EP4391232A1 - Dispositif d'adaptation d'impedance a grand angle pour antenne reseau a elements rayonnants et procede de conception d'un tel dispositif - Google Patents

Dispositif d'adaptation d'impedance a grand angle pour antenne reseau a elements rayonnants et procede de conception d'un tel dispositif Download PDF

Info

Publication number
EP4391232A1
EP4391232A1 EP23217070.4A EP23217070A EP4391232A1 EP 4391232 A1 EP4391232 A1 EP 4391232A1 EP 23217070 A EP23217070 A EP 23217070A EP 4391232 A1 EP4391232 A1 EP 4391232A1
Authority
EP
European Patent Office
Prior art keywords
antenna
impedance matching
plane
matching device
wide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP23217070.4A
Other languages
German (de)
English (en)
Inventor
Raphael Gillard
Maria GARCIA VIGUERAS
Diego Bermudez-Martin
Hervé Legay
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Universite de Rennes 1
Thales SA
Institut National des Sciences Appliquees de Rennes
Universite de Nantes
CentraleSupelec
Original Assignee
Centre National de la Recherche Scientifique CNRS
Universite de Rennes 1
Thales SA
Institut National des Sciences Appliquees de Rennes
Universite de Nantes
CentraleSupelec
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Universite de Rennes 1, Thales SA, Institut National des Sciences Appliquees de Rennes, Universite de Nantes, CentraleSupelec filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP4391232A1 publication Critical patent/EP4391232A1/fr
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0013Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0013Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective
    • H01Q15/0026Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective said selective devices having a stacked geometry or having multiple layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/335Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors at the feed, e.g. for impedance matching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons

Definitions

  • the invention relates to the field of active antennas comprising a network of radiating elements capable of synthesizing one or more beams which can be pointed in a direction sweeping a large angular sector.
  • the invention relates in particular to the space domain and active antennas used on satellites in low orbit (called “LEO” satellites for “Low Earth Orbit” in English), belonging to a constellation of satellites intended to provide telecommunications services on the whole Earth.
  • LEO low orbit
  • These constellations use either L- or S-band frequency bands or Ku-, Ka- or Q/V-band frequency bands for high-speed telecommunications systems.
  • the invention relates more precisely to a wide-angle impedance matching device for such an active antenna as well as a method for designing such a device.
  • Active antennas installed on LEO satellites are made up of a network of radiating elements, connected to amplifiers and a beamforming device.
  • the beamformer distributes to the different radiating elements one or more radiofrequency signals after application of a specific phase and amplitude control making it possible to synthesize a beam in a given direction, and to direct the radiation of this or these radiofrequency signals.
  • the beamformer combines one or more radio frequency signals received by the different radiating elements after application of specific phase and amplitude control to optimize reception in a given direction.
  • these angular sectors are typically between ⁇ 55°.
  • the network mesh, and therefore the maximum size of the radiating elements must therefore be less than 0.6 ⁇ in this case.
  • These small radiating elements are characterized by significant mutual coupling between the radiating elements of the same network.
  • This mutual coupling between radiating elements combined with the amplitude and phase supply law assigned to the different radiating elements to synthesize a beam in a given direction, contributes to modifying the active impedance of the radiating elements as a function of the angle of target depointing for the beam.
  • the reflected signal results from the combination of the signal reflected by the radiating element alone and all the signals that are coupled by all the radiating elements adjacent, when all the radiating elements are supplied with the specified amplitude and phase law.
  • this mismatch can even be total in certain directions, and it is then not possible to point a beam in very off-point directions. We then speak of direction of blindness or “Scan Blindness” in English.
  • a technical problem to be solved in this context thus consists of stabilizing the active impedance of the radiating elements of an array antenna whatever the angle of depointing of the beam.
  • WAIM devices can be classified based on their type, in which one can find all-dielectric devices, single-layer metasurfaces, multi-layer metasurfaces and finally 3D devices.
  • the first concept of a WAIM device was proposed by the authors of [1]. They proposed to correct the dispersion of the susceptance of the active input impedance, caused by the mutual coupling between the elements of the network, by means of a dielectric layer. This layer can be considered as a pure susceptance which compensates for the dispersion of that of the elements of the network during depointing.
  • these layers have limited performance, and the effect of the layer is mainly observed for H-plane scanning, improving the maximum antenna defocusing angle of 27°.
  • such devices are not capable of acting with the E plane independently. They do not in fact have enough degrees of freedom to carry out effective joint optimization in both planes.
  • these layers are dimensioned at a given frequency and, although they do not implement a resonant mechanism, their bandwidth performance is limited.
  • these layers being made of dielectric materials, are limited to the materials available and have the disadvantages inherent to these materials, such as intrinsic losses, degassing in space, or high sensitivity to temperature.
  • a final type of WAIM device concerns the use of 3D structures as described for example in [6] which presents a device which combines two orthogonal printed structures, themselves positioned perpendicular to the plane of the radiating aperture (assumed horizontal by convention ).
  • the particularity of this solution is that the two orthogonal vertical layers of the device make it possible to act on the scanning in the H and E planes relatively independently. Thanks to this, the angular range of the scan in the E plane is improved by 10° while that in the H plane is improved by 39°.
  • This work shows the benefit of positioning metallic elements perpendicular to the radiating surface (here vertically).
  • the first is due to the fact that the two parts of the WAIM device are vertical, which does not allow the two scanning planes to be perfectly separated. This “coupling” effect is further accentuated here by the overlapping between the two orthogonal patterns (the second fitting into the first with a partial overlap between the two).
  • the second reason, a direct consequence of the first, is that this structure only works for a single polarization linear and cannot, by its nature, be extended to bipolarization. Indeed, it is not possible in the current state to apply an invariance by rotation of 90° in the horizontal plane without losing the capacity, even if imperfect, to independently adjust the adaptation in the scanning planes E and H.
  • the structure requires a complex manufacturing process with multiple layers of partially metallized substrates mounted orthogonally. In addition, using dielectric materials, it retains the same disadvantages as the solutions mentioned previously.
  • Impedance matching devices are also known as described in references [7] and [8].
  • a new type of wide-angle impedance matching device is proposed based on a first transmission screen dimensioned to adapt the active impedance of the array antenna in the H plane for a component of the electric field in linear polarization and on the addition of vertical metal pillars making it possible to cancel the mismatch in the E plane without effect on the electric field in the H plane.
  • the transmission screen is a structure composed of one or more dielectric layers.
  • the transmission screen is a structure composed of single-layer or multi-layer meta-surfaces on which a periodic grid of metallic patterns is arranged.
  • the transmission screen is a periodic grid of several cells, each cell comprising a support frame and at least one internal interconnection to said support frame, said support frame being inscribed in a prism, having a given Z' axis, said prism comprising faces connected together by edges, oriented along the axis of the prism Z', said support frame comprising corner elements, each corner element having an edge coinciding with one of said edges of the prism, the corner elements being arranged so that the support frame has, on each face of the prism, a slot extending along the axis of the prism Z'; and each internal interconnection comprises N inductive rods each comprising two ends, the inductive rods each having a first end connected to one of said edges of the support frame, the second ends of the inductive rods being connected together at a connection point of rods, said rod connection point being positioned substantially at the center of said support frame in a plane orthogonal to the axis of the prism Z',
  • the metal tips are positioned in the extension of each edge of each of the cells.
  • a metal tip of said assembly is positioned on said rod connection point.
  • the metal tips are arranged, at least partially, on the surface of the transmission screen opposite the first surface.
  • the subject of the invention is an antenna device comprising an array antenna with radiating elements capable of radiating a field of transverse electromagnetic waves and a wide-angle impedance matching device according to the invention and positioned on said array of elements radiant.
  • the wide-angle impedance matching device is positioned at a non-zero distance from the array of radiating elements.
  • the wide-angle impedance matching device is positioned in contact with the network of radiating elements.
  • the second step of sizing the set of metal tips consists of at least sizing the length of the tips.
  • the first step of sizing the transmission screen (103) consists of at least sizing at least one parameter among: the dimension of the inductive rods, the dimension of the slots, the position of the inductive rods according to the axis of the prism Z', the number of internal interconnections.
  • the first sizing step further comprises sizing the distance between the array of radiating elements and the impedance matching device.
  • FIG. 1 shows a diagram of a wide-angle impedance matching device according to one embodiment of the invention.
  • an active antenna 101 comprising a network of radiating elements arranged in a plane P parallel to the plane (O xy) of the mark.
  • an impedance matching device 102 is placed at a distance d WAIM which may be non-zero or equal to 0.
  • the impedance matching device 102 is fixed in contact with the network of radiating elements in the plane P.
  • the assembly formed by the active antenna 101 and the impedance matching device 102 can be manufactured in a single piece.
  • a spacer for example a honeycomb structure, is used to fix the impedance matching device 102 on the active antenna 101.
  • the spacer is designed so as to correspond to a layer equivalent to air from the point of view of the propagation of electromagnetic waves.
  • the adaptation device is designed to allow the antenna beam to be defocused over a wide angular sector (at least up to 50°) while maintaining the active reflection coefficient of the radiating elements below -10 dB.
  • the device 102 is designed to operate in a linear bipolarization configuration (H and V) and for depointing in any azimuthal plane ⁇ .
  • the device 102 is entirely metallic, which makes it possible to keep the insertion losses at a low level and to avoid the use of potentially heavy and expensive dielectric materials, which also have the other associated disadvantages discussed above. (like degassing in a vacuum).
  • the proposed structure is three-dimensional, which offers many degrees of freedom for its optimization.
  • the device 102 consists of two cascaded elements: a periodic grid of TEM cells 103 positioned parallel to the radiating aperture of the active antenna at a distance d WAIM from it and a network of metal tips 104 orthogonal to the grid (i.e. oriented in the z direction) and bristling on the face opposite the radiating opening.
  • the metal tips 104 are placed facing the antenna or distributed on the two opposite faces of the TEM cell grid.
  • FIG. 2 And 3 An example of a TEM cell is shown in figures 2 And 3 .
  • the TEM cell is also described in the French patent application FR3095303 .
  • FIG. 2 shows an example of a cell 200 with a square section made up of four metal walls of thickness t and width p. Each wall has a lengthwise slot having a width w x or w y depending on the side of the cell.
  • the cell 200 may have a section of different shape, for example hexagonal.
  • the cell 200 includes an internal interconnection 300 in the shape of a cross making it possible to carry out reactive loading, as illustrated in Figure 1.
  • Figure 3 The internal interconnection 300 has rotational symmetry. It is electrically conductive to form an electrical discontinuity in the cell 200.
  • the cross 300 is formed of two electrically conductive rods which form an inductive load.
  • each cell 200 comprises a support frame and one (or more) interconnection 300 internal to the support frame.
  • the support frame is inscribed in a prism, having a given axis Z'.
  • the prism has a square section.
  • Each internal interconnection comprises inductive rods each comprising two ends, the inductive rods each having a first end connected to one of said edges of the support frame, the second ends of the inductive rods are connected together at a connection point of rods, the rod connection point is positioned substantially in the center of the support frame in a plane orthogonal to the axis of the prism Z'.
  • the internal interconnection includes four rods and is cross-shaped.
  • FIG 4 shows the basic structure of the impedance matching device of the figure 1 .
  • This structure is composed of a TEM 200 cell on which metal tips 400 are arranged at the four corners of the cell.
  • the metal tips are arranged orthogonally to the xOy plane which is parallel to the transverse plane of the cell and to the radiating aperture of the antenna.
  • the metal tips are rods of constant circular or square section having predetermined dimensions.
  • FIG. 5 shows a variant of the structure of the figure 4 for which an additional metal tip 500 is arranged in the center of the cell in attachment with the internal interconnection 300.
  • the internal interconnection structure 300 has a pyramidal shape, that is to say that the rods d
  • the interconnection which forms the arms of the cross has a non-zero angle with respect to the transverse plane xOy of the cell. This shape is chosen in particular when the device is manufactured by an additive manufacturing technique.
  • the periodicity of the grid of the TEM cells coincides with that of the network of radiating elements.
  • a grid period of TEM cells corresponding to a submultiple of the period of the antenna array i.e. such that a period of the array coincides with an integer number of periods of the grid
  • the capabilities of the TEM cell in terms of miniaturization facilitate such an option.
  • the metal tips are arranged on the grid of TEM cells so as to be at the intersection of the respective antisymmetry planes of the electric field radiated by the antenna for scanning in the H plane, for two different linear polarizations horizontal and vertical . This point will be explained in more detail later.
  • the device according to the invention is dimensioned so as to dissociate the impedance adaptation for scanning the antenna in the H plane from that for scanning the antenna in the E plane and this for two linear orthogonal polarizations.
  • the device according to the invention can be designed according to a two-phase design process.
  • the first design phase consists of sizing the TEM cell grid so as to optimize the impedance matching for scanning in the H plane.
  • the optimization consists of adjusting at least one parameter among the position d WAIM of the grid in relation to the radiating opening, its dimensions as well as the geometric pattern and the dimensions of the interconnection structure which carries out the reactive loading of the cell.
  • the optimization is carried out so that the TEM cell has the appropriate input impedance to minimize the active reflection coefficient on the antenna ports, regardless of the depointing angle in that plane.
  • the multiplicity of degrees of freedom available offers numerous possibilities for carrying out this adaptation.
  • this first optimization phase is carried out using an equivalent electrical circuit.
  • the impedance matching device is modeled as a load at a distance d WAIM from the antenna.
  • An objective of the optimization is to determine the load for which the active reflection coefficient of the antenna is minimal for the interval of defocusing angles considered and possibly for a given frequency range. Once the desired loading is determined, it is synthesized into a real component.
  • FIG. 6 shows an example of an equivalent electrical diagram of a TEM cell of the type described in Figure 3 .
  • the interconnection structure 300 which carries out the reactive loading of the cell is modeled by an impedance Z x ( ⁇ ), where ⁇ is the offset angle.
  • Z x impedance
  • the offset angle
  • two sections of the TEM cell of respective lengths I 1 and I 2 are modeled by transmission lines with parameters Z 1 ( ⁇ ), ⁇ 1 ( ⁇ ), Z 2 ( ⁇ ), ⁇ 2 ( ⁇ ).
  • the Z cap impedances ( ⁇ ) model the effect of discontinuities between the ends of the cell and the air.
  • the impedances Z 0 ( ⁇ ) correspond to the propagation of waves in a vacuum.
  • the sizing parameters of the cell are, in particular, the sizes of the inductive rods of the interconnection structure, their diameter, the width of the slots on the walls of the cell, the lengths l 1 and l 2 .
  • interconnection structures can be arranged in cascade to carry out several reactive loadings and increase the number of optimization parameters.
  • the addition of orthogonal metal tips on the optimized grid does not modify the adaptation already carried out for the H plane, since the points are placed in the antisymmetry planes of the structure associated with this H plane scan.
  • the fact that the tangential component of the electric field is necessarily zero in such planes guarantees that the Introduction of a perfect conductor at this location will not modify the field distribution observed for the grid alone.
  • such a conductor will have a significant effect on the distribution of the field for a scan in the E plane, since the antisymmetry planes are no longer the same for this scan. Consequently, the introduced conductor can be used to optimize the adaptation in the E plane, without modifying the adaptation previously carried out in the H plane thanks to the cell grid alone.
  • FIG. 7 shows several antisymmetry planes P_ V-ant1 , P_ V-ant2 , P _V-ant3 , of the TEM cell grid for scanning in the H plane and for a vertical linear polarization V (along the y axis). These are planes perpendicular to the electric field E and therefore parallel to the plane xOz passing through the corners of the cells or through their centers. In theory, a perfect conductor intended to perform impedance matching for scanning in the E plane can be placed anywhere in these planes without modifying the optimization made for the H plane.
  • FIG 8 shows several antisymmetry planes P_ H-ant1 , P_ H-ant2 , P_ H-ant3 , P_ H-ant4 this time for a horizontal linear polarization H (along the x axis). These planes are this time parallel to the yOz plane passing through the corners of the cells or their centers.
  • the metal tips must be arranged at the intersection of the antisymmetry planes relating to the vertical polarization (represented in Figure Figure 7 ) and antisymmetry planes relating to horizontal polarization (represented in Figure figure 8 ). It is for this reason that metal blades extending over an entire side of a cell in a plane of antisymmetry for one of the two polarizations do not verify this condition and do not ensure bipolarization operation.
  • the impedance matching device described above can be manufactured entirely of metal, for example via an all-metal additive manufacturing process or from dielectric materials metallized after the fact. This has the advantage of reducing manufacturing costs, reducing losses and eliminating the disadvantages associated with the use of a dielectric material in the case where the device is made directly from metal.
  • FIG. 9 illustrates on a simple example of an electromagnetic field E propagated in a waveguide G of square or rectangular section, the definition of a plane of symmetry P sym and of a plane of antisymmetry P ant .
  • the electric field is represented schematically by arrows of length proportional to its amplitude.
  • the P ant antisymmetry plane corresponds to a perfect electric conductor, that is to say that a conductor can be placed there without changing the configuration of the electric field.
  • THE figures 10 and 11 illustrate the definition of the antisymmetry planes for the TEM cell grids according to the invention.
  • FIG. 10 shows an example, in top view, of a grid of four TEM cells C 1 , C 2 , C 3 , C 4 for scanning along the plane H (xOz) and for polarization of the wave along the axis Oy.
  • This structure has five planes of antisymmetry Pant1 , Pant2 , Pant3 , Pant4 , Pant5 which pass through the sides and centers of the cells and are parallel to the Ox axis.
  • the electric field E varies in phase along the axis Ox. It is identical on both halves (left and right) of the same cell and on two consecutive cells of the same line. In other words, the distribution of the electric field is identical between cells C 1 and C 2 on the one hand and between cells C 3 and C 4 on the other hand.
  • the antisymmetry planes are therefore planes along the Ox axis.
  • FIG. 11 shows, on the same example of a grid of four TEM cells, the distribution of the electric field for a scan in the plane E (xOy) always for a polarization of the wave along the Oy axis.
  • the electric field varies in phase along the axis Oy. It is the same on the two halves (top and bottom) of the same cell and on two consecutive cells of the same column. In other words, the electric field is identical between cells C 1 and C 3 on the one hand and between cells C 2 and C 4 on the other hand.
  • the planes P sym1 , P sym2 , P sym3 , P sym4 , P sym5 are planes of symmetry. There is no plane of antisymmetry in this configuration.
  • the network of TEM cells can be replaced by an impedance matching device of the prior art based for example on single-layer or multi-layer metasurfaces.
  • the metal tips allowing impedance adaptation for scanning in the E plane must be placed at the intersection of the antisymmetry planes. for both polarizations.
  • Such antisymmetry planes are defined according to the chosen structure.
  • FIG. 12 shows the five antisymmetry planes P' ant1 , P' ant2 , P' ant3 , P' ant4 , P' ant5 for a printed structure based on patches P1,P2,P3,P4, always for polarization along the axis Oy.
  • the variation of the electric field is also represented in the form of arrows.
  • the antisymmetry planes for polarization along the Ox axis are obtained by rotation of 90° applied to the antisymmetry planes of the Figure 13 .
  • the impedance matching device for scanning in the H plane can also be a structure composed of one or more dielectric layers.
  • FIG. 13 shows a second embodiment of the invention in which the TEM cells are replaced by structures based on metasurfaces comprising at least one dielectric layer on which periodic metallic patterns M 1 , M 2 , M 3 are positioned. All of the patterns form a grid whose dimensions and parameters are chosen so as to adapt the impedance of the antenna for scanning in the H plane.
  • An array of RPM metal tips is then arranged orthogonal to the pattern grid.
  • the metal tips are arranged at the intersection of the antisymmetry planes of the electric field, for scanning in the H plane and for the two linear polarizations along the x and y axes.
  • the RPM metal tip array is optimized to match the antenna impedance for E-plane scanning.
  • FIG 14 shows a variant of the embodiment of the invention described in figure 13 .
  • additional metal tips PM are positioned at the centers of each pattern which also belong to the planes of antisymmetry of the electric field for the two linear polarizations along the x and y axes.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

