale.
Par disposés « bout à bout », on entend que les éléments sont joints par leurs extrémités.
Selon un mode de réalisation préféré, le guide d’onde présente une épaisseur constante sur toute sa longueur.
Il est précisé que l’impédance entre l’entrée et la sortie de l’élément rayonnant augmente généralement entre une centaine d’ohms (dans le guide d’onde) et 377 ohms (dans l’air ou le vide).
Par « cylindre » ou « cylindrique », on entend la définition générale, à savoir un solide engendré par une droite qui se déplace parallèlement à un axe, en s'appuyant sur deux plans fixes isométriques et parallèles. Un cylindre droit désigne un cylindre dont les génératrices sont perpendiculaires aux bases. La base peut être un cercle ou un polygone (carré, hexagone, octogone, décagone …). Dans le cas où la base est un polygone, on peut également parler de prisme. La base doit présenter un axe de symétrie dans son propre plan. C’est pourquoi on parlera d’un polygone d’ordre pair (c’est-à-dire à nombre de côtés pair).
On entend par « polariseur » un élément destiné à convertir, d'une part, les signaux reçus en polarisation circulaire en des signaux en polarisation linéaire et, d'autre part, les signaux à émettre d'une polarisation linéaire en une polarisation circulaire.
Les termes « entrée » ou « sortie » sont définis selon le sens de circulation des ondes radiofréquence (RF) dans la source quand celle-ci fonctionne en émission, c’est-à-dire depuis le filtre ou le polariseur vers le cornet.
Un élément rayonnant peut être désigné par « cornet » qui est un terme couramment utilisé dans le domaine de l’invention et qui désigne un élément d’antenne en forme de cylindre, et qui peut comprendre une partie complémentaire en forme de cône ou de pyramide tronquée. Dans le cas d’un cornet comprenant une partie complémentaire en forme de cône ou de pyramide tronquée, la partie la plus évasée correspond toujours à la sortie de l’élément rayonnant.
Un guide d’onde comprenant des nervures à l’intérieur dudit guide d’onde peut être désigné par le terme « guide d’onde ridgé ».
Selon l’invention, pour l’ensemble des éléments constituant la source d’antenne, le terme « longueur » est à comprendre par référence à la direction longitudinale de la source d’antenne. Le terme « radial » est à comprendre par référence à un plan perpendiculaire à ladite direction longitudinale, dit « plan transversal », et le terme « orthoradial » désigne la direction perpendiculaire à la direction radiale dans ledit plan transversal. La largeur de la lame désigne la dimension radiale de la lame, plus généralement la dimension de la lame qui permet de séparer l’entrée de polariseur en deux. L’épaisseur de la lame désigne l’autre dimension dans le plan transversal. La hauteur d’une nervure désigne la dimension radiale. L’épaisseur d’une nervure désigne la dimension selon la direction orthoradiale. La hauteur d’un plot désigne la dimension sensiblement selon la direction radiale et l’épaisseur d’un plot désigne la dimension sensiblement selon la direction orthoradiale.
La solution consiste à former un élément rayonnant en guide d’onde à nervures internes, et un polariseur en guide d’onde à septum et à nervures internes connecté à l’élément rayonnant dans la continuité de celui-ci (en une seule pièce), le polariseur à septum permettant d’avoir deux accès en guide d’onde. On peut disposer sur l’un des accès du polariseur un filtre à plots en guide d’onde à nervures.
Ainsi, la source d’antenne intègre un élément rayonnant à nervures internes compatible avec une maille d’antenne réseau DRA très faible (0,5 à 0,7 λ), mais également un polariseur à septum à faible pertes compatible avec la même maille d’antenne réseau DRA, et qui génère de la polarisation circulaire sans utiliser de dévoyeur.
La solution permet ainsi :
- d’avoir une source élémentaire (cornet, polariseur, plus éventuellement un filtre) qui reste dans la maille (gain en masse et en compacité) ;
- de conserver une technologie guide (et non patch) pour réduire les pertes, même en bande Ka (et aussi en bande K, Ku, Q, V …);
- d’être réalisable à faible coût, en particulier par une technique de fabrication additive ;
- de se connecter facilement aux amplificateurs et/ou charges de l’antenne, comme décrit plus après.
La source d’antenne selon l'invention peut en outre comporter l'une ou plusieurs des caractéristiques suivantes prises isolément ou suivant toutes combinaisons techniques possibles.
Le nombre de premières nervures et/ou de deuxièmes nervures est de préférence un nombre pair, à la fois en entrée et en sortie de l’élément rayonnant et/ou du polariseur. Un nombre pair favorise la symétrie de la source d’antenne. Le nombre pair favorise également l’introduction de la lame du polariseur à septum qui vient dans ce cas se raccrocher à deux nervures opposées et permet de simplifier le dimensionnement du polariseur à septum.
Les deuxièmes nervures peuvent être dans la continuité des premières nervures en entrée de l’élément rayonnant (correspondant à la dernière marche), ce qui facilite le design et la fabrication de la source. Alternativement, les deuxièmes nervures peuvent ne pas être dans la continuité des premières nervures en entrée de l’élément rayonnant.
Selon un mode de réalisation, la base du cylindre droit est un polygone régulier d’ordre pair, de préférence un hexagone.
Selon une première variante, la lame interne et tout ou partie des premières nervures et/ou des deuxièmes nervures peuvent être disposées au niveau des arêtes du cylindre droit polygonal.
Selon une deuxième variante, la lame interne et tout ou partie des premières nervures et/ou des deuxièmes nervures peuvent être disposées sur les surfaces latérales intérieures du cylindre droit polygonal.
Les première et deuxième variantes peuvent être combinées de telle sorte que la lame interne peut être disposée au niveau de deux arêtes opposées du cylindre droit polygonal ou sur deux surfaces latérales intérieures opposées du cylindre droit polygonal, et les premières nervures et/ou les deuxièmes nervures peuvent être disposées à la fois au niveau des arêtes du cylindre droit polygonal et sur les surfaces latérales intérieures du cylindre droit polygonal.
Selon un mode de réalisation alternatif, la base du cylindre droit est un cercle.
Selon un mode de réalisation, la source d’antenne comprend en outre :
- une troisième portion comprenant un filtre, la lame interne étant prolongée dans toute ou partie de ladite troisième portion, ledit filtre comprenant un ensemble de plots de filtration en fréquence disposés à l’intérieur de la troisième portion et sur une seule et même surface de la lame interne, la sortie du filtre correspondant à une des deux entrées du polariseur, ladite troisième portion comprenant en outre des troisièmes nervures s’étendant vers l’intérieur et sur tout ou partie de la longueur de ladite troisième portion, lesdites troisièmes nervures et la lame interne étant régulièrement réparties autour du périmètre de ladite troisième portion ;
l’élément rayonnant, le polariseur et le filtre étant en une seule pièce, de préférence réalisée selon une technique de fabrication additive, et le polariseur et le filtre étant disposés bout à bout dans la direction longitudinale.
De préférence, le nombre de troisièmes nervures est un nombre pair, et à la fois en entrée et en sortie du filtre. Un nombre pair favorise la symétrie de la source d’antenne.
Les troisièmes nervures peuvent être dans la continuité des secondes nervures du polariseur, ce qui facilite le design et la fabrication de la source. Alternativement, les troisièmes nervures peuvent ne pas être dans la continuité des deuxièmes nervures.
Selon un mode de réalisation, le guide d’onde est entièrement en forme de cylindre droit creux sur toute sa longueur. En d’autres termes, la partie principale représente toute la longueur du guide d’onde.
Selon un mode alternatif de réalisation, le guide d’onde comprend une partie principale en forme de cylindre droit creux et une partie complémentaire en sortie de l’élément rayonnant, ladite partie complémentaire pouvant être en forme de cône ou de pyramide tronquée , la partie la plus évasée étant disposée en sortie de l’élément rayonnant. La partie complémentaire est exempte de rainures. En outre, la longueur de la partie complémentaire est très faible par rapport à la longueur de la partie principale du guide d’onde.
Un deuxième objet de l’invention est un panneau rayonnant pour une antenne réseau à rayonnement direct, ledit panneau comportant une pluralité de sources selon l’invention comprenant une pluralité de sources d’antennes selon le premier objet de l’invention ; ledit panneau rayonnant étant en une seule pièce, de préférence réalisée selon une technique de fabrication additive.
De préférence, les sources d’un même panneau rayonnant sont toutes sensiblement identiques.
Le panneau rayonnant comporte des sources présentant chacune des éléments rayonnants de petites dimensions (0,5 à 0,7 λ) à très faible pertes RF (typiquement inférieures à 0.3 dB, voire 0.2 dB en bande Ka) et est facilement fabricable.
Un troisième objet de l’invention est une antenne réseau à rayonnement direct, dite antenne DRA, comprenant :
- un panneau rayonnant selon le deuxième objet de l’invention;
- au moins un amplificateur et/ou une charge connecté au panneau rayonnant, au niveau de l’entrée d’au moins un filtre et/ou d’une entrée d’au moins un polariseur.
