EP0017530B1 - Radiating source constituted by a dipole excited by a waveguide, and its use in an electronic scanning antenna - Google Patents

Radiating source constituted by a dipole excited by a waveguide, and its use in an electronic scanning antenna Download PDF

Info

Publication number
EP0017530B1
EP0017530B1 EP80400342A EP80400342A EP0017530B1 EP 0017530 B1 EP0017530 B1 EP 0017530B1 EP 80400342 A EP80400342 A EP 80400342A EP 80400342 A EP80400342 A EP 80400342A EP 0017530 B1 EP0017530 B1 EP 0017530B1
Authority
EP
European Patent Office
Prior art keywords
dipole
radiating source
metal
source according
longitudinal middle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80400342A
Other languages
German (de)
French (fr)
Other versions
EP0017530A1 (en
Inventor
Albert Dupressoir
François Salvat
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0017530A1 publication Critical patent/EP0017530A1/en
Application granted granted Critical
Publication of EP0017530B1 publication Critical patent/EP0017530B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/06Waveguide mouths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters
    • H01Q3/38Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters the phase-shifters being digital
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole

Definitions

  • the present invention relates to a radiating source constituted by a dipole excited by an ultra-flat waveguide of rectangular section, more particularly used in antennas with electronic scanning. It also aims, as a particular application, for the production of an electronic scanning antenna.
  • the radiating part of an electronic scanning antenna requires a large number of repetitive elements called modules, each composed of an elementary source and an associated phase-shifter to constitute the phase-shift network.
  • such an elementary source consists of a dipole carried by a metal plate introduced at the pinched end of a waveguide by which it is excited.
  • This embodiment has the disadvantage of having a large footprint due to the dimensions of the waveguide and the arrangement of the dipole on a metal plate.
  • Another drawback comes from the need for machining and assembly operations leading to difficulties in industrial production, to uncertain reproducibility and at relatively high cost.
  • the present invention aims to remedy these drawbacks and relates to a radiating source constituted by a dipole excited by an extra-flat waveguide.
  • the extra-flat waveguide exciting the dipole consists of a dielectric strip of rectangular parallelepiped shape, of longitudinal axis to, the four of which faces symmetrical about the axis to and opposite two by two are each covered with a metal plate.
  • the two larger faces each extend towards the end of the dielectric strip by a metal tab leading to the strands of the dipole.
  • One of the advantages of the invention is the reduction in the size of the device constituted by the dipole and the waveguide and which is not increased by the phase shifter which is associated with it to make a module which can be used in an antenna with electronic scanning. Another advantage is the lower cost of equipment and technology.
  • Figure 1 shows a radiating source consisting of a dipole 1 excited by a waveguide 2.
  • the dipole is mounted on a metal plate 3 which fits into the opening 6 of the waveguide 2, along the mediator plane longitudinal of it.
  • the strands 4 of the dipole are parallel to the direction of polarization of the electric field E propagating in the guide 2 according to the TE 01 mode for example.
  • the metal plate 3 being introduced along the longitudinal plane of the waveguide 2, the two strands 4 of the dipole 1 are excited in the same way.
  • the impedance matching between the dipole 1 and the waveguide 2 is done by pinching the end 5 of the guide and adjusting the depression of the dipole 1 relative to the opening 6 of the guide.
  • FIG. 2 represents a radiating source according to the invention. It consists of a dielectric strip 7 of rectangular parallelepiped shape of length L1 and of width L2 determined and of height L3 very small, of longitudinal mediating plane ⁇ and of longitudinal median axis ⁇ .
  • the dielectric can be air.
  • the extra-flat waveguide 8 is produced from a determined length L less than L1 of the dielectric strip 7, the large opposite faces parallel to the plane ⁇ and the small opposite faces perpendicular to the previous ones and parallel to the axis are each covered with a metal plate of determined length less than L1.
  • the two metal plates 9 and 10 parallel to the plane ⁇ each extend respectively by a metal tongue 11 and 12 leading to the strands 13 and 14 of the dipole which extend in opposite directions.
  • the width of the tongues 11 and 12 decreases from the waveguide 8 towards the strands 13 and 14 of the dipole, thus realizing with the length of these same tongues the impedance adaptation between the guide and the dipole.
  • the strands 13 and 14 of the dipole are coated at the end of the dielectric strip 7 perpendicular to the direction of polarization of the electric field E in the guide 8.
  • These strands 13 and 14 each consist of a narrow metal strip, parallel to the longitudinal mediator plane ( ⁇ ) and perpendicular to the adaptive tongues and in contact with their ends.
  • the width of these metal strips also helps the impedance matching between the dipole and the waveguide.
  • the fact that the direction of the strands 13 and 14 is perpendicular to the direction of polarization of the electric wave propagating the waveguide 8 causes the appearance of a cross-polarized wave. In some antenna cases, the cross-polarization residue can be used to improve detection.
  • the dielectric strip (7) is not an air layer
  • the waveguide 8, the tongues 11 and 12 and the strands 13 and 14 of the dipole can be obtained by metallization or photoengraving.
  • FIG. 3 shows another type of embodiment of a primary radiating source according to the invention.
  • the strands 15 and 16 of the dipole are parallel to the direction of polarization of the electric field E circulating in the waveguide.
  • the waveguide 8 and the tongues 11 and 12 can be produced by metal plates or by photoengraving, but the strands 15 and 16 are narrow metallic tongues ensuring a certain mechanical strength and perpendicular to the longitudinal mediator plane ( ⁇ ).
  • the strands 15 and 16 of the dipole are in contact with the end of the tongues 11 and 12.
  • This radiating source can serve as an elementary source of an electronic scanning antenna.
  • it is connected to the output of one or more diode phase shifters providing the phase shift network of the antenna.
  • the phase shifters 17, 18 and 19 respectively shifting by 3X / 4, ⁇ / 2 and ⁇ / 4, each consist of a diode 20 placed in a hole 21 made throughout the thickness L3 of the dielectric strip 7.
  • This diode 20 is connected on one side directly to the metal plate covering one of the two faces parallel to the mediator plane and on the other side to a triplate trap placed on the other face parallel to the plane so that in microwave, the diode is connected on both sides to ground.
  • a printed circuit 22 is connected to the phase shifters to supply them and control them.
  • the height L3 of the dielectric strip 7 is equal to the thickness of the diodes 20 of the phase shifters.
  • FIG. 4 shows another exemplary embodiment of a radiating source according to the invention, in which the strands of the dipole have better mechanical strength than in the previous figure.
  • a dielectric substrate board 23 of rectangular parallelepiped shape and of the same width as the adaptive tongue 11 or 12, so that its long sides 24 and 25 are perpendicular to the longitudinal mediator plane ⁇ and such that the short side perpendicular to the plane ⁇ located at the end of the metal tongue 11 or 12 is metallized to form the strands 26 and 27 of the dipole.
  • the strands 28 and 29 are formed by narrow metal blades machined so as to have a T-shaped section, while in Figure 6, the strands 30 and 31 consist of metal blades of U-shaped section.
  • FIG. 7 represents an antenna with electronic scanning where the elementary sources are produced in accordance with the invention.
  • All the dipoles 32 are oriented in the same direction which is that of the polarization of the antenna.
  • At a distance equal to a quarter of the operating wavelength A / 4 reflective parts are placed, constituting the reflector of the antenna.
  • each row of dipoles 32, of longitudinal axis perpendicular to the direction of the strands of the dipoles is surrounded on one side by a metal plate 33 of length equal to the height of the row and on the other hand by small metal plates 34 of length equal to the distance separating two dipoles.
  • the shape of the antenna can be arbitrary, flat or parabolic for example.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)