Dispositif d'adaptation d'impédance (102) à grand angle pour antenne réseau à éléments rayonnants, comprenant :- un écran de transmission (103) ayant une première surface destinée à être positionnée en vis-à-vis du réseau d'éléments rayonnants parallèlement à l'ouverture rayonnante de l'antenne et étant configuré pour adapter l'impédance de l'antenne pour un balayage dans le plan H,- et un ensemble de pointes métalliques (104) disposées orthogonalement sur au moins une surface de l'écran de transmission (103), à l'intersection d'au moins une partie des plans d'antisymétrie respectifs du champ électrique rayonné par l'antenne pour un balayage dans le plan H, pour deux polarisations linéaires selon deux directions orthogonales, ledit ensemble de pointes métalliques (104) étant configuré pour adapter l'impédance de l'antenne pour un balayage dans le plan E.

Description

  • L'invention concerne le domaine des antennes actives comprenant un réseau d'éléments rayonnants et aptes à synthétiser un ou plusieurs faisceaux qui peuvent être pointés selon une direction balayant un large secteur angulaire.
  • L'invention concerne en particulier le domaine spatial et les antennes actives utilisées sur des satellites en orbite basse (nommés satellites « LEO » pour « Low Earth Orbit » en anglais), appartenant à une constellation de satellites destinés à fournir des services de télécommunication sur toute la Terre. Ces constellations utilisent soit des bandes de fréquences en bande L ou S, soit des bandes de fréquence en bande Ku, Ka ou Q/V pour les systèmes de télécommunication à haut débit.
  • L'invention porte plus précisément sur un dispositif d'adaptation d'impédance à grand angle pour une telle antenne active ainsi qu'un procédé de conception d'un tel dispositif.
  • Les antennes actives implantées sur des satellites LEO sont constituées d'un réseau d'éléments rayonnants, connectés à des amplificateurs et un dispositif de formation de faisceaux. Pour une antenne active fonctionnant à l'émission, le formateur de faisceau distribue aux différents éléments rayonnants un ou plusieurs signaux radiofréquence après application d'un contrôle de phase et d'amplitude spécifique permettant de synthétiser un faisceau dans une direction donnée, et d'orienter le rayonnement de ce ou ces signaux radiofréquence. Pour une antenne active fonctionnant en réception, le formateur de faisceau combine un ou plusieurs signaux radiofréquence reçus par les différents éléments rayonnants après application d'un contrôle de phase et d'amplitude spécifique pour optimiser la réception dans une direction donnée.
  • Les éléments rayonnants doivent respecter les contraintes suivantes :
    • être faciles à fabriquer, notamment pour minimiser le coût de fabrication ;
    • induire le moins de pertes radiofréquences possibles, en particulier pour avoir le moins de puissance à dissiper dans une petite surface ;
    • être le plus compact possible pour limiter leur masse ;
    • fonctionner sur une bande passante compatible du système de télécommunication.
  • La maille du réseau d'éléments rayonnants est soumise à deux contraintes :
    • elle doit être la plus grande possible pour minimiser le nombre d'éléments rayonnants ;
    • elle doit être inférieure à une valeur dmax pour que l'effet de périodicité n'entraîne pas l'apparition de lobes de réseau. Cette valeur s'exprime en fonction de la longueur d'onde λ, et est reliée au secteur angulaire maximal ±θmax sur lequel le faisceau doit être dépointé, et au secteur angulaire ±θ1 qui doit être sans lobe de réseau : d max < λ sin θ max + sin θ 1
      Figure imgb0001
  • Pour les antennes actives utilisées sur les satellites en orbite basse, ces secteurs angulaires sont typiquement compris entre ±55°. La maille du réseau, et donc la taille maximale des éléments rayonnants doivent donc être inférieures à 0,6 λ dans ce cas.
  • Ces éléments rayonnants de faibles dimensions sont caractérisés par un couplage mutuel important entre les éléments rayonnants d'un même réseau. Ce couplage mutuel entre éléments rayonnants, combiné à la loi d'alimentation en amplitude et en phase affectée aux différents éléments rayonnants pour synthétiser un faisceau dans une direction donnée, contribue à modifier l'impédance active des éléments rayonnants en fonction de l'angle de dépointage visé pour le faisceau. A chaque port d'entrée d'un élément rayonnant, le signal réfléchi résulte de la combinaison du signal réfléchi par l'élément rayonnant seul et de tous les signaux qui sont couplés par tous les éléments rayonnants adjacents, lorsque tous les éléments rayonnants sont alimentés avec la loi d'amplitude et de phase spécifiée.
  • Pour certaines antennes, cette désadaptation peut même être totale dans certaines directions, et il n'est alors pas possible de pointer un faisceau selon des directions très dépointées. On parle alors de direction d'aveuglement ou "Scan Blindness" en anglais.
  • La variation de l'impédance active des éléments rayonnants affecte également le fonctionnement des amplificateurs, et en particulier :
    • La linéarité AM/AM (amplitude/amplitude), i.e. la variation du rapport de la puissance de sortie à la puissance d'entrée en fonction de la puissance d'entrée ;
    • La linéarité AM/PM (amplitude/phase), i.e la variation de la phase du signal de sortie en fonction de la puissance du signal d'entrée. Idéalement, cette phase est invariable;
    • Le rendement en puissance ajoutée, PAE, i.e. le rapport de la puissance radiofréquence délivrée à la puissance absorbée totale ;
  • La variation de ces paramètres résulte en une modification de la loi de phase et d'amplitude de l'antenne réseau, et conséquemment à une perturbation supplémentaire de la formation du faisceau.
  • Un problème technique à résoudre dans ce contexte consiste ainsi à stabiliser l'impédance active des éléments rayonnants d'une antenne réseau quel que soit l'angle de dépointage du faisceau.
  • Les solutions connues permettant de compenser l'effet du couplage mutuel entre éléments rayonnants d'un réseau antennaire entrent dans la famille des dispositifs d'adaptation d'impédance à grand angle ou « Wide Angle impédance Matching » WAIM en anglais.
  • L'état de l'art des dispositifs WAIM peut être classifié en fonction de leur type, dans lequel on peut trouver des dispositifs entièrement diélectriques, des métasurfaces monocouches, des métasurfaces multicouches et finalement des dispositifs 3D.
  • Dispositifs WAIM à base de couches diélectriques
  • Le premier concept de dispositif WAIM a été proposé par les auteurs de [1]. Ils proposaient de corriger la dispersion de la susceptance de l'impédance d'entrée active, causée par le couplage mutuel entre les éléments du réseau, au moyen d'une couche diélectrique. Cette couche peut être considérée comme une susceptance pure qui compense la dispersion de celle des éléments du réseau lors du dépointage.
  • En général, ces couches ont des performances limitées, et l'effet de la couche est principalement observé pour un balayage dans le plan H, améliorant l'angle de dépointage maximal de l'antenne de 27°. Cependant, de tels dispositifs ne sont pas capables d'agir avec le plan E de manière indépendante. Ils ne disposent en effet pas de suffisamment de degrés de liberté pour mener une optimisation conjointe efficace dans les deux plans. Par ailleurs, ces couches sont dimensionnées à une fréquence donnée et, bien qu'elles ne mettent pas en oeuvre de mécanisme résonant, leurs performances en bande passante sont limitées. En outre, ces couches, étant constituées de matériaux diélectriques, elles sont limitées aux matériaux disponibles et présentent les inconvénients inhérents à ces matériaux, tels que les pertes intrinsèques, le dégazage dans l'espace, ou la grande sensibilité à la température.
  • Dispositifs WAIM à base de métasurfaces monocouches et multicouches
  • Un deuxième type de dispositif WAIM est constitué de métasurfaces monocouches. Ceux-ci utilisent comme base une couche diélectrique sur laquelle sont positionnés des motifs métalliques périodiques dont la taille n'excède pas quelques dixièmes de longueur d'onde. Cela leur confère des caractéristiques que l'on ne trouve pas dans les matériaux naturels, comme la permittivité ou la perméabilité négative. Surtout, la susceptance artificielle ainsi générée peut plus facilement être réglée pour répondre à des contraintes spécifiques en termes de comportement angulaire, de dispersion ou de propriétés d'isotropie. En pratique, les principaux travaux présentés font état d'amélioration dans le plan H avec une amélioration de l'adaptation de θ = 0° à 55° dans [2], jusqu'à 80° dans [3] et dans l'intervalle θ=[75°,105°] dans [4].
  • Ces couches, grâce aux motifs imprimés implantés, ont plus de degrés de liberté, ce qui permet plus facilement d'optimiser leurs performances pour des objectifs variés, au prix toutefois d'un processus de mise au point plus complexe. Par exemple, l'utilisation d'un motif présentant une invariance par rotation de 90° conduira à un comportement identique pour deux polarisations linéaires orthogonales.
  • Cependant, ces dispositifs étant basés sur l'utilisation d'un matériau diélectrique, ils héritent des inconvénients associés, tels que les pertes intrinsèques, le dégazage dans l'espace, ou la grande sensibilité à la température.
  • L'évolution naturelle des métasurfaces monocouches est celle des métasurfaces multicouches. Le principe est le même que pour une couche unique, mais les performances sont un peu plus élevées, grâce à l'ajout de nouveaux degrés de liberté. Des exemples de telles structures sont donnés dans [5]. Le fait d'avoir plus d'une couche donne surtout à la structure la capacité de fonctionner sur une gamme de fréquences plus large, car chaque couche est capable de fonctionner pour un groupe de fréquences spécifique. Ces solutions héritent des mêmes inconvénients que les métasurfaces monocouches et les couches diélectriques.
  • WAIM à base de structures 3D