Selon un mode de réalisation avantageux, le panneau rayonnant est connecté à le au moins un amplificateur et/ou la au moins une charge par l’intermédiaire d’au moins une transition antipodale Vivaldi, et de préférence par au moins une transition/adaptation adaptée pour changer la position, les dimensions et/ou la forme des nervures du guide d’onde en entrée de la source de manière à pouvoir positionner la transition Vivaldi au sein dudit guide d’onde.
La source d’antenne, le panneau rayonnant et l’antenne réseau à rayonnement direct selon l'invention peuvent comporter l'une quelconque des caractéristiques précédemment énoncées, prises isolément ou selon toutes combinaisons techniquement possibles avec d'autres caractéristiques.
BREVE DESCRIPTION DES FIGURES
D’autres caractéristiques, détails et avantages de l’invention ressortiront à la lecture de la description faite en référence aux dessins annexés donnés à titre d’exemple et qui représentent, respectivement :
et
représentent une source d’antenne selon un premier mode de réalisation de l’invention.
,
,
et
représentent une source d’antenne selon un deuxième mode de réalisation de l’invention.
et
représentent en détail un cornet hexagonal selon une première variante de l’invention.
,
et
représentent en détail un polariseur hexagonal selon la première variante de l’invention.
,
et
représentent en détail un filtre selon la première variante de l’invention.
et
représentent en détail un cornet hexagonal selon une deuxième variante de l’invention.
,
et
représentent en détail un polariseur hexagonal selon la deuxième variante de l’invention.
représente en détail un cornet hexagonal selon une troisième variante de l’invention.
et
représentent en détail un cornet circulaire selon une quatrième variante de l’invention.
,
et
représentent en détail un polariseur circulaire selon la quatrième variante de l’invention.
illustre plusieurs formes de filtres pour une source selon l’invention.
,
et
illustrent plusieurs transitions optionnelles entre le filtre et le polariseur pour une source selon l’invention.
représente en vue 3D un panneau rayonnant pour une antenne réseau à rayonnement direct comprenant une pluralité de sources selon l’invention.
et
illustrent un mode particulier de réalisation d’un filtre d’une source selon l’invention.
et
illustrent un mode particulier de réalisation d’un élément rayonnant selon l’invention.
schématise une architecture fonctionnelle d’une antenne réseau à rayonnement direct.
illustre un premier mode de connexion entre un panneau rayonnant et des amplificateurs et/ou des charges.
illustre un deuxième mode de connexion entre un panneau rayonnant et des amplificateurs et/ou des charges.
et
sont des schémas de principe d’une transition Vivaldi.
,
et
illustrent une adaptation/transition du guide d’onde d’une source selon l’invention permettant d’intégrer une transition Vivaldi vers des amplificateurs et/ou des charges.
illustre un guide d’onde d’une source selon l’invention intégrant une transition Vivaldi vers des amplificateurs et/ou des charges.
Dans l'ensemble de ces figures, des références identiques peuvent désigner des éléments identiques ou analogues.
De plus, les différentes parties représentées sur les figures ne le sont pas nécessairement selon une échelle uniforme, pour rendre les figures plus lisibles.
DESCRIPTION DETAILLEE DE L’INVENTION
Dans la description détaillée, l’élément rayonnant peut être désigné par le terme « cornet ».
La direction longitudinale est repérée par la référence X et la flèche est orientée dans le sens entrée vers sortie de chacun des éléments (cornet, polariseur, filtre). La direction longitudinale X correspond également à l’axe du cylindre. Le polariseur est disposé bout à bout avec le cornet dans la direction longitudinale, et le filtre, le cas échéant, est disposé bout à bout avec le polariseur dans la direction longitudinale.
Pour l’ensemble des modes et variantes présentés dans la suite de la description, et plus généralement selon l’invention, la source d’antenne peut être en matériau métallique, métallisé, ou métallisable. Par exemple, il peut s’agir de l’aluminium, du titane, ou de toute autre matière qui peut être métallisée en surface. De préférence, le matériau de la source d’antenne est adapté pour fabriquer la source d’antenne, et pour fabriquer le panneau rayonnant de l’antenne réseau (comprenant une pluralité de sources en une seule pièce) par une technique de fabrication additive.
Selon l’invention, une source comprend un guide d’onde ayant au moins une partie principale en forme de cylindre droit creux s’étendant selon une direction longitudinale X, la base dudit cylindre présentant au moins un axe de symétrie dans son plan. Les dimensions transversales extérieures de cette partie principale sont constantes selon la direction longitudinale X. Dans la suite de la description détaillée, il est convenu que la forme de la source correspond à la forme du guide d’onde.
Les sources représentées dans les figures et décrites dans la suite de la description sont en forme de cylindre droit creux, et ce, sur toute leur longueur (en d’autres termes, la partie principale s’étend sur toute la longueur du guide d’onde).
Alternativement, selon une variante de réalisation non représentée, la source peut comprendre, en sortie de l’élément rayonnant, une partie complémentaire en forme de cône ou pyramide tronquée, la partie la plus évasée étant disposée en sortie de l’élément rayonnant. Au lieu d’un cône ou d’une pyramide tronquée, la source peut comprendre, en sortie de l’élément rayonnant, une partie complémentaire de forme cylindrique de dimensions transversales extérieures et/ou de forme de base différentes de la partie principale. La partie complémentaire est exempte de rainures. En outre, la longueur de la partie complémentaire est très faible par rapport à la partie principale du guide d’onde. Par exemple, elle représente de l’ordre de 1/10 voire 1/20 de la longueur du cornet et peut représenter 1/100 de la longueur totale de la source.
Les figures 1A et 1B représentent une source d’antenne selon un premier mode de réalisation de l’invention, la étant une vue en 3D et la étant une vue de côté (vue depuis la sortie du cornet). La source d’antenne 1 illustrée est sous forme de guide d’onde qui comprend une première portion formant cornet 2 et une deuxième portion formant polariseur 3, les deux formant une seule pièce (guide d’onde) dont la forme extérieure est un cylindre droit à base hexagonale 10, le cylindre étant creux.
Le cornet 2 représenté comprend une entrée EC (repérée en ) et une sortie SC. Il présente une forme extérieure en cylindre hexagonal 10, et comprend six nervures 21 (premières nervures), qui font saillie vers l’intérieur dudit cornet à partir de chaque arête 10A du cylindre hexagonal 10 et s’étendent dans la direction longitudinale X. Les six premières nervures présentent toutes les mêmes formes et elles sont conformées en marches le long de la direction longitudinale X. Dans l’exemple représenté, les premières nervures sont échelonnées selon trois marches 211, 212, 213 dont les dimensions (hauteurs, épaisseurs et/ou longueurs) varient le long de la direction longitudinale X. Le nombre et les dimensions des marches sont configurées pour permettre une variation d’impédance donnée entre l’entrée et la sortie de l’élément rayonnant.
Une caractéristique importante de l’invention est que les dimensions extérieures transversales de la partie principale cylindrique du guide d’onde (ici le cylindre hexagonal) ne varient pas selon la direction longitudinale X et notamment ne diminuent pas. Ce sont les nervures intérieures au cornet, avec leurs marches, qui permettent de faire varier l’impédance dans ledit cornet. Ainsi, cela permet d’avoir en entrée de cornet une ouverture la plus grande possible pour pouvoir ensuite réaliser le polariseur à septum qui se connecte en entrée de cornet. Cela permet d’introduire la lame du polariseur et de repousser le premier mode supérieur le plus loin possible de la bande de fonctionnement de l’antenne réseau. Cette particularité est encore plus vraie pour des cornets cylindriques (ou prismiques) à base carrée pour laquelle la fréquence de coupure du premier mode supérieur apparaît pour une fréquence plus faible.
Le cornet est décrit plus en détail dans la suite de la présente description, selon différentes variantes (non limitatives), chacune des variantes pouvant être mise en œuvre dans le premier mode de réalisation, ou dans le deuxième mode de réalisation décrit ci-après.
Le polariseur 3 comporte deux entrées EP1, EP2 séparées par une lame interne 30, ou septum, s'étendant selon la direction longitudinale X, et une sortie SP (repérée en ) qui correspond à l’entrée EC du cornet 2. La lame interne comporte plusieurs paliers 301, 302, 303, 304 dans la direction longitudinale X. Les paliers sont configurés pour transformer un champ électromagnétique de polarisation circulaire en entrée de polariseur en un champ électromagnétique de polarisation linéaire en sortie de polariseur, et inversement. Régulièrement réparties de part et d’autre de la lame 30, en entrées EP1, EP2 de polariseur, quatre nervures 31 (deuxièmes nervures) font saillie vers l’intérieur dudit polariseur à partir de chaque arête 10A du cylindre hexagonal 10 et s’étendent dans la direction longitudinale X. En outre, en sortie SP du polariseur, deux autres deuxièmes nervures 32 (repérées en et 4B) sont formées, qui correspondent aux deux extrémités radiales de la lame 30 qui disparait en sortie de polariseur. Les deuxièmes nervures 31, 32 présentent les mêmes épaisseurs et hauteurs que les premières marches 211 des premières nervures 21. En d’autres termes, en sortie du polariseur, les deuxièmes nervures 31, 32 sont dans la continuité des premières nervures correspondantes 21 en entrée du cornet 2. Les dimensions des deuxièmes nervures sont représentées constantes dans la direction longitudinale, et sont sensiblement égales entre elles.