Description

La présente invention concerne une source rayonnante constituée par un dipôle excité par un guide d'onde extra-plat de section rectangulaire, plus particulièrement utilisée dans les antennes à balayage électronique. Elle vise également, à titre d'application particulière, à la réalisation d'une antenne à balayage électronique.The present invention relates to a radiating source constituted by a dipole excited by an ultra-flat waveguide of rectangular section, more particularly used in antennas with electronic scanning. It also aims, as a particular application, for the production of an electronic scanning antenna.

La partie rayonnante d'une antenne à balayage électronique requiert un grand nombre d'éléments répétitifs dits modules, composés chacun d'une source élémentaire et d'un déphaseur associé pour constituer le réseau à déphasage.The radiating part of an electronic scanning antenna requires a large number of repetitive elements called modules, each composed of an elementary source and an associated phase-shifter to constitute the phase-shift network.

Selon une réalisation antérieure, une telle source élémentaire est constituée d'un dipôle porté par une plaque métallique introduite à l'extrémité pincée d'un guide d'onde par lequel il est excité. Cette réalisation a comme inconvénient de présenter un grand encombrement dû aux dimensions du guide d'onde et à la disposition du dipôle sur une plaque métallique. Un autre inconvénient vient de la nécessité d'opérations d'usinage et de montage aboutissant à des difficultés de réalisation industrielle, à une reproductibilité incertaine et à un coût relativement élevé.According to a previous embodiment, such an elementary source consists of a dipole carried by a metal plate introduced at the pinched end of a waveguide by which it is excited. This embodiment has the disadvantage of having a large footprint due to the dimensions of the waveguide and the arrangement of the dipole on a metal plate. Another drawback comes from the need for machining and assembly operations leading to difficulties in industrial production, to uncertain reproducibility and at relatively high cost.