  • Un dernier type de dispositif WAIM concerne l'utilisation de structures 3D tel que décrit par exemple dans [6] qui présente un dispositif qui combine deux structures imprimées orthogonales, elles-mêmes positionnées perpendiculairement au plan de l'ouverture rayonnante (supposé horizontal par convention). La particularité de cette solution est que les deux couches verticales orthogonales du dispositif permettent d'agir sur le balayage dans les plans H et E de manière relativement indépendante. Grâce à cela, le domaine angulaire du balayage dans le plan E est amélioré de 10° tandis que celui dans le plan H est amélioré de 39°. Ce travail montre l'intérêt de positionner des éléments métalliques perpendiculairement à la surface rayonnante (ici verticalement).
  • Toutefois, il ne réussit pas à exploiter complètement cet avantage, et ceci pour deux raisons principales. La première tient au fait que les deux parties du dispositif WAIM sont verticales, ce qui ne permet pas de dissocier parfaitement les deux plans de balayage. Cet effet de « couplage » est encore accentué ici par l'imbrication entre les deux motifs orthogonaux (le second s'emboitant dans le premier avec un recouvrement partiel entre les deux). La seconde raison, conséquence directe de la première, est que cette structure ne fonctionne que pour une seule polarisation linéaire et ne peut pas, de par sa nature, être étendue à la bipolarisation. En effet, il n'est pas possible en l'état d'appliquer une invariance par rotation de 90° dans le plan horizontal sans perdre la capacité, fût-elle imparfaite, de régler indépendamment l'adaptation dans les plans de balayage E et H. Finalement, la structure requiert un processus de fabrication complexe avec de multiples couches de substrats partiellement métallisées montées orthogonalement. De plus, utilisant des matériaux diélectriques, elle conserve les mêmes inconvénients que les solutions évoquées précédemment.
  • On connaît également des dispositifs d'adaptation d'impédance tels que décrits dans les références [7] et [8].
  • Il est proposé un nouveau type de dispositif d'adaptation d'impédance à grand angle basé sur un premier écran de transmission dimensionné pour adapter l'impédance active de l'antenne réseau dans le plan H pour une composante du champ électrique en polarisation linéaire et sur l'ajout de piliers métalliques verticaux permettant d'annuler la désadaptation dans le plan E sans effet sur le champ électrique dans le plan H.
  • L'invention a pour objet un dispositif d'adaptation d'impédance à grand angle pour antenne réseau à éléments rayonnants, comprenant :
    • un écran de transmission ayant une première surface destinée à être positionnée en vis-à-vis du réseau d'éléments rayonnants parallèlement à l'ouverture rayonnante de l'antenne et étant configuré pour adapter l'impédance de l'antenne pour un balayage dans le plan H,
    • et un ensemble de pointes métalliques disposées orthogonalement sur au moins une surface de l'écran de transmission, à l'intersection d'au moins une partie des plans d'antisymétrie respectifs du champ électrique rayonné par l'antenne pour un balayage dans le plan H, pour deux polarisations linéaires selon deux directions orthogonales, ledit ensemble de pointes métalliques étant configuré pour adapter l'impédance de l'antenne pour un balayage dans le plan E.
  • Selon un aspect particulier de l'invention, l'écran de transmission est une structure composée d'une ou plusieurs couches diélectriques.
  • Selon un aspect particulier de l'invention, l'écran de transmission est une structure composée de méta-surfaces monocouches ou multicouches sur laquelle est disposée une grille périodique de motifs métalliques.
  • Selon un aspect particulier de l'invention, l'écran de transmission est une grille périodique de plusieurs cellules, chaque cellule comprenant un cadre de support et au moins une interconnexion interne audit cadre de support, ledit cadre de support étant inscrit dans un prisme, ayant un axe Z' donné, ledit prisme comprenant
    Figure imgb0002
    faces reliées entre elles par
    Figure imgb0003
    arêtes, orientées selon l'axe du prisme Z', ledit cadre de support comprenant
    Figure imgb0004
    éléments de coin, chaque élément de coin ayant un bord coïncidant avec une desdites arêtes du prisme, les éléments de coins étant agencés de sorte que le cadre de support présente, sur chaque face du prisme, une fente s'étendant selon l'axe du prisme Z' ; et chaque interconnexion interne comprend N tiges inductives comprenant chacune deux extrémités, les tiges inductives ayant chacune une première extrémité reliée à un desdits bords du cadre de support, les deuxièmes extrémités des tiges inductives étant reliées entre elles au niveau d'un point de connexion de tiges, ledit point de connexion de tiges étant positionné sensiblement au centre dudit cadre de support dans un plan orthogonal à l'axe du prisme Z',
  • Selon un aspect particulier de l'invention, les pointes métalliques sont positionnées dans le prolongement de chaque arête de chacune des cellules.
  • Selon un aspect particulier de l'invention, une pointe métallique dudit ensemble est positionnée sur ledit point de connexion de tiges.
  • Selon un aspect particulier de l'invention, les pointes métalliques sont disposées, au moins partiellement, sur la surface de l'écran de transmission opposée à la première surface.
  • L'invention a pour objet un dispositif antennaire comprenant une antenne réseau à éléments rayonnants aptes à rayonner un champ d'ondes transverses électromagnétiques et un dispositif d'adaptation d'impédance à grand angle selon l'invention et positionné sur ledit réseau d'éléments rayonnants.
  • Selon un aspect particulier de l'invention, le dispositif d'adaptation d'impédance à grand angle est positionné à une distance non nulle du réseau d'éléments rayonnants.
  • Selon un aspect particulier de l'invention, le dispositif d'adaptation d'impédance à grand angle est positionné au contact du réseau d'éléments rayonnants.
  • L'invention a aussi pour objet un procédé de conception d'un dispositif d'adaptation d'impédance à grand angle selon l'invention comprenant :
    • Une première étape de dimensionnement de l'écran de transmission de manière à optimiser l'adaptation d'impédance pour le balayage de l'antenne réseau dans le plan H,
    • Une seconde étape de dimensionnement de l'ensemble de pointes métalliques de manière à optimiser l'adaptation d'impédance pour le balayage de l'antenne réseau dans le plan E sans modifier l'adaptation préalablement réalisée dans le plan H
  • Selon un aspect particulier de l'invention, la seconde étape de dimensionnement de l'ensemble de pointes métalliques consiste au moins à dimensionner la longueur des pointes.
  • Selon un aspect particulier de l'invention, la première étape de dimensionnement de l'écran de transmission (103) consiste au moins à dimensionner au moins un paramètre parmi : la dimension des tiges inductives, la dimension des fentes, la position des tiges inductives selon l'axe du prisme Z', le nombre d'interconnexions internes.
  • Selon un aspect particulier de l'invention, la première étape de dimensionnement comprend en outre le dimensionnement de la distance entre le réseau d'éléments rayonnants et le dispositif d'adaptation d'impédance.
  • D'autres caractéristiques et avantages de la présente invention apparaîtront mieux à la lecture de la description qui suit en relation aux dessins annexés suivants.
    • [Fig. 1] représente un schéma de principe général d'une antenne active comprenant un réseau d'éléments rayonnants et un dispositif d'adaptation d'impédance à grand angle selon un mode de réalisation de l'invention,
    • [Fig. 2] représente un schéma d'une cellule TEM,
    • [Fig. 3] représente un schéma d'une cellule TEM chargée réactivement par une interconnexion en croix,
    • [Fig. 4] représente la cellule TEM de la figure 3 sur laquelle sont disposées des pointes métalliques selon un premier mode de réalisation de l'invention,
    • [Fig. 5] représente la cellule TEM de la figure 3 sur laquelle sont disposées des pointes métalliques selon un second mode de réalisation de l'invention,
    • [Fig. 6] montre le schéma électrique équivalent d'une cellule TEM,
    • [Fig. 7] montre des plans d'antisymétrie du dispositif d'adaptation pour le balayage dans le plan H et pour une polarisation linéaire verticale,
    • [Fig. 8] montre des plans d'antisymétrie du dispositif d'adaptation pour le balayage dans le plan H et pour une polarisation linéaire horizontale,
    • [Fig. 9] illustre la définition d'un plan d'antisymétrie pour un champ d'ondes électromagnétiques se propageant dans un guide de section rectangulaire,
    • [Fig. 10] illustre la définition de plans d'antisymétrie pour un réseau de cellules TEM selon l'invention pour une polarisation linéaire selon une direction donnée et et pour un balayage dans le plan H,
    • [Fig. 11] illustre la définition de plans de symétrie pour un réseau de cellules TEM selon l'invention pour une polarisation linéaire selon une direction donnée et pour un balayage dans le plan E,
    • [Fig. 12] illustre la définition de plans d'antisymétrie pour une structure imprimée à base de patchs constituant un dispositif d'adaptation d'impédance,
    • [Fig. 13] montre un dispositif d'adaptation d'impédance à grand angle selon un deuxième mode de réalisation de l'invention,
    • [Fig. 14] montre un dispositif d'adaptation d'impédance à grand angle selon un deuxième mode de réalisation de l'invention,
  • La figure 1 montre un schéma d'un dispositif d'adaptation d'impédance à grand angle selon un mode de réalisation de l'invention.
  • Sur la figure 1 on a représenté une antenne active 101 comprenant un réseau d'éléments rayonnants disposés dans un plan P parallèle au plan (O x y) du repère. Sur le réseau, un dispositif d'adaptation d'impédance 102 est disposé à une distance dWAIM qui peut être non nulle ou égale à 0.
  • Dans le cas où la distance est nulle, le dispositif d'adaptation d'impédance 102 est fixé au contact du réseau d'éléments rayonnants dans le plan P. Dans un tel cas, l'ensemble formé de l'antenne active 101 et du dispositif d'adaptation d'impédance 102 peut être fabriqué en une seule pièce.