Les nervures dans le polariseur permettent de diminuer la fréquence de fonctionnement minimum de celui-ci et permettent la propagation de l’onde dans celui-ci. Les dimensions des nervures sont telles que le mode principal se propage dans le polariseur. En revanche la fréquence de coupure du premier mode supérieur doit être supérieure à la fréquence maximale de fonctionnement pour que celui-ci ne puisse pas se propager dans la structure. En outre, cela permet de diminuer les dimensions transversales du polariseur par rapport à un polariseur à septum classique, afin de le rendre compatible avec l’ouverture du cornet.
Le polariseur est décrit plus en détail dans la suite de la présente description, selon différentes variantes (non limitatives), chacune des variantes pouvant être mise en œuvre dans le premier mode de réalisation, ou dans le deuxième mode de réalisation décrit ci-après.
Les figures 2A, 2B, 2C et 2D représentent une source d’antenne selon un deuxième mode de réalisation de l’invention qui diffère du premier mode en ce qu’elle comprend un outre une troisième portion 4 qui comprend un filtre 40. La est une vue en 3D, la est une vue en coupe selon un plan passant par l’axe X et l’axe Y (correspondant au plan de la lame), la est une vue en coupe selon un plan passant par l’axe X et l’axe Z et la étant une vue de côté (vue depuis la sortie du cornet).
La source d’antenne 1’ illustrée comprend ainsi une première portion formant cornet 2, une deuxième portion formant polariseur 3 et une troisième portion 4 comprenant un filtre 40, les trois portions formant une seule pièce dont la forme extérieure est un cylindre droit à base hexagonale 10.
Le filtre 40 correspond à la moitié du cylindre droit hexagonal dans la troisième portion 4 (la sortie du filtre correspond à l’une des deux entrées du polariseur). A l’intérieur du demi-cylindre, le filtre comprend, dans la continuité d’une des deux entrées du polariseur, une série 42 de plots de filtrage en fréquence, les plots étant positionnés l’un après l’autre dans la direction longitudinale X et disposés sur la lame centrale. Les plots de filtrage sont choisis pour permettre à certaines fréquences de passer tandis que d’autres fréquences sont retenues.
Dans l’exemple représenté, les plots ont une inclinaison à 45° afin que la source antenne soit réalisée en fabrication additive en une seule et même pièce, donc en le même matériau que le cornet et le polariseur. Les différents plots présentent des dimensions (longueurs, épaisseurs et/ou des hauteurs) pouvant différer d’un plot à l’autre. En outre, les distances entre deux plots adjacents peuvent différer.
Les dimensions des plots ainsi que la distance entre deux plots adjacents sont définis pour permettre de réaliser un filtre du type « combline filter ». Un filtre de type « combline » classique est en général réalisé en introduisant des tiges métalliques dans un guide rectangulaire, la taille des tiges ainsi que la distance par rapport à la paroi supérieure du guide permettant de transmettre ou de rejeter certaines fréquences. Ce type de filtre est bien connu par l’homme du métier. Selon l’invention, le filtre est dimensionné pour réaliser un filtre passe-bas.
La troisième portion 4 comprend en outre des troisièmes nervures 41 s’étendant vers l’intérieur de celle-ci et sur tout ou partie de la longueur de ladite troisième portion. Dans l’exemple représenté, lesdites troisièmes nervures sont dans la continuité des deuxièmes nervures. Ces troisièmes nervures sont dimensionnées de telle manière à ce que l’onde puisse se propager dans le guide d’onde.
Le filtre est décrit plus en détail dans la suite de la présente description, selon différentes variantes possibles (non limitatives). Toute variante peut être mise en œuvre dans le deuxième mode de réalisation.
Les figures 3A (vue 3D) et 3B (vue de côté) représentent en détail un cornet hexagonal 2 selon une première variante de l’invention, qui correspond au cornet hexagonal des figures 1A, 1B, 2A et 2B. Le cornet hexagonal 2 comprend six premières nervures 21 qui font saillie vers l’intérieur dudit cornet à partir de chaque arête du cylindre hexagonal. Les six premières nervures présentent toutes les mêmes formes, et elles sont conformées en marches le long de la direction longitudinale X. Dans l’exemple illustré, sont représentées trois marches 211, 212, 213 dont les dimensions (hauteurs, épaisseurs et/ou longueurs) varient le long de la direction longitudinale, les épaisseurs des marches diminuant dans le sens allant de l’entrée ECvers la sortie SCdu cornet (sens de circulation). Ainsi, l’épaisseur e211 de la première marche 211 est supérieure à l’épaisseur e212 de la deuxième marche 212, elle-même supérieure à l’épaisseur e213de la troisième marche. Par ailleurs la hauteur h21 1de la première marche 211 est légèrement supérieure à la hauteur h21 2de la deuxième marche 212, elle-même supérieure à la hauteur h213de la troisième marche 213.
De manière générale, il n’est pas nécessaire que les épaisseurs et les hauteurs des marches varient de façon croissante ou décroissante dans le sens de circulation, celles-ci pouvant prendre n’importe quelles valeurs du moment que cela permet de réaliser la variation impédance souhaitée.
Quelle que soit la variante de réalisation, et plus généralement selon l’invention, le nombre de marches ainsi que les dimensions des marches des premières nervures sont des paramètres configurables par l’homme du métier, de manière à permettre une variation d’impédance donnée entre l’entrée et la sortie du cornet. Ainsi, il existe un très grand nombre de configurations possibles, qui ne peuvent pas toutes être décrites dans la présente description. A titre d’exemple, le nombre de marches peut être égal à trois comme illustré ou quatre.
En outre, le nombre de premières nervures et leurs emplacements ne sont pas limités aux modes et variantes illustrés.
Les premières nervures peuvent avoir toutes les mêmes formes, comme illustré, ou présenter des formes différentes.
De préférence, le nombre de premières nervures est un nombre pair, à la fois en entrée et en sortie du cornet, et elles sont disposées de manière régulière autour du périmètre du cylindre. Un nombre pair favorise la symétrie de la source d’antenne. Le nombre pair favorise ensuite l’introduction de la lame du polariseur à septum qui vient dans ce cas se raccrocher à deux nervures opposées et permet de simplifier le dimensionnement du polariseur à septum.
Selon un mode de réalisation particulier, une dernière section sans nervure (marche de hauteur nulle) peut-être ajoutée au niveau de la sortie du cornet afin d’améliorer l’efficacité et la directivité de celui-ci (ces deux notions sont bien connues de l’homme du métier). En particulier si le cornet présente une partie complémentaire, par exemple en forme en cône ou de pyramide tronquée, en sortie dudit cornet, cette partie complémentaire ne comporte de nervure.
Les figures 4A (vue 3D dans le sens entrée-sortie du polariseur), 4B (vue 3D dans le sens sortie-entrée du polariseur) et 4C (vue de côté) représentent un polariseur hexagonal selon la première variante de l’invention, qui correspond au polariseur hexagonal des figures 1A, 1B, 2A et 2B. Le polariseur hexagonal 3 comporte deux entrées EP1, EP2séparées par une lame interne 30, ou septum, s'étendant selon la direction longitudinale X. Transversalement, la lame interne 30 s’étend entre deux arêtes du cylindre opposées radialement, soit sur une largeur l30. La lame interne 30 comporte quatre paliers 301, 302, 303, 304 configurés pour transformer un champ électromagnétique de polarisation circulaire en entrée en un champ électromagnétique de polarisation linéaire en sortie, et inversement. Mais ce nombre de paliers n’est pas limitatif et peut être moins de quatre (deux ou trois) ou de cinq ou plus.
De part et d’autre de la lame 30, en entrées EP1, EP2de polariseur, quatre deuxièmes nervures 31 font saillie vers l’intérieur dudit polariseur à partir de chaque arête du cylindre hexagonal et s’étendent dans la direction longitudinale X. En outre, en sortie SPdu polariseur, deux paliers supplémentaires sur les deux extrémités radiales de la lame interne (extrémités situées sur les arêtes du cylindre) forment deux deuxièmes nervures 32 complémentaires en sortie SPde polariseur. En d’autres termes, en sortie du polariseur, ces deux deuxièmes nervures complémentaires 32 formées en sortie de polariseur correspondent aux deux extrémités de la lame 30 qui disparait en sortie dudit polariseur.
Les épaisseurs e31et les hauteurs h31des quatre deuxièmes nervures 31 sont constantes dans la direction longitudinale et sont sensiblement égales entre elles. Les épaisseurs e32et les hauteurs h3 2 des deux deuxièmes nervures complémentaires 32 sont constantes dans la direction longitudinale et sont sensiblement égales entre elles et à celles des quatre deuxièmes nervures 31.