La présente invention a pour but de remédier à ces inconvénients et a pour objet une source rayonnante constituée par un dipôle excité par un guide d'onde extra-plat.The present invention aims to remedy these drawbacks and relates to a radiating source constituted by a dipole excited by an extra-flat waveguide.

Une telle réalisation répondant en particulier au critère de reproductibilité aisée, permettra de réaliser la partie rayonnante d'une antenne à balayage électronique.Such an embodiment meeting in particular the criterion of easy reproducibility, will make it possible to produce the radiating part of an antenna with electronic scanning.

Selon une caractéristique de l'invention, le guide d'onde extra-plat excitant le dipôle dont les brins s'étendent dans des directions opposées est constitué d'une lame diélectrique de forme parallélépipédique rectangle, d'axe longitudinal à, dont les quatre faces symétriques par rapport à l'axe à et opposées deux à deux sont recouvertes chacune d'une plaque métallique. Les deux faces de plus grandes dimensions se prolongent chacune, vers l'extrémité de la lame diélectrique par une languette métallique aboutissant aux brins du dipôle.According to a characteristic of the invention, the extra-flat waveguide exciting the dipole, the strands of which extend in opposite directions, consists of a dielectric strip of rectangular parallelepiped shape, of longitudinal axis to, the four of which faces symmetrical about the axis to and opposite two by two are each covered with a metal plate. The two larger faces each extend towards the end of the dielectric strip by a metal tab leading to the strands of the dipole.

Un des avantages de l'invention est la réduction de l'encombrement du dispositif constitué par le dipôle et le guide d'onde et qui n'est pas augmenté par le déphaseur qu'on lui associe pour faire un module utilisable dans une antenne à balayage électronique. Un autre avantage est la diminution du coût en matériel et en technologie.One of the advantages of the invention is the reduction in the size of the device constituted by the dipole and the waveguide and which is not increased by the phase shifter which is associated with it to make a module which can be used in an antenna with electronic scanning. Another advantage is the lower cost of equipment and technology.

D'autres avantages et caractéristiques de l'invention apparaîtront dans la description qui suit, illustrée par les figures suivantes qui représentent :

  • la figure 1, une source rayonnante constituée par un dipôle excité par un guide d'onde, selon une réalisation de l'art antérieur ;
  • la figure 2, un type de réalisation d'un dipôle excité par un guide d'onde selon l'invention ;
  • les figures 3 à 6, quatre autres types de réalisation d'un dipôle excité par un guide d'onde selon l'invention ;
  • la figure 7, une antenne à balayage électronique comportant des sources rayonnantes élémentaires selon l'invention.
Other advantages and characteristics of the invention will appear in the description which follows, illustrated by the following figures which represent:
  • Figure 1, a radiating source constituted by a dipole excited by a waveguide, according to an embodiment of the prior art;
  • Figure 2, a type of embodiment of a dipole excited by a waveguide according to the invention;
  • Figures 3 to 6, four other types of embodiment of a dipole excited by a waveguide according to the invention;
  • FIG. 7, an electronic scanning antenna comprising elementary radiating sources according to the invention.

Les éléments portant les mêmes indices dans les différentes figures réalisent les mêmes fonctions et ne sont décrits qu'une fois.The elements bearing the same indices in the different figures perform the same functions and are only described once.

Il est beaucoup plus simple d'alimenter un dipôle par un guide d'onde rectangulaire que par une ligne coaxiale, le champ électrique produit dans une ligne coaxiale étant radial contrairement au champ électrique produit dans un guide d'onde rectangulaire.It is much simpler to supply a dipole with a rectangular waveguide than with a coaxial line, the electric field produced in a coaxial line being radial unlike the electric field produced in a rectangular waveguide.