  • Dans le cas où la distance dWAIM est non nulle, un espaceur, par exemple une structure en nid d'abeille, est utilisée pour fixer le dispositif d'adaptation d'impédance 102 sur l'antenne active 101. L'espaceur est conçu de sorte à correspondre à une couche équivalente à de l'air du point de vue de la propagation des ondes électromagnétiques.
  • Le dispositif d'adaptation est conçu pour permettre le dépointage du faisceau de l'antenne sur un large secteur angulaire (au moins jusqu'à 50°) en maintenant le coefficient de réflexion actif des éléments rayonnants inférieur à -10 dB.
  • Le dispositif 102 selon l'invention est conçu pour fonctionner dans une configuration à bipolarisation linéaire (H et V) et pour un dépointage dans n'importe quel plan azimutal φ.
  • Avantageusement, le dispositif 102 est entièrement métallique, ce qui permet de maintenir les pertes d'insertion à un niveau faible et d'éviter le recours à des matériaux diélectriques potentiellement lourds et coûteux, qui présentent en outre les autres inconvénients associés discutés ci-dessus (comme le dégazage dans le vide).
  • La structure proposée est tridimensionnelle, ce qui offre de nombreux degrés de liberté pour son optimisation.
  • Sa réalisation est compatible avec les techniques de fabrication additive de type métallique (SLM par exemple) ou, éventuellement, celles utilisant des matériaux diélectriques (SLA par exemple) qu'il convient dans ce cas de métalliser a posteriori. Au regard des capacités actuelles de ces techniques et de leur rapide évolution, une fabrication monolithique, rapide et à faible coût, est donc possible avec des performances démontrées jusqu'en bande Ka.
  • Sur la figure 1, on a représenté schématiquement les plans E et H notés P_E et P_H utilisés par convention.
  • Le dispositif 102 est constitué de deux éléments en cascade : une grille périodique de cellules TEM 103 positionnée parallèlement à l'ouverture rayonnante de l'antenne active à une distance dWAIM de celle-ci et un réseau de pointes métalliques 104 orthogonales à la grille (c'est-à-dire orientées selon la direction z) et hérissées sur la face opposée à l'ouverture rayonnante.
  • Selon une variante de réalisation, les pointes métalliques 104 sont placées face à l'antenne ou réparties sur les deux faces opposées de la grille de cellules TEM.
  • Un exemple de cellule TEM est représenté aux figures 2 et 3. La cellule TEM est aussi décrite dans la demande de brevet français FR3095303 .
  • La figure 2 montre un exemple de cellule 200 à section carrée constituée de quatre murs métalliques d'épaisseur t et de largeur p. Chaque mur présente une fente en longueur ayant une largeur wx ou wy selon le coté de la cellule.
  • Dans une variante de réalisation, la cellule 200 peut présenter une section de forme différente, par exemple hexagonale.
  • En outre la cellule 200 comporte une interconnexion interne 300 en forme de croix permettant de réaliser un chargement réactif, tel qu'illustré à la figure 3. L'interconnexion interne 300 présente une symétrie de révolution. Elle est électriquement conductrice pour former une discontinuité électrique dans la cellule 200. La croix 300 est formée de deux tiges électriquement conductrices qui forment une charge inductive.
  • Autrement dit chaque cellule 200 comprend un cadre de support et une (ou plusieurs) interconnexion 300 interne au cadre de support. Le cadre de support est inscrit dans un prisme, ayant un axe Z' donné. Dans l'exemple de la figure 2 et de la figure 3, le prisme a une section carrée. Le prisme comprend
    Figure imgb0005
    faces reliées entre elles par
    Figure imgb0006
    arêtes, orientées selon l'axe du prisme Z', le cadre de support comprend
    Figure imgb0007
    éléments de coin, chaque élément de coin a un bord coïncidant avec une des arêtes du prisme, les éléments de coins étant agencés de sorte que le cadre de support présente, sur chaque face du prisme, une fente s'étendant selon l'axe du prisme Z'. Dans cet exemple,
    Figure imgb0008
    = 4.
  • Chaque interconnexion interne comprend tiges inductives comprenant chacune deux extrémités, les tiges inductives ayant chacune une première extrémité reliée à l'un desdits bords du cadre de support, les deuxièmes extrémités des tiges inductives sont reliées entre elles au niveau d'un point de connexion de tiges, le point de connexion de tiges est positionné sensiblement au centre du cadre de support dans un plan orthogonal à l'axe du prisme Z'. Dans l'exemple l'interconnexion interne comprend quatre tiges et est en forme de croix.
  • Plus de détails sur la conception d'une cellule TEM selon la figure 3 sont données dans la demande FR3095303 .
  • La figure 4 montre la structure de base du dispositif d'adaptation d'impédance de la figure 1. Cette structure est composée d'une cellule TEM 200 sur laquelle sont disposées des pointes métalliques 400 aux quatre coins de la cellule. Les pointes métalliques sont disposées orthogonalement au plan xOy qui est parallèle au plan transversal de la cellule et à l'ouverture rayonnante de l'antenne. Avantageusement les pointes métalliques sont des tiges de section constante circulaire ou carrée ayant des dimensions prédéterminées.
  • La figure 5 montre une variante de réalisation de la structure de la figure 4 pour laquelle une pointe métallique supplémentaire 500 est disposée au centre de la cellule en fixation avec l'interconnexion interne 300. Dans ce cas, la structure d'interconnexion interne 300 présente une forme pyramidale, c'est-à-dire que les tiges d'interconnexion qui forment les bras de la croix présentent un angle non nul par rapport au plan transversal xOy de la cellule. Cette forme est notamment choisie lorsque le dispositif est fabriqué par une technique de fabrication additive.
  • Les degrés de liberté utilisés pour optimiser le fonctionnement de la structure sont notamment :
    • Son positionnement par rapport à l'ouverture rayonnante (distance dWAIM)
    • Les paramètres géométriques de la grille (longueur, espacement des plans conducteurs et, dans une moindre mesure, leur épaisseur)
    • La géométrie du motif réactif lui-même et sa position au sein de la cellule, c'est-à-dire la géométrie de l'interconnexion 300 ainsi que sa position,
    • La longueur des pointes métalliques et, dans une moindre mesure, leur diamètre.
  • Les contraintes à respecter lors de la mise au point de la structure sont :
    • L'invariance par rotation de 90° de la géométrie, pour garantir un fonctionnement identique sur les deux polarisations linéaires horizontale H et verticale V,
    • L'utilisation d'un motif réactif (structure d'interconnexion 300) dont la structure assure la cohésion mécanique de la grille en même temps qu'elle permet l'adaptation.
  • Selon une variante de réalisation de l'invention, il n'est pas indispensable que la périodicité de la grille des cellules TEM coïncide avec celle du réseau d'éléments rayonnants. Par exemple, une période de grille de cellules TEM correspondant à un sous-multiple de la période du réseau antennaire (c.à.d telle qu'une période du réseau coïncide avec un nombre entier de périodes de la grille) présente l'avantage de prévenir toute difficulté supplémentaire quant à l'évitement des lobes de réseau. Les capacités de la cellule TEM en termes de miniaturisation (dues à l'absence de fréquence de coupure pour les modes propagés au travers de la cellule) facilitent une telle option.
  • De façon générale, et comme illustré à la figure 1, les pointes métalliques sont disposées sur la grille de cellules TEM de sorte à être à l'intersection des plans d'antisymétrie respectifs du champ électrique rayonné par l'antenne pour un balayage dans le plan H, pour deux polarisations linéaires différentes horizontale et verticale. Ce point sera explicité plus en détail par la suite.
  • Le dispositif selon l'invention est dimensionné de sorte à dissocier l'adaptation d'impédance pour un balayage de l'antenne dans le plan H de celle pour un balayage de l'antenne dans le plan E et ce pour deux polarisations orthogonales linéaires.
  • Ainsi, le dispositif selon l'invention peut être conçu selon un procédé de conception en deux phases.
  • La première phase de conception consiste à dimensionner la grille de cellules TEM de sorte à optimiser l'adaptation d'impédance pour le balayage dans le plan H. L'optimisation consiste à ajuster au moins un paramètre parmi la position dWAIM de la grille par rapport à l'ouverture rayonnante, ses dimensions ainsi que le motif géométrique et les dimensions de la structure d'interconnexion qui réalise le chargement réactif de la cellule. L'optimisation est réalisée de façon à ce que la cellule TEM présente l'impédance d'entrée appropriée pour minimiser le coefficient de réflexion actif sur les ports de l'antenne, quel que soit l'angle de dépointage dans ce plan. La multiplicité des degrés de liberté disponibles offre de nombreuses possibilités pour réaliser cette adaptation.
  • Par exemple, cette première phase d'optimisation est réalisée au moyen d'un circuit électrique équivalent. Le dispositif d'adaptation d'impédance est modélisé comme une charge à une distance dWAIM de l'antenne. Un objectif de l'optimisation est de déterminer la charge pour laquelle le coefficient de réflexion actif de l'antenne est minimal pour l'intervalle d'angles de dépointage considéré et éventuellement pour une plage fréquentielle donnée. Une fois le chargement souhaité déterminé, il est synthétisé en un véritable composant.
  • La figure 6 montre un exemple de schéma électrique équivalent d'une cellule TEM du type décrit à la figure 3.
  • La structure d'interconnexion 300 qui réalise le chargement réactif de la cellule est modélisée par une impédance Zx(θ), où θ est l'angle de dépointage. De chaque côté de cette structure, deux sections de la cellule TEM de longueurs respectives I1 et I2 sont modélisées par des lignes de transmission de paramètres Z1(θ),β1(θ), Z2(θ),β2(θ).
  • Les impédances Zcap(θ) modélisent l'effet des discontinuités entre les extrémités de la cellule et l'air. Les impédances Z0(θ) correspondent à la propagation des ondes dans le vide.