Quelle que soit la variante de réalisation, et plus généralement selon l’invention, le nombre de paliers de la lame interne, ainsi que l’épaisseur de la lame, et les dimensions des paliers sont configurables par l’homme du métier. La lame du polariseur peut en outre présenter des formes différentes de celle représentée. Outre la forme en escalier illustrée, on trouve dans la littérature un grand nombre de formes autres que la forme en escalier, formes qui peuvent aussi être utilisées dans le cadre de l’invention. On peut citer par exemple une lame dont la forme a été approximée par une équation mathématique du type polynôme de Legendre. Toute autre forme adaptée à la fonction de transformer un champ électromagnétique de polarisation linéaire en un champ électromagnétique de polarisation circulaire, et inversement peut être envisagée. Ainsi, il existe un très grand nombre de configurations possibles, qui ne peuvent pas toutes être décrites dans la présente description.
De préférence, l’épaisseur e30de la lame interne 30 est sensiblement égale à l’épaisseur e31, e32des deuxièmes nervures 31, 32. Ceci permet de faciliter le design et la fabrication de la source d’antenne, et de l’antenne réseau, et de favoriser la symétrie de l’ensemble.
De préférence, l’épaisseur e31, e32(et/ou la hauteur h31, h32) des deuxièmes nervures 31, 32 est sensiblement égale à l’épaisseur e21 1(et/ou à la hauteur h21 1) des premières nervures 21 (première marche 211) au niveau de l’entrée du cornet. Les deuxièmes nervures 31 peuvent être ainsi positionnées dans la continuité des premières nervures 21 en entrée ECdu cornet 2.
Les figures 5A (vue en 3D), 5B (vue de côté) et 5C (autre vue en 3D) représentent en détail un filtre, qui correspond au filtre 40 des figures 2A et 2B.
Le filtre n’est formé que sur une des entrées du polariseur car l’antenne fonctionne en mono-polarisation.
Le filtre 40 correspond à la moitié du cylindre droit hexagonal dans la troisième portion 4 (la sortie du filtre correspond à l’une des deux entrées du polariseur). A l’intérieur du demi-cylindre, le filtre comprend, dans la continuité d’une des deux entrées du polariseur, une série 42 de quatre plots 421, 422, 423, 424 de filtrage en fréquence, les plots étant positionnés l’un après l’autre dans la direction longitudinale X et disposés sur la lame interne 30 (prolongée entre le polariseur et la troisième portion). Les plots de filtrage sont choisis pour permettre à certaines fréquences de passer tandis que d’autres fréquences sont retenues.
Les différents plots présentent des dimensions (longueurs, épaisseurs et/ou hauteurs) pouvant différer d’un plot à l’autre. En outre, les distances entre deux plots adjacents peuvent différer.
Sur l’exemple illustré, les deuxième et troisième plots 422, 423 ont des dimensions équivalentes (épaisseur e4 2 2, hauteur h4 2 2, longueur L4 2 2), et les premier et quatrième plots 421, 424 ont également des dimensions équivalentes (épaisseur e4 2 1, hauteur h4 2 1, longueur L4 2 1) mais différentes des deuxième et troisième plots. En outre, les quatre plots sont espacés les uns les autres de distances qui ne sont pas obligatoirement égales.
Le nombre de plots illustré n’est pas limitatif, de même pour les dimensions des plots ainsi que les distances entre les plots adjacents.
Comme indiqué précédemment, les dimensions des plots ainsi que la distance entre deux plots adjacents sont définis pour permettre de réaliser un filtre du type « combline filter » de type filtre passe-bas, dont la forme peut être adaptée afin de l’intégrer dans le guide d’onde ridgé.
En outre, les dimensions et le nombre de plots dépendent de la valeur voulue pour la réjection du filtre. Si on veut augmenter le niveau de réjection, on augmente le nombre de plots.
La troisième portion 4 comprend en outre des troisièmes nervures 41 s’étendant vers l’intérieur et sur tout ou partie de la longueur de ladite troisième portion, lesdites troisièmes nervures étant dans la continuité des deuxièmes nervures 31, 32. Ces troisièmes nervures sont dimensionnées de telle manière à ce que l’onde puisse se propager dans le guide d’onde.
La forme du polariseur étant très variable, et dépendant de la forme du cornet (cylindre à base circulaire ou polygonale …), on peut avoir une grande variété de formes pour le guide d’onde à nervures formant le filtre. Des formes possibles, non limitatives sont illustrées dans la (illustrées avec les nervures mais sans les plots).
En outre, afin de faciliter l’insertion des plots au centre du filtre, on peut prévoir de réaliser une transition entre le polariseur et le filtre qui permettra de changer la disposition des nervures à l’intérieur de la troisième portion comprenant du guide d’onde comprenant le filtre. Une condition est de faire en sorte que la fréquence de fonctionnement du guide d’onde soit inférieure à la fréquence minimale de fonctionnement, autant avant qu’après la transition. Comme illustré dans les figures 12A à 12C, la transition peut être réalisée en enlevant des nervures ( ), en ajoutant des nervures ( ), ou encore en courbant des nervures existantes ( ), voire en combinant plusieurs de ces solutions.
Les figures 6A (vue 3D) et 6B (vue de côté) représentent un cornet hexagonal 2’ selon une deuxième variante de l’invention, qui diffère de la première variante en ce que les premières nervures 21’ ne sont pas disposées au niveau des arêtes du cylindre hexagonal 10 mais au milieu des surfaces latérales 10B dudit cylindre. Dans l’exemple représenté, il y a six premières nervures avec trois marches chacune, les marches diminuant entre l’entrée et la sortie du cornet mais, comme indiqué précédemment, il n’est pas nécessaire que les épaisseurs et les hauteurs des marches varient de façon croissante ou décroissante dans le sens de circulation, celles-ci pouvant prendre n’importe quelles valeurs du moment que cela permet de réaliser la variation impédance souhaitée.
Le nombre de premières nervures et de marches n’est pas limitatif. De préférence il y a un nombre pair de premières nervures, à la fois en entrée et en sortie du cornet.
Les figures 7A (vue 3D dans le sens entrée-sortie du polariseur), 7B (vue 3D dans le sens sortie-entrée du polariseur) et 7C (vue de côté) représentent un polariseur hexagonal 3’ selon la deuxième variante de l’invention, qui diffère de la première variante en ce que les deuxièmes nervures 31’, 32’ ainsi que la lame interne 30 ne sont pas disposées au niveau des arêtes du cylindre hexagonal mais au milieu des surfaces latérales dudit cylindre. Dans l’exemple représenté, il y a six premières nervures avec trois marches chacune. Mais le nombre de nervures n’est pas limitatif. De préférence il y a un nombre pair de deuxièmes nervures, à la fois en entrée et en sortie du polariseur.
Les premières et secondes variantes peuvent être combinées entre elles, de sorte que les premières nervures (et les deuxièmes nervures) peuvent être disposées à la fois au niveau des arêtes du cylindre hexagonal et au milieu des surfaces latérales dudit cylindre. On peut ainsi obtenir par exemple 12 premières nervures dans le cornet et 12 deuxièmes nervures en sortie en polariseur.
Les deuxièmes nervures sont généralement disposées aux mêmes emplacements sur toute la longueur occupée par lesdites deuxièmes nervures.
Les premières nervures peuvent être disposées aux mêmes emplacements sur toute la longueur occupée par les premières nervures, comme illustré.
Alternativement, les premières nervures peuvent être positionnées selon une première configuration sur une première longueur (ou première section), puis selon une deuxième configuration sur une deuxième longueur (ou deuxième section), puis éventuellement encore selon une troisième configuration sur une troisième longueur (ou troisième section) etc. Il est cependant important de respecter les échelons d’impédance et de respecter la meilleure symétrie possible du cornet (et de la source d’antenne) par rapport à l’axe longitudinal X.
Un exemple de cette alternative (troisième variante) est illustré en qui représente un cornet 3’’’ dans lequel des premières nervures 21 (configurées en une seule marche) sont positionnées sur les arêtes d’un cylindre droit hexagonal en entrée EC du cornet sur une première section L1 puis des premières nervures 21’ (configurées en trois marches) sont positionnées au milieu des surfaces latérales du cylindre hexagonal sur une deuxième section L2 pouvant aller jusqu’à la sortie SC du cornet. Cette configuration n’est évidemment pas limitative.
Dans un mode de réalisation préférentiel, les deuxièmes nervures en sortie du polariseur sont positionnées dans la continuité des premières nervures en entrée du cornet. Alternativement, il est possible d’envisager un changement d’emplacement des nervures entre la sortie du polariseur et l’entrée du cornet (par exemple au niveau des arêtes en polariseur puis sur le milieu des surfaces en cornet ou inversement), toujours dans la limite du respect des impédances souhaitées.
Les figures 9A (vue 3D) et 9B (vue de côté) représentent un cornet 2’’ selon une quatrième variante de l’invention, qui diffère de la première, de la deuxième variante et de la troisième variante en ce que le cylindre droit 10’ est circulaire et non hexagonal. Les premières nervures 21’’ sont positionnées de manière régulière autour du cercle. Dans l’exemple représenté, il y a six premières nervures 21’’ avec trois marches chacune. Mais le nombre de nervures et de marches n’est pas limitatif. De préférence il y a un nombre pair de premières nervures, à la fois en entrée et en sortie du cornet.