La figure 1 montre une source rayonnante constituée par un dipôle 1 excité par un guide d'onde 2. Le dipôle est monté sur une plaque métallique 3 qui s'emboîte dans l'ouverture 6 du guide d'onde 2, suivant le plan médiateur longitudinal de celui-ci. Les brins 4 du dipôle sont parallèles à la direction de polarisation du champ électrique E se propageant dans le guide 2 suivant le mode TE01 par exemple. La plaque métallique 3 étant introduite selon le plan longitudinal du guide d'onde 2, les deux brins 4 du dipôle 1 sont excités de la même manière. L'adaptation d'impédance entre le dipôle 1 et le guide d'onde 2 se fait en pinçant l'extrémité 5 du guide et en réglant l'enfoncement du dipôle 1 par rapport à l'ouverture 6 du guide.Figure 1 shows a radiating source consisting of a dipole 1 excited by a waveguide 2. The dipole is mounted on a metal plate 3 which fits into the opening 6 of the waveguide 2, along the mediator plane longitudinal of it. The strands 4 of the dipole are parallel to the direction of polarization of the electric field E propagating in the guide 2 according to the TE 01 mode for example. The metal plate 3 being introduced along the longitudinal plane of the waveguide 2, the two strands 4 of the dipole 1 are excited in the same way. The impedance matching between the dipole 1 and the waveguide 2 is done by pinching the end 5 of the guide and adjusting the depression of the dipole 1 relative to the opening 6 of the guide.

La figure 2 représente une source rayonnante selon l'invention. Elle est constituée par une lame diélectrique 7 de forme parallélépipédique rectangle de longueur L1 et de largeur L2 déterminées et de hauteur L3 très petite, de plan longitudinal médiateur π et d'axe médian longitudinal Δ. Le diélectrique peut être de l'air.FIG. 2 represents a radiating source according to the invention. It consists of a dielectric strip 7 of rectangular parallelepiped shape of length L1 and of width L2 determined and of height L3 very small, of longitudinal mediating plane π and of longitudinal median axis Δ. The dielectric can be air.

Le guide d'onde 8 extra-plat est réalisé à partir d'une longueur déterminée L inférieure à L1 de la lame diélectrique 7 dont les grandes faces opposées parallèles au plan π et les petites faces opposées perpendiculaires aux précédentes et parallèles à l'axe à sont recouvertes chacune d'une plaque métallique de longueur déterminée inférieure à L1. Les deux plaques 9 et 10 métalliques parallèles au plan π se prolongent chacune respectivement par une languette métallique 11 et 12 aboutissant aux brins 13 et 14 du dipôle qui s'étendent dans des directions opposées. La largeur des languettes 11 et 12 décroît du guide d'onde 8 vers les brins 13 et 14 du dipôle, réalisant ainsi avec la longueur de ces mêmes languettes l'adaptation d'impédànce entre le guide et le dipôle. Sur cette figure les brins 13 et 14 du dipôle sont couchés à l'extrémité de la lame diélectrique 7 perpendiculairement à la direction de polarisation du champ électrique E dans le guide 8. Ces brins 13 et 14 sont constitués chacun par une bande métallique étroite, parallèle au plan médiateur longitudinal (π) et perpendiculaire aux languettes adaptatives et en contact avec leurs extrémités. La largeur de ces bandes métalliques aide aussi à l'adaptation d'impédance entre le dipôle et le guide d'onde. Le fait que la direction des brins 13 et 14 soit perpendiculaire à la direction de polarisation de l'onde électrique se propageant le guide d'onde 8 provoque l'apparition d'une onde à polarisation croisée. Dans certains cas d'antennes, le résidu de polarisation croisée peut servir à l'amélioration de la détection. Lorsque la lame diélectrique (7) n'est pas une lame d'air, le guide d'onde 8, les languettes 11 et 12 et les brins 13 et 14 du dipôle peuvent être obtenus par métallisation ou photogravure.The extra-flat waveguide 8 is produced from a determined length L less than L1 of the dielectric strip 7, the large opposite faces parallel to the plane π and the small opposite faces perpendicular to the previous ones and parallel to the axis are each covered with a metal plate of determined length less than L1. The two metal plates 9 and 10 parallel to the plane π each extend respectively by a metal tongue 11 and 12 leading to the strands 13 and 14 of the dipole which extend in opposite directions. The width of the tongues 11 and 12 decreases from the waveguide 8 towards the strands 13 and 14 of the dipole, thus realizing with the length of these same tongues the impedance adaptation between the guide and the dipole. In this figure, the strands 13 and 14 of the dipole are coated at the end of the dielectric strip 7 perpendicular to the direction of polarization of the electric field E in the guide 8. These strands 13 and 14 each consist of a narrow metal strip, parallel to the longitudinal mediator plane (π) and perpendicular to the adaptive tongues and in contact with their ends. The width of these metal strips also helps the impedance matching between the dipole and the waveguide. The fact that the direction of the strands 13 and 14 is perpendicular to the direction of polarization of the electric wave propagating the waveguide 8 causes the appearance of a cross-polarized wave. In some antenna cases, the cross-polarization residue can be used to improve detection. When the dielectric strip (7) is not an air layer, the waveguide 8, the tongues 11 and 12 and the strands 13 and 14 of the dipole can be obtained by metallization or photoengraving.