  • Les paramètres de dimensionnement de la cellule sont, notamment, les tailles des tiges inductives de la structure d'interconnexion, leur diamètre, la largeur des fentes sur les parois de la cellule, les longueurs l1 et l2.
  • Dans une variante de réalisation, plusieurs structures d'interconnexion peuvent être disposées en cascade pour réaliser plusieurs chargements réactifs et augmenter le nombre de paramètres d'optimisation.
  • Dans la deuxième phase de conception, l'ajout de pointes métalliques orthogonales sur la grille optimisée ne modifie pas l'adaptation déjà réalisée pour le plan H, dès lors que les pointes sont placées dans les plans d'antisymétrie de la structure associés à ce balayage plan H. En effet, le fait que la composante tangentielle du champ électrique soit nécessairement nulle dans de tels plans garantie que l'introduction d'un conducteur parfait à cet endroit ne modifiera pas la distribution du champ observée pour la grille seule. Au contraire, un tel conducteur aura un effet non négligeable sur la distribution du champ pour un balayage dans le plan E, puisque les plans d'antisymétrie ne sont plus les mêmes pour ce balayage. Par conséquent, le conducteur introduit peut être utilisé pour optimiser l'adaptation dans le plan E, sans modifier l'adaptation réalisée préalablement dans le plan H grâce à la seule grille de cellules.
  • On en conclut que l'optimisation de la grille de cellules TEM et de son chargement permet d'adapter le balayage dans le plan H. C'est la première phase de la méthode de conception. L'optimisation ultérieure des pointes métalliques permet ensuite d'adapter l'impédance dans le plan E, sans dégrader l'adaptation préalablement réalisée pour le plan H. C'est la seconde phase de la méthode de conception.
  • La figure 7 montre plusieurs plans d'antisymétrie P_V-ant1, P_V-ant2, P_V-ant3, de la grille de cellules TEM pour le balayage dans le plan H et pour une polarisation linéaire verticale V (selon l'axe y). Il s'agit de plans perpendiculaires au champ électrique E et donc parallèles au plan xOz passant par les coins des cellules ou par leurs centres. En théorie, un conducteur parfait destiné à réaliser l'adaptation d'impédance pour un balayage dans le plan E peut être placé n'importe où dans ces plans sans modifier l'optimisation faite pour le plan H.
  • La figure 8 montre plusieurs plans d'antisymétrie P_H-ant1, P_H-ant2, P_H-ant3, P_H-ant4 cette fois pour une polarisation linéaire horizontale H (selon l'axe x). Ces plans sont cette fois parallèles au plan yOz passant par les coins des cellules ou leurs centres.
  • Ainsi, pour rester compatible des deux polarisations linéaires verticale et horizontale, les pointes métalliques doivent être disposées à l'intersection des plans d'antisymétrie relatifs à la polarisation verticale (représentés à la figure 7) et des plans d'antisymétrie relatifs à la polarisation horizontale (représentés à la figure 8). C'est pour cette raison que des lames métalliques s'étendant sur tout un côté d'une cellule dans un plan d'antisymétrie pour l'une des deux polarisations ne vérifient pas cette condition et ne permettent pas d'assurer un fonctionnement en bipolarisation.
  • De même, pour assurer un fonctionnement en bipolarisation, il est aussi nécessaire que la structure d'interconnexion qui réalise le chargement réactif de la cellule ait une symétrie de révolution. Une structure en forme de croix telle que présentée aux figures 4 et 5 respecte cette propriété.
  • Le dispositif d'adaptation d'impédance décrit ci-dessus peut être fabriqué entièrement en métal, par exemple via un procédé de fabrication additive tout métal ou à partir de matériaux diélectriques métallisés après coup. Cela présente l'avantage d'une réduction des coûts de fabrication, d'une réduction des pertes et d'une élimination des inconvénients associés à l'utilisation d'un matériau diélectrique dans le cas où le dispositif est fabriqué directement en métal.
  • Le dimensionnement du dispositif est réalisé en deux étapes, comme introduit ci-dessus :
    • Une première étape de dimensionnement de la grille de cellules TEM de manière à réaliser une adaptation d'impédance pour un balayage dans le plan H,
    • Une seconde étape de dimensionnement des pointes métalliques, essentiellement leurs longueurs et leurs diamètres, de manière à réaliser une adaptation d'impédance pour un balayage dans le plan E tout en restant transparent pour le plan H
  • Une contrainte importante à respecter pour assurer l'indépendance des optimisations respectives pour le plan H et le plan E est que les pointes métalliques doivent être disposées dans des plans d'antisymétrie pour les deux polarisations linéaires horizontale et verticale.
  • La figure 9 illustre sur un exemple simple d'un champ électromagnétique E propagé dans un guide d'ondes G de section carrée ou rectangulaire, la définition d'un plan de symétrie Psym et d'un plan d'antisymétrie Pant. Le champ électrique est représenté schématiquement par des flèches de longueur proportionnelle à son amplitude.
  • Le plan de symétrie Psym est un plan pour lequel deux conditions sont vérifiées simultanément :
    • La section du guide d'onde est symétrique par rapport au plan Psym,
    • Le champ électrique est symétrique par rapport au plan Psym, c'est à dire que le vecteur du champ électrique E présente une symétrie miroir par rapport à ce plan.
  • Le plan d'antisymétrie Pant est un plan pour lequel deux conditions sont vérifiées simultanément :
    • La section du guide d'onde est symétrique par rapport au plan Pant,
    • Le champ électrique est antisymétrique par rapport au plan Pant, c'est à dire que le vecteur du champ électrique E présente une symétrie miroir complétée par un retournement par rapport à ce plan.
  • Le plan d'antisymétrie Pant correspond à un conducteur électrique parfait, c'est à dire qu'on peut y placer un conducteur sans changer la configuration du champ électrique.
  • Les figures 10 et 11 illustrent la définition des plans d'antisymétrie pour les grilles de cellules TEM selon l'invention.
  • La figure 10 montre un exemple, en vue de dessus, d'une grille de quatre cellules TEM C1,C2,C3,C4 pour un balayage selon le plan H (xOz) et pour une polarisation de l'onde selon l'axe Oy.
  • Cette structure comporte cinq plans d'antisymétrie Pant1, Pant2, Pant3, Pant4, Pant5 qui passent par les côtés et les centres des cellules et sont parallèles à l'axe Ox.
  • En effet, le champ électrique E varie en phase selon l'axe Ox. Il est identique sur les deux moitiés (gauche et droite) d'une même cellule et sur deux cellules consécutives d'une même ligne. Autrement dit, la distribution du champ électrique est identique entre les cellules C1 et C2 d'une part et entre les cellules C3 et C4 d'autre part. Les plans d'antisymétrie sont donc des plans selon l'axe Ox.
  • La figure 11 montre, sur le même exemple de grille de quatre cellules TEM, la répartition du champ électrique pour un balayage dans le plan E (xOy) toujours pour une polarisation de l'onde selon l'axe Oy.
  • Dans ce cas, le champ électrique varie en phase selon l'axe Oy. Il est le même sur les deux moitiés (haute et basse) d'une même cellule et sur deux cellules consécutives d'une même colonne. Autrement dit, le champ électrique est identique entre les cellules C1 et C3 d'une part et entre les cellules C2 et C4 d'autre part. Les plans Psym1, Psym2, Psym3, Psym4, Psym5 sont des plans de symétrie. Il n'y a aucun plan d'antisymétrie dans cette configuration.
  • Dans le cas où l'onde est polarisée selon l'axe Ox, les plans de symétrie décrits à la figure 11 deviennent des plans d'antisymétrie.
  • Sans sortir du cadre de l'invention, le réseau de cellules TEM peut être remplacé par un dispositif d'adaptation d'impédance de l'art antérieur basé par exemple sur des métasurfaces monocouches ou multicouches.
  • Quel que soit le dispositif de base choisi pour adapter l'impédance pour le balayage dans le plan H, les pointes métalliques permettant l'adaptation d'impédance pour le balayage dans le plan E doivent être placées à l'intersection des plans d'antisymétrie pour les deux polarisations.
  • De tels plans d'antisymétrie sont définis en fonction de la structure choisie.
  • La figure 12 montre les cinq plans d'antisymétrie P'ant1, P'ant2, P'ant3, P'ant4, P'ant5 pour une structure imprimée à base de patchs P1,P2,P3,P4 , toujours pour une polarisation selon l'axe Oy. La variation du champ électrique est également représentée sous forme de flèches.
  • Les plans d'antisymétrie pour une polarisation selon l'axe Ox sont obtenus par rotation de 90° appliquée aux plans d'antisymétrie de la figure 13.
  • Le dispositif d'adaptation d'impédance pour le balayage dans le plan H peut aussi être une structure composée d'une ou plusieurs couches diélectriques.
  • La figure 13 montre un deuxième mode de réalisation de l'invention dans lequel les cellules TEM sont remplacées par des structures à base de métasurfaces comprenant au moins une couche diélectrique sur laquelle sont positionnés des motifs métalliques périodiques M1,M2,M3. L'ensemble des motifs forme une grille dont les dimensions et paramètres sont choisis de manière à adapter l'impédance de l'antenne pour un balayage dans le plan H.
  • Un réseau de pointes métalliques RPM est ensuite disposé orthogonalement à la grille de motifs. Les pointes métalliques sont disposées à l'intersection des plans d'antisymétrie du champ électrique, pour le balayage dans le plan H et pour les deux polarisations linéaires selon les axes x et y.
  • Le réseau de pointes métalliques RPM, en particulier la longueur des pointes, est optimisé pour adapter l'impédance de l'antenne pour le balayage dans le plan E.
  • La figure 14 montre une variante du mode de réalisation de l'invention décrit à la figure 13. Dans cette variante, des pointes métalliques supplémentaires PM sont positionnées aux centres de chaque motif qui appartiennent également aux plans d'antisymétrie du champ électrique pour les deux polarisations linéaires selon les axes x et y.
  • Références