Les figures 10A (vue 3D dans le sens entrée-sortie du polariseur), 10B (vue 3D dans le sens sortie-entrée du polariseur) et 10C (vue de côté) représentent un polariseur 3’’ selon la quatrième variante de l’invention, qui diffère de la première, de la deuxième variante et de la troisième variante en ce que le cylindre droit 10’ est circulaire et non hexagonal. Les deuxièmes nervures 31’’, 32’’ et la lame interne 30’’ sont positionnées de manière régulière autour du périmètre du cercle. Dans l’exemple représenté, il y a quatre deuxièmes nervures 31’’ en entrée du polariseur et six deuxièmes nervures 31’’, 32’’ en sortie de polariseur. Mais le nombre de nervures n’est pas limitatif, de préférence il y a un nombre pair de deuxièmes nervures, à la fois en entrée et en sortie du polariseur.
La forme du cylindre droit ne se limite pas à la forme hexagonale ou circulaire. Alternativement, la forme du cylindre droit peut être carrée, octogonale, décagonale, et plus généralement en forme de polygone régulier d’ordre pair (nombre de côtés pair), afin de présenter une forme la plus symétrique possible.
En outre, afin de conserver la polarisation circulaire, les nervures doivent être positionnées de manière symétrique autour du périmètre du cylindre.
Ainsi, de préférence pour un cylindre à base polygonale, le nombre de premières nervures dans le cornet est égal au nombre de côtés du polygone, ou à un multiple du nombre de côtés. Par exemple :
- pour un cylindre carré, le nombre de premières nervures peut être de 4, 8, 12 … ;
- pour un cylindre hexagonal, le nombre de premières nervures peut être de 6, 12 …
- pour un cylindre octogonal, le nombre de premières nervures peut être de 8, 16….
- pour un cylindre décagonal, le nombre de premières nervures peut être de 10, 20 …
Le nombre de premières nervures indiqué ci-dessus est donné pour l’entrée et la sortie du cornet. Pour le polariseur, le nombre de deuxièmes nervures indiqué ci-dessus correspond au nombre de nervures en sortie de celui-ci (en entrée de polariseur il y en a deux en moins correspondant à la lame). De même, lorsqu’il y a un filtre, il y deux troisièmes nervures en moins correspondant à la lame qui se prolonge dans le filtre. Ainsi, pour un cylindre hexagonal, on a de préférence 6 premières nervures en entrée et en sortie du cornet, 6 deuxièmes nervures en sortie du polariseur (correspondant à l’entrée du cornet), 4 deuxièmes nervures en entrée du polariseur, et 4 troisièmes nervures en entrée et en sortie du filtre, le cas échéant.
Les nervures (et la lame interne) peuvent être positionnées au niveau des arêtes intérieures et/ou sur les surfaces latérales intérieures du polygone, de préférence au milieu des surfaces latérales intérieures du polygone.
Pour un cylindre circulaire, les nervures (et la lame interne) sont également réparties régulièrement autour du périmètre du cercle, à l’intérieur dudit cylindre circulaire. Le nombre de premières nervures, de secondes nervures, voire de troisièmes nervures lorsqu’il y a un filtre, peut être de 4, 6, 8, 10 …
Pour un cylindre circulaire, on a de préférence 6 premières nervures en entrée et en sortie du cornet, 6 deuxièmes nervures en sortie du polariseur (correspondant à l’entrée du cornet), 4 deuxièmes nervures en entrée du polariseur, et 4 troisièmes nervures en entrée et en sortie du filtre, le cas échéant.
Plus généralement, le nombre de premières nervures, ainsi que de secondes nervures, voire de troisièmes nervures lorsqu’il y a un filtre, est de préférence un nombre pair, de préférence en entrée et en sortie du cornet, du polariseur, et du filtre le cas échéant.
Le cornet et le polariseur étant en une seule pièce (guide d’onde), avec la même forme extérieure, la forme du cornet conditionne la forme du polariseur. Ainsi, si le cornet est hexagonal, carré, circulaire, le polariseur l’est aussi. De même, lorsqu’un filtre est ajouté, la forme extérieure de la troisième portion qui comprend le filtre respecte la forme extérieure du cornet et du polariseur.
La représente en vue 3D (vue depuis le sortie des cornets) un panneau rayonnant 110 pour une antenne réseau, comprenant une pluralité de sources selon l’invention. Dans l’exemple représenté, les sources 1 présentent toutes une forme en cylindre droit hexagonal 10, les premières nervures 21’ étant sur le milieu des surfaces latérales dudit cylindre. Le panneau rayonnant représenté est en une seule pièce. Le nombre de sources représentées est ici de 37 mais il n’est en rien limitatif, et il est généralement beaucoup plus élevé. En outre, les sources peuvent être choisies selon l’un quelconque des modes, variantes, alternatives décrits précédemment.
De préférence, les sources d’un même panneau rayonnant sont toutes sensiblement identiques.
La structure du panneau rayonnant étant complexe, et les sources présentant des petites dimensions (de l’ordre de 10 cm de hauteur, 15 cm de largeur et 20 cm de longueur), une solution privilégiée pour fabriquer le panneau rayonnant est la fabrication additive.
Une technique de fabrication additive particulièrement adaptée pour fabriquer le panneau rayonnant est la technique de fusion sélective par laser dite « SLM » (pour « Selective Laser Melting » en anglais), également nommée « LBM » (pour « Laser Beam Melting » en anglais). La technique SLM consiste à déposer une couche de poudre métallique d’épaisseur contrôlée (et généralement sous atmosphère contrôlée) sur un plateau de fabrication, utiliser une source laser pour réaliser une fusion sélective de la poudre dans le plan de fabrication, puis déposer une autre couche de poudre sur la couche précédente, l’itération de fabrication se poursuivant de manière à former la pièce souhaitée. On peut utiliser une poudre en métallique en titane ou en aluminium, bien que cela ne soit pas limitatif.
La technique SLM permet la fabrication de pièces complexes, et ce, en réduisant le temps et les coûts de fabrication. Un tel panneau rayonnant avec une pluralité de sources n’est pas réalisable avec certaines méthodes de fabrication conventionnelles (de type fraisage …) ou implique un procédé de fabrication complexe, long et à coût de fabrication élevé avec d’autres méthodes de fabrication conventionnelles (de type électroérosion …).
Alternativement à la technique SLM, on peut envisager une technique de fabrication additive basée sur l’utilisation de polymères, par exemple la technique de fabrication additive par extrusion de matière (« Material Extrusion » également nommée « Fused Deposition Modeling » ou « FDM » en anglais) selon laquelle au moins une tête d’impression chauffée extrude un filament à matrice polymère de manière à fabriquer une pièce ; le déplacement de la tête d’impression selon les trois axes permet de déposer de petits volumes de polymère fondu localement et de construire une pièce couche par couche. On peut également citer la fabrication additive par jet de matière (« Material Jetting » en anglais) qui est un procédé dans lequel au moins une tête d’impression mobile selon les trois axes projette un polymère photosensible, qui joue le rôle d’une encre, qui est ensuite polymérisé par un rayonnement UV. D’autres techniques existent qui ne sont pas citées ici mais qui sont bien connues de l’homme du métier. Quelle que soit la technique de fabrication additive basée sur l’utilisation de polymères, la pièce réalisée doit être métallisée (dépôt d’une couche de métallisation).
Même avec la technique SLM, et afin de réduire les pertes RF, on réalise de préférence une couche de métallisation sur la pièce.
La couche de métallisation peut être réalisée à l’aide d’un dépôt électrolytique ou un dépôt chimique, par exemple selon la forme de la pièce et/ou le domaine d’utilisation visé.
Afin de faciliter la fabrication additive d’un panneau rayonnant, il est possible d’adapter la réalisation de certains éléments des sources.
Ainsi, les plots 421, 422, 423 des filtres 4 peuvent présenter une inclinaison (inclinaison maximale de 45°), comme illustré dans les figures 14A (filtre 4’ comprenant des plots 421’, 422’, 423’ sans inclinaison) et 14B (filtre 4 avec inclinaison).
En outre, sous tout ou partie des marches 211, 212, 213 des cornets 2, on peut prévoir d’ajouter de la matière pour réaliser un support 221, 222 comme illustré dans les figures 15A (sans support) et 15B (avec support). Un tel support pour une telle pièce qui est fabriquée à la verticale permet d’éviter un effondrement lors de la fabrication. Un tel support est une technique couramment utilisée en fabrication additive.
Alternativement à une technique de fabrication additive, une solution pour fabriquer un panneau rayonnant est la technique de moulage sous pression (« Die Casting » en anglais). La technique Die Casting est un procédé de coulée de métal qui se caractérise par le fait de forcer du métal fondu sous haute pression dans une cavité de moule. La cavité du moule est créée à l'aide de deux matrices en acier trempées qui ont été usinées en forme et fonctionnent de manière similaire à un moule d'injection au cours du processus. La plupart des pièces moulées sous pression sont fabriquées à partir de métaux non ferreux, en particulier le zinc, le cuivre, l'aluminium, le magnésium, le plomb, l'étain et les alliages à base d'étain. Selon le type de métal coulé, une machine à chambre chaude ou froide est utilisée.
La schématise une architecture fonctionnelle d’une antenne réseau 100 à rayonnement direct qui comprend un panneau rayonnant 110 comportant plusieurs sources 1’ (chaque source 1’ est représentée avec un cornet 2, un polariseur 3 et un filtre 4), tel que le panneau rayonnant illustré dans la . Le panneau rayonnant 110 est connecté à des amplificateurs 120 et/ou des charges 121. L’ensemble est relié à un formateur de réseau 140 ou « BFN » pour « Beam Forming Network » qui permet de répartir l’énergie (en amplitude et en phase) entre les différentes sources pour diriger le faisceau de l’antenne dans une direction donnée.
Une charge permet d’absorber l’énergie RF qu’elle reçoit et qu’elle dissipe sous forme de chaleur.
Il s’agit de réaliser des connexions 130 conductrices électriquement entre tout ou partie des sources du panneau rayonnant et les amplificateurs et/ou les charges. L’épaisseur de métal (ou de métallisation) des sources du panneau rayonnant étant faible (généralement un millimètre ou moins), il est difficile de réaliser ces connexions dans ladite épaisseur, aussi on utilise des emplacements dans le réseau de sources. Dans le cas d’un nombre limité de sources (typiquement une cinquantaine de sources), on peut disposer les connexions sur les bords du réseau. Si le nombre de sources est plus important, on disposera les connexions plutôt à l’intérieur du réseau.
Les figures 17 et 18 illustrent un panneau rayonnant 110, tel que le panneau rayonnant illustré dans la (avec plus de sources), vu depuis l’entrée filtre.
Le panneau rayonnant illustré comporte 256 éléments rayonnants. Il a par conséquent 512 accès en entrée des polariseurs à septum. Par exemple, l’accès EP1 (voir repérage par exemple en ) du polariseur à septum génère de la polarisation circulaire gauche (PCG) et l’accès EP2 (voir repérage par exemple en ) du polariseur à septum génère de la polarisation circulaire droite (PCD) : ainsi 256 accès en entrée du panneau rayonnant génèrent de la polarisation circulaire droite et 256 accès génèrent de la polarisation circulaire gauche. L’antenne est généralement conçue pour fonctionner en mono-polarisation et pour le cas présenté dans cet exemple en polarisation droite. Dans le cas considéré, la polarisation droite est appelée « polarisation principale » et la polarisation gauche « polarisation croisée ». Dans le cas considéré, les 256 accès EP2 sont suivis par des filtres puis ils doivent être connectés aux amplificateurs pour générer le signal. Les 256 accès EP1 ne sont pas suivis par des filtres et doivent être connectés à des charges pour limiter la composante croisée qui correspond à du bruit.
Pour connecter les amplificateurs au panneau rayonnant, il est nécessaire d’avoir des emplacements avec des taraudages à l’intérieur du panneau rayonnant. Pour cela deux solutions ont été envisagées dont la illustre une première solution (connexion 131), la deuxième solution étant illustrée en (connexion 132).
Le premier mode de connexion 131 illustré en utilise quelques accès de la polarisation croisée (accès EP1 des polariseurs dans le cas considéré) qui sont remplis de matière pour pouvoir disposer un taraudage afin de connecter les amplificateurs aux panneaux rayonnants avec des vis.
Le deuxième mode de connexion 132 illustré en utilise les 2 accès d’une même source (accès EP1 et EP2 des polariseurs dans le cas considéré) qui sont remplis de matière pour pouvoir disposer un taraudage afin de connecter les amplificateurs aux panneaux rayonnants avec des vis.
Dans les deux modes, les connexions forment des courts-circuits.
Dans le cas où l’antenne est prévue pour fonctionner en polarisation gauche, alors les 256 accès EP1sont suivis par des filtres puis connectés aux amplificateurs et les 256 accès EP2ne sont pas suivi pas des filtres et sont connectés à des charges.
Quel que soit le mode de connexion utilisé, les amplificateurs sont de préférence regroupés par bloc(s) de plusieurs amplificateurs, bloc que l’on peut désigner par « module amplification ». La liaison des modules amplifications au panneau rayonnant se fait donc via l’intermédiaire de fixations qui viennent se fixer au niveau des connexions réalisées, par exemple de vis qui viennent se visser dans les taraudages des connexions. Les connexions peuvent être réalisées au moment de la fabrication du panneau rayonnant (par exemple pendant la fabrication additive) ou après fabrication (par exemple par taraudage une fois le panneau rayonnant fabriqué).
Le premier mode de connexion permet ne pas trop dégrader les performances RF par rapport au deuxième mode de connexion mais exige d’avoir des modules amplification plus compacts. Le deuxième mode de connexion est plus facile à réaliser.
Le nombre d’amplificateurs dans un module amplification (et par conséquent le nombre de courts-circuits à la sortie de panneau rayonnant) dépend de plusieurs paramètres et objectifs : il peut s’agir de faciliter la production et l’assemblage de l’antenne dans le but de réduire le coût de l’antenne, ou de viser des performances RF pour l’antenne (plus le nombre de courts-circuits est important, plus les performances RF sont dégradées), ou encore d’intégrer un contrôle thermique (le but du contrôle thermique étant d’évacuer la puissance dissipée par les amplificateurs hors de l’antenne).
Le mode de transmission des ondes hyperfréquences (HF) dans les amplificateurs et dans le panneau rayonnant sont différents. En effet, les ondes à la sortie du panneau rayonnant sont transmises par l’intermédiaire d’un guide d’onde (ridgé) alors que les ondes dans l’amplificateur se propagent généralement à l’aide d’une ligne dite « ligne microruban » ou « ligne microstrip » (« microstrip line » en anglais) qui est une ligne de transmission hyperfréquences connue de l’homme du métier et ne sera pas développée ici.
Le passage du mode de propagation des ondes HF en guide d’ondes ridgé depuis le panneau rayonnant vers la ligne microstrip des amplificateurs doit être réalisé via l’intermédiaire d’une transition adaptée. La transition antipodale dite « Vivaldi » permet de réaliser une transition entre un guide d’onde et une ligne microstrip, mais elle est généralement mise en œuvre pour un guide d’onde classique et non ridgé. Son principe illustré en figures 19A et 19B.
Une transition antipodale dite « Vivaldi » 50 consiste en l’insertion d’un substrat 51 à l’intérieur du guide d’onde 55 (généralement au milieu du guide d’onde). Sur le substrat sont formées deux gravures métalliques différentes, une première gravure 51 sur sa face supérieure (son extrémité la plus éloignée de l’entrée du guide d’onde est affinée en forme de ruban conducteur 51A) et une seconde gravure 52 sur sa face inférieure (son extrémité la plus éloignée de l’entrée du guide d’onde est élargie pour devenir le plan de masse 52A). Le champ électrique E arrive au niveau du substrat gravé qui capte le champ électrique, alors compris entre les deux gravures métalliques. La forme des gravures métalliques permet de faire tourner le champ électrique, et de le transmettre vers le ruban conducteur.
Les inventeurs ont développé une nouvelle transition basée sur la transition antipodale Vivaldi. Le principe est de réaliser une pièce de transition préalable permettant de changer la position, les dimensions et/ou les formes des nervures du guide d’onde en entrée de la source (en entrée de polariseur ou de filtre) pour libérer de la place au centre de celui-ci. Un exemple de réalisation d’une telle transition 60 préalable est illustrée en figures 20A, 20B et 20C. La représente en vue de côté de la sortie 60A de la transition (par exemple en entrée de filtre) où apparaissent les nervures 41 du filtre 4. La représente en vue de côté l’entrée 60B de la transition/adaptation (côté amplificateur). La représente en vue 3D la transition/adaptation 60 dans la continuité du filtre.
Ceci permet de disposer le substrat de la transition Vivaldi 50 au centre du guide d’onde, avec les deux gravures métalliques, comme illustré en .
On peut connecter de la même manière les charges aux panneaux rayonnants. Les charges sont en effet généralement intégrées dans le module amplification et peuvent être connectées de la même manière que les amplificateurs au panneau rayonnant, avec la même transition/adaptation en guide et la même transition Vivaldi. La charge peut être connectée à la fin de la ligne microstrip comme composant monté en surface (CMS).
Cela permet ainsi de former l’antenne réseau, avec les performances RF visées.
Sauf indication contraire ou techniquement impossible, les différents modes, variantes et alternatives peuvent être combinés. La source d’antenne, le panneau rayonnant et l’antenne réseau peuvent ainsi comporter l'une ou plusieurs des caractéristiques précédemment énoncées prises isolément ou suivant toutes combinaisons techniques possibles.
En outre, la présente invention n'est pas limitée aux modes de réalisation précédemment décrits mais s'étend à tout mode de réalisation entrant dans la portée des revendications.
L’invention trouve des applications dans le domaine des antennes spatiales réseau pour les satellites en orbite basse ou l’on doit transmettre des données dans un grand domaine angulaire, notamment dans les bandes K, Ka, Ku, Q, V … par exemple pour l’internet haut débit.

Claims (14)

  1. Source d’antenne (1, 1’) pour une antenne réseau à rayonnement direct, pour l’émission et la réception d’ondes hyperfréquence, ladite source comprenant un guide d’onde ayant au moins une partie principale (10, 10’) en forme de cylindre droit creux s’étendant selon une direction longitudinale (X), la base dudit cylindre présentant au moins un axe de symétrie dans son plan et les dimensions transversales extérieures de ladite partie principale étant constantes selon la direction longitudinale (X) ;
    la partie principale du guide d’onde comprenant dans ladite direction longitudinale :
    - une première portion formant élément rayonnant (2, 2’, 2’’, 2’’’), ou la majeure partie dudit élément rayonnant, ledit élément rayonnant comprenant des premières nervures (21, 21’, 21’’) s’étendant vers l’intérieur et sur tout ou partie de la longueur dudit élément rayonnant, lesdites premières nervures étant régulièrement réparties autour du périmètre dudit élément rayonnant et présentant plusieurs marches (211, 212, 213) le long de la direction longitudinale (X), le nombre, les hauteurs (h211, h212, h213) et les épaisseurs (e211, e212, e213) desdites marches étant configurées pour permettre une variation, de préférence une augmentation, d’impédance donnée entre l’entrée (EC) et la sortie (SC) de l’élément rayonnant ;
    - une deuxième portion formant polariseur (3, 3’, 3’’), ledit polariseur comportant deux entrées (EP1, EP2) séparées par une lame interne (30, 30’, 30’’) s'étendant selon la direction longitudinale (X), et une sortie (SP) correspondant à l’entrée (EC) de l’élément rayonnant (2, 2’, 2’’, 2’’’), la lame interne comportant plusieurs paliers (301, 302, 303, 304) le long de la direction longitudinale (X), lesdits paliers étant configurés pour transformer un champ électromagnétique de polarisation circulaire en entrée en un champ électromagnétique de polarisation linéaire en sortie, et inversement pour transformer un champ électromagnétique de polarisation linéaire en sortie en un champ électromagnétique de polarisation circulaire en entrée, le polariseur comprenant en outre des deuxièmes nervures (31, 32, 31’, 32’, 31’’, 32’’) s’étendant vers l’intérieur et sur toute ou partie de la longueur dudit polariseur, lesdites deuxièmes nervures et ladite lame interne étant régulièrement réparties autour du périmètre dudit polariseur ;
    l’élément rayonnant et le polariseur étant en une seule pièce, de préférence réalisée selon une technique de fabrication additive, et étant disposés bout à bout dans la direction longitudinale.
  2. Source d’antenne (1, 1’) selon la revendication 1, le guide d’onde présentant une épaisseur constante sur toute sa longueur.
  3. Source d’antenne (1, 1’) selon la revendication 1 ou la revendication 2, le nombre de premières nervures et/ou de deuxièmes nervures étant un nombre pair, de préférence à la fois en entrée et en sortie de l’élément rayonnant et/ou du polariseur.
  4. Source d’antenne (1, 1’) selon l’une des revendications 1 à 3, la base du cylindre droit (10) étant un polygone régulier d’ordre pair, de préférence un hexagone.
  5. Source d’antenne (1, 1’) selon la revendication 4, la lame interne et tout ou partie des premières nervures et/ou des deuxièmes nervures étant disposées au niveau des arêtes du cylindre droit polygonal.
  6. Source d’antenne (1, 1’) selon la revendication 4, la lame interne et tout ou partie des premières nervures et/ou des deuxièmes nervures étant disposées sur les surfaces latérales intérieures du cylindre droit polygonal.
  7. Source d’antenne (1, 1’) selon l’une des revendications 1 à 3, la base du cylindre droit (10’) étant un cercle.
  8. Source d’antenne (1’) selon l’une quelconque des revendications 1 à 7, comprenant en outre :
    - une troisième portion (4) comprenant un filtre (40, 40’), la lame interne (30, 30’, 30’’) étant prolongée dans toute ou partie de ladite troisième portion, le filtre (40, 40’) comprenant un ensemble (42) de plots de filtration en fréquence (421, 422, 423, 424, 421’, 422’, 423’) disposés à l’intérieur de la troisième portion et sur une seule et même surface de la lame interne, la sortie (SF) du filtre correspondant à une des deux entrées (EP1, EP2) du polariseur, ladite troisième portion comprenant en outre des troisièmes nervures (41) s’étendant vers l’intérieur et sur tout ou partie de la longueur de ladite troisième portion, lesdites troisièmes nervures et la lame interne étant régulièrement réparties autour du périmètre de ladite troisième portion ;
    l’élément rayonnant, le polariseur et le filtre étant en une seule pièce, de préférence réalisée selon une technique de fabrication additive, et le polariseur et le filtre étant disposés bout à bout dans la direction longitudinale.
  9. Source d’antenne (1’) selon la revendication 8, le nombre de troisièmes nervures étant un nombre pair, de préférence à la fois en entrée et en sortie du filtre.
  10. Source d’antenne (1, 1’) selon l’une quelconque des revendications 1 à 9, le guide d’onde étant entièrement en forme de cylindre droit creux sur toute sa longueur.
  11. Source d’antenne selon l’une quelconque des revendications 1 à 9, le guide d’onde comprenant une partie principale en forme de cylindre droit creux et une partie complémentaire, ladite partie complémentaire pouvant être en forme de cône ou de pyramide tronquée en sortie de l’élément rayonnant, la partie la plus évasée étant disposée en sortie de l’élément rayonnant, la partie complémentaire étant exempte de rainures.
  12. Panneau rayonnant (110) pour une antenne réseau à rayonnement direct, comprenant :
    - une pluralité de sources d’antennes (1, 1’) choisies selon l’une quelconque des revendications 1 à 11 ;
    ledit panneau rayonnant étant en une seule pièce, de préférence réalisée selon une technique de fabrication additive.
  13. Antenne réseau à rayonnement direct (100) comprenant :
    - un panneau rayonnant (110) selon la revendication 12 ;
    - au moins un amplificateur (120) et/ou une charge (121) connecté au panneau rayonnant, au niveau de l’entrée (EF) d’au moins un filtre et/ou d’une entrée (EP1, EP2) d’au moins un polariseur.
  14. Antenne réseau (100) selon la revendication 13, le panneau rayonnant (110) étant connecté à le au moins un amplificateur (120) et/ou la au moins une charge (121) par l’intermédiaire d’au moins une transition antipodale Vivaldi (50), et de préférence par au moins une transition/adaptation (60) adaptée pour changer la position, les dimensions et/ou la forme des nervures du guide d’onde en entrée de la source de manière à pouvoir positionner la transition Vivaldi (50) au sein dudit guide d’onde.
FR2012951A 2020-12-10 2020-12-10 Source d'antenne pour une antenne réseau à rayonnement direct, panneau rayonnant comprenant plusieurs sources d'antenne. Active FR3117685B1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
FR2012951A FR3117685B1 (fr) 2020-12-10 2020-12-10 Source d'antenne pour une antenne réseau à rayonnement direct, panneau rayonnant comprenant plusieurs sources d'antenne.
EP21213068.6A EP4012834B1 (fr) 2020-12-10 2021-12-08 Source d'antenne pour une antenne réseau à rayonnement direct, panneau rayonnant et antenne comprenant plusieurs sources d'antenne
US17/545,923 US20220190477A1 (en) 2020-12-10 2021-12-08 Antenna feed for a direct radiating array antenna, radiating panel and antenna comprising several antenna feeds
CA3141535A CA3141535A1 (fr) 2020-12-10 2021-12-09 Source primaire d'antenne pour une antenne reseau a rayonnement direct, panneau de rayonnement et antenne comprenant plusieurs sources primaires d'antenne

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2012951 2020-12-10
FR2012951A FR3117685B1 (fr) 2020-12-10 2020-12-10 Source d'antenne pour une antenne réseau à rayonnement direct, panneau rayonnant comprenant plusieurs sources d'antenne.

Publications (2)

Publication Number Publication Date
FR3117685A1 true FR3117685A1 (fr) 2022-06-17
FR3117685B1 FR3117685B1 (fr) 2024-03-15

Family

ID=75850247

Family Applications (1)

Application Number Title Priority Date Filing Date
FR2012951A Active FR3117685B1 (fr) 2020-12-10 2020-12-10 Source d'antenne pour une antenne réseau à rayonnement direct, panneau rayonnant comprenant plusieurs sources d'antenne.

Country Status (4)

Country Link
US (1) US20220190477A1 (fr)
EP (1) EP4012834B1 (fr)
CA (1) CA3141535A1 (fr)
FR (1) FR3117685B1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4372910A1 (fr) 2022-11-18 2024-05-22 Thales Dispositif de contrôle de faisceaux électromagnétiques rf selon leur angle d'incidence et procédé de fabrication

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3561947A1 (fr) * 2018-04-25 2019-10-30 Rosenberger Hochfrequenztechnik GmbH & Co. KG Polariseur pour un guide d'ondes et système de transmission de signaux électromagnétiques haute fréquence
US11881607B1 (en) * 2021-10-05 2024-01-23 Lockheed Martin Corporation Longitudinally ridged septum orthomode transducer polarizer
KR102510434B1 (ko) * 2022-08-17 2023-03-16 국방과학연구소 안테나 장치
CH720221A1 (fr) * 2022-11-11 2024-05-31 Swissto12 Sa Antenne striée à double polarisation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3445399A1 (de) * 1984-12-13 1986-06-19 Wilhelm Sihn jun. KG, 7532 Niefern-Öschelbronn Septum-polarisationsweiche
EP2497146A1 (fr) * 2009-11-04 2012-09-12 Raytheon Company Ligne de transmission plane large bande a faibles pertes vers une transition de guide d'onde
WO2020194270A1 (fr) * 2019-03-28 2020-10-01 Swissto12 Sa Composant radiofréquence comportant plusieurs dispositifs à guide d'onde muni de stries

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH668507A5 (de) * 1984-10-10 1988-12-30 Huber+Suhner Ag Hohlleiter mit einem strahler.
JP3692273B2 (ja) * 2000-02-03 2005-09-07 アルプス電気株式会社 一次放射器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3445399A1 (de) * 1984-12-13 1986-06-19 Wilhelm Sihn jun. KG, 7532 Niefern-Öschelbronn Septum-polarisationsweiche
EP2497146A1 (fr) * 2009-11-04 2012-09-12 Raytheon Company Ligne de transmission plane large bande a faibles pertes vers une transition de guide d'onde
WO2020194270A1 (fr) * 2019-03-28 2020-10-01 Swissto12 Sa Composant radiofréquence comportant plusieurs dispositifs à guide d'onde muni de stries

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4372910A1 (fr) 2022-11-18 2024-05-22 Thales Dispositif de contrôle de faisceaux électromagnétiques rf selon leur angle d'incidence et procédé de fabrication
FR3142300A1 (fr) 2022-11-18 2024-05-24 Thales Dispositif de contrôle de faisceaux électromagnétiques RF selon leur angle d'incidence et procédé de fabrication

Also Published As

Publication number Publication date
EP4012834A1 (fr) 2022-06-15
EP4012834C0 (fr) 2024-02-21
CA3141535A1 (fr) 2022-06-10
FR3117685B1 (fr) 2024-03-15
EP4012834B1 (fr) 2024-02-21
US20220190477A1 (en) 2022-06-16

Similar Documents

Publication Publication Date Title
EP4012834B1 (fr) Source d'antenne pour une antenne réseau à rayonnement direct, panneau rayonnant et antenne comprenant plusieurs sources d'antenne
EP3547450B1 (fr) Element rayonnant a polarisation circulaire mettant en oeuvre une resonance dans une cavite de fabry perot
EP2564466B1 (fr) Element rayonnant compact a cavites resonantes
EP0064313B1 (fr) Elément rayonnant ou récepteur de signaux hyperfréquences à polarisations circulaires et antenne plane hyperfréquence comprenant un réseau de tels éléments
EP2869400B1 (fr) Répartiteur de puissance compact bipolarisation, réseau de plusieurs répartiteurs, élément rayonnant compact et antenne plane comportant un tel répartiteur
EP3073569B1 (fr) Matrice de butler compacte, formateur de faisceaux bidimensionnel planaire et antenne plane comportant une telle matrice de butler
EP3179551B1 (fr) Ensemble d'excitation compact bipolarisation pour un element rayonnant d'antenne et reseau compact comportant au moins quatre ensembles d'excitation compacts
EP0542595A1 (fr) Dispositif d'antenne microruban perfectionné, notamment pour transmissions téléphoniques par satellite
FR2655204A1 (fr) Antenne-reseau d'alimentation de guides d'onde.
FR2640431A1 (fr) Dispositif rayonnant multifrequence
CA2862729A1 (fr) Formateur multi-faisceaux a deux dimensions, antenne comportant un tel formateur multi-faisceaux et systeme de telecommunication par satellite comportant une telle antenne
EP3086409B1 (fr) Module structural d'antenne integrant des sources rayonnantes elementaires a orientation individuelle, panneau rayonnant, reseau rayonnant et antenne multifaisceaux comportant au moins un tel module
EP3843202A1 (fr) Cornet pour antenne satellite bi-bande ka a polarisation circulaire
EP3235058B1 (fr) Antenne fil-plaque ayant un toit capacitif incorporant une fente entre la sonde d'alimentation et le fil de court-circuit
WO2019229515A1 (fr) Module radiofréquence
CA2808511C (fr) Antenne plane pour terminal fonctionnant en double polarisation circulaire, terminal aeroporte et systeme de telecommunication par satellite comportant au moins une telle antenne
FR2552273A1 (fr) Antenne hyperfrequence omnidirectionnelle
EP3506429B1 (fr) Formateur de faisceaux quasi-optique, antenne elementaire, systeme antennaire, plateforme et procede de telecommunications associes
WO2021074505A1 (fr) Antenne-reseau
FR2919433A1 (fr) Module d'antenne compact.
WO2024100614A1 (fr) Antenne striée a double polarisation
EP4262024A1 (fr) Dispositif de contrôle de faisceaux électromagnétiques rf selon leur bande de fréquence et procédé de fabrication
FR2599899A1 (fr) Antenne plane a reseau avec conducteurs d'alimentation imprimes a faible perte et paires incorporees de fentes superposees rayonnantes a large bande
EP4391232A1 (fr) Dispositif d'adaptation d'impedance a grand angle pour antenne reseau a elements rayonnants et procede de conception d'un tel dispositif
FR3132177A1 (fr) Formateur de faisceaux quasi-optique à guide d'ondes à plaques parallèles superposées

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 2

PLSC Publication of the preliminary search report

Effective date: 20220617

PLFP Fee payment

Year of fee payment: 3

PLFP Fee payment

Year of fee payment: 4