La figure 3 représente un autre type de réalisation d'une source primaire rayonnante selon l'invention. Là, les brins 15 et 16 du dipôle sont parallèles à la direction de polarisation du champ électrique E circulant dans le guide d'onde. Comme précédemment, le guide d'onde 8 et les languettes 11 et 12 peuvent être réalisées par des plaques métalliques ou par photogravure, mais les brins 15 et 16 sont des languettes métalliques étroites assurant une certaine tenue mécanique et perpendiculaires au plan médiateur longitudinal (π). Les brins 15 et 16 du dipôle sont en contact avec l'extrémité des languettes 11 et 12.FIG. 3 shows another type of embodiment of a primary radiating source according to the invention. There, the strands 15 and 16 of the dipole are parallel to the direction of polarization of the electric field E circulating in the waveguide. As before, the waveguide 8 and the tongues 11 and 12 can be produced by metal plates or by photoengraving, but the strands 15 and 16 are narrow metallic tongues ensuring a certain mechanical strength and perpendicular to the longitudinal mediator plane (π ). The strands 15 and 16 of the dipole are in contact with the end of the tongues 11 and 12.

Cette source rayonnante peut servir de source élémentaire d'une antenne à balayage électronique. Dans ce cas, elle est connectée à la sortie d'un ou plusieurs déphaseurs à diodes réalisant le réseau à déphasage de l'antenne. Sur la figure 3, les déphaseurs 17, 18 et 19 déphasant respectivement de 3X/4, λ/2 et \/4, sont constitués chacun par une diode 20 placée dans un trou 21 pratiqué dans toute l'épaisseur L3 de la lame diélectrique 7. Cette diode 20 est reliée d'un côté directement à la plaque métallique recouvrant une des deux faces parallèles au plan médiateur et de l'autre côté à un piège en triplaque disposé sur l'autre face parallèle au plan de telle sorte qu'en hyperfréquence, la diode est reliée des deux côtés à la masse.This radiating source can serve as an elementary source of an electronic scanning antenna. In this case, it is connected to the output of one or more diode phase shifters providing the phase shift network of the antenna. In FIG. 3, the phase shifters 17, 18 and 19 respectively shifting by 3X / 4, λ / 2 and \ / 4, each consist of a diode 20 placed in a hole 21 made throughout the thickness L3 of the dielectric strip 7. This diode 20 is connected on one side directly to the metal plate covering one of the two faces parallel to the mediator plane and on the other side to a triplate trap placed on the other face parallel to the plane so that in microwave, the diode is connected on both sides to ground.

Un circuit imprimé 22 est connecté aux déphaseurs pour les alimenter et les commander. La hauteur L3 de la lame diélectrique 7 est égale à l'épaisseur des diodes 20 des déphaseurs.A printed circuit 22 is connected to the phase shifters to supply them and control them. The height L3 of the dielectric strip 7 is equal to the thickness of the diodes 20 of the phase shifters.

La figure 4 montre un autre exemple de réalisation d'une source rayonnante selon l'invention, dans laquelle les brins du dipôle ont une meilleure tenue mécanique que dans la figure précédente. On dispose sur la languette adaptative 11 ou 12 une plaquette de substrat diélectrique 23 de forme parallélépipédique rectangle et de même largeur que la languette adaptative 11 ou 12, de telle sorte que ses grands côtés 24 et 25 soient perpendiculaires au plan médiateur longitudinal π et telle que le petit côté perpendiculaire au plan π situé à l'extrémité de la languette métallique 11 ou 12 est métallisé pour constituer les brins 26 et 27 du dipôle.FIG. 4 shows another exemplary embodiment of a radiating source according to the invention, in which the strands of the dipole have better mechanical strength than in the previous figure. There is on the adaptive tongue 11 or 12 a dielectric substrate board 23 of rectangular parallelepiped shape and of the same width as the adaptive tongue 11 or 12, so that its long sides 24 and 25 are perpendicular to the longitudinal mediator plane π and such that the short side perpendicular to the plane π located at the end of the metal tongue 11 or 12 is metallized to form the strands 26 and 27 of the dipole.

Une autre réalisation des brins du dipôle est représentée sur la figure 5. Les brins 28 et 29 sont constitués par des lames métalliques étroites usinées de manière à avoir une section en forme de Té, alors que sur la figure 6, les brins 30 et 31 sont constitués par des lames métalliques de section en forme de U.Another embodiment of the dipole strands is shown in Figure 5. The strands 28 and 29 are formed by narrow metal blades machined so as to have a T-shaped section, while in Figure 6, the strands 30 and 31 consist of metal blades of U-shaped section.

La figure 7 représente une antenne à balayage électronique où les sources élémentaires sont réalisées conformément à l'invention. Tous les dipôles 32 sont orientés suivant la même direction qui est celle de la polarisation de l'antenne. A une distance égale au quart de la longueur d'onde de fonctionnement A/4, on place des parties réflectrices, constituant le réflecteur de l'antenne. Pour des raisons de tenue mécanique et de facilité d'assemblage, chaque rangée de dipôles 32, d'axe longitudinal perpendiculaire à la direction des brins des dipôles, est entourée d'un côté par une plaque métallique 33 de longueur égale à la hauteur de la rangée et d'un autre côté par des petites plaques métalliques 34 de longueur égale à la distance séparant deux dipôles. La forme de l'antenne peut être quelconque, plane ou parabolique par exemple.FIG. 7 represents an antenna with electronic scanning where the elementary sources are produced in accordance with the invention. All the dipoles 32 are oriented in the same direction which is that of the polarization of the antenna. At a distance equal to a quarter of the operating wavelength A / 4, reflective parts are placed, constituting the reflector of the antenna. For reasons of mechanical strength and ease of assembly, each row of dipoles 32, of longitudinal axis perpendicular to the direction of the strands of the dipoles, is surrounded on one side by a metal plate 33 of length equal to the height of the row and on the other hand by small metal plates 34 of length equal to the distance separating two dipoles. The shape of the antenna can be arbitrary, flat or parabolic for example.

On a ainsi décrit sous la forme de deux réalisations possibles une source rayonnante constituée par un guide d'onde extra-plat, de dimensions très réduites par rapport à celles de l'art antérieur. Ne nécessitant pas de matériel très coûteux ni de difficultés technologiques trop grandes, le coût global d'une telle source est relativement faible.We have thus described in the form of two possible embodiments a radiating source constituted by an extra-flat waveguide, of dimensions very reduced compared to those of the prior art. Neither requiring very expensive equipment nor too great technological difficulties, the overall cost of such a source is relatively low.

Claims (15)

1. Radiating source, constituted by a dipole which is excited by an extra flat wave guide of rectangular section and the branches of which extend in opposite directions, characterized in that it comprises a dielectric sheet (7) of parallelepipedic rectangular shape, having a predetermined length (L1) and width (L2) and a very small thickness (L3), whereby both large opposite sides, which are parallel to the longitudinal middle plane (ir) of the sheet, and both small opposite sides which are situated perpendicularly to the foregoing ones and parallelly to the longitudinal middle axis (Δ) of the sheet are each coated by a metal plate of a predetermined length (L) which is smaller than the length (L1) of the dielectric sheet and which thus constitutes the wave guide (8), the metal plates (9 and 10) which cover the two opposite faces parallel to the longitudinal middle plane (π) each protruding along the longitudinal middle axis (Δ) by a metal tongue (11 and 12) which leads to the dipole branches (13 and 14 ; 15 and 16 ; 26 and 27 ; 28 and 29 ; 30 and 31).
2. A radiating source according to claim 1, characterized in that each dipole branch (13 and 14) of perpendicular direction with respect to the electric field E of the wave which propagates in the wave guide, is constituted by a small metal strip which is disposed parallelly to the longitudinal middle plane (π) and perpendicularly to one of the metal tongues (11, 12) and in contact with its end.
3. A radiating source according to claim 1, characterized in that each dipole branch (15, and 16 ; 26 and 27 ; 28 and 29 ; 30 and 31) of parallel direction with respect to the polarisation plane of the wave which propagates in the wave guide (8), is constituted by a small metal tongue which is disposed perpendicularly to the longitudinal middle plane (π) and in contact with the end of one of the metal tongues (11 and 12).
4. A radiating source according to one of the claims 1 to 3, characterized in that the metal tongue (11 and 12) has a decreasing width from the wave guide (8) up to the dipole branches (13 and 14 ; 15 and 16 ; 26 and 27 ; 28 and 29 ; 30 and 31), thus realizing the impedance adaption between the wave guide and the dipole.
5. A radiating source according to claim 1, characterized in that the two opposite sides of the sheet which are parallel to the longitudinal middle plane (π) as well as the two opposite sides of the sheet which are perpendicular to the preceding sides are metal coated along a predetermined length (L) which is smaller than the length (L1) of the dielectric sheet, and thus build up the wave guide (8).
6. A radiating source according to claim 3, characterized in that the dipole branches (15 and 16) are made of small applied metal plates in order to warrant a better mechanical stability.
7. A radiating source according to claim 3, characterized in that each dipole branch (28 and 29) is constituted by small metal plates such that they have a T-shaped section.
8. A radiating source according to claim 3, characterized in that each dipole branch (30 and 31) is constituted by small metal plates such that they have a U-shaped section.
9. A radiating source according to claim 3, characterized in that a dielectric base plate (23) having a parallelepipedic rectangular form and the same width as the metal tongue (11 or 12), is disposed against the latter such that its larger sides (24 and 25) are disposed perpendicularly to the longitudinal middle plane (π), and in that its small face which is placed perpendicularly to the longitudinal middle plane (π) and at the end of the metal tongue, is metal coated and thus builds up one of the dipole branches (26 and 27).
10. A radiating source according to any one of the claims 1 to 4, 6 to 9, characterized in that the dielectric sheet (7) is a air sheet.
11. Utilization of the radiating source according to any one of the claims 1 to 7 in an antenna with electronic screening means, characterized in that this radiating source is directly connected to the output of at least one diode phase shifter.
12. Utilization according to claim 11, characterized in that the phase shifter which is associated to the radiating source is constituted by a diode (20) which is placed in a hole (21) made through the entire thickness of the dielectric sheet (7), this diode being connected by one of its terminals to a threeplate trap which is situated on the metal plate placed on a first face of the sheet, parallel to the longitudinal middle plane (π), and by the other terminal directly to the metal plate placed on the second face opposite the first one.
13. Utilization according to claim 12, characterized in that the thickness (L3) of the dielectric sheet is equal to the thickness of the diode (20) constituting the phase shifter.
14. Utilization according to any one of the claims 11 to 13, characterized in that the diode phase shifter which is associated to the source is fed and commanded by a printed circuit (22) which is placed parallelly to the dielectric sheet (7).
15. Utilization according to claim 11 of the radiating source according to any one of the claims 3 to 9, characterized in that the source comprises a reflecting part which is situated perpendicularly and at both sides of the dielectric sheet (7) at a distance from the plane comprising the dipole branches (32) which is equal to a quarter of the wave length at operation.
EP80400342A 1979-03-28 1980-03-14 Radiating source constituted by a dipole excited by a waveguide, and its use in an electronic scanning antenna Expired EP0017530B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR7907801 1979-03-28
FR7907801A FR2452804A1 (en) 1979-03-28 1979-03-28 RADIANT SOURCE CONSTITUTED BY A DIPOLE EXCITED BY A WAVEGUIDE, AND ELECTRONIC SCANNING ANTENNA COMPRISING SUCH SOURCES

Publications (2)

Publication Number Publication Date
EP0017530A1 EP0017530A1 (en) 1980-10-15
EP0017530B1 true EP0017530B1 (en) 1983-05-11

Family

ID=9223664

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80400342A Expired EP0017530B1 (en) 1979-03-28 1980-03-14 Radiating source constituted by a dipole excited by a waveguide, and its use in an electronic scanning antenna

Country Status (4)

Country Link
US (1) US4298878A (en)
EP (1) EP0017530B1 (en)
DE (1) DE3063029D1 (en)
FR (1) FR2452804A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2506082A1 (en) * 1981-05-15 1982-11-19 Thomson Csf CIRCULARLY POLARIZED ELECTROMAGNETIC WAVE RADIATOR
FR2518827A1 (en) * 1981-12-18 1983-06-24 Thomson Csf DEVICE FOR SUPPLYING A RADIANT DIPOLE
US4500887A (en) * 1982-09-30 1985-02-19 General Electric Company Microstrip notch antenna
US4710775A (en) * 1985-09-30 1987-12-01 The Boeing Company Parasitically coupled, complementary slot-dipole antenna element
US4782346A (en) * 1986-03-11 1988-11-01 General Electric Company Finline antennas
US4816839A (en) * 1987-12-18 1989-03-28 Amtech Corporation Transponder antenna
US4905013A (en) * 1988-01-25 1990-02-27 United States Of America As Represented By The Secretary Of The Navy Fin-line horn antenna
US4978965A (en) * 1989-04-11 1990-12-18 Itt Corporation Broadband dual-polarized frameless radiating element
US6052889A (en) * 1996-11-21 2000-04-25 Raytheon Company Radio frequency antenna and its fabrication
US5867130A (en) * 1997-03-06 1999-02-02 Motorola, Inc. Directional center-fed wave dipole antenna
US6396449B1 (en) 2001-03-15 2002-05-28 The Boeing Company Layered electronically scanned antenna and method therefor
US7193575B2 (en) * 2003-04-25 2007-03-20 Qualcomm Incorporated Wideband antenna with transmission line elbow
ATE460757T1 (en) 2004-04-28 2010-03-15 Nat Inst Inf & Comm Tech UBB LOOP ANTENNA
US8704718B2 (en) * 2009-09-15 2014-04-22 Honeywell International Inc. Waveguide to dipole radiator transition for rotating the polarization orthogonally
US9876282B1 (en) * 2015-04-02 2018-01-23 Waymo Llc Integrated lens for power and phase setting of DOEWG antenna arrays

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA660553A (en) * 1963-04-02 F. Radford Matthew Aerial systems
US2880417A (en) * 1955-02-11 1959-03-31 Lockheed Aircraft Corp Traveling wave device
GB787756A (en) * 1955-06-02 1957-12-18 Marconi Wireless Telegraph Co Improvements in or relating to wave guide mouth structures for projecting beams of electro-magnetic waves
US3553702A (en) * 1968-08-07 1971-01-05 Itt Waveguide radiator with perpendicular scattering posts at aperture
US3623112A (en) * 1969-12-19 1971-11-23 Bendix Corp Combined dipole and waveguide radiator for phased antenna array
US3778839A (en) * 1971-07-30 1973-12-11 Hallicrafters Co Double ridged wave guide feed for signal antenna
US3739391A (en) * 1972-06-12 1973-06-12 Us Air Force Metallized channel guide antenna
US4053897A (en) * 1976-10-14 1977-10-11 Honeywell Inc. Microwave element including source antenna and cavity portions
DE2811521A1 (en) * 1977-04-18 1978-10-19 Bendix Corp SYMMETRIZED BANDLINE DIPOLE

Also Published As

Publication number Publication date
FR2452804A1 (en) 1980-10-24
FR2452804B1 (en) 1983-06-10
EP0017530A1 (en) 1980-10-15
US4298878A (en) 1981-11-03
DE3063029D1 (en) 1983-06-16

Similar Documents

Publication Publication Date Title
EP0017530B1 (en) Radiating source constituted by a dipole excited by a waveguide, and its use in an electronic scanning antenna
EP0013222B1 (en) Diode phase shifter for microwaves and electronic scanning antenna comprising same
EP0205212B1 (en) Modular microwave antenna units and antenna composed of such units
EP0605046B1 (en) Microwave device comprising at least one transition between a transmission line integrated on a substrate and a waveguide
EP0899814B1 (en) Radiating structure
EP1580844B1 (en) Phase shifter with linear polarization and a resonating length which can be varied using mem switches.
EP1038333B1 (en) Patch antenna
EP0320404A1 (en) Helix-type antenna and its manufacturing process
EP0667984B1 (en) Monopolar wire-plate antenna
EP0082751B1 (en) Microwave radiator and its use in an electronically scanned antenna
FR2582865A1 (en) UNITARY MODULES OF MICROWAVE ANTENNA AND MICROWAVE ANTENNA COMPRISING SUCH MODULES
EP1042845B1 (en) Antenna
FR2739225A1 (en) MICROFREQUENCY ANTENNA ELEMENT
EP0115983A2 (en) Spatial filter for circularly polarized microwaves and Cassegrain antenna using such a filter
EP1234356B1 (en) Active electronic scan microwave reflector
EP1305846B1 (en) Active dual-polarization microwave reflector, in particular for electronically scanning antenna
EP0335788B1 (en) Microwave phase shifter
EP0048190B1 (en) Non-dispersive antenna array and its application to electronic scanning
FR2677176A1 (en) COAXIAL MODE CONVERTER-WAVEGUIDE MODE.
EP0065467B1 (en) Circularly polarised microwave antenna
FR2518828A1 (en) Frequency spatial filter for two frequency microwave antenna - comprising double sandwich of metallic grids and dielectric sheets
FR2668304A1 (en) Reciprocal phase shifter in dielectric guide with ferrite
FR2834131A1 (en) Monolithic microwave phase-shifter panel for radar and telecommunications incorporates polycrystalline silicon PIN diodes on a dielectric substrate
FR2538960A1 (en) Dual-function array antenna for radar
FR2703516A1 (en) Travelling-wave antenna

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE GB IT LU NL SE

17P Request for examination filed

Effective date: 19801024

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE DE GB IT LU NL SE

REF Corresponds to:

Ref document number: 3063029

Country of ref document: DE

Date of ref document: 19830616

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19831222

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19840331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19840331

Year of fee payment: 5

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19890331

BERE Be: lapsed

Owner name: THOMSON-CSF

Effective date: 19890331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19900331

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910222

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19910225

Year of fee payment: 12

Ref country code: DE

Payment date: 19910225

Year of fee payment: 12

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19911001

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920315

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19921201

EUG Se: european patent has lapsed

Ref document number: 80400342.4

Effective date: 19921005