Claims (14)

  1. Dispositif d'adaptation d'impédance (102) à grand angle pour antenne réseau à éléments rayonnants, comprenant :
    - un écran de transmission (103) ayant une première surface destinée à être positionnée en vis-à-vis du réseau d'éléments rayonnants parallèlement à l'ouverture rayonnante de l'antenne et étant configuré pour adapter l'impédance de l'antenne pour un balayage dans le plan H lorsque le dispositif est positionné sur l'antenne,
    - et un ensemble de pointes métalliques (104) disposées orthogonalement sur au moins une surface de l'écran de transmission (103), à l'intersection d'au moins une partie des plans d'antisymétrie respectifs du champ électrique rayonné par l'antenne pour un balayage dans le plan H, pour deux polarisations linéaires selon deux directions orthogonales (P_V-ant1, P_V-ant2, P_V-ant3, P_H-ant1, P_H-ant2, P_H-ant3) lorsque le dispositif est positionné sur l'antenne, ledit ensemble de pointes métalliques (104) étant configuré pour adapter l'impédance de l'antenne pour un balayage dans le plan E, lorsque le dispositif est positionné sur l'antenne
  2. Dispositif d'adaptation d'impédance à grand angle selon la revendication 1 dans lequel l'écran de transmission est une structure composée d'une ou plusieurs couches diélectriques.
  3. Dispositif d'adaptation d'impédance à grand angle selon la revendication 1 dans lequel l'écran de transmission est une structure composée de métasurfaces (P1,P2,P3,P4) monocouches ou multicouches sur laquelle est disposée une grille périodique de motifs métalliques.
  4. Dispositif d'adaptation d'impédance à grand angle selon la revendication 1 dans lequel l'écran de transmission (103) est une grille périodique de plusieurs cellules, chaque cellule (200) comprenant un cadre de support et au moins une interconnexion (300) interne audit cadre de support, ledit cadre de support étant inscrit dans un prisme, ayant un axe Z' donné, ledit prisme comprenant
    Figure imgb0009
    faces reliées entre elles par
    Figure imgb0010
    arêtes, orientées selon l'axe du prisme Z', ledit cadre de support comprenant
    Figure imgb0011
    éléments de coin, chaque élément de coin ayant un bord coïncidant avec une desdites arêtes du prisme, les éléments de coins étant agencés de sorte que le cadre de support présente, sur chaque face du prisme, une fente s'étendant selon l'axe du prisme Z' ; et en ce que chaque interconnexion interne (300) comprend
    Figure imgb0012
    tiges inductives comprenant chacune deux extrémités, les tiges inductives ayant chacune une première extrémité reliée à un desdits bords du cadre de support, les deuxièmes extrémités des tiges inductives étant reliées entre elles au niveau d'un point de connexion de tiges, ledit point de connexion de tiges étant positionné sensiblement au centre dudit cadre de support dans un plan orthogonal à l'axe du prisme Z',
  5. Dispositif d'adaptation d'impédance à grand angle selon la revendication 4 dans lequel les pointes métalliques (104,400) sont positionnées dans le prolongement de chaque arête de chacune des cellules.
  6. Dispositif d'adaptation d'impédance à grand angle selon l'une quelconque des revendications 4 ou 5 dans lequel une pointe métallique (500) dudit ensemble est positionnée sur ledit point de connexion de tiges.
  7. Dispositif d'adaptation d'impédance à grand angle selon l'une quelconque des revendications précédentes dans lequel les pointes métalliques (104,400) sont disposées, au moins partiellement, sur la surface de l'écran de transmission opposée à la première surface.
  8. Dispositif antennaire comprenant une antenne réseau à éléments rayonnants (101) aptes à rayonner un champ d'ondes transverses électromagnétiques et un dispositif d'adaptation d'impédance à grand angle (102) selon l'une quelconque des revendications précédentes et positionné sur ledit réseau d'éléments rayonnants .
  9. Dispositif antennaire selon la revendication 8 dans lequel le dispositif d'adaptation d'impédance à grand angle (102) est positionné à une distance non nulle du réseau d'éléments rayonnants.
  10. Dispositif antennaire selon la revendication 8 dans lequel le dispositif d'adaptation d'impédance à grand angle (102) est positionné au contact du réseau d'éléments rayonnants.
  11. Procédé de conception d'un dispositif d'adaptation d'impédance à grand angle selon l'une quelconque des revendications 1 à 7 comprenant :
    - Une première étape de dimensionnement de l'écran de transmission (103) de manière à optimiser l'adaptation d'impédance pour le balayage de l'antenne réseau dans le plan H,
    - Une seconde étape de dimensionnement de l'ensemble de pointes métalliques (104) de manière à optimiser l'adaptation d'impédance pour le balayage de l'antenne réseau dans le plan E sans modifier l'adaptation préalablement réalisée dans le plan H
  12. Procédé de conception d'un dispositif d'adaptation d'impédance selon la revendication 11 dans lequel la seconde étape de dimensionnement de l'ensemble de pointes métalliques (104) consiste au moins à dimensionner la longueur des pointes.
  13. Procédé de conception d'un dispositif d'adaptation d'impédance selon l'une quelconque des revendications 11 ou 12 en combinaison avec la revendication 4 dans lequel la première étape de dimensionnement de l'écran de transmission (103) consiste au moins à dimensionner au moins un paramètre parmi : la dimension des tiges inductives, la dimension des fentes, la position des tiges inductives selon l'axe du prisme Z', le nombre d'interconnexions internes.
  14. Procédé de conception d'un dispositif antennaire selon la revendication 8 comprenant l'exécution du procédé de conception d'un dispositif d'adaptation d'impédance selon l'une quelconque des revendications 11 à 13 dans lequel la première étape de dimensionnement comprend en outre le dimensionnement de la distance entre le réseau d'éléments rayonnants et le dispositif d'adaptation d'impédance.
EP23217070.4A 2022-12-22 2023-12-15 Dispositif d'adaptation d'impedance a grand angle pour antenne reseau a elements rayonnants et procede de conception d'un tel dispositif Pending EP4391232A1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR2214203A FR3144427A1 (fr) 2022-12-22 2022-12-22 Dispositif d'adaptation d'impédance à grand angle pour antenne réseau à éléments rayonnants et procédé de conception d'un tel dispositif

Publications (1)

Publication Number Publication Date
EP4391232A1 true EP4391232A1 (fr) 2024-06-26

Family

ID=86942023

Family Applications (1)

Application Number Title Priority Date Filing Date
EP23217070.4A Pending EP4391232A1 (fr) 2022-12-22 2023-12-15 Dispositif d'adaptation d'impedance a grand angle pour antenne reseau a elements rayonnants et procede de conception d'un tel dispositif

Country Status (4)

Country Link
US (1) US20240213664A1 (fr)
EP (1) EP4391232A1 (fr)
CA (1) CA3223986A1 (fr)
FR (1) FR3144427A1 (fr)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104934700A (zh) * 2015-06-26 2015-09-23 中国船舶重工集团公司第七二四研究所 一种宽角覆盖低交叉极化电平天线辐射单元
EP3726642A1 (fr) * 2019-04-18 2020-10-21 Thales Ecran polariseur a cellule(s) polarisante(s) radiofrequence(s) large bande

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104934700A (zh) * 2015-06-26 2015-09-23 中国船舶重工集团公司第七二四研究所 一种宽角覆盖低交叉极化电平天线辐射单元
EP3726642A1 (fr) * 2019-04-18 2020-10-21 Thales Ecran polariseur a cellule(s) polarisante(s) radiofrequence(s) large bande
FR3095303A1 (fr) 2019-04-18 2020-10-23 Thales Ecran polariseur a cellule(s) polarisante(s) radiofrequence(s) large bande

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
B. SUNR. LOISONR. GILLARDE. ESTEBEC. RENARD: "15th European Conférence on Antennas and Propagation (EuCAP", 2021, IEEE, article "3d wide-angle impédance matching for x-band phased array"
BERMÚDEZ-MARTÍN DIEGO ET AL: "Methodology for Improving Scanning Performance Loading an Array Element with a 3D All-Metal WAIM", ELECTRONICS, vol. 11, no. 18, 9 September 2022 (2022-09-09), Basel, Switzerland, pages 2 - 11, XP093023510, ISSN: 2079-9292, DOI: 10.3390/electronics11182848 *
E. MAGILLH. WHEELER: "Wide-angle impédance matching of a planar array antenna by a dielectric sheet", IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, vol. 14, no. 1, January 1966 (1966-01-01), pages 49 - 53, XP055019127, DOI: 10.1109/TAP.1966.1138622
G. OLIVERI ET AL.: "Wide-Angle impédance Matching Layer-Enhanced Dual-Polarization sub-6 GHz Wide-Scan Array for Next-Generation Base Stations", IEEE TRANS. ANTENNAS PROPAG., vol. 70, no. 7, July 2022 (2022-07-01), pages 5506 5520
G. OLIVERIM. SALUCCN. ANSELMIA. MASSA: "Multiscale system-by-design synthesis of printed WAIMs for waveguide array enhancement", IEEE JOURNAL ON MULTISCALE AND MULTIPHYSICS COMPUTATIONAL TECHNIQUES, vol. 2, 2017, pages 84 - 96, XP011653896, DOI: 10.1109/JMMCT.2017.2701833
LIANG XIUYE ET AL: "Scan Blindness Free Design of Wideband Wide-Scanning Open-Ended Waveguide Phased Array", IEEE ACCESS, IEEE, USA, vol. 9, 22 April 2021 (2021-04-22), pages 68127 - 68138, XP011854184, DOI: 10.1109/ACCESS.2021.3074867 *
QI ZHANG ET AL: "Metamaterial-based linear phased array antenna with improved wide-angle scanning bandwidth by parasitic metal strips", IET MICROWAVES, ANTENNAS & PROPAGATION, THE INSTITUTION OF ENGINEERING AND TECHNOLOGY, UNITED KINGDOM, vol. 15, no. 13, 10 September 2021 (2021-09-10), pages 1699 - 1709, XP006112776, ISSN: 1751-8725, DOI: 10.1049/MIA2.12187 *
S. SAJUYIGBEM. ROSSP. GERENS. CUMMERM. TANIELIAND. SMITH: "Wide angle impédance matching metamaterials for waveguide-fed phased-array antennas", IET MICROWAVES, ANTENNAS & PROPAGATION, vol. 4, no. 8, 2010, pages 1063
W. H. SYEDD. CAVALLOH. THIPPUR SHIVAMURTHYA. NETO: "Wideband, widescan planar array of connected slots loaded with artificial dielectric superstrates", IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, vol. 64, no. 2, February 2016 (2016-02-01), pages 543 - 553, XP011597795, DOI: 10.1109/TAP.2015.2507167
X. LIANGZ. ZHANGJ. ZENGF. GUANX. LIUJ. ZI: "Scan Blindness Free Design of Wideband Wide-Scanning Open-Ended Waveguide Phased Array", IEEE ACCESS, vol. 9, 2021, pages 68127 - 68138, XP011854184, DOI: 10.1109/ACCESS.2021.3074867
Y. ZHANGA. R. VILENSKIYM. V. IVASHINA: "Mutual Coupling Analysis of Open-Ended Ridge and Ridge Gap Waveguide Radiating Elements in an Infinite Array Environmen", 52ND EUROPEAN MICROWAVE CONFÉRENCE (EUMC, 2022, pages 696 - 699, XP034217208, DOI: 10.23919/EuMC54642.2022.9924388

Also Published As

Publication number Publication date
CA3223986A1 (fr) 2024-06-22
FR3144427A1 (fr) 2024-06-28
US20240213664A1 (en) 2024-06-27

Similar Documents

Publication Publication Date Title
EP3547450B1 (fr) Element rayonnant a polarisation circulaire mettant en oeuvre une resonance dans une cavite de fabry perot
EP2564466B1 (fr) Element rayonnant compact a cavites resonantes
EP0205212B1 (fr) Modules unitaires d&#39;antenne hyperfréquences et antenne hyperfréquences comprenant de tels modules
CA2681548C (fr) Reseau reflecteur et antenne comportant un tel reseau reflecteur
EP2869400B1 (fr) Répartiteur de puissance compact bipolarisation, réseau de plusieurs répartiteurs, élément rayonnant compact et antenne plane comportant un tel répartiteur
EP2194602B1 (fr) Antenne à partage de sources et procède d&#39;élaboration d&#39;une antenne à partage de sources pour l&#39;élaboration de multi-faisceaux
EP0598656B1 (fr) Source élémentaire rayonnante pour antenne réseau et sous-ensemble rayonnant comportant de telles sources
FR2957719A1 (fr) Antenne reseau reflecteur a compensation de polarisation croisee et procede de realisation d&#39;une telle antenne
FR2655204A1 (fr) Antenne-reseau d&#39;alimentation de guides d&#39;onde.
EP2710676B1 (fr) Element rayonnant pour antenne reseau active constituee de tuiles elementaires
EP0213646A1 (fr) Modules unitaires d&#39;antenne, hyperfréquences et antenne hyperfréquences comprenant de tels modules
EP3086409B1 (fr) Module structural d&#39;antenne integrant des sources rayonnantes elementaires a orientation individuelle, panneau rayonnant, reseau rayonnant et antenne multifaisceaux comportant au moins un tel module
FR2751471A1 (fr) Dispositif rayonnant a large bande susceptible de plusieurs polarisations
EP3664214B1 (fr) Eléments rayonnants à accès multiples
CA2814281A1 (fr) Cornet d&#39;antenne a grille corruguee
EP0520908B1 (fr) Antenne réseau linéaire
EP4391232A1 (fr) Dispositif d&#39;adaptation d&#39;impedance a grand angle pour antenne reseau a elements rayonnants et procede de conception d&#39;un tel dispositif
EP4372910A1 (fr) Dispositif de contrôle de faisceaux électromagnétiques rf selon leur angle d&#39;incidence et procédé de fabrication
EP0831550B1 (fr) Antenne-réseau polyvalente
WO2023218008A1 (fr) Antenne faible profil à balayage electronique bidimensionnel
FR2803694A1 (fr) Antenne a cavite resonante ayant un faisceau conforme selon un diagramme de rayonnement predetermine
EP4199258A1 (fr) Antenne élémentaire de type micro-ruban et antenne réseau ameliorées
EP4262024A1 (fr) Dispositif de contrôle de faisceaux électromagnétiques rf selon leur bande de fréquence et procédé de fabrication
FR2981514A1 (fr) Systeme antennaire a une ou plusieurs spirale(s) et reconfigurable
FR2703516A1 (fr) Antenne à ondes progressives.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR