EP1580844B1 - Phase shifter with linear polarization and a resonating length which can be varied using mem switches. - Google Patents

Phase shifter with linear polarization and a resonating length which can be varied using mem switches. Download PDF

Info

Publication number
EP1580844B1
EP1580844B1 EP05290642A EP05290642A EP1580844B1 EP 1580844 B1 EP1580844 B1 EP 1580844B1 EP 05290642 A EP05290642 A EP 05290642A EP 05290642 A EP05290642 A EP 05290642A EP 1580844 B1 EP1580844 B1 EP 1580844B1
Authority
EP
European Patent Office
Prior art keywords
slot
ground plane
cell according
resonant
mems
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05290642A
Other languages
German (de)
French (fr)
Other versions
EP1580844A1 (en
Inventor
Hervé Legay
Gérard Caille
Alexandre Laisne
David Cadoret
Raphael Gillard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP1580844A1 publication Critical patent/EP1580844A1/en
Application granted granted Critical
Publication of EP1580844B1 publication Critical patent/EP1580844B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/23Combinations of reflecting surfaces with refracting or diffracting devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0018Space- fed arrays

Definitions

  • the invention relates to the field of reflector array antennas (or “reflectarray antennas”), and more particularly the phase-shifting cells that equip such antennas.
  • the reflector network antennas constitute one of the two main families of network antennas, the other family consisting of phased array antennas (or "Phased Array Antennas"). These network antennas are particularly interesting because they can be reconfigured, for example to allow the passage of a coverage area (or “spot”) to another.
  • a reflective array antenna is constituted by radiating elements charged with intercepting with minimal losses of the waves, comprising signals to be transmitted, delivered by a primary source, in order to reflect them in a chosen direction, called the pointing direction.
  • each radiating element is equipped with a phase control device with which it constitutes a passive or active phase-shifting cell.
  • phase-shifting cell is meant here both the cavity and radiating slot structures and planar resonant structures radiating pad (or “patch”).
  • the invention is more particularly directed to active phase shifting cells with linear polarization.
  • phase-shifter cell provided either with a switch (or switch) consisting of diodes (generally PIN type), or MESFETs, or alternatively varactors, or mechanical control means (such as for example a loaded motor). to move a dielectric bar).
  • switch or switch
  • diodes generally PIN type
  • MESFETs or alternatively varactors
  • mechanical control means such as for example a loaded motor
  • phase switch cells consume a large amount of energy and are subject to significant losses and overheating.
  • Mechanically controlled phase shifters are complex to put particularly in the case of large networks, and energy consumers. In either case, the disadvantages induced by the phase control techniques used limit the applications of phase-shifting cells, especially in the space domain and more specifically in observation platforms such as satellites.
  • the object of the invention is therefore to improve the situation in the case of linear polarized active phase-shifter cell reflector array antennas.
  • a phase-shifted cell having a characteristic resonant length and comprising in at least one selected location a micron electromechanical device, MEMS type (for "Micro ElectroMechanical System”), which can be placed in at least two different states allowing and prohibiting respectively establishing a short circuit for varying the characteristic resonant length, to vary the phase shift of the waves to reflect which have at least one linear polarization.
  • MEMS type for "Micro ElectroMechanical System”
  • Each MEMS device may for example comprise a flexible conductor bridge whose states are controlled by two substantially superimposed control electrodes and one of which is constituted by the bridge.
  • each MEMS device may comprise a suspended conductive flexible beam (or "cantilever") whose states are controlled by a control electrode placed below its suspended part.
  • the cell according to the invention comprises a resonant planar structure comprising at least one rectangular upper block placed substantially parallel to a lower ground plane, at a selected distance, the lower ground plane defining at least one conductive "pad", for example rectangular , entirely surrounded by a non-conductive zone, placed below the upper pavement and of smaller dimensions than its own.
  • the cell comprises at least one metallized bushing connecting the upper pad to the pad, and the MEMS device is placed at the level of the non-conductive zone in order to establish in one of its states a connection between the pellet and the rest of the mass plan to control the resonant length of the upper pad.
  • the lower ground plane may optionally define at least two pellets (for example rectangular) completely surrounded by a non-conductive area, placed below the upper pad and of smaller dimensions than hers.
  • the cell comprises at least two metallized bushings respectively connecting the upper block to one of the pads, and at least two MEMS devices each placed at one of the non-conductive areas to establish links between the at least one of the pellets and the rest of the ground plane, thus making it possible to define at least three resonant lengths of different upper pavement according to their states.
  • the cell may comprise a higher ground plane comprising at least one radiating slot, provided with a MEMS device controlling its characteristic resonant length, a lower ground plane, and metallized vias connecting the plane. of lower mass to peripheral portions of the upper ground plane to define a resonant cavity.
  • the upper ground plane may comprise at least two radiating slots each provided with a single MEMS device controlling their characteristic resonant length. Each MEMS device can then be preferentially placed substantially in the middle of a radiating slot.
  • the slots are preferably substantially parallel to each other and may have slightly different lengths. But, they may also have a curved shape, so as to achieve together a short annular slot circuited at two substantially opposite points.
  • the upper ground plane may comprise a radiating slot, provided with at least two MEMS devices for defining at least three different resonant lengths according to their states.
  • the upper ground plane may optionally comprise at least one rectangular radiating slot having long sides parallel to a first direction, and at least one other rectangular radiating slot having long sides parallel to a second direction perpendicular to the first, so to allow a double linear polarization.
  • the cell may comprise a resonant planar structure comprising an upper block placed substantially parallel to a lower ground plane at a selected distance.
  • the block comprises at least one slot provided with at least one MEMS device controlling its characteristic resonant length.
  • the cell may then comprise a single slot (of half-wave length) provided with at least two MEMS devices, making it possible to define at least three different resonant lengths according to their states.
  • the upper block may be substantially square, and the cell may comprise at least a first and a second rectangular slot (quarter-wavelength) placed substantially opposite one another, opening on two opposite sides non-radiating square, and each having at least two MEMS devices for defining at least three different resonant lengths according to their states.
  • the cell may also comprise at least third and fourth rectangular slots (quarter-wave length) placed substantially opposite one another, opening on two other opposite non-radiating sides of the square, and each comprising at least two MEMS devices, making it possible to define at least three other different resonant lengths according to their states, in order to allow a linear double polarization. It is also possible to provide several upper blocks each provided with at least a half quarter wave slot, pairs of half slots facing then forming half-wave slots.
  • the bridge In the presence of a MEMS bridge device and slot (s) rectangular (s), the bridge is preferably placed substantially parallel to the long sides of the slot.
  • a beam MEMS device and of rectangular slot (s) said beam is preferably placed substantially perpendicular to the long sides of the slot.
  • the lower ground plane can define a lower block placed below the upper block and of smaller dimensions than its own.
  • the cell comprises metallized vias which connect the plane. of mass to peripheral parts of the upper block to define a resonant cavity.
  • This pavement and cavity structure defines yet another family of phase-shifting cells.
  • the invention also proposes a reflector array antenna equipped with at least two phase-shifting cells of the type of those presented above.
  • the invention is particularly well suited, although not exclusively, to Ku-band (12 to 18 GHz) geostationary telecommunication antennas, with reconfigurable coverage (orbital position change, traffic adaptation), and band radar antennas.
  • C (4 to 8 GHz) or in the X band (8 to 12 GHz), in particular for radars of SAR type (radars with synthetic aperture).
  • the invention relates to a linear polarization active phase shifter cell for an active reflector array antenna.
  • the reflector array antenna may for example be dedicated to telecommunications, for example of the Ku-band geostationary type (12 to 18 GHz), with reconfigurable coverage (orbital position change or traffic adaptation), or to C-band radars ( 4 to 8 GHz) or in the X band (8 to 12 GHz), in particular for radars of SAR type (synthetic aperture radars), or high-speed ISL-RF type links, particularly inside a small constellation of satellites flying in formation.
  • telecommunications for example of the Ku-band geostationary type (12 to 18 GHz), with reconfigurable coverage (orbital position change or traffic adaptation), or to C-band radars ( 4 to 8 GHz) or in the X band (8 to 12 GHz), in particular for radars of SAR type (synthetic aperture radars), or high-speed ISL-RF type links, particularly inside a small constellation of satellites flying in formation.
  • a phase-shifting cell comprises in one or more selected locations a micron electromechanical device, MEMS type (for "Micro ElectroMechanical System”).
  • MEMS type for "Micro ElectroMechanical System”
  • Each MEMS device can be placed, using electrical controls, in at least two different states enabling and prohibiting respectively the establishment of a short circuit intended to vary a characteristic resonant length of the cell, in order to vary the phase shift of the waves to be reflected (coming from the source of the antenna) having at least one polarization linear.
  • phase-shifting cell can be broken down into three large families according to its radiating structure.
  • a first family groups the cavity and slit (s) radiating structures, a second family groups planar resonant structures (or "patches") and a third family groups planar resonant cavity structures.
  • phase shifter cell CD comprising a substrate SB having a "rear” (or “lower”) face, secured to a ground plane “lower” PM1, and a face “before” (or “upper”) , secured to an "upper” mass plane PM2.
  • the substrate SB is for example made of Duroid or TMM and has a thickness d equal, for example, to ⁇ / 4, where ⁇ is the wavelength in the vacuum of the waves to be reflected, coming from the source of the antenna .
  • the lower ground planes PM1 and upper PM2 are electrically connected to each other via metallized holes (or vias) TM formed in the substrate SB.
  • metallized holes or vias
  • These planes are for example made from substrates of alumina, silicon or glass which, because of their small thicknesses (typically 500 microns) must be reported on a substrate SB Duroid or TMM so as to allow obtaining a thickness equal to ⁇ / 4.
  • the metallized holes TM are preferably implanted at the periphery of the lower mass planes PM1 and PM2 higher so as to define a resonant cavity.
  • a first technique consists in superimposing a Duroid (or Metclad) substrate, for example with a thickness of about 3 mm, on an alumina substrate, for example with a thickness of about 0.254 mm, and then depositing a lower ground plane PM1 on the underside of the Duroid substrate and an upper ground plane PM2, on the upper face of the alumina substrate, said upper ground plane PM2 being locally interrupted by the slots.
  • a Duroid (or Metclad) substrate for example with a thickness of about 3 mm
  • an alumina substrate for example with a thickness of about 0.254 mm
  • a second technique consists in using only a Duroid (or Metclad) substrate, for example of thickness equal to approximately 2 or 3 mm, and then forming on its upper face portions of an intermediate ground plane in which are formed voltage control lines, then to report on this upper surface portions of alumina substrates, for example of thickness equal to about 0.254 mm, having on an upper face a ground plane PM2 each comprising one or more slots, then to deposit a lower ground plane PM1 on the underside of the Duroid substrate, and finally to connect the lower ground plane, intermediate and upper by two levels of holes (or traverses) metallized.
  • the upper ground plane PM2 comprises a single radiating slot FR, preferably of rectangular shape defined by two long sides (longitudinal), of length b, and two small sides (transverse), of width a.
  • This radiating slot FR is for example made by etching the upper ground plane PM2.
  • the radiating slot FR has a resonance of parallel LC type.
  • the parameters of such a resonator depend mainly on the length b and width a of the radiating gap FR, as well as the permittivity ⁇ r of the substrate SB.
  • the cavity has a cutoff frequency equal to 18.75 GHz and operates only in its fundamental mode, this which corresponds to a guided wavelength ⁇ g equal to approximately 16.14 mm, in the case of an air cavity.
  • phase shifts of up to 360 ° can be obtained for slot widths FR of between approximately 0.25 mm. and about 1 mm.
  • the point of inflection of the phase shift is obtained at the resonance of the slot FR, which corresponds to a length b equal to about 5.5 mm, taking into account other values mentioned above.
  • the radiating slot FR is preferably centered in the middle of the upper ground plane PM2. But, it could be otherwise, especially in the presence of a possible complementary parasitic slot. In the latter case, the slots are located preferentially symmetrically with respect to the center of the cell.
  • the radiating slot FR is provided with three MEMS devices DC each constituting a two-state switch.
  • the radiating slot could comprise a different number of MEMS DC devices as long as it is at least one.
  • Each MEMS DC device here consists of a flexible PT conductive bridge whose two ends are secured to the holding pads PL themselves secured to the upper face of the substrate SB. These PL pads are for example made of gold or aluminum and have a thickness slightly greater than that of the upper ground plane PM2.
  • the flexible bridge PT is made in the form of a blade made conductive, for example by a metallization in gold or aluminum, and installed in the slot FR substantially parallel to its longitudinal edges.
  • each MEMS DC device comprises two substantially superimposed control electrodes, one of them being constituted by the flexible bridge PT, and the other being, for example, placed at a level of above the flexible bridge PT (not shown), these two electrodes being connected to a supply circuit (not shown).
  • the suspended portion of the bridge PT In the presence of a control current selected at the control electrodes, the suspended portion of the bridge PT is attracted to said LA access lines. The suspended portion then flexes to come into contact with the two access lines LA, which locally generates a short circuit in the radiating slot FR and reduces its characteristic resonant length (b), which is its electrical length. This is one of the two states of the MEMS DC device.
  • the bridge PT In the absence of control current, the bridge PT is remote from the access lines LA, so that the length of the radiating gap FR is not disturbed. This is the other state of the MEMS DC device.
  • the positions of the different MEMS DC devices are chosen so as to perform a regular quantization of the phase law. This positional constraint favors the implementation of MEMS devices at the edge of the slot.
  • These different resonant lengths correspond to different phase shifts of the wave reflected by the phase-shifter cell CD.
  • phase-shifter cell CD of the first family is illustrated. This is a variant of the phase-shifting cell CD described above with reference to the Figures 1 and 2 . More specifically, what differentiates the first embodiment of the second is the embodiment of the MEMS devices.
  • each MEMS device DC comprises a flexible beam (or “cantilever") conducting PE having an end secured to a stud conductor support PL 'formed in the radiating gap FR along one of the longitudinal edges and electrically connected to the upper ground plane PM2.
  • a flexible beam (or “cantilever") conducting PE having an end secured to a stud conductor support PL 'formed in the radiating gap FR along one of the longitudinal edges and electrically connected to the upper ground plane PM2.
  • This pad PL ' is for example made of gold or aluminum and has a thickness slightly greater than that of the upper ground plane PM2, so that the beam PE is suspended above the radiating slot FR and the level of the ground plane higher PM2.
  • the flexible beam PE is made in the form of a made conductive blade, for example by means of a metallization in gold or aluminum, installed substantially perpendicular to its longitudinal edges. The free end of the beam PE crosses the slot FR in its width and overflows slightly on the upper ground plane PM2 at a location where is preferably placed an electrically conductive contact pad PLC.
  • each MEMS device DC ' comprises a control electrode EC' placed below the suspended central part of the beam PE, and connected to a supply circuit (not shown), another electrode being constituted by the flexible beam PE conductor.
  • the control electrode EC ' is formed on the upper face of the substrate SB, inside the radiating slot FR.
  • the suspended portion of the beam PE is drawn toward said electrode. It then flexes until its free end comes into contact with the PLC contact pad, which locally generates a short circuit in the radiating slot FR and reduces its characteristic resonant length (b), which is its electrical length. This constitutes one of the two states of the MEMS device DC '.
  • the radiating slot FR is provided with three MEMS devices DC '. But, the radiating slot FR could comprise a different number of devices MEMS DC 'when it is at least equal to one.
  • N 5
  • N of radiating slots illustrated is not limiting. It can take any value greater than or equal to two.
  • at least one of the slots is not equipped with a MEMS device.
  • the radiating slots have, for some, different lengths. More precisely, in the example illustrated, the upper ground plane PM2 comprises two end radiating slots FR1, having a first characteristic resonant length L1, two intermediate radiating slots FR2, having a second characteristic resonant length L2 greater than L1, and a central radiating slot FR3 having a third characteristic resonant length L3 greater than L2. In one variant, the five slots could have five different lengths.
  • the five radiating slots FR1 to FR3 are substantially centered with respect to the middle of the upper ground plane PM2, and their MEMS DC bridge PT device is also installed in a centered position. But, we could do differently. Indeed, in the example described above we run the undesirable slots, but we could also change the resonant length of some of them to excite several resonances and well control the phase shift between slots, with the coupling.
  • the distance separating two adjacent slits may be fixed or variable. It varies according to the needs. It is typically between about 100 ⁇ m and 500 ⁇ m.
  • the slot or slots that one does not wish to use are short-circuited by placing their MEMS DC devices in their first state (bent).
  • the phase variation of the reflected wave is here obtained by selecting one of the combinations of short-circuited and non-short-circuited slots.
  • Each combination corresponds in fact to a particular and discrete phase shift mainly function of the ratio between the smallest characteristic resonant length and the greatest characteristic resonant length.
  • Each slot short-circuited in the middle acts as a parasitic element for the neighboring non-shorted slot. This is to excite several resonances to have a range of acceptable phase shifts, while avoiding a very resonant response leading to low band performance.
  • the coupling between the different resonances made by coupling between a slot and a patch (or patch), makes it possible to attenuate the resonant response.
  • phase-shifter cell CD of the first family is illustrated. This is a variant of the phase-shifting cell CD described above with reference to the Figures 5 and 6 .
  • each MEMS DC device with a PT bridge is indeed replaced by a MEMS DC 'PE beam device, of the type of those described with reference to FIGS. Figures 3 and 4 .
  • phase-shifting cell CD is identical to that of the phase-shifting cell described above with reference to the Figures 5 and 6 .
  • At least one FRV radiating slot is oriented in a first direction (“vertical”), and at least one FRH radiating slot oriented in a second direction (“horizontal”), perpendicular to the first.
  • the phase-shifter cell CD may comprise one or more FRV radiating slots and one or more FRH radiating slots, as required.
  • the cell is then preferably rectangular and has a width substantially equal to half of its length.
  • FRV and FRH radiating slots with only one PT bridge or PE beam MEMS device, but it is preferable to use FRV and FRH radiating slots with at least two bridge MEMS devices. PT or PE beam (as shown).
  • phase shifter cell CD comprising a substrate SB having a rear face (or lower), secured to a lower ground plane PM1 defining a lower pad (or "patch”), and a front face (or upper) , secured to a higher ground plane defining an upper patch (or "patch”) PS.
  • the upper PS and lower PM1 blocks define a resonant planar structure.
  • the substrate SB is for example made of Duroid or TMM and has a thickness of weak, typically of the order of ⁇ / 10 to ⁇ / 5, where ⁇ is the wavelength in the vacuum of the waves to be reflected, from the source of the antenna.
  • the upper block PS is placed substantially parallel to the lower ground plane PM1 and has dimensions smaller than its own.
  • the upper block PS is of rectangular shape, and preferably square.
  • the upper block PS has a single slot FP, preferably of rectangular shape defined by two long sides (longitudinal), of length b, and two small sides (transverse), of width a.
  • This slot FP is for example made by etching the ground plane constituting the upper pad PS.
  • the slot FP is provided with three MEMS devices DC bridge PT each constituting a two-state switch, of the type of those described above with reference to the Figures 1 and 2 .
  • the slot FP could comprise a different number of MEMS devices DC when it is at least equal to one.
  • the operating principle of this phase-shifting cell CD is identical to that described above with reference to the Figures 1 and 2 . Only the physical effect involved differs.
  • the slot FP is here intended to disrupt the path of currents flowing in the upper pad PS.
  • short-circuit (s) selected (s) by means of at least one of the MEMS devices DC placed in its first state (skewed)
  • the current path disturbances are varied, which varies the characteristic resonant length (or electrical length) of the upper pad PS and thus the phase shift of the reflected wave.
  • phase shifter cell CD of the second family On the figure 12 is illustrated a second example of phase shifter cell CD of the second family. This is a variant of the phase-shifting cell CD described above with reference to the figures 10 and 11 . More specifically, what differentiates the first embodiment of the second is the embodiment of the MEMS devices.
  • each MEMS device DC ' is of PE beam type, as in the embodiment described above with reference to FIGS. Figures 3 and 4 .
  • the disturbing slot FP is provided with three MEMS devices DC '. But, the disturbing slot FP could comprise a different number of devices MEMS DC 'since this one is at least equal to one.
  • the third example illustrated on the figure 13 comprises two metallized holes (or traverses) TM for electrically coupling the upper pad PS and the lower ground plane PM1 on either side of the two opposite ends of the disturbing slot FP.
  • These metallized holes MT are intended to supply DC power to the upper pad PS so as to bias the MEMS device.
  • the upper block PS comprises two small disturbing slots F1 and F2, whose resonance corresponds approximately to a length equal to a quarter of the wavelength, placed substantially opposite one another and opening on opposite edges, non-radiating.
  • Each small slot F1, F2 is provided with at least one (here two) MEMS device PT bridge (but it could be a PE beam).
  • a metallized hole (or traverse) TM makes it possible to electrically couple the upper pad PS and the lower ground plane PM1 in a central portion located between the two small disturbing slots F1 and F2.
  • This metallized hole MT is intended to supply DC power to the upper pad PS so as to bias the MEMS device. It is conceivable to produce two small quarter-wave disruptive slots, or more, opening on at least one of the non-radiating sides.
  • the upper block PS (substantially square) comprises only a rectangular slot opening on a non-radiating side of the square and having at least two MEMS devices DC or DC '.
  • small slot denotes a disturbing slot FP of the type presented above with reference to the figure 14 .
  • F1 to F4 disruptive slots having only a single PT bridge or PE beam MEMS device, but it is nevertheless preferable to use small F1 disruptive slots.
  • a metallized hole (e) TM (electromagnetic) makes it possible to electrically couple the upper pad PS and the lower ground plane PM1 in a central portion located between the four small disturbing slots F1 to F4, of length quarter wave.
  • This metallized hole MT is intended to supply DC power to the upper pad PS so as to bias the MEMS device.
  • the power supply of the upper block PS is carried out by means of at least one metallized hole TM. But, alternatively this power can be performed by means of a quarter-wave line with high impedance.
  • phase shifter cell CD comprising a substrate SB having a rear face (or lower), secured to a lower ground plane PM1, and a front face (or upper), secured to a higher ground plane defining a patch (or patch) upper PS 'rectangular shape.
  • the upper pavement PS 'and the lower ground plane PM1 constitute a short-circuited cobblestone structure which defines a resonant planar structure. It is important to note that the length of the upper PS block is chosen so that it is resonant at ⁇ / 4.
  • the substrate SB is for example made of Duroid or TMM and has a thickness of weak, typically of the order of ⁇ / 10 to ⁇ / 5, where ⁇ is the wavelength in the vacuum of the waves to be reflected, from the source of the antenna.
  • the upper pavement PS ' is placed substantially parallel to the lower mass plane PM1 and has dimensions much smaller than its own at least in one direction.
  • the lower ground plane PM1 comprises at least one small conductive "pellet" PI, isolated from its own conductive part by a non-conductive zone Z, made for example by etching.
  • Each small conductive pad P1 is electrically connected to the upper pad PS 'via a metallized hole (or traverse) TM.
  • each small conductive pad P1 is preferably of rectangular shape, and more preferably square.
  • Each metallized hole TM is connected to the upper pavement PS 'in a chosen location, the various locations being preferably substantially aligned along a line parallel to the longitudinal sides of said upper pavement PS.
  • each small conductive pad PI is provided with a MEMS device with a PT bridge or with a PE beam (as illustrated on FIG. figure 18 ), of the type described above.
  • Each MEMS device DC '(or DC) is intended to establish an electrical connection between its small lower block P1 and the conductive part of the lower ground plane PM1, when it is placed in its first state (bent).
  • the metallized hole TM which is connected to its small conductive pad P1 bypasses the upper pad PS' substantially to the place where it is connected, which has the effect of varying its characteristic resonant length (or electrical length) and thus the phase shift of the reflected wave.
  • This structure is advantageous because its devices being placed on the rear face they are more protected from radiation.
  • five metallized holes TM can define five short circuits corresponding to at least six different resonant lengths for the upper pad PS '. Consequently, by separately controlling the different MEMS devices DC '(or DC), it is possible to obtain several different phase shifts of the wave reflected by the phase-shifter cell CD.
  • phase-shifting cell CD may comprise a number of MEMS devices (DC or DC ') different from five, since this is at least one.
  • the number of MEMS devices used depends on the number of phase states that one wishes to obtain.
  • the sum of the length of the "active" dipole (that is to say between the short circuit and the other end of the dipole) and the length of the short-circuit must be equal to one quarter of the wavelength of the guided mode ⁇ g .
  • This exemplary embodiment can allow the constitution of a linear double polarization phase shifter cell, of the type of that illustrated on FIG. figure 9 . To do this, it is necessary to combine "horizontal" dipoles and “vertical” dipoles of the type described above with reference to the Figures 16 to 18 .
  • This exemplary embodiment constitutes, as it were, an intermediate structure between the exemplary embodiments illustrated on the Figures 5 to 8 and the exemplary embodiments illustrated on the Figures 10 to 12 .
  • the phase-shifter cell CD comprises a substrate SB having a rear face (or bottom), secured to a lower ground plane PM1, and a front face (or upper), secured to an upper pad PS.
  • the substrate SB is for example made of Duroid or TMM and has a thickness d equal to ⁇ / 4, where ⁇ is the wavelength in the vacuum of the waves to be reflected from the antenna source.
  • the substrate SB is traversed, on its periphery, by holes (or traverses) metallized (e) TM connected to the lower ground plane PM1 and surrounding the upper pad PS to define a resonant cavity.
  • the upper pad PS is a square of length between about 15 mm and about 17 mm.
  • the upper block PS comprises at least two (here five) radiating slots each comprising a single MEMS device (DC or DC ') PT bridge or PE beam.
  • the number N of slots radiating illustrated is not limiting. It can take any value greater than or equal to two.
  • the slits have a long side length of about 5 mm to about 7 mm, and a small side of width of about 0.3 mm to about 0.7 mm.
  • the radiating slots have, for some, different lengths. More precisely, in the example illustrated, the upper block PS comprises two end radiating slots FR1, having a first characteristic resonant length L1, two intermediate radiating slots FR2, having a second characteristic resonant length L2 greater than L1, and a slot radiating central FR3, having a third characteristic resonant length L3 greater than L2. In one variant, the five slots could have five different lengths.
  • the five radiating slots FR1 to FR3 are substantially centered with respect to the middle of the upper pad PS, and their MEMS DC devices with PT bridge (or DC 'with PE beam) are also installed in a centered position (for example).
  • the slot or slots that one does not wish to use are short-circuited by placing their MEMS DC devices in their first state (bent).
  • the phase variation of the reflected wave is here obtained by selecting one of the combinations of short-circuited and non-short-circuited slots.
  • Each combination corresponds in fact to a particular and discrete phase shift mainly function of the ratio between the smallest characteristic resonant length and the greatest characteristic resonant length.
  • Each slot short-circuited in the middle acts as a parasitic element for the neighboring non-shorted slot. Therefore, it is likely to improve the bandwidth of the non-shorted slot.
  • Some holes (or crossings) metallized (e) TM can be advantageously used to route the voltage commands at different MEMS devices DC or DC '.
  • each slot of half-wave length is constituted by two half-slots of quarter-wave length.
  • MEMS devices DC or DC ' were deliberately omitted so as not to overload the drawings.
  • two upper blocks PS1 and PS2 are placed substantially parallel to the lower ground plane PM1 and at a distance therefrom. These two upper blocks PS1 and PS2 are spaced from each other by a distance chosen so as to define between them a capacitive area. They have different shapes and each have a half quarter wave slot FR1, FR2. These two half slots FR1 and FR2 together constitute a half-wave slot and an inductive zone whose effect is advantageously compensated (at least partially) by the capacitive inter-pad area.
  • the blocks have a width equal to about 3.7 mm and are separated by a distance, forming a slot, equal to about 0.1 mm.
  • Such an asymmetrical structure provides a good stability frequency response due to an effective coupling between the two resonances.
  • three upper blocks PS1, PS2 and PS3 are placed substantially parallel to the lower ground plane PM1 and at a distance therefrom.
  • the two upper blocks PS1 and PS3 are substantially identical and surround the PS2 pad.
  • the two upper blocks PS1 and PS3 each have a half quarter wave slot FR1, FR4, while the upper block PS2 has two half quarter wave slots FR2 and FR3 opening on two opposite sides, one placed next to the half slot FR1 of the upper block PS1 and defining with it a first half wave slot, and the other placed next to the half slot FR4 of the upper pad PS3 and defining with it a second half wave slot.
  • Such a symmetrical structure also offers a frequency response of good stability due to an effective coupling between the resonances.
  • phase-shifting cells which comprise at least one block provided with at least one slot FP, described above, one or more auxiliary blocks and at least one MEMS device. coupling, so as to vary the size of the tile in at least one of its two directions (X and Y), and preferably along its length X which is parallel to the direction defining the length b (or long side) of FP slots.
  • a CD phase shifter cell of this type is illustrated on the figure 23 .
  • a substrate SB having a rear face (or lower), secured to a lower ground plane PM1, and a front face (or upper), secured to at least one PS pad and at least one auxiliary block PA1, PA2.
  • two auxiliary blocks PA1 and PA2 placed on both sides of two parallel sides of the PS pad (themselves parallel to the long sides (Y) of the slot FP).
  • Y long sides
  • the upper blocks PS, PA1 and PA2 and the lower ground plane PM1 define a resonant planar structure.
  • the phase-shifter cell CD also comprises at least one DC or DC coupling device MEMS installed between the pad PS and an auxiliary pad PA1, PA2 and responsible for establishing or not a contact between these blocks according to the state in which it is placed.
  • the PS block may be connected to each auxiliary pad PA1, PA2 via three MEMS devices DC ', a central and two end.
  • the two end MEMS devices DC ' are preferably placed symmetrically with respect to the center of the auxiliary pad PA1, PA2.
  • the different DC or DC MEMS devices which connect the PS block to one of the auxiliary blocks PA1, PA2 are preferably controlled by the same control current. In other words, they are preferably placed simultaneously in the same state so as to ensure either an electrical connection or an absence of electrical connection, between the PS block and the auxiliary block PA1, PA2 concerned.
  • the physical length (following X) of the PS pad can be increased.
  • the phase shift torque of the incident wave can be increased.
  • the possibility of controlling the dispersion of this phase shift in frequency is particularly interesting to compensate for the dispersive illumination in frequency of a planar reflector grating by a primary source.
  • auxiliary blocks may be placed parallel to each other, on at least one of the two sides of the PS pad, the blocks being connected in pairs by one or more coupling devices MEMS DC 'or DC, and preferably three. This makes it possible to further vary the physical length of the PS block, as needed, by playing on the respective states of the MEMS devices DC 'or DC coupling the auxiliary blocks.
  • auxiliary blocks which are located on either side of the two parallel sides of the PS pad do not necessarily have the same dimensions. This is particularly the case in the example illustrated on the figure 23 , where the auxiliary pad PA1 has a length (in the X direction) greater than that of the auxiliary pad PA2, but a width (in the Y direction) substantially identical to that of the auxiliary pad PA2.
  • the length of the keypad PS is equal to L
  • the lengths of the auxiliary keypads PA1 and PA2 can be respectively equal to L / 2 and L / 3.
  • the PS block may comprise one or more MEMS devices DC or DC '.
  • the number of MEMS devices used depends on the number of phase shift states that it is desired to obtain.
  • phase-shifting cell CD therefore makes it possible to dynamically vary, as needed, the phase shift and the phase-to-frequency dispersion, which is particularly advantageous for an active (or reconfigurable) antenna.
  • the choice of phase shift and dispersion the phase shift is in fact fixed by the physical length of the PS pad and by the electrical length of each slot FP of each pad PS, according to the respective states of the different MEMS devices used.
  • MEMS devices can be omitted at the slots. More specifically, as illustrated in Figures 24 and 25 , one can use a structure of the type of that illustrated on the Figures 10 to 12 , but without MEMS device.
  • Such a structure CD therefore comprises a substrate SB having a rear (or lower) face, secured to a lower ground plane PM1, and a front face (or upper), secured to at least one upper patch (or patch) PS comprising at least one least one FP slot.
  • the upper block PS and the lower ground plane PM1 define a resonant planar structure.
  • the upper block PS By judiciously choosing the dimensions of the upper block PS, and in particular its length x (in the X direction), and the slot FP, and in particular its length b (in the Y direction), as well as the thickness d of the substrate SB, it is possible to impose both a chosen phase shift and a phase dispersion in frequency chosen.
  • the upper block PS When the upper block PS has only one slot FP, it is preferably placed substantially at its center. But, the upper block PS could have several FP slots, possibly of different dimensions.
  • phase-shifting cell CD makes it possible to obtain any phase shift, and in particular phase shifts (very) greater than 360 °. It also makes it possible to control the dispersion of this phase shift in frequency.
  • the phase-shifting cells of the prior art which make it possible to obtain such characteristics, comprise three blocks placed parallel to one another above and above a lower ground plane (they are particular described in the article of JA Encinar et al., 27th ESA Antenna Workshop, Santiago de Compostela, Spain, March 2004, "Design of a three-layer printed reflectarray for dual polarization and dual coverage” ).
  • the phase-shifter cells CD according to the invention comprise only one level of metallization (upper block), in addition to the lower ground plane PM1, and are therefore much simpler to achieve than the phase-shifting cells of the prior art.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)

Abstract

The phase shifter has a slot radiator (FR) provided with micro electromechanical systems (DC). The systems are to be placed in two different states permitting and prohibiting respectively creation of a short circuit intended to vary a characteristic resonating length of the slot radiator, in order to shift a phase of wave reflected by the phase shifter. An independent claim is also included for a reflectarray antenna comprising a phase shifter.

Description

L'invention concerne le domaine des antennes réseau réflecteur (ou « reflectarray antennas »), et plus particulièrement les cellules déphaseuses qui équipent de telles antennes.The invention relates to the field of reflector array antennas (or "reflectarray antennas"), and more particularly the phase-shifting cells that equip such antennas.

Les antennes réseau réflecteur constituent l'une des deux principales familles d'antennes réseau, l'autre famille étant constituée des antennes réseau à commande de phase (ou « Phased Array Antennas »). Ces antennes réseaux sont particulièrement intéressantes du fait qu'elles peuvent être reconfigurées, par exemple pour permettre le passage d'une zone de couverture (ou « spot ») à une autre.The reflector network antennas constitute one of the two main families of network antennas, the other family consisting of phased array antennas (or "Phased Array Antennas"). These network antennas are particularly interesting because they can be reconfigured, for example to allow the passage of a coverage area (or "spot") to another.

Une antenne réseau réflecteur est constituée d'éléments rayonnants chargés d'intercepter avec des pertes minimales des ondes, comportant des signaux à transmettre, délivrées par une source primaire, afin de les réfléchir dans une direction choisie, appelée direction de pointage. Afin de permettre la reconfigurabilité du diagramme d'antenne, chaque élément rayonnant est équipé d'un dispositif de contrôle de phase avec lequel il constitue une cellule déphaseuse passive ou active.A reflective array antenna is constituted by radiating elements charged with intercepting with minimal losses of the waves, comprising signals to be transmitted, delivered by a primary source, in order to reflect them in a chosen direction, called the pointing direction. In order to allow the reconfigurability of the antenna pattern, each radiating element is equipped with a phase control device with which it constitutes a passive or active phase-shifting cell.

Par « cellule déphaseuse » on entend ici aussi bien les structures à cavité et fente rayonnantes que les structures planaires résonantes à pavé rayonnant (ou « patch »).By "phase-shifting cell" is meant here both the cavity and radiating slot structures and planar resonant structures radiating pad (or "patch").

L'invention vise plus particulièrement les cellules déphaseuses actives, à polarisation linéaire. Celles-ci comportent généralement une cellule déphaseuse pourvue soit d'un interrupteur (ou commutateur) constitué de diodes (généralement de type PIN), ou de MESFETs, ou encore de varactors, soit de moyens de commande mécanique (comme par exemple un moteur chargé de déplacer un barreau de diélectrique).The invention is more particularly directed to active phase shifting cells with linear polarization. These generally comprise a phase-shifter cell provided either with a switch (or switch) consisting of diodes (generally PIN type), or MESFETs, or alternatively varactors, or mechanical control means (such as for example a loaded motor). to move a dielectric bar).

Les cellules déphaseuses à interrupteur consomment une importante quantité d'énergie et sont l'objet de pertes significatives et d'échauffements. Les cellules déphaseuses à commande mécanique sont complexes à mettre en oeuvre, notamment dans le cas de réseaux de grandes tailles, et consommatrices d'énergie. Dans un cas comme dans l'autre, les inconvénients induits par les techniques de commande de phase utilisées limitent les applications des cellules déphaseuses, notamment dans le domaine spatial et plus spécifiquement dans les plateformes d'observation comme par exemple les satellites.The phase switch cells consume a large amount of energy and are subject to significant losses and overheating. Mechanically controlled phase shifters are complex to put particularly in the case of large networks, and energy consumers. In either case, the disadvantages induced by the phase control techniques used limit the applications of phase-shifting cells, especially in the space domain and more specifically in observation platforms such as satellites.

L'invention a donc pour but d'améliorer la situation dans le cas des antennes réseau réflecteur à cellules déphaseuses actives à polarisation linéaire.The object of the invention is therefore to improve the situation in the case of linear polarized active phase-shifter cell reflector array antennas.

Elle propose à cet effet une cellule déphaseuse présentant une longueur résonante caractéristique et comprenant en au moins un endroit choisi un dispositif électromécanique micronique, de type MEMS (pour « Micro ElectroMechanical System »), pouvant être placé dans au moins deux états différents permettant et interdisant respectivement l'établissement d'un court-circuit destiné à faire varier la longueur résonante caractéristique, afin de faire varier le déphasage des ondes à réfléchir qui présentent au moins une polarisation linéaire.It proposes for this purpose a phase-shifted cell having a characteristic resonant length and comprising in at least one selected location a micron electromechanical device, MEMS type (for "Micro ElectroMechanical System"), which can be placed in at least two different states allowing and prohibiting respectively establishing a short circuit for varying the characteristic resonant length, to vary the phase shift of the waves to reflect which have at least one linear polarization.

Chaque dispositif MEMS peut par exemple comporter un pont flexible conducteur dont les états sont commandés par deux électrodes de commande sensiblement superposées et dont l'une est constituée par le pont. En variante, chaque dispositif MEMS peut comprendre une poutre flexible conductrice suspendue (ou « cantilever ») dont les états sont commandés par une électrode de commande placée en dessous de sa partie suspendue.Each MEMS device may for example comprise a flexible conductor bridge whose states are controlled by two substantially superimposed control electrodes and one of which is constituted by the bridge. Alternatively, each MEMS device may comprise a suspended conductive flexible beam (or "cantilever") whose states are controlled by a control electrode placed below its suspended part.

La cellule selon l'invention comporte une structure planaire résonante comprenant au moins un pavé supérieur rectangulaire placé sensiblement parallèlement à un plan de masse inférieur, à une distance choisie, le plan de masse inférieur définissant au moins une « pastille » conductrice, par exemple rectangulaire, intégralement entourée d'une zone non conductrice, placée en dessous du pavé supérieur et de dimensions inférieures aux siennes. Dans ce cas, la cellule comporte au moins une traversée métallisée reliant le pavé supérieur à la pastille, et le dispositif MEMS est placé au niveau de la zone non conductrice afin d'établir dans l'un de ses états une liaison entre la pastille et le reste du plan de masse pour contrôler la longueur résonante du pavé supérieur.The cell according to the invention comprises a resonant planar structure comprising at least one rectangular upper block placed substantially parallel to a lower ground plane, at a selected distance, the lower ground plane defining at least one conductive "pad", for example rectangular , entirely surrounded by a non-conductive zone, placed below the upper pavement and of smaller dimensions than its own. In this case, the cell comprises at least one metallized bushing connecting the upper pad to the pad, and the MEMS device is placed at the level of the non-conductive zone in order to establish in one of its states a connection between the pellet and the rest of the mass plan to control the resonant length of the upper pad.

Le plan de masse inférieur peut éventuellement définir au moins deux pastilles (par exemple rectangulaires) intégralement entourées d'une zone non conductrice, placées en dessous du pavé supérieur et de dimensions inférieures aux siennes. Dans ce cas, la cellule comporte au moins deux traversées métallisées reliant respectivement le pavé supérieur à l'une des pastilles, et au moins deux dispositifs MEMS placés chacun au niveau de l'une des zones non conductrices afin d'établir des liaisons entre l'une au moins des pastilles et le reste du plan de masse, permettant ainsi de définir au moins trois longueurs résonantes de pavé supérieur différentes selon leurs états.The lower ground plane may optionally define at least two pellets (for example rectangular) completely surrounded by a non-conductive area, placed below the upper pad and of smaller dimensions than hers. In this case, the cell comprises at least two metallized bushings respectively connecting the upper block to one of the pads, and at least two MEMS devices each placed at one of the non-conductive areas to establish links between the at least one of the pellets and the rest of the ground plane, thus making it possible to define at least three resonant lengths of different upper pavement according to their states.

Dans une variante de cette famille de réalisation, la cellule peut comporter un plan de masse supérieur comprenant au moins une fente rayonnante, pourvue d'un dispositif MEMS contrôlant sa longueur résonante caractéristique, un plan de masse inférieur, et des traversées métallisées reliant le plan de masse inférieur à des parties périphériques du plan de masse supérieur afin de définir une cavité résonante. Par exemple, le plan de masse supérieur peut comprendre au moins deux fentes rayonnantes pourvues chacune d'un unique dispositif MEMS contrôlant leur longueur résonante caractéristique. Chaque dispositif MEMS peut alors être préférentiellement placé sensiblement au milieu d'une fente rayonnante. Par ailleurs, les fentes sont préférentiellement sensiblement parallèles entre elles et peuvent présenter des longueurs légèrement différentes. Mais, elles peuvent également avoir une forme courbe, de manière à réaliser ensemble une fente annulaire court circuitée en deux points sensiblement opposés.In a variant of this family of embodiments, the cell may comprise a higher ground plane comprising at least one radiating slot, provided with a MEMS device controlling its characteristic resonant length, a lower ground plane, and metallized vias connecting the plane. of lower mass to peripheral portions of the upper ground plane to define a resonant cavity. For example, the upper ground plane may comprise at least two radiating slots each provided with a single MEMS device controlling their characteristic resonant length. Each MEMS device can then be preferentially placed substantially in the middle of a radiating slot. Furthermore, the slots are preferably substantially parallel to each other and may have slightly different lengths. But, they may also have a curved shape, so as to achieve together a short annular slot circuited at two substantially opposite points.

En variante, le plan de masse supérieur peut comprendre une fente rayonnante, pourvue d'au moins deux dispositifs MEMS permettant de définir au moins trois longueurs résonantes différentes selon leurs états.Alternatively, the upper ground plane may comprise a radiating slot, provided with at least two MEMS devices for defining at least three different resonant lengths according to their states.

Par ailleurs, le plan de masse supérieur peut éventuellement comprendre au moins une fente rayonnante rectangulaire présentant des grands côtés parallèles à une première direction, et au moins une autre fente rayonnante rectangulaire présentant des grands côtés parallèles à une seconde direction perpendiculaire à la première, afin de permettre une double polarisation linéaire.On the other hand, the upper ground plane may optionally comprise at least one rectangular radiating slot having long sides parallel to a first direction, and at least one other rectangular radiating slot having long sides parallel to a second direction perpendicular to the first, so to allow a double linear polarization.

Dans une autre famille de réalisation, la cellule peut comporter une structure planaire résonante comprenant un pavé supérieur placé sensiblement parallèlement à un plan de masse inférieur, à une distance choisie. Dans ce cas, le pavé comporte au moins une fente munie d'au moins un dispositif MEMS contrôlant sa longueur résonante caractéristique.In another family of embodiments, the cell may comprise a resonant planar structure comprising an upper block placed substantially parallel to a lower ground plane at a selected distance. In this case, the block comprises at least one slot provided with at least one MEMS device controlling its characteristic resonant length.

La cellule peut alors comprendre une unique fente (de longueur demie onde) munie d'au moins deux dispositifs MEMS, permettant de définir au moins trois longueurs résonantes différentes selon leurs états. En variante, le pavé supérieur peut être sensiblement carré, et la cellule peut comprendre au moins une première et une deuxième fentes rectangulaires (de longueur quart d'onde) placées sensiblement en regard l'une de l'autre, débouchant sur deux côtés opposés non rayonnants du carré, et comportant chacune au moins deux dispositifs MEMS permettant de définir au moins trois longueurs résonantes différentes selon leurs états. Dans ce dernier cas, la cellule peut également comprendre au moins de troisième et quatrième fentes rectangulaires (de longueur quart d'onde) placées sensiblement en regard l'une de l'autre, débouchant sur deux autres côtés opposés non rayonnants du carré, et comportant chacune au moins deux dispositifs MEMS, permettant de définir au moins trois autres longueurs résonantes différentes selon leurs états, afin de permettre une double polarisation linéaire. On peut également prévoir plusieurs pavés supérieurs munis chacun d'au moins une demie fente quart d'onde, des paires de demies fentes en regard constituant alors des fentes demie onde.The cell may then comprise a single slot (of half-wave length) provided with at least two MEMS devices, making it possible to define at least three different resonant lengths according to their states. Alternatively, the upper block may be substantially square, and the cell may comprise at least a first and a second rectangular slot (quarter-wavelength) placed substantially opposite one another, opening on two opposite sides non-radiating square, and each having at least two MEMS devices for defining at least three different resonant lengths according to their states. In the latter case, the cell may also comprise at least third and fourth rectangular slots (quarter-wave length) placed substantially opposite one another, opening on two other opposite non-radiating sides of the square, and each comprising at least two MEMS devices, making it possible to define at least three other different resonant lengths according to their states, in order to allow a linear double polarization. It is also possible to provide several upper blocks each provided with at least a half quarter wave slot, pairs of half slots facing then forming half-wave slots.

En présence d'un dispositif MEMS à pont et de fente(s) rectangulaire(s), le pont est préférentiellement placé sensiblement parallèlement aux grands côtés de la fente. En revanche, en présence d'un dispositif MEMS à poutre et de fente(s) rectangulaire(s), ladite poutre est préférentiellement placée sensiblement perpendiculairement aux grands côtés de la fente.In the presence of a MEMS bridge device and slot (s) rectangular (s), the bridge is preferably placed substantially parallel to the long sides of the slot. On the other hand, in the presence of a beam MEMS device and of rectangular slot (s), said beam is preferably placed substantially perpendicular to the long sides of the slot.

Par ailleurs, le plan de masse inférieur peut définir un pavé inférieur placé en dessous du pavé supérieur et de dimensions inférieures aux siennes Dans ce cas, la cellule comporte des traversées métallisées qui relient le plan de masse à des parties périphériques du pavé supérieur afin de définir une cavité résonante. Cette structure à pavé et à cavité définit encore une autre famille de cellules déphaseuses.Moreover, the lower ground plane can define a lower block placed below the upper block and of smaller dimensions than its own. In this case, the cell comprises metallized vias which connect the plane. of mass to peripheral parts of the upper block to define a resonant cavity. This pavement and cavity structure defines yet another family of phase-shifting cells.

L'invention propose également une antenne réseau réflecteur équipée d'au moins deux cellules déphaseuses du type de celles présentées ci-avant.The invention also proposes a reflector array antenna equipped with at least two phase-shifting cells of the type of those presented above.

L'invention est particulièrement bien adaptée, bien que de façon non exclusive, aux antennes de télécommunication géostationnaires en bande Ku (12 à 18 GHz), à couverture reconfigurable (changement de position orbitale, adaptation du trafic), et aux antennes radar en bande C (4 à 8 GHz) ou en bande X (8 à 12 GHz), en particulier pour les radars de type SAR (radars à ouverture synthétique).The invention is particularly well suited, although not exclusively, to Ku-band (12 to 18 GHz) geostationary telecommunication antennas, with reconfigurable coverage (orbital position change, traffic adaptation), and band radar antennas. C (4 to 8 GHz) or in the X band (8 to 12 GHz), in particular for radars of SAR type (radars with synthetic aperture).

D'autres caractéristiques et avantages de l'invention apparaîtront à l'examen de la description détaillée ci-après, et des dessins annexés, sur lesquels :

  • la figure 1 illustre de façon schématique, dans une vue du dessus, un premier exemple de réalisation d'une cellule déphaseuse selon l'invention,
  • la figure 2 est une vue en coupe transversale selon l'axe II-II de la cellule déphaseuse de la figure 1,
  • la figure 3 illustre de façon schématique, dans une vue du dessus, un deuxième exemple de réalisation d'une cellule déphaseuse selon l'invention,
  • la figure 4 est une vue en coupe transversale selon l'axe IV-IV de la cellule déphaseuse de la figure 3,
  • la figure 5 illustre de façon schématique, dans une vue du dessus, un troisième exemple de réalisation d'une cellule déphaseuse selon l'invention,
  • la figure 6 est une vue en coupe transversale selon l'axe VI-VI de la cellule déphaseuse de la figure 5,
  • la figure 7 illustre de façon schématique, dans une vue du dessus, un quatrième exemple de réalisation d'une cellule déphaseuse selon l'invention,
  • la figure 8 est une vue en coupe transversale selon l'axe VIII-VIII de la cellule déphaseuse de la figure 7,
  • la figure 9 illustre de façon schématique, dans une vue du dessus, un cinquième exemple de réalisation d'une cellule déphaseuse selon l'invention,
  • la figure 10 illustre de façon schématique, dans une vue du dessus, un sixième exemple de réalisation d'une cellule déphaseuse selon l'invention,
  • la figure 11 est une vue en coupe transversale selon l'axe XI-XI des cellules déphaseuses des figures 10 et 12,
  • la figure 12 illustre de façon schématique, dans une vue du dessus, un septième exemple de réalisation d'une cellule déphaseuse selon l'invention,
  • la figure 13 illustre de façon schématique, dans une vue du dessus, un huitième exemple de réalisation d'une cellule déphaseuse selon l'invention,
  • la figure 14 illustre de façon schématique, dans une vue du dessus, un neuvième exemple de réalisation d'une cellule déphaseuse selon l'invention,
  • la figure 15 illustre de façon schématique, dans une vue du dessus, un dixième exemple de réalisation d'une cellule déphaseuse selon l'invention,
  • la figure 16 illustre de façon schématique, dans une vue du dessus, un onzième exemple de réalisation d'une cellule déphaseuse selon l'invention,
  • la figure 17 est une vue en coupe transversale selon l'axe XVII-XVII de la cellule déphaseuse de la figure 16,
  • la figure 18 est une vue en perspective détaillant une partie de la cellule déphaseuse de la figure 16,
  • la figure 19 illustre de façon schématique, dans une vue du dessus, un douzième exemple de réalisation d'une cellule déphaseuse selon l'invention,
  • la figure 20 est une vue en coupe transversale selon l'axe XX-XX de la cellule déphaseuse de la figure 19,
  • la figure 21 illustre de façon schématique, dans une vue du dessus, un treizième exemple de réalisation d'une cellule déphaseuse selon l'invention, sans ses dispositifs MEMS,
  • la figure 22 illustre de façon schématique, dans une vue du dessus, un quatorzième exemple de réalisation d'une cellule déphaseuse selon l'invention, sans ses dispositifs MEMS,
  • la figure 23 illustre de façon schématique, dans une vue du dessus, un quinzième exemple de réalisation d'une cellule déphaseuse selon l'invention,
  • la figure 24 illustre de façon schématique, dans une vue du dessus, un seizième exemple de réalisation d'une cellule déphaseuse selon l'invention,
  • la figure 25 est une vue en coupe transversale selon l'axe XXV-XXV de la cellule déphaseuse de la figure 24, et
  • la figure 26 est un diagramme illustrant l'évolution du déphasage (Δφ en degrés) en fonction de la longueur d'une fente (b en mm), pour plusieurs valeurs différentes de longueur de pavé supérieur (x = 3, 4, 5, 7,5 et 8 mm respectivement en allant du haut vers le bas) et pour une épaisseur de substrat (d').
Other features and advantages of the invention will appear on examining the detailed description below, and the attached drawings, in which:
  • the figure 1 schematically illustrates, in a view from above, a first embodiment of a phase-shifter cell according to the invention,
  • the figure 2 is a cross-sectional view along the axis II-II of the phase shifter cell of the figure 1 ,
  • the figure 3 schematically illustrates, in a view from above, a second embodiment of a phase-shifting cell according to the invention,
  • the figure 4 is a cross-sectional view along the axis IV-IV of the phase-shifting cell of the figure 3 ,
  • the figure 5 schematically illustrates, in a view from above, a third embodiment of a phase-shifting cell according to the invention,
  • the figure 6 is a cross-sectional view along the axis VI-VI of the phase-shifter cell of the figure 5 ,
  • the figure 7 schematically illustrates, in a view from above, a fourth embodiment of a phase-shifting cell according to the invention,
  • the figure 8 is a cross-sectional view along the axis VIII-VIII of the phase-shifter cell of the figure 7 ,
  • the figure 9 schematically illustrates, in a view from above, a fifth embodiment of a phase-shifting cell according to the invention,
  • the figure 10 schematically illustrates, in a view from above, a sixth exemplary embodiment of a phase-shifting cell according to the invention,
  • the figure 11 is a cross-sectional view along the axis XI-XI of the phase-shifter cells of figures 10 and 12 ,
  • the figure 12 schematically illustrates, in a view from above, a seventh embodiment of a phase-shifting cell according to the invention,
  • the figure 13 schematically illustrates, in a view from above, an eighth embodiment of a phase-shifting cell according to the invention,
  • the figure 14 schematically illustrates, in a view from above, a ninth embodiment of a phase-shifting cell according to the invention,
  • the figure 15 schematically illustrates, in a view from above, a tenth embodiment of a phase-shifting cell according to the invention,
  • the figure 16 schematically illustrates, in a view from above, an eleventh embodiment of a phase-shifting cell according to the invention,
  • the figure 17 is a cross-sectional view along the axis XVII-XVII of the phase-shifter cell of the figure 16 ,
  • the figure 18 is a perspective view detailing a portion of the phase shifter cell of the figure 16 ,
  • the figure 19 illustrates diagrammatically, in a view from above, a twelfth embodiment of a phase-shifting cell according to the invention,
  • the figure 20 is a cross-sectional view along the axis XX-XX of the phase-shifting cell of the figure 19 ,
  • the figure 21 schematically illustrates, in a view from above, a thirteenth embodiment of a phase-shifting cell according to the invention, without its MEMS devices,
  • the figure 22 schematically illustrates, in a view from above, a fourteenth embodiment of a phase-shifting cell according to the invention, without its MEMS devices,
  • the figure 23 schematically illustrates, in a view from above, a fifteenth embodiment of a phase-shifting cell according to the invention,
  • the figure 24 schematically illustrates, in a view from above, a sixteenth embodiment of a phase-shifting cell according to the invention,
  • the figure 25 is a cross-sectional view along the XXV-XXV axis of the phase shifter cell of the figure 24 , and
  • the figure 26 is a diagram illustrating the evolution of the phase shift (Δφ in degrees) as a function of the length of a slot (b in mm), for several different values of higher paver length (x = 3, 4, 5, 7.5 and 8 mm respectively from top to bottom) and for a substrate thickness (d ').

Les dessins annexés pourront non seulement servir à compléter l'invention, mais aussi contribuer à sa définition, le cas échéant.The attached drawings may not only serve to complete the invention, but also contribute to its definition, if any.

L'invention porte sur une cellule déphaseuse active à polarisation linéaire pour une antenne réseau réflecteur active.The invention relates to a linear polarization active phase shifter cell for an active reflector array antenna.

L'antenne réseau réflecteur peut par exemple être dédiée aux télécommunications, par exemple de type géostationnaire en bande Ku (12 à 18 GHz), à couverture reconfigurable (changement de position orbitale ou adaptation du trafic), ou bien aux radars en bande C (4 à 8 GHz) ou en bande X (8 à 12 GHz), en particulier pour les radars de type SAR (radars à ouverture synthétique), ou encore aux liaisons de type ISL-RF à haut débit, notamment à l'intérieur d'une petite constellation de satellites volant en formation.The reflector array antenna may for example be dedicated to telecommunications, for example of the Ku-band geostationary type (12 to 18 GHz), with reconfigurable coverage (orbital position change or traffic adaptation), or to C-band radars ( 4 to 8 GHz) or in the X band (8 to 12 GHz), in particular for radars of SAR type (synthetic aperture radars), or high-speed ISL-RF type links, particularly inside a small constellation of satellites flying in formation.

Dans sa plus grande généralité, une cellule déphaseuse, selon l'invention, comprend en un ou plusieurs endroits choisis un dispositif électromécanique micronique, de type MEMS (pour « Micro ElectroMechanical System »). Chaque dispositif MEMS peut être placé, à l'aide de commandes électriques, dans au moins deux états différents permettant et interdisant respectivement l'établissement d'un court-circuit destiné à faire varier une longueur résonante caractéristique de la cellule, afin de faire varier le déphasage des ondes à réfléchir (provenant de la source de l'antenne) présentant au moins une polarisation linéaire.In its greater generality, a phase-shifting cell, according to the invention, comprises in one or more selected locations a micron electromechanical device, MEMS type (for "Micro ElectroMechanical System"). Each MEMS device can be placed, using electrical controls, in at least two different states enabling and prohibiting respectively the establishment of a short circuit intended to vary a characteristic resonant length of the cell, in order to vary the phase shift of the waves to be reflected (coming from the source of the antenna) having at least one polarization linear.

Une telle cellule déphaseuse peut se décliner selon trois grandes familles selon sa structure rayonnante. Une première famille regroupe les structures à cavité et à fente(s) rayonnantes, une deuxième famille regroupe les structures planaires résonantes à pavés (ou « patches ») et une troisième famille regroupe les structures planaires résonantes à cavité.Such a phase-shifting cell can be broken down into three large families according to its radiating structure. A first family groups the cavity and slit (s) radiating structures, a second family groups planar resonant structures (or "patches") and a third family groups planar resonant cavity structures.

On se réfère tout d'abord aux figures 1 à 9 pour décrire des exemples de réalisation de cellules déphaseuses appartenant à la première famille.We first refer to Figures 1 to 9 to describe embodiments of phase-shifting cells belonging to the first family.

Sur les figures 1 et 2 se trouve illustré un premier exemple de cellule déphaseuse CD comprenant un substrat SB comportant une face « arrière » (ou « inférieure »), solidarisée à un plan de masse « inférieur » PM1, et une face « avant » (ou « supérieure »), solidarisée à un plan de masse « supérieur » PM2.On the Figures 1 and 2 is illustrated a first example of a phase shifter cell CD comprising a substrate SB having a "rear" (or "lower") face, secured to a ground plane "lower" PM1, and a face "before" (or "upper") , secured to an "upper" mass plane PM2.

Le substrat SB est par exemple réalisé en Duroïd ou TMM et présente une épaisseur d égale, par exemple, à λ/4, où λ est la longueur d'onde dans le vide des ondes à réfléchir, provenant de la source de l'antenne.The substrate SB is for example made of Duroid or TMM and has a thickness d equal, for example, to λ / 4, where λ is the wavelength in the vacuum of the waves to be reflected, coming from the source of the antenna .

Les plans de masse inférieur PM1 et supérieur PM2 sont raccordés électriquement entre eux par l'intermédiaire de trous (ou traversées) métallisés TM formés dans le substrat SB. Ces plans sont par exemple réalisés à partir de substrats en alumine, en silicium ou en verre qui, du fait de leurs faibles épaisseurs (typiquement 500 µm) doivent être rapportés sur un substrat SB en Duroïd ou TMM de manière à permettre l'obtention d'une épaisseur égale à λ/4. Les trous métallisés TM sont préférentiellement implantés à la périphérie des plans de masse inférieur PM1 et supérieur PM2 de manière à définir une cavité résonante.The lower ground planes PM1 and upper PM2 are electrically connected to each other via metallized holes (or vias) TM formed in the substrate SB. These planes are for example made from substrates of alumina, silicon or glass which, because of their small thicknesses (typically 500 microns) must be reported on a substrate SB Duroid or TMM so as to allow obtaining a thickness equal to λ / 4. The metallized holes TM are preferably implanted at the periphery of the lower mass planes PM1 and PM2 higher so as to define a resonant cavity.

Deux techniques peuvent être envisagées pour réaliser cet assemblage. Une première technique consiste à superposer un substrat en Duroïd (ou Metclad), par exemple d'épaisseur égale à environ 3 mm, sur un substrat en alumine, par exemple d'épaisseur égale à environ 0,254 mm, puis à déposer un plan de masse inférieur PM1 sur la face inférieure du substrat en Duroïd et un plan de masse supérieur PM2, sur la face supérieure du substrat en alumine, ledit plan de masse supérieur PM2 étant localement interrompu par les fentes. Une seconde technique consiste à n'utiliser qu'un substrat en Duroïd (ou Metclad), par exemple d'épaisseur égale à environ 2 ou 3 mm, puis à former sur sa face supérieure des portions d'un plan de masse intermédiaire dans lesquelles sont formées des lignes de commande de tension, puis à rapporter sur cette face supérieure des portions de substrats en alumine, par exemple d'épaisseur égale à environ 0,254 mm, comportant sur une face supérieure un plan de masse supérieur PM2 comportant chacun une ou plusieurs fentes, puis à déposer un plan de masse inférieur PM1 sur la face inférieure du substrat en Duroïd, et enfin à relier les plans de masse inférieur, intermédiaire et supérieur par deux niveaux de trous (ou traversées) métallisés.Two techniques can be envisaged to achieve this assembly. A first technique consists in superimposing a Duroid (or Metclad) substrate, for example with a thickness of about 3 mm, on an alumina substrate, for example with a thickness of about 0.254 mm, and then depositing a lower ground plane PM1 on the underside of the Duroid substrate and an upper ground plane PM2, on the upper face of the alumina substrate, said upper ground plane PM2 being locally interrupted by the slots. A second technique consists in using only a Duroid (or Metclad) substrate, for example of thickness equal to approximately 2 or 3 mm, and then forming on its upper face portions of an intermediate ground plane in which are formed voltage control lines, then to report on this upper surface portions of alumina substrates, for example of thickness equal to about 0.254 mm, having on an upper face a ground plane PM2 each comprising one or more slots, then to deposit a lower ground plane PM1 on the underside of the Duroid substrate, and finally to connect the lower ground plane, intermediate and upper by two levels of holes (or traverses) metallized.

Par ailleurs, le plan de masse supérieur PM2 comporte une unique fente rayonnante FR, préférentiellement de forme rectangulaire définie par deux grands côtés (longitudinaux), de longueur b, et deux petits côtés (transversaux), de largeur a.Furthermore, the upper ground plane PM2 comprises a single radiating slot FR, preferably of rectangular shape defined by two long sides (longitudinal), of length b, and two small sides (transverse), of width a.

Cette fente rayonnante FR est par exemple réalisée par gravure du plan de masse supérieur PM2.This radiating slot FR is for example made by etching the upper ground plane PM2.

Par ailleurs, la fente rayonnante FR présente une résonance de type LC parallèle. Les paramètres d'un tel résonateur (fréquence de résonance et bande passante) dépendent principalement des longueur b et largeur a de la fente rayonnante FR, ainsi que de la permittivité εr du substrat SB.Moreover, the radiating slot FR has a resonance of parallel LC type. The parameters of such a resonator (resonant frequency and bandwidth) depend mainly on the length b and width a of the radiating gap FR, as well as the permittivity ε r of the substrate SB.

Plusieurs modes peuvent se propager dans la cavité délimitée par les trous métallisés TM. Chacun de ces modes présente une constante de propagation β propre et une impédance caractéristique Z0 propre. La fréquence de coupure des modes dans la cavité dépend principalement des longueur mx et largeur my des plans de masse inférieur PM1 et supérieur PM2, ainsi que de la permittivité εr du substrat SB. Il est par ailleurs rappelé qu'une résonance verticale peut survenir dans ce type de cavité lorsque son épaisseur d est égale à nλg/2, où n est un entier et λg est la longueur d'onde du (des) mode(s) guidé(s) se propageant dans la cavité.Several modes can propagate in the cavity delimited by the metallized holes TM. Each of these modes has a clean propagation constant β and a characteristic impedance Z 0 of its own. The cut-off frequency of the modes in the cavity depends mainly on the length m x and width m y of the lower mass planes PM1 and higher PM2, as well as the permittivity ε r of the substrate SB. It is also recalled that a vertical resonance can occur in this type of cavity when its thickness d is equal to nλ g / 2, where n is an integer and λ g is the wavelength of the mode (s) ) guided (s) propagating in the cavity.

Par exemple, on peut choisir un réseau de maille carrée dans lequel mx = my = 0,7λ = 8 mm. Dans ce cas, et en présence d'une longueur d'onde λ correspondant à une fréquence de travail de 26,4 GHz, la cavité présente une fréquence de coupure égale à 18,75 GHz et ne fonctionne que dans son mode fondamental, ce qui correspond à une longueur d'onde guidée λg égale à environ 16,14 mm, dans le cas d'une cavité à air.For example, one can choose a square mesh network in which m x = m y = 0.7λ = 8 mm. In this case, and in the presence of a wavelength λ corresponding to a working frequency of 26.4 GHz, the cavity has a cutoff frequency equal to 18.75 GHz and operates only in its fundamental mode, this which corresponds to a guided wavelength λ g equal to approximately 16.14 mm, in the case of an air cavity.

En présence d'une cavité d'épaisseur d égale à λ/4 (soit ici environ λg/5,7), des déphasages pouvant atteindre 360° peuvent être obtenus pour des largeurs a de fente FR comprises entre environ 0,25 mm et environ 1 mm. Par exemple, en présence d'une largeur a égale à 0,5 mm, le point d'inflexion du déphasage est obtenu à la résonance de la fente FR, qui correspond à une longueur b égale à environ 5,5 mm, compte tenu des autres valeurs précitées.In the presence of a cavity with a thickness d equal to λ / 4 (in this case approximately λ g / 5.7), phase shifts of up to 360 ° can be obtained for slot widths FR of between approximately 0.25 mm. and about 1 mm. For example, in the presence of a width equal to 0.5 mm, the point of inflection of the phase shift is obtained at the resonance of the slot FR, which corresponds to a length b equal to about 5.5 mm, taking into account other values mentioned above.

Dans cet exemple de réalisation, la fente rayonnante FR est préférentiellement centrée au milieu du plan de masse supérieur PM2. Mais, il pourrait en être autrement, notamment en présence d'une éventuelle fente parasite complémentaire. Dans ce dernier cas, les fentes sont situées préférentiellement symétriquement par rapport au centre de la cellule.In this exemplary embodiment, the radiating slot FR is preferably centered in the middle of the upper ground plane PM2. But, it could be otherwise, especially in the presence of a possible complementary parasitic slot. In the latter case, the slots are located preferentially symmetrically with respect to the center of the cell.

Par ailleurs, dans cet exemple de réalisation, la fente rayonnante FR est pourvue de trois dispositifs MEMS DC constituant chacun un commutateur à deux états. Bien entendu, la fente rayonnante pourrait comporter un nombre différent de dispositifs MEMS DC dès lors que celui-ci est au moins égal à un.Furthermore, in this embodiment, the radiating slot FR is provided with three MEMS devices DC each constituting a two-state switch. Of course, the radiating slot could comprise a different number of MEMS DC devices as long as it is at least one.

Chaque dispositif MEMS DC est ici constitué d'un pont flexible conducteur PT dont les deux extrémités sont solidarisées à des plots de maintien PL eux-mêmes solidarisés à la face supérieure du substrat SB. Ces plots PL sont par exemple réalisés en Or ou en Aluminium et présentent une épaisseur légèrement supérieure à celle du plan de masse supérieur PM2. Le pont flexible PT est réalisé sous la forme d'une lame rendue conductrice, par exemple par une métallisation en Or ou en Aluminium, et installée dans la fente FR sensiblement parallèlement à ses bords longitudinaux.Each MEMS DC device here consists of a flexible PT conductive bridge whose two ends are secured to the holding pads PL themselves secured to the upper face of the substrate SB. These PL pads are for example made of gold or aluminum and have a thickness slightly greater than that of the upper ground plane PM2. The flexible bridge PT is made in the form of a blade made conductive, for example by a metallization in gold or aluminum, and installed in the slot FR substantially parallel to its longitudinal edges.

Par ailleurs, chaque dispositif MEMS DC comporte deux électrodes de commande sensiblement superposées, l'une d'entre elles étant constituée par le pont flexible PT, et l'autre étant, par exemple, placée à un niveau supérieur au dessus du pont flexible PT (non représenté), ces deux électrodes étant raccordées à un circuit d'alimentation (non représenté).Moreover, each MEMS DC device comprises two substantially superimposed control electrodes, one of them being constituted by the flexible bridge PT, and the other being, for example, placed at a level of above the flexible bridge PT (not shown), these two electrodes being connected to a supply circuit (not shown).

On prévoit également sur la face supérieure du substrat SB, à l'intérieur de la fente rayonnante FR et sensiblement au niveau d'une partie centrale de ses bords longitudinaux, deux petites lignes d'accès LA placées sensiblement en regard l'une de l'autre, perpendiculairement au pont flexible PT, et raccordées électriquement au plan de masse supérieur PM2.It is also provided on the upper face of the substrate SB, inside the radiating slot FR and substantially at a central portion of its longitudinal edges, two small access lines LA placed substantially opposite one of the the other, perpendicular to the flexible bridge PT, and electrically connected to the upper ground plane PM2.

En présence d'un courant de commande choisi au niveau des électrodes de commande, la partie suspendue du pont PT est attirée vers lesdites lignes d'accès LA. La partie suspendue fléchit alors jusqu'à venir au contact des deux lignes d'accès LA, ce qui génère localement un court-circuit dans la fente rayonnante FR et réduit sa longueur résonante caractéristique (b), qui est sa longueur électrique. Cela constitue l'un des deux états du dispositif MEMS DC.In the presence of a control current selected at the control electrodes, the suspended portion of the bridge PT is attracted to said LA access lines. The suspended portion then flexes to come into contact with the two access lines LA, which locally generates a short circuit in the radiating slot FR and reduces its characteristic resonant length (b), which is its electrical length. This is one of the two states of the MEMS DC device.

En l'absence de courant de commande, le pont PT est éloigné des lignes d'accès LA, si bien que la longueur de la fente rayonnante FR n'est pas perturbée. Cela constitue l'autre état du dispositif MEMS DC.In the absence of control current, the bridge PT is remote from the access lines LA, so that the length of the radiating gap FR is not disturbed. This is the other state of the MEMS DC device.

En commandant de façon séparée les différents dispositifs MEMS DC, il est donc possible, dans cet exemple de réalisation, de définir en trois positions différentes trois courts-circuits correspondant à au moins quatre longueurs résonantes différentes pour la fente FR. Bien entendu, les positions des différents dispositifs MEMS DC sont choisies de manière à réaliser une quantification régulière de la loi de phase. Cette contrainte positionnelle privilégie l'implantation des dispositifs MEMS en bord de fente. Ces différentes longueurs résonantes correspondent à des déphasages différents de l'onde réfléchie par la cellule déphaseuse CD.By controlling separately the different MEMS devices DC, it is therefore possible, in this embodiment, to define in three different positions three short circuits corresponding to at least four different resonant lengths for the slot FR. Of course, the positions of the different MEMS DC devices are chosen so as to perform a regular quantization of the phase law. This positional constraint favors the implementation of MEMS devices at the edge of the slot. These different resonant lengths correspond to different phase shifts of the wave reflected by the phase-shifter cell CD.

Sur les figures 3 et 4 se trouve illustré un deuxième exemple de cellule déphaseuse CD de la première famille. Il s'agit d'une variante de la cellule déphaseuse CD décrite ci-avant en référence aux figures 1 et 2. Plus précisément, ce qui différencie le premier exemple de réalisation du deuxième c'est le mode de réalisation des dispositifs MEMS.On the Figures 3 and 4 a second example of a phase-shifter cell CD of the first family is illustrated. This is a variant of the phase-shifting cell CD described above with reference to the Figures 1 and 2 . More specifically, what differentiates the first embodiment of the second is the embodiment of the MEMS devices.

Ici, chaque dispositif MEMS DC' comprend une poutre flexible (ou « cantilever ») conductrice PE comportant une extrémité solidarisée à un plot de maintien PL' conducteur, formé dans la fente rayonnante FR le long de l'un des bords longitudinaux et raccordé électriquement au plan de masse supérieur PM2.Here, each MEMS device DC 'comprises a flexible beam (or "cantilever") conducting PE having an end secured to a stud conductor support PL 'formed in the radiating gap FR along one of the longitudinal edges and electrically connected to the upper ground plane PM2.

Ce plot PL' est par exemple réalisé en Or ou en Aluminium et présente une épaisseur légèrement supérieure à celle du plan de masse supérieur PM2, de sorte que la poutre PE soit suspendue au dessus de la fente rayonnante FR et du niveau du plan de masse supérieur PM2. La poutre flexible PE est réalisée sous la forme d'une lame rendue conductrice, par exemple au moyen d'une métallisation en Or ou en Aluminium, installée sensiblement perpendiculairement à ses bords longitudinaux. L'extrémité libre de la poutre PE traverse la fente FR dans sa largeur et déborde légèrement sur le plan de masse supérieur PM2 en un endroit où est préférentiellement placé un plot de contact PLC conducteur électriquement.This pad PL 'is for example made of gold or aluminum and has a thickness slightly greater than that of the upper ground plane PM2, so that the beam PE is suspended above the radiating slot FR and the level of the ground plane higher PM2. The flexible beam PE is made in the form of a made conductive blade, for example by means of a metallization in gold or aluminum, installed substantially perpendicular to its longitudinal edges. The free end of the beam PE crosses the slot FR in its width and overflows slightly on the upper ground plane PM2 at a location where is preferably placed an electrically conductive contact pad PLC.

Par ailleurs, chaque dispositif MEMS DC' comporte une électrode de commande EC' placée en dessous de la partie centrale suspendue de la poutre PE, et raccordée à un circuit d'alimentation (non représenté), une autre électrode étant constituée par la poutre flexible conductrice PE. L'électrode de commande EC' est formée sur la face supérieure du substrat SB, à l'intérieur de la fente rayonnante FR.Moreover, each MEMS device DC 'comprises a control electrode EC' placed below the suspended central part of the beam PE, and connected to a supply circuit (not shown), another electrode being constituted by the flexible beam PE conductor. The control electrode EC 'is formed on the upper face of the substrate SB, inside the radiating slot FR.

En présence d'un courant de commande choisi au niveau de l'électrode de commande EC', la partie suspendue de la poutre PE est attirée vers ladite électrode. Elle fléchit alors jusqu'à ce que son extrémité libre vienne au contact du plot de contact PLC, ce qui génère localement un court-circuit dans la fente rayonnante FR et réduit sa longueur résonante caractéristique (b), qui est sa longueur électrique. Cela constitue l'un des deux états du dispositif MEMS DC'.In the presence of a control current selected at the control electrode EC ', the suspended portion of the beam PE is drawn toward said electrode. It then flexes until its free end comes into contact with the PLC contact pad, which locally generates a short circuit in the radiating slot FR and reduces its characteristic resonant length (b), which is its electrical length. This constitutes one of the two states of the MEMS device DC '.

En l'absence de courant de commande, l'extrémité libre de la poutre PE est éloignée du plot de contact PLC, si bien que la longueur de la fente rayonnante FR n'est pas perturbée. Cela constitue l'autre état du dispositif MEMS DC.In the absence of control current, the free end of the beam PE is remote from the contact pad PLC, so that the length of the radiating slot FR is not disturbed. This is the other state of the MEMS DC device.

En commandant de façon séparée les différents dispositifs MEMS DC', il est donc également possible, dans cet exemple de réalisation, de définir en trois positions différentes trois courts-circuits correspondant à au moins quatre longueurs résonantes différentes pour la fente FR. Bien entendu, les positions des différents dispositifs MEMS DC' sont choisies de manière à réaliser une quantification régulière de la loi de phase. Ces différentes longueurs résonantes correspondent à des déphasages différents de l'onde réfléchie par la cellule déphaseuse CD.By separately controlling the different MEMS devices DC ', it is therefore also possible, in this embodiment, to define in three different positions three short circuits corresponding to the minus four different resonant lengths for the FR slot. Of course, the positions of the different MEMS devices DC 'are chosen so as to perform a regular quantization of the phase law. These different resonant lengths correspond to different phase shifts of the wave reflected by the phase-shifter cell CD.

Dans cet exemple de réalisation, la fente rayonnante FR est pourvue de trois dispositifs MEMS DC'. Mais, la fente rayonnante FR pourrait comporter un nombre différent de dispositifs MEMS DC' dès lors que celui-ci est au moins égal à un.In this embodiment, the radiating slot FR is provided with three MEMS devices DC '. But, the radiating slot FR could comprise a different number of devices MEMS DC 'when it is at least equal to one.

Sur les figures 5 et 6 se trouve illustré un troisième exemple de cellule déphaseuse CD de la première famille. Dans cet exemple la cellule déphaseuse CD reprend la structure du premier exemple décrit ci-avant en référence aux figures 1 et 2, mais au lieu d'une unique fente rayonnante elle en comporte plusieurs (N = 5), et chaque fente comporte un unique dispositif MEMS DC à pont PT. Bien entendu, le nombre N de fentes rayonnantes illustré n'est pas limitatif. Il peut prendre n'importe quelle valeur supérieure ou égale à deux. Par ailleurs, on peut envisager que l'une au moins des fentes ne soit pas équipée d'un dispositif MEMS.On the Figures 5 and 6 a third example of a phase shifter cell CD of the first family is illustrated. In this example, the phase-shifting cell CD takes up the structure of the first example described above with reference to the Figures 1 and 2 , but instead of a single radiating slot it has several (N = 5), and each slot has a single device MEMS DC bridge PT. Of course, the number N of radiating slots illustrated is not limiting. It can take any value greater than or equal to two. Furthermore, it can be envisaged that at least one of the slots is not equipped with a MEMS device.

Les fentes rayonnantes présentent, pour certaines, des longueurs différentes. Plus précisément, dans l'exemple illustré, le plan de masse supérieur PM2 comporte deux fentes rayonnantes d'extrémité FR1, présentant une première longueur résonante caractéristique L1, deux fentes rayonnantes intermédiaires FR2, présentant une deuxième longueur résonante caractéristique L2 supérieure à L1, et une fente rayonnante centrale FR3, présentant une troisième longueur résonante caractéristique L3 supérieure à L2. Dans une variante, les cinq fentes pourraient présenter cinq longueurs différentes.The radiating slots have, for some, different lengths. More precisely, in the example illustrated, the upper ground plane PM2 comprises two end radiating slots FR1, having a first characteristic resonant length L1, two intermediate radiating slots FR2, having a second characteristic resonant length L2 greater than L1, and a central radiating slot FR3 having a third characteristic resonant length L3 greater than L2. In one variant, the five slots could have five different lengths.

Ici, les cinq fentes rayonnantes FR1 à FR3 sont sensiblement centrées par rapport au milieu du plan de masse supérieur PM2, et leur dispositif MEMS DC à pont PT est également installé en position centrée. Mais, on pourrait faire différemment. En effet, dans l'exemple décrit ci-avant on court circuite les fentes non désirables, mais on pourrait également modifier la longueur résonante de certaines d'entre elles afin d'exciter plusieurs résonances et de bien maîtriser le déphasage entre fentes, avec le couplage.Here, the five radiating slots FR1 to FR3 are substantially centered with respect to the middle of the upper ground plane PM2, and their MEMS DC bridge PT device is also installed in a centered position. But, we could do differently. Indeed, in the example described above we run the undesirable slots, but we could also change the resonant length of some of them to excite several resonances and well control the phase shift between slots, with the coupling.

La distance séparant deux fentes voisines peut être fixe ou variable. Elle varie selon les besoins. Elle est typiquement comprise entre environ 100 µm et 500 µm.The distance separating two adjacent slits may be fixed or variable. It varies according to the needs. It is typically between about 100 μm and 500 μm.

Il s'agit ici de n'utiliser qu'une ou plusieurs fentes rayonnantes en plaçant leurs dispositifs MEMS DC respectifs dans leur second état (non fléchi). La ou les fentes que l'on ne souhaite pas utiliser sont court-circuitées en plaçant leurs dispositifs MEMS DC dans leur premier état (fléchi). La variation de phase de l'onde réfléchie est donc ici obtenue par sélection de l'une des combinaisons de fentes court-circuitées et non court-circuitées. A chaque combinaison correspond en effet un déphasage particulier et discret fonction principalement du rapport entre la plus petite longueur résonante caractéristique et la plus grande longueur résonante caractéristique.This is to use one or more radiating slots by placing their respective MEMS devices DC in their second state (not bent). The slot or slots that one does not wish to use are short-circuited by placing their MEMS DC devices in their first state (bent). The phase variation of the reflected wave is here obtained by selecting one of the combinations of short-circuited and non-short-circuited slots. Each combination corresponds in fact to a particular and discrete phase shift mainly function of the ratio between the smallest characteristic resonant length and the greatest characteristic resonant length.

Chaque fente court-circuitée en son milieu agit en quelque sorte comme un élément parasite pour la fente non court-circuitée voisine. Il s'agit ici d'exciter plusieurs résonances pour disposer d'une gamme de déphasages acceptable, tout en évitant une réponse très résonante conduisant à des performances faible bande. Le couplage entre les différentes résonances, réalisé par couplage entre une fente et un pavé (ou patch), permet d'atténuer la réponse résonante.Each slot short-circuited in the middle acts as a parasitic element for the neighboring non-shorted slot. This is to excite several resonances to have a range of acceptable phase shifts, while avoiding a very resonant response leading to low band performance. The coupling between the different resonances, made by coupling between a slot and a patch (or patch), makes it possible to attenuate the resonant response.

Sur les figures 7 et 8 se trouve illustré un quatrième exemple de cellule déphaseuse CD de la première famille. Il s'agit d'une variante de la cellule déphaseuse CD décrite ci-avant en référence aux figures 5 et 6.On the figures 7 and 8 a fourth example of a phase-shifter cell CD of the first family is illustrated. This is a variant of the phase-shifting cell CD described above with reference to the Figures 5 and 6 .

Plus précisément, ce qui différencie le quatrième exemple de réalisation du troisième c'est le mode de réalisation des dispositifs MEMS. Dans cet exemple, chaque dispositif MEMS DC à pont PT est en effet remplacé par un dispositif MEMS DC' à poutre PE, du type de ceux décrits en référence aux figures 3 et 4.More specifically, what differentiates the fourth embodiment of the third is the MEMS device embodiment. In this example, each MEMS DC device with a PT bridge is indeed replaced by a MEMS DC 'PE beam device, of the type of those described with reference to FIGS. Figures 3 and 4 .

Le fonctionnement de cette cellule déphaseuse CD est identique à celui de la cellule déphaseuse décrite ci-avant en référence aux figures 5 et 6.The operation of this phase-shifting cell CD is identical to that of the phase-shifting cell described above with reference to the Figures 5 and 6 .

Comme cela est illustré sur le cinquième exemple de la figure 9, il est possible de constituer une cellule déphaseuse CD appartenant à la première famille et adaptée à une double polarisation linéaire.As illustrated on the fifth example of the figure 9 , it is possible to constitute a phase-shifting cell CD belonging to the first family and adapted to a linear double polarization.

Pour ce faire, on utilise au moins une fente rayonnante FRV orientée selon une première direction (« verticale »), et au moins une fente rayonnante FRH orientée selon une seconde direction (« horizontale »), perpendiculaire à la première. Bien entendu, comme illustré sur la figure 9, la cellule déphaseuse CD peut comporter une ou plusieurs fentes rayonnantes FRV et une ou plusieurs fentes rayonnantes FRH, selon les besoins. La cellule est alors préférentiellement rectangulaire et présente une largeur sensiblement égale à la moitié de sa longueur.To do this, at least one FRV radiating slot is oriented in a first direction ("vertical"), and at least one FRH radiating slot oriented in a second direction ("horizontal"), perpendicular to the first. Of course, as illustrated on the figure 9 , the phase-shifter cell CD may comprise one or more FRV radiating slots and one or more FRH radiating slots, as required. The cell is then preferably rectangular and has a width substantially equal to half of its length.

Il est possible d'utiliser des fentes rayonnantes FRV et FRH ne comportant qu'un unique dispositif MEMS à pont PT ou à poutre PE, mais il est cependant préférable d'utiliser des fentes rayonnantes FRV et FRH comportant au moins deux dispositifs MEMS à pont PT ou à poutre PE (comme illustré).It is possible to use FRV and FRH radiating slots with only one PT bridge or PE beam MEMS device, but it is preferable to use FRV and FRH radiating slots with at least two bridge MEMS devices. PT or PE beam (as shown).

On se réfère maintenant aux figures 10 à 18 pour décrire des exemples de réalisation de cellules déphaseuses appartenant à la deuxième famille.We now refer to Figures 10 to 18 to describe embodiments of phase-shifting cells belonging to the second family.

Sur les figures 10 et 11 se trouve illustré un premier exemple de cellule déphaseuse CD comprenant un substrat SB comportant une face arrière (ou inférieure), solidarisée à un plan de masse inférieur PM1 définissant un pavé (ou « patch ») inférieur, et une face avant (ou supérieure), solidarisée à un plan de masse supérieur définissant un pavé (ou « patch ») supérieur PS. Les pavés supérieur PS et inférieur PM1 définissent une structure planaire résonante.On the figures 10 and 11 is illustrated a first example of a phase shifter cell CD comprising a substrate SB having a rear face (or lower), secured to a lower ground plane PM1 defining a lower pad (or "patch"), and a front face (or upper) , secured to a higher ground plane defining an upper patch (or "patch") PS. The upper PS and lower PM1 blocks define a resonant planar structure.

Le substrat SB est par exemple réalisé en Duroïd ou en TMM et présente une épaisseur d' faible, typiquement de l'ordre de λ/10 à λ/5, où λ est la longueur d'onde dans le vide des ondes à réfléchir, provenant de la source de l'antenne.The substrate SB is for example made of Duroid or TMM and has a thickness of weak, typically of the order of λ / 10 to λ / 5, where λ is the wavelength in the vacuum of the waves to be reflected, from the source of the antenna.

Le pavé supérieur PS est placé sensiblement parallèlement au plan de masse inférieur PM1 et présente des dimensions inférieures aux siennes. Par exemple, et comme illustré, le pavé supérieur PS est de forme rectangulaire, et préférentiellement carrée.The upper block PS is placed substantially parallel to the lower ground plane PM1 and has dimensions smaller than its own. For example, and as illustrated, the upper block PS is of rectangular shape, and preferably square.

Par ailleurs, le pavé supérieur PS comporte une unique fente FP, préférentiellement de forme rectangulaire définie par deux grands côtés (longitudinaux), de longueur b, et deux petits côtés (transversaux), de largeur a.In addition, the upper block PS has a single slot FP, preferably of rectangular shape defined by two long sides (longitudinal), of length b, and two small sides (transverse), of width a.

Cette fente FP est par exemple réalisée par gravure du plan de masse constituant le pavé supérieur PS.This slot FP is for example made by etching the ground plane constituting the upper pad PS.

Dans cet exemple de réalisation, la fente FP est pourvue de trois dispositifs MEMS DC à pont PT constituant chacun un commutateur à deux états, du type de ceux décrits précédemment en référence aux figures 1 et 2. Bien entendu, la fente FP pourrait comporter un nombre différent de dispositifs MEMS DC dès lors que celui-ci est au moins égal à un.In this embodiment, the slot FP is provided with three MEMS devices DC bridge PT each constituting a two-state switch, of the type of those described above with reference to the Figures 1 and 2 . Of course, the slot FP could comprise a different number of MEMS devices DC when it is at least equal to one.

Le principe de fonctionnement de cette cellule déphaseuse CD, et plus précisément de ses dispositifs MEMS DC, est identique à celui décrit précédemment en référence aux figures 1 et 2. Seul l'effet physique impliqué diffère. La fente FP est ici destinée à venir perturber le trajet des courants qui circulent dans le pavé supérieur PS. En faisant varier la longueur de la fente perturbatrice FP, par l'établissement de court(s)-circuit(s) choisi(s) au moyen de l'un au moins des dispositifs MEMS DC placé dans son premier état (fléchi), on fait varier les perturbations de trajet des courants, ce qui fait varier la longueur résonante caractéristique (ou longueur électrique) du pavé supérieur PS et donc le déphasage de l'onde réfléchie.The operating principle of this phase-shifting cell CD, and more precisely of its MEMS DC devices, is identical to that described above with reference to the Figures 1 and 2 . Only the physical effect involved differs. The slot FP is here intended to disrupt the path of currents flowing in the upper pad PS. By varying the length of the disturbing slot FP, by setting short-circuit (s) selected (s) by means of at least one of the MEMS devices DC placed in its first state (skewed), the current path disturbances are varied, which varies the characteristic resonant length (or electrical length) of the upper pad PS and thus the phase shift of the reflected wave.

Il est important de noter que l'invention ne peut ici s'appliquer qu'à condition que le pavé supérieur PS soit résonant à λ/2.It is important to note that the invention can only be applied here if the upper block PS is resonant at λ / 2.

Sur la figure 12 se trouve illustré un deuxième exemple de cellule déphaseuse CD de la deuxième famille. Il s'agit d'une variante de la cellule déphaseuse CD décrite ci-avant en référence aux figures 10 et 11. Plus précisément, ce qui différencie le premier exemple de réalisation du deuxième c'est le mode de réalisation des dispositifs MEMS.On the figure 12 is illustrated a second example of phase shifter cell CD of the second family. This is a variant of the phase-shifting cell CD described above with reference to the figures 10 and 11 . More specifically, what differentiates the first embodiment of the second is the embodiment of the MEMS devices.

Ici, chaque dispositif MEMS DC' est de type à poutre PE, comme dans l'exemple de réalisation décrit ci-avant en référence aux figures 3 et 4. Par ailleurs, dans cet exemple de réalisation, la fente perturbatrice FP est pourvue de trois dispositifs MEMS DC'. Mais, la fente perturbatrice FP pourrait comporter un nombre différent de dispositifs MEMS DC' dès lors que celui-ci est au moins égal à un.Here, each MEMS device DC 'is of PE beam type, as in the embodiment described above with reference to FIGS. Figures 3 and 4 . Moreover, in this exemplary embodiment, the disturbing slot FP is provided with three MEMS devices DC '. But, the disturbing slot FP could comprise a different number of devices MEMS DC 'since this one is at least equal to one.

Comme cela est illustré sur les figures 13 et 14, on peut envisager au moins des troisième et quatrième exemples de réalisation, variantes des premier et deuxième exemples de réalisation décrits ci-avant en référence aux figures 10 à 12.As illustrated on the Figures 13 and 14 , it is possible to envisage at least third and fourth exemplary embodiments, variants of the first and second embodiments described above with reference to FIGS. Figures 10 to 12 .

Plus précisément, le troisième exemple illustré sur la figure 13 comporte deux trous (ou traversées) métallisés TM permettant de coupler électriquement le pavé supérieur PS et le plan de masse inférieur PM1 de part et d'autre des deux extrémités opposées de la fente perturbatrice FP. Ces trous métallisés MT sont destinés à alimenter en courant continu le pavé supérieur PS de manière à polariser le dispositif MEMS.More specifically, the third example illustrated on the figure 13 comprises two metallized holes (or traverses) TM for electrically coupling the upper pad PS and the lower ground plane PM1 on either side of the two opposite ends of the disturbing slot FP. These metallized holes MT are intended to supply DC power to the upper pad PS so as to bias the MEMS device.

Dans le quatrième exemple illustré sur la figure 14, le pavé supérieur PS comporte deux petites fentes perturbatrices F1 et F2, dont la résonance correspond approximativement à une longueur égale au quart de la longueur d'onde, placées sensiblement en regard l'une de l'autre et débouchant sur des bords opposés, non rayonnants. Chaque petite fente F1, F2 est munie d'au moins un (ici deux) dispositif MEMS à pont PT (mais il pourrait s'agir d'une poutre PE). Par ailleurs, un trou (ou traversée) métallisé TM permet de coupler électriquement le pavé supérieur PS et le plan de masse inférieur PM1 dans une partie centrale située entre les deux petites fentes perturbatrices F1 et F2. Ce trou métallisé MT est destiné à alimenter en courant continu le pavé supérieur PS de manière à polariser le dispositif MEMS. On peut envisager de réaliser deux petites fentes perturbatrices quart d'onde, ou plus, débouchant sur l'un au moins des côtés non rayonnants.In the fourth example shown on the figure 14 the upper block PS comprises two small disturbing slots F1 and F2, whose resonance corresponds approximately to a length equal to a quarter of the wavelength, placed substantially opposite one another and opening on opposite edges, non-radiating. Each small slot F1, F2 is provided with at least one (here two) MEMS device PT bridge (but it could be a PE beam). In addition, a metallized hole (or traverse) TM makes it possible to electrically couple the upper pad PS and the lower ground plane PM1 in a central portion located between the two small disturbing slots F1 and F2. This metallized hole MT is intended to supply DC power to the upper pad PS so as to bias the MEMS device. It is conceivable to produce two small quarter-wave disruptive slots, or more, opening on at least one of the non-radiating sides.

Bien entendu, on peut également envisager que le pavé supérieur PS (sensiblement carré) ne comprenne qu'une fente rectangulaire débouchant sur un côté non rayonnant du carré et comportant au moins deux dispositifs MEMS DC ou DC'.Of course, it is also conceivable that the upper block PS (substantially square) comprises only a rectangular slot opening on a non-radiating side of the square and having at least two MEMS devices DC or DC '.

Comme cela est illustré sur le cinquième exemple de la figure 15, il est possible de constituer une cellule déphaseuse CD appartenant à la deuxième famille et adaptée à une double polarisation linéaire.As illustrated on the fifth example of the figure 15 it is possible to constitute a phase-shifting cell CD belonging to the second family and adapted to a linear double polarization.

Pour ce faire, on peut par exemple utiliser au moins deux petites fentes perturbatrices F1 et F2 orientées selon une première direction, et au moins deux petites fentes perturbatrices F3 et F4 orientées selon une seconde direction, perpendiculaire à la première. On entend ici par « petite fente » une fente perturbatrice FP du type de celle présentée ci-avant en référence à la figure 14.To do this, it is possible for example to use at least two small disturbing slots F1 and F2 oriented in a first direction, and at least two small disturbing slots F3 and F4 oriented in a direction. second direction, perpendicular to the first. Here, the term "small slot" denotes a disturbing slot FP of the type presented above with reference to the figure 14 .

Il est possible d'utiliser des petites fentes perturbatrices F1 à F4, de longueur quart d'onde, ne comportant qu'un unique dispositif MEMS à pont PT ou à poutre PE, mais il est cependant préférable d'utiliser des petites fentes perturbatrices F1 à F4 comportant au moins deux dispositifs MEMS à pont PT ou à poutre PE (comme illustré). Le nombre de dispositifs MEMS utilisés dans chaque fente dépend du nombre d'états de phase que l'on souhaite obtenir.It is possible to use small quarter-wave length F1 to F4 disruptive slots having only a single PT bridge or PE beam MEMS device, but it is nevertheless preferable to use small F1 disruptive slots. at F4 having at least two PT bridge or PE beam MEMS devices (as shown). The number of MEMS devices used in each slot depends on the number of phase states that it is desired to obtain.

Comme dans l'exemple précédent, un trou (ou traversée) métallisé(e) TM permet de coupler électriquement le pavé supérieur PS et le plan de masse inférieur PM1 dans une partie centrale située entre les quatre petites fentes perturbatrices F1 à F4, de longueur quart d'onde. Ce trou métallisé MT est destiné à alimenter en courant continu le pavé supérieur PS de manière à polariser le dispositif MEMS.As in the preceding example, a metallized hole (e) TM (electromagnetic) makes it possible to electrically couple the upper pad PS and the lower ground plane PM1 in a central portion located between the four small disturbing slots F1 to F4, of length quarter wave. This metallized hole MT is intended to supply DC power to the upper pad PS so as to bias the MEMS device.

Dans les trois derniers exemples de réalisation (figure 13 à 15), l'alimentation du pavé supérieur PS s'effectue au moyen d'au moins un trou métallisé TM. Mais, en variante cette alimentation peut s'effectuer au moyen d'une ligne quart d'onde à forte impédance.In the last three examples of realization ( figure 13 to 15 ), the power supply of the upper block PS is carried out by means of at least one metallized hole TM. But, alternatively this power can be performed by means of a quarter-wave line with high impedance.

Sur les figures 16 à 18 se trouve illustré un sixième exemple de cellule déphaseuse CD comprenant un substrat SB comportant une face arrière (ou inférieure), solidarisée à un plan de masse inférieur PM1, et une face avant (ou supérieure), solidarisée à un plan de masse supérieur définissant un pavé (ou patch) supérieur PS' de forme rectangulaire. Le pavé supérieur PS' et le plan de masse inférieur PM1 constituent une structure pavée court circuitée qui définit une structure planaire résonante. Il est important de noter que la longueur du pavé supérieur PS est choisie de sorte qu'il soit résonant à λ/4.On the Figures 16 to 18 is illustrated a sixth example of phase shifter cell CD comprising a substrate SB having a rear face (or lower), secured to a lower ground plane PM1, and a front face (or upper), secured to a higher ground plane defining a patch (or patch) upper PS 'rectangular shape. The upper pavement PS 'and the lower ground plane PM1 constitute a short-circuited cobblestone structure which defines a resonant planar structure. It is important to note that the length of the upper PS block is chosen so that it is resonant at λ / 4.

Le substrat SB est par exemple réalisé en Duroïd ou en TMM et présente une épaisseur d' faible, typiquement de l'ordre de λ/10 à λ/5, où λ est la longueur d'onde dans le vide des ondes à réfléchir, provenant de la source de l'antenne.The substrate SB is for example made of Duroid or TMM and has a thickness of weak, typically of the order of λ / 10 to λ / 5, where λ is the wavelength in the vacuum of the waves to be reflected, from the source of the antenna.

Le pavé supérieur PS' est placé sensiblement parallèlement au plan de masse inférieur PM1 et présente des dimensions très inférieures aux siennes au moins selon une direction.The upper pavement PS 'is placed substantially parallel to the lower mass plane PM1 and has dimensions much smaller than its own at least in one direction.

Comme illustré sur la figure 18, le plan de masse inférieur PM1 comporte au moins une petite « pastille » conductrice PI, isolée de sa propre partie conductrice par une zone non conductrice Z, réalisée par exemple par gravure. Chaque petite pastille conductrice Pl est raccordée électriquement au pavé supérieur PS' par l'intermédiaire d'un trou (ou traversée) métallisé TM. Par ailleurs, chaque petite pastille conductrice Pl est de préférence de forme rectangulaire, et plus préférentiellement carrée.As illustrated on the figure 18 , the lower ground plane PM1 comprises at least one small conductive "pellet" PI, isolated from its own conductive part by a non-conductive zone Z, made for example by etching. Each small conductive pad P1 is electrically connected to the upper pad PS 'via a metallized hole (or traverse) TM. Moreover, each small conductive pad P1 is preferably of rectangular shape, and more preferably square.

Chaque trou métallisé TM est raccordé au pavé supérieur PS' en un endroit choisi, les différents endroits étant préférentiellement sensiblement alignés suivant une droite parallèle aux côtés longitudinaux dudit pavé supérieur PS.Each metallized hole TM is connected to the upper pavement PS 'in a chosen location, the various locations being preferably substantially aligned along a line parallel to the longitudinal sides of said upper pavement PS.

Par ailleurs, chaque petite pastille conductrice PI est munie d'un dispositif MEMS à pont PT ou à poutre PE (comme illustré sur la figure 18), du type de ceux décrits précédemment. Chaque dispositif MEMS DC' (ou DC) est destiné à établir une liaison électrique entre son petit pavé inférieur Pl et la partie conductrice du plan de masse inférieur PM1, lorsqu'il est placé dans son premier état (fléchi). Ainsi, lorsque l'un des dispositifs MEMS DC' (ou DC) est placé dans son premier état (fléchi), le trou métallisé TM, qui est raccordé à sa petite pastille conductrice Pl, court-circuite le pavé supérieur PS' sensiblement à l'endroit ou il lui est raccordé, ce qui a pour conséquence de faire varier sa longueur résonante caractéristique (ou longueur électrique) et donc le déphasage de l'onde réfléchie.Moreover, each small conductive pad PI is provided with a MEMS device with a PT bridge or with a PE beam (as illustrated on FIG. figure 18 ), of the type described above. Each MEMS device DC '(or DC) is intended to establish an electrical connection between its small lower block P1 and the conductive part of the lower ground plane PM1, when it is placed in its first state (bent). Thus, when one of the MEMS devices DC '(or DC) is placed in its first state (bent), the metallized hole TM, which is connected to its small conductive pad P1, bypasses the upper pad PS' substantially to the place where it is connected, which has the effect of varying its characteristic resonant length (or electrical length) and thus the phase shift of the reflected wave.

Cette structure est avantageuse car ses dispositifs étant placés sur la face arrière ils sont davantage protégés des rayonnements.This structure is advantageous because its devices being placed on the rear face they are more protected from radiation.

Dans l'exemple illustré sur les figures 16 et 17, cinq trous métallisés TM permettent de définir cinq courts-circuits correspondant à au moins six longueurs résonantes différentes pour le pavé supérieur PS'. Par conséquent, en commandant de façon séparée les différents dispositifs MEMS DC' (ou DC), il est possible d'obtenir plusieurs déphasages différents de l'onde réfléchie par la cellule déphaseuse CD.In the example shown on the Figures 16 and 17 , five metallized holes TM can define five short circuits corresponding to at least six different resonant lengths for the upper pad PS '. Consequently, by separately controlling the different MEMS devices DC '(or DC), it is possible to obtain several different phase shifts of the wave reflected by the phase-shifter cell CD.

Bien entendu, la cellule déphaseuse CD peut comporter un nombre de dispositifs MEMS (DC ou DC') différent de cinq, dès lors que celui-ci est au moins égal à un. Le nombre de dispositifs MEMS utilisé dépend du nombre d'états de phase que l'on souhaite obtenir.Of course, the phase-shifting cell CD may comprise a number of MEMS devices (DC or DC ') different from five, since this is at least one. The number of MEMS devices used depends on the number of phase states that one wishes to obtain.

Il est important de noter que dans cet exemple de réalisation, à la fréquence de résonance, la somme de la longueur du dipôle « actif » (c'est-à-dire comprise entre le court-circuit et l'autre extrémité du dipôle) et de la longueur du court-circuit doit être égale au quart de la longueur d'onde du mode guidé λg.It is important to note that in this exemplary embodiment, at the resonant frequency, the sum of the length of the "active" dipole (that is to say between the short circuit and the other end of the dipole) and the length of the short-circuit must be equal to one quarter of the wavelength of the guided mode λ g .

Cet exemple de réalisation peut permettre la constitution d'une cellule déphaseuse à double polarisation linéaire, du type de celle illustrée sur la figure 9. Il faut pour ce faire combiner des dipôles « horizontaux » et des dipôles « verticaux » du type de celui décrit ci-avant en référence aux figures 16 à 18.This exemplary embodiment can allow the constitution of a linear double polarization phase shifter cell, of the type of that illustrated on FIG. figure 9 . To do this, it is necessary to combine "horizontal" dipoles and "vertical" dipoles of the type described above with reference to the Figures 16 to 18 .

On se réfère maintenant aux figures 19 et 20 pour décrire un exemple de réalisation de cellule déphaseuse appartenant à la troisième famille.We now refer to Figures 19 and 20 to describe an example of a phase-shifting cell belonging to the third family.

Cet exemple de réalisation constitue en quelque sorte une structure intermédiaire entre les exemples de réalisation illustrés sur les figures 5 à 8 et les exemples de réalisation illustrés sur les figures 10 à 12.This exemplary embodiment constitutes, as it were, an intermediate structure between the exemplary embodiments illustrated on the Figures 5 to 8 and the exemplary embodiments illustrated on the Figures 10 to 12 .

Ici, la cellule déphaseuse CD comprend un substrat SB comportant une face arrière (ou inférieure), solidarisée à un plan de masse inférieur PM1, et une face avant (ou supérieure), solidarisée à un pavé supérieur PS.Here, the phase-shifter cell CD comprises a substrate SB having a rear face (or bottom), secured to a lower ground plane PM1, and a front face (or upper), secured to an upper pad PS.

Le substrat SB est par exemple réalisé en Duroïd ou en TMM et présente une épaisseur d égale à λ/4, où λ est la longueur d'onde dans le vide des ondes à réfléchir, provenant de la source de l'antenne.The substrate SB is for example made of Duroid or TMM and has a thickness d equal to λ / 4, where λ is the wavelength in the vacuum of the waves to be reflected from the antenna source.

Le substrat SB est traversé, sur sa périphérie, par des trous (ou traversées) métallisé(e)s TM raccordés au plan de masse inférieur PM1 et entourant le pavé supérieur PS de manière à définir une cavité résonante. Par exemple, pour un fonctionnement dans la bande Ku, le pavé supérieur PS est un carré de longueur comprise entre environ 15 mm et environ 17 mm.The substrate SB is traversed, on its periphery, by holes (or traverses) metallized (e) TM connected to the lower ground plane PM1 and surrounding the upper pad PS to define a resonant cavity. For example, for operation in the Ku band, the upper pad PS is a square of length between about 15 mm and about 17 mm.

Par ailleurs, le pavé supérieur PS comporte au moins deux (ici cinq) fentes rayonnantes comportant chacune un unique dispositif MEMS (DC ou DC') à pont PT ou à poutre PE. Bien entendu, le nombre N de fentes rayonnantes illustré n'est pas limitatif. Il peut prendre n'importe quelle valeur supérieure ou égale à deux. Par exemple, les fentes présentent un grand côté de longueur comprise entre environ 5 mm et environ 7 mm, et un petit côté de largeur comprise entre environ 0,3 mm et environ 0,7 mm.Furthermore, the upper block PS comprises at least two (here five) radiating slots each comprising a single MEMS device (DC or DC ') PT bridge or PE beam. Of course, the number N of slots radiating illustrated is not limiting. It can take any value greater than or equal to two. For example, the slits have a long side length of about 5 mm to about 7 mm, and a small side of width of about 0.3 mm to about 0.7 mm.

Les fentes rayonnantes présentent, pour certaines, des longueurs différentes. Plus précisément, dans l'exemple illustré, le pavé supérieur PS comporte deux fentes rayonnantes d'extrémité FR1, présentant une première longueur résonante caractéristique L1, deux fentes rayonnantes intermédiaires FR2, présentant une deuxième longueur résonante caractéristique L2 supérieure à L1, et une fente rayonnante centrale FR3, présentant une troisième longueur résonante caractéristique L3 supérieure à L2. Dans une variante, les cinq fentes pourraient présenter cinq longueurs différentes.The radiating slots have, for some, different lengths. More precisely, in the example illustrated, the upper block PS comprises two end radiating slots FR1, having a first characteristic resonant length L1, two intermediate radiating slots FR2, having a second characteristic resonant length L2 greater than L1, and a slot radiating central FR3, having a third characteristic resonant length L3 greater than L2. In one variant, the five slots could have five different lengths.

Ici, les cinq fentes rayonnantes FR1 à FR3 sont sensiblement centrées par rapport au milieu du pavé supérieur PS, et leurs dispositifs MEMS DC à pont PT (ou DC' à poutre PE) sont également installés en position centrée (par exemple).Here, the five radiating slots FR1 to FR3 are substantially centered with respect to the middle of the upper pad PS, and their MEMS DC devices with PT bridge (or DC 'with PE beam) are also installed in a centered position (for example).

Il s'agit ici de n'utiliser qu'une ou plusieurs fentes rayonnantes en plaçant leurs dispositifs MEMS DC respectifs dans leur second état (non fléchi). La ou les fentes que l'on ne souhaite pas utiliser sont court-circuitées en plaçant leurs dispositifs MEMS DC dans leur premier état (fléchi). La variation de phase de l'onde réfléchie est donc ici obtenue par sélection de l'une des combinaisons de fentes court-circuitées et non court-circuitées. A chaque combinaison correspond en effet un déphasage particulier et discret fonction principalement du rapport entre la plus petite longueur résonante caractéristique et la plus grande longueur résonante caractéristique.This is to use one or more radiating slots by placing their respective MEMS devices DC in their second state (not bent). The slot or slots that one does not wish to use are short-circuited by placing their MEMS DC devices in their first state (bent). The phase variation of the reflected wave is here obtained by selecting one of the combinations of short-circuited and non-short-circuited slots. Each combination corresponds in fact to a particular and discrete phase shift mainly function of the ratio between the smallest characteristic resonant length and the greatest characteristic resonant length.

Chaque fente court-circuitée en son milieu agit en quelque sorte comme un élément parasite pour la fente non court-circuitée voisine. Par conséquent, elle est susceptible d'améliorer la bande passante de la fente non court-circuitée.Each slot short-circuited in the middle acts as a parasitic element for the neighboring non-shorted slot. Therefore, it is likely to improve the bandwidth of the non-shorted slot.

Dans l'exemple décrit ci-avant on court circuite les fentes non désirables, mais on pourrait procéder différemment. Par exemple, on peut modifier la longueur résonante de certaines fentes afin d'exciter plusieurs résonances et de bien maîtriser le déphasage entre fentes, avec le couplage. Cela peut par exemple se faire en plaçant un ou plusieurs (par exemple deux ou trois) dispositifs MEMS, de préférence de type cantilever DC', dans les parties d'extrémités opposées des fentes, et non dans leur partie centrale.In the example described above we run the undesirable slots, but we could proceed differently. For example, we can modify the resonant length of some slots to excite several resonances and well control the phase shift between slots, with the coupling. This can for example be done by placing one or more (for example two or three) MEMS devices, preferably cantilever type DC ', in the opposite end portions of the slots, and not in their central part.

Bien entendu, on peut utiliser des fentes de formes et dimensions sensiblement identiques.Of course, slots of substantially identical shapes and sizes can be used.

Certains trous (ou traversées) métallisé(e)s TM, par exemple un sur deux, peuvent être avantageusement utilisés pour acheminer les commandes de tension au niveau des différents dispositifs MEMS DC ou DC'.Some holes (or crossings) metallized (e) TM, for example one out of two, can be advantageously used to route the voltage commands at different MEMS devices DC or DC '.

Dans ce qui précède, on a décrit des cellules comportant des fentes simples de longueur quart d'onde ou demie onde. Mais, il est possible de réaliser des cellules comportant des fentes composées, comme illustré sur les figures 21 et 22.In the foregoing, cells having single slits of quarter-wave or half-wave length have been described. But, it is possible to make cells with composite slots, as shown in the Figures 21 and 22 .

Plus précisément, les cellules des exemples de réalisation illustrés sur les figures 21 et 22 reprennent sensiblement la structure des cellules illustrées sur les figures 10 à 12. Ici, chaque fente de longueur demie onde est constituée par deux demies fentes de longueur quart d'onde. Les dispositifs MEMS DC ou DC' ont été volontairement omis afin de ne pas surcharger les dessins.More precisely, the cells of the exemplary embodiments illustrated on the Figures 21 and 22 substantially reflect the structure of the cells illustrated on the Figures 10 to 12 . Here, each slot of half-wave length is constituted by two half-slots of quarter-wave length. MEMS devices DC or DC 'were deliberately omitted so as not to overload the drawings.

Dans l'exemple illustré sur la figure 21, deux pavés supérieurs PS1 et PS2 sont placés sensiblement parallèlement au plan de masse inférieur PM1 et à distance de celui-ci. Ces deux pavés supérieurs PS1 et PS2 sont espacés l'un de l'autre d'une distance choisie de manière à définir entre eux une zone capacitive. Ils présentent des formes différentes et comportent chacun une demie fente quart d'onde FR1, FR2. Ces deux demies fentes FR1 et FR2 constituent ensemble une fente demie onde et une zone inductive dont l'effet est avantageusement compensé (au moins partiellement) par la zone capacitive inter pavés.In the example shown on the figure 21 two upper blocks PS1 and PS2 are placed substantially parallel to the lower ground plane PM1 and at a distance therefrom. These two upper blocks PS1 and PS2 are spaced from each other by a distance chosen so as to define between them a capacitive area. They have different shapes and each have a half quarter wave slot FR1, FR2. These two half slots FR1 and FR2 together constitute a half-wave slot and an inductive zone whose effect is advantageously compensated (at least partially) by the capacitive inter-pad area.

Par exemple les pavés présentent une largeur égale à environ 3,7 mm et sont séparés d'une distance, formant une fente, égale à environ 0,1 mm.For example, the blocks have a width equal to about 3.7 mm and are separated by a distance, forming a slot, equal to about 0.1 mm.

Une telle structure dissymétrique offre une réponse en fréquence de bonne stabilité en raison d'un couplage efficace entre les deux résonances.Such an asymmetrical structure provides a good stability frequency response due to an effective coupling between the two resonances.

Dans l'exemple illustré sur la figure 22, trois pavés supérieurs PS1, PS2 et PS3 sont placés sensiblement parallèlement au plan de masse inférieur PM1 et à distance de celui-ci. Les deux pavés supérieurs PS1 et PS3 sont sensiblement identiques et encadrent le pavé PS2. Par ailleurs, les deux pavés supérieurs PS1 et PS3 comportent chacun une demie fente quart d'onde FR1, FR4, tandis que le pavé supérieur PS2 comporte deux demies fentes quart d'onde FR2 et FR3 débouchant sur deux côtés opposés, l'une placée en regard de la demie fente FR1 du pavé supérieur PS1 et définissant avec elle une première fente demie onde, et l'autre placée en regard de la demie fente FR4 du pavé supérieur PS3 et définissant avec elle une seconde fente demie onde.In the example shown on the figure 22 , three upper blocks PS1, PS2 and PS3 are placed substantially parallel to the lower ground plane PM1 and at a distance therefrom. The two upper blocks PS1 and PS3 are substantially identical and surround the PS2 pad. Furthermore, the two upper blocks PS1 and PS3 each have a half quarter wave slot FR1, FR4, while the upper block PS2 has two half quarter wave slots FR2 and FR3 opening on two opposite sides, one placed next to the half slot FR1 of the upper block PS1 and defining with it a first half wave slot, and the other placed next to the half slot FR4 of the upper pad PS3 and defining with it a second half wave slot.

Une telle structure symétrique offre également une réponse en fréquence de bonne stabilité en raison d'un couplage efficace entre les résonances.Such a symmetrical structure also offers a frequency response of good stability due to an effective coupling between the resonances.

De nombreuses autres combinaisons de pavés supérieurs peuvent être envisagées. Ainsi, on peut envisager une combinaison de plusieurs pavés supérieurs séparés les uns des autres par des espaces constituant des fentes de largeurs choisies avec lesquelles ils constituent ce que l'homme de l'art appelle une « croix de Jérusalem ». En réduisant, avec un dispositif MEMS, la largeur des fentes en regard, on peut agir sur la fréquence de résonance d'une telle structure, et ainsi modifier la phase de l'onde réfléchie. Une structure duale, comprenant des lignes métalliques de la forme d'une croix de Jérusalem est notamment décrite dans le document de C. Simovski et al, « High-impedance surfaces with angular and polarization stability », 27th ESA Antenna Technology Workshop on Innovative Periodic Antennas, pp 176-184 . La résonance d'une telle structure est principalement assurée par les parties inductives et capacitives propres à la croix de Jérusalem, et non plus par la résonance des pavés. Cette structure, de type dit « métamatériau », fonctionne alors selon des bandes de fréquences beaucoup plus basses.Many other combinations of upper pavers can be envisaged. Thus, it is possible to envisage a combination of several upper pavers separated from one another by spaces constituting slits of selected widths with which they constitute what the person skilled in the art calls a "Jerusalem cross". By reducing, with a MEMS device, the width of the slots opposite, one can act on the resonance frequency of such a structure, and thus modify the phase of the reflected wave. A dual structure, including metallic lines in the shape of a Jerusalem cross, is described in the document C. Simovski et al, "High-impedance surfaces with angular and polarization stability", 27th ESA Antenna Technology Workshop on Innovative Periodic Antennae, pp. 176-184 . The resonance of such a structure is mainly ensured by the inductive and capacitive parts of the Jerusalem cross, and not by the resonance of the pavement. This structure, called "metamaterial" type, then operates in much lower frequency bands.

Il est également possible d'adjoindre aux cellules déphaseuses, qui comportent au moins un pavé muni d'au moins une fente FP, décrites ci-avant, un ou plusieurs pavés auxiliaires et au moins un dispositif MEMS de couplage, de manière à faire varier la dimension du pavé selon l'une au moins de ses deux directions (X et Y), et de préférence suivant sa longueur X qui est parallèle à la direction définissant la longueur b (ou grand côté) des fentes FP. Une cellule déphaseuse CD de ce type est illustrée sur la figure 23.It is also possible to add to the phase-shifting cells, which comprise at least one block provided with at least one slot FP, described above, one or more auxiliary blocks and at least one MEMS device. coupling, so as to vary the size of the tile in at least one of its two directions (X and Y), and preferably along its length X which is parallel to the direction defining the length b (or long side) of FP slots. A CD phase shifter cell of this type is illustrated on the figure 23 .

Plus précisément, la cellule déphaseuse CD illustrée sur la figure 23 part d'une structure du type de celle illustrée sur les figures 10 à 12. Elle comprend donc un substrat SB comportant une face arrière (ou inférieure), solidarisée à un plan de masse inférieur PM1, et une face avant (ou supérieure), solidarisée à au moins un pavé (ou patch) supérieur PS et à au moins un pavé auxiliaire PA1, PA2. Ici, on a représenté deux pavés auxiliaires PA1 et PA2, placés de part et d'autre de deux côtés parallèles du pavé PS (eux-mêmes parallèles aux grands côtés (Y) de la fente FP). Mais, on pourrait envisager de ne prévoir qu'un seul pavé auxiliaire PA. Par ailleurs, on peut également envisager, en variante ou en complément, de placer un pavé auxiliaire le long de l'un au moins des deux côtés non rayonnants du pavé PS (parallèles au petit côté (X) de la fente FP).More precisely, the phase-shifting cell CD illustrated on the figure 23 part of a structure of the type illustrated in the Figures 10 to 12 . It therefore comprises a substrate SB having a rear face (or lower), secured to a lower ground plane PM1, and a front face (or upper), secured to at least one PS pad and at least one auxiliary block PA1, PA2. Here, there is shown two auxiliary blocks PA1 and PA2, placed on both sides of two parallel sides of the PS pad (themselves parallel to the long sides (Y) of the slot FP). But, we could consider providing only one auxiliary pad PA. Moreover, it is also possible, alternatively or in addition, to place an auxiliary block along at least one of the two non-radiating sides of the PS block (parallel to the small side (X) of the slot FP).

Les pavés supérieurs PS, PA1 et PA2 et le plan de masse inférieur PM1 définissent une structure planaire résonante.The upper blocks PS, PA1 and PA2 and the lower ground plane PM1 define a resonant planar structure.

La cellule déphaseuse CD comporte également au moins un dispositif MEMS de couplage DC ou DC' installé entre le pavé PS et un pavé auxiliaire PA1, PA2 et chargé d'établir, ou non, un contact entre ces pavés selon l'état dans lequel il est placé.The phase-shifter cell CD also comprises at least one DC or DC coupling device MEMS installed between the pad PS and an auxiliary pad PA1, PA2 and responsible for establishing or not a contact between these blocks according to the state in which it is placed.

Dans l'exemple illustré le pavé PS est susceptible d'être relié à chaque pavé auxiliaire PA1, PA2 par l'intermédiaire de trois dispositifs MEMS DC', un central et deux d'extrémité. Les deux dispositifs MEMS DC' d'extrémité sont préférentiellement placés de façon symétrique par rapport au centre du pavé auxiliaire PA1, PA2.In the example shown, the PS block may be connected to each auxiliary pad PA1, PA2 via three MEMS devices DC ', a central and two end. The two end MEMS devices DC 'are preferably placed symmetrically with respect to the center of the auxiliary pad PA1, PA2.

Les différents dispositifs MEMS DC' ou DC qui relient le pavé PS à l'un des pavés auxiliaires PA1, PA2 sont préférentiellement commandés par un même courant de commande. En d'autres termes, ils sont préférentiellement placés simultanément dans un même état de manière à assurer soit une liaison électrique, soit une absence de liaison électrique, entre le pavé PS et le pavé auxiliaire PA1, PA2 concerné.The different DC or DC MEMS devices which connect the PS block to one of the auxiliary blocks PA1, PA2 are preferably controlled by the same control current. In other words, they are preferably placed simultaneously in the same state so as to ensure either an electrical connection or an absence of electrical connection, between the PS block and the auxiliary block PA1, PA2 concerned.

Lorsqu'une liaison est établie entre le pavé PS et un pavé auxiliaire PA1, PA2, la longueur physique (suivant X) du pavé PS peut donc être augmentée. En agissant simultanément sur le couple longueur du pavé PS et longueur de la fente FP, on peut alors modifier simultanément le couple déphasage de l'onde incidente, sur une gamme supérieure à 360°, et dispersion de ce déphasage en fréquence. La possibilité de maîtriser la dispersion de ce déphasage en fréquence est notamment intéressante pour compenser l'illumination dispersive en fréquence d'un réseau réflecteur plan par une source primaire.When a link is established between the PS pad and an auxiliary pad PA1, PA2, the physical length (following X) of the PS pad can be increased. By simultaneously acting on the pair length of the PS pad and length of the slot FP, it is then possible to simultaneously modify the phase shift torque of the incident wave, over a range greater than 360 °, and dispersion of this phase shift in frequency. The possibility of controlling the dispersion of this phase shift in frequency is particularly interesting to compensate for the dispersive illumination in frequency of a planar reflector grating by a primary source.

Il est important de noter que plusieurs (au moins deux) pavés auxiliaires, de préférence de mêmes dimensions, peuvent être placés parallèlement les uns aux autres, sur l'un au moins des deux côtés du pavé PS, les pavés étant reliés deux à deux par un ou plusieurs dispositifs MEMS de couplage DC' ou DC, et de préférence trois. Cela permet de faire varier encore plus la longueur physique du pavé PS, en fonction des besoins, en jouant sur les états respectifs des dispositifs MEMS DC' ou DC couplant les pavés auxiliaires.It is important to note that several (at least two) auxiliary blocks, preferably of the same dimensions, may be placed parallel to each other, on at least one of the two sides of the PS pad, the blocks being connected in pairs by one or more coupling devices MEMS DC 'or DC, and preferably three. This makes it possible to further vary the physical length of the PS block, as needed, by playing on the respective states of the MEMS devices DC 'or DC coupling the auxiliary blocks.

Par ailleurs, les pavés auxiliaires qui sont situés de part et d'autre des deux côtés parallèles du pavé PS ne présentent pas obligatoirement les mêmes dimensions. C'est notamment le cas dans l'exemple illustré sur la figure 23, où le pavé auxiliaire PA1 présente une longueur (suivant la direction X) plus grande que celle du pavé auxiliaire PA2, mais une largeur (suivant la direction Y) sensiblement identique à celle du pavé auxiliaire PA2. Par exemple, si la longueur du pavé PS est égale à L, les longueurs des pavés auxiliaires PA1 et PA2 peuvent être respectivement égales à L/2 et L/3.Furthermore, the auxiliary blocks which are located on either side of the two parallel sides of the PS pad do not necessarily have the same dimensions. This is particularly the case in the example illustrated on the figure 23 , where the auxiliary pad PA1 has a length (in the X direction) greater than that of the auxiliary pad PA2, but a width (in the Y direction) substantially identical to that of the auxiliary pad PA2. For example, if the length of the keypad PS is equal to L, the lengths of the auxiliary keypads PA1 and PA2 can be respectively equal to L / 2 and L / 3.

Comme dans les exemples précédemment décrits, le pavé PS peut comporter un ou plusieurs dispositifs MEMS DC ou DC'. Le nombre de dispositifs MEMS utilisés dépend du nombre d'états de déphasage que l'on souhaite obtenir.As in the previously described examples, the PS block may comprise one or more MEMS devices DC or DC '. The number of MEMS devices used depends on the number of phase shift states that it is desired to obtain.

Ce type de cellule déphaseuse CD permet donc de faire varier dynamiquement, en fonction des besoins, le déphasage et la dispersion de phase en fréquence, ce qui est particulièrement avantageux pour une antenne active (ou reconfigurable). Le choix du déphasage et de la dispersion du déphasage est en effet fixé par la longueur physique du pavé PS et par la longueur électrique de chaque fente FP de chaque pavé PS, selon les états respectifs des différents dispositifs MEMS utilisés.This type of phase-shifting cell CD therefore makes it possible to dynamically vary, as needed, the phase shift and the phase-to-frequency dispersion, which is particularly advantageous for an active (or reconfigurable) antenna. The choice of phase shift and dispersion the phase shift is in fact fixed by the physical length of the PS pad and by the electrical length of each slot FP of each pad PS, according to the respective states of the different MEMS devices used.

Afin de constituer une cellule déphaseuse CD de type passif, pour une antenne non reconfigurable, on peut s'affranchir des dispositifs MEMS au niveau des fentes. Plus précisément, comme illustré sur les figures 24 et 25, on peut utiliser une structure du type de celle illustrée sur les figures 10 à 12, mais sans dispositif MEMS.In order to form a passive phase-shift CD cell for a non-reconfigurable antenna, MEMS devices can be omitted at the slots. More specifically, as illustrated in Figures 24 and 25 , one can use a structure of the type of that illustrated on the Figures 10 to 12 , but without MEMS device.

Une telle structure CD comprend donc un substrat SB comportant une face arrière (ou inférieure), solidarisée à un plan de masse inférieur PM1, et une face avant (ou supérieure), solidarisée à au moins un pavé (ou patch) supérieur PS comportant au moins une fente FP. Le pavé supérieur PS et le plan de masse inférieur PM1 définissent une structure planaire résonante.Such a structure CD therefore comprises a substrate SB having a rear (or lower) face, secured to a lower ground plane PM1, and a front face (or upper), secured to at least one upper patch (or patch) PS comprising at least one least one FP slot. The upper block PS and the lower ground plane PM1 define a resonant planar structure.

En choisissant judicieusement les dimensions du pavé supérieur PS, et notamment sa longueur x (suivant la direction X), et de la fente FP, et notamment sa longueur b (suivant la direction Y), ainsi que l'épaisseur d du substrat SB, on peut imposer à la fois un déphasage choisi et une dispersion de phase en fréquence choisie.By judiciously choosing the dimensions of the upper block PS, and in particular its length x (in the X direction), and the slot FP, and in particular its length b (in the Y direction), as well as the thickness d of the substrate SB, it is possible to impose both a chosen phase shift and a phase dispersion in frequency chosen.

Les dimensions et épaisseurs peuvent être déduites de courbes du type de celles illustrées sur la figure 26, donnant l'évolution du déphasage ΔΦ en fonction de la longueur b de la fente FP, pour plusieurs valeurs différentes x de longueur de pavé supérieur PS et pour une épaisseur d' de substrat SB (par exemple égale à environ 2 mm).The dimensions and thicknesses can be deduced from curves of the type illustrated in the figure 26 , giving the evolution of the phase shift ΔΦ as a function of the length b of the slot FP, for several different values x of upper paver length PS and for a thickness of substrate SB (for example equal to about 2 mm).

Lorsque le pavé supérieur PS ne comporte qu'une seule fente FP, celle-ci est de préférence placée sensiblement en son centre. Mais, le pavé supérieur PS pourrait comporter plusieurs fentes FP, éventuellement de différentes dimensions.When the upper block PS has only one slot FP, it is preferably placed substantially at its center. But, the upper block PS could have several FP slots, possibly of different dimensions.

Une telle cellule déphaseuse CD permet d'obtenir n'importe quel déphasage, et notamment des déphasages (très) supérieurs à 360°. Elle permet de maîtriser également la dispersion de ce déphasage en fréquence. Les cellules déphaseuses de l'art antérieur, qui permettent d'obtenir de telles caractéristiques, comprennent trois pavés placés parallèlement les uns au dessus des autres et au dessus d'un plan de masse inférieur (elles sont notamment décrites dans l'article de J.A. Encinar et al, "Design of a three-layer printed reflectarray for dual polarization and dual coverage", 27th ESA Antenna workshop, Santiago de Compostel, Spain, March 2004 ). Les cellules déphaseuses CD selon l'invention ne comprennent qu'un seul niveau de métallisation (pavé supérieur), en plus du plan de masse inférieur PM1, et sont donc beaucoup plus simples à réaliser que les cellules déphaseuses de l'art antérieur.Such a phase-shifting cell CD makes it possible to obtain any phase shift, and in particular phase shifts (very) greater than 360 °. It also makes it possible to control the dispersion of this phase shift in frequency. The phase-shifting cells of the prior art, which make it possible to obtain such characteristics, comprise three blocks placed parallel to one another above and above a lower ground plane (they are particular described in the article of JA Encinar et al., 27th ESA Antenna Workshop, Santiago de Compostela, Spain, March 2004, "Design of a three-layer printed reflectarray for dual polarization and dual coverage" ). The phase-shifter cells CD according to the invention comprise only one level of metallization (upper block), in addition to the lower ground plane PM1, and are therefore much simpler to achieve than the phase-shifting cells of the prior art.

Claims (25)

  1. Phase shifter cell (CD), for a reflecting array antenna, defined by a characteristic resonant length, characterized in that it comprises a resonant planar structure comprising an upper patch (PS) placed substantially parallel to a lower ground plane (PM1), a chosen distance away, and in that it comprises, at at least one chosen spot, at least one micro electromechanical device of MEMS type (DC, DC') controlling the characteristic resonant length of the said upper patch (PS), the MEMS device being suitable for being placed in at least two different states allowing and prohibiting respectively the establishment of a short-circuit intended to vary the said resonant length, so as to vary the phase shift of a wave to be reflected exhibiting at least one linear polarization.
  2. Cell according to Claim 1, characterized in that the said MEMS device (DC) comprises a conducting flexible bridge (PT) whose states are controlled by two substantially superimposed control electrodes, one of which consists of the said bridge (PT).
  3. Cell according to Claim 1, characterized in that the said MEMS device (DC') comprises a suspended conducting flexible beam (PE) whose states are controlled by a control electrode (EC') placed below a suspended part of the said beam (PE), which constitutes another electrode.
  4. Cell according to one of Claims 1 to 3,
    characterized in that the MEMS device (DC, DC') is placed in a slot (FP) located in the said upper patch (PS) .
  5. Cell according to Claim 4, characterized in that it comprises a single slot (FP) furnished with at least two MEMS devices (DC, DC'), making it possible to define at least three different resonant lengths (FP) according to the states in which they are respectively placed.
  6. Cell according to one of Claims 4 and 5, characterized in that it comprises at least one auxiliary patch (PA1, PA2) placed along one at least of the sides of the said upper patch (PS), at a chosen distance from the latter, and at least one MEMS coupling device (DC', DC), placed between the said auxiliary patch (PA1, PA2) and the said upper patch (PS) and making it possible to establish, or not, an electrical link between the said auxiliary and upper patches according to the state in which it is placed.
  7. Cell according to Claim 6, characterized in that it comprises at least two mutually parallel neighbouring auxiliary patches, of substantially identical dimensions and placed along one at least of the sides of the said upper patch (PS), and at least one MEMS coupling device (DC', DC) placed between the said neighbouring auxiliary patches and making it possible to establish, or not, an electrical link between them according to the state in which it is placed.
  8. Cell according to Claim 4, characterized in that the said upper patch (PS) is substantially square, and in that it comprises at least one rectangular slot emerging on a non-radiating side of the said square and comprising at least two MEMS devices (DC, DC'), making it possible to define at least three different resonant lengths according to the states in which they are respectively placed.
  9. Cell according to Claim 4, characterized in that the said upper patch (PS) is substantially square, and in that it comprises at least first (F1) and second (F2) rectangular slots placed substantially facing one another and emerging on two opposite, non-radiating, sides of the said square, each slot (F1, F2) comprising at least two MEMS devices (DC, DC'), making it possible to define at least three different resonant lengths according to the states in which they are respectively placed.
  10. Cell according to Claim 9, characterized in that it comprises at least third (F3) and fourth (F4) rectangular slots placed substantially facing one another and emerging on two other opposite sides of the said square, each slot (F3, F4) comprising at least two MEMS devices (DC, DC'), making it possible to define at least three other different resonant lengths according to the states in which they are respectively placed, so as to allow a double linear polarization.
  11. Cell according to one of Claims 4 to 10 in combination with Claim 2, characterized in that each slot (FP, F1-F4) is rectangular, and in that each MEMS device (DC) bridge (PT) is placed substantially parallel to large sides of the said slot.
  12. Cell according to one of Claims 4 to 10 in combination with Claim 3, characterized in that each slot (FP, F1-F4) is rectangular, and in that each MEMS device (DC') beam (PE) is placed substantially perpendicular to large sides of the said slot.
  13. Cell according to one of Claims 4, 5, 11 and 12, characterized in that the said upper patch (PS) exhibits smaller dimensions than the dimensions of the lower ground plane (PM1), and in that it comprises metallized bushings (TM) connected to the said lower ground plane (PM1) and surrounding the said upper patch (PS) so as to define a resonant cavity.
  14. Cell according to one of Claims 4 to 13, characterized in that the said resonant planar structure comprises at least two upper patches (PS1, PS2) separated from one another by a chosen distance, each patch comprising at least one half slot (FR1, FR2, FR3, FR4) emerging on one of its sides and two facing half slots constituting a slot.
  15. Cell according to one of Claims 4 to 13, characterized in that the said resonant planar structure comprises several upper patches separated from one another by spaces constituting slots of chosen widths, the said patches and the said slots constituting a "Jerusalem cross".
  16. Cell according to one of Claims 1 to 3, characterized in that it comprises, on the one hand, a resonant planar structure comprising a rectangular upper patch (PS) placed substantially parallel to a lower ground plane (PM1), a chosen distance away, the said lower ground plane (PM1) defining at least one wafer (P1) wholly surrounded by a non-conducting zone (Z), placed below the said upper patch (PS) and of smaller dimensions than the dimensions of the latter, and on the other hand, at least one metallized bushing (TM) linking the said upper patch (PS) to the said wafer (P1) , and in that the said MEMS device (DC, DC') is placed at the level of the said zone (Z) so as to establish in one of its states a link between the said wafer (P1) and the remainder of the said ground plane (PM1) so as to control the resonant length of the said upper patch (PS) .
  17. Cell according to Claim 16, characterized in that the said lower ground plane (PM1) defines at least two wafers (P1) wholly surrounded by a non-conducting zone (Z), placed below the said upper patch (PS) and of smaller dimensions than the dimensions of the latter, and in that it comprises, on the one hand, at least two metallized bushings (TM) linking respectively the upper patch (PS) to one of the said wafers (P1), and on the other hand, at least two MEMS devices (DC, DC') each placed at the level of one of the zones (ZI) so as to establish links between one at least of the said wafers (P1) and the remainder of the said ground plane (PM1), thus making it possible to define at least three different resonant lengths of the upper patch (PS) according to the states in which they are respectively placed.
  18. Cell according to one of Claims 1 to 3, characterized in that it comprises an upper ground plane (PM2) comprising at least one radiating slot (FR), provided with a MEMS device (DC, DC') controlling its characteristic resonant length, a lower ground plane (PM1), and metallized bushings (TM) linking the said lower ground plane (PM1) to peripheral parts of the said upper ground plane (PM2) so as to define a resonant cavity.
  19. Cell according to Claim 18, characterized in that the said upper ground plane (PM2) comprises at least two radiating slots (FR1, FR2, FR3) each provided with a single MEMS device (DC, DC') controlling their characteristic resonant length.
  20. Cell according to Claim 19, characterized in that each MEMS device (DC, DC') is placed substantially in the middle of a radiating slot (FR1, FR2, FR3).
  21. Cell according to one of Claims 19 and 20, characterized in that the said slots (FR1, FR2, FR3) are substantially mutually parallel and exhibit different lengths.
  22. Cell according to Claim 18, characterized in that the said upper ground plane (PM2) comprises a radiating slot (FR), provided with at least two MEMS devices (DC, DC') making it possible to define at least three different resonant slot lengths according to the states in which they are respectively placed.
  23. Cell according to one of Claims 18 to 22, characterized in that the said upper ground plane (PM2) comprises at least one rectangular radiating slot (FRV) exhibiting large sides parallel to a first direction, and at least one other rectangular radiating slot (FRV) exhibiting large sides parallel to a second direction perpendicular to the first, so as to allow a double linear polarization.
  24. Phase shifter cell (CD), for a reflecting array antenna, characterized in that it comprises a resonant planar structure comprising an upper patch (PS) placed substantially parallel to a lower ground plane (PM1), a chosen distance away, and comprising at least one slot (FP), the dimensions of the patch (PS) and of the slot (FP) and the said distance being chosen so as to impose a chosen phase shift and a chosen frequency-phase dispersion on a wave to be reflected exhibiting at least one linear polarization.
  25. Reflecting array antenna, characterized in that it comprises at least two phase shifter cells (CD) according to one of the preceding claims.
EP05290642A 2004-03-23 2005-03-23 Phase shifter with linear polarization and a resonating length which can be varied using mem switches. Not-in-force EP1580844B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0450575A FR2868216B1 (en) 2004-03-23 2004-03-23 LINEAR POLARIZED DEHASE CELL WITH VARIABLE RESONANT LENGTH USING MEMS SWITCHES
FR0450575 2004-03-23

Publications (2)

Publication Number Publication Date
EP1580844A1 EP1580844A1 (en) 2005-09-28
EP1580844B1 true EP1580844B1 (en) 2009-06-17

Family

ID=34855227

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05290642A Not-in-force EP1580844B1 (en) 2004-03-23 2005-03-23 Phase shifter with linear polarization and a resonating length which can be varied using mem switches.

Country Status (6)

Country Link
US (1) US7358915B2 (en)
EP (1) EP1580844B1 (en)
AT (1) ATE434276T1 (en)
DE (1) DE602005014900D1 (en)
ES (1) ES2327650T3 (en)
FR (1) FR2868216B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9088075B2 (en) 2009-06-09 2015-07-21 Broadcom Corporation Method and system for configuring a leaky wave antenna utilizing micro-electro mechanical systems

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7907033B2 (en) * 2006-03-08 2011-03-15 Wispry, Inc. Tunable impedance matching networks and tunable diplexer matching systems
EP2022134B1 (en) * 2006-04-27 2017-01-18 Tyco Electronics Services GmbH Antennas, devices and systems based on metamaterial structures
US7741933B2 (en) * 2006-06-30 2010-06-22 The Charles Stark Draper Laboratory, Inc. Electromagnetic composite metamaterial
EP1881557A1 (en) * 2006-07-07 2008-01-23 Fondazione Torino Wireless Antenna, method of manufacturing an antenna and apparatus for manufacturing an antenna
JP4918594B2 (en) * 2006-08-25 2012-04-18 タイコ エレクトロニクス サービス ゲーエムベーハー Antenna based on metamaterial structure
FR2907262B1 (en) * 2006-10-13 2009-10-16 Thales Sa DEPHASEUSE CELL WITH ANALOG PHASE SENSOR FOR REFLECTARRAY ANTENNA.
WO2008115881A1 (en) * 2007-03-16 2008-09-25 Rayspan Corporation Metamaterial antenna arrays with radiation pattern shaping and beam switching
US7724180B2 (en) * 2007-05-04 2010-05-25 Toyota Motor Corporation Radar system with an active lens for adjustable field of view
GB0711382D0 (en) * 2007-06-13 2007-07-25 Univ Edinburgh Improvements in and relating to reconfigurable antenna and switching
KR101297314B1 (en) * 2007-10-11 2013-08-16 레이스팬 코포레이션 Single-layer metallization and via-less metamaterial structures
US7791552B1 (en) 2007-10-12 2010-09-07 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Cellular reflectarray antenna and method of making same
KR101539441B1 (en) * 2007-11-13 2015-07-24 타이코 일렉트로닉스 서비시스 게엠베하 Metamaterial structures with multilayer metallization and via
US8674792B2 (en) 2008-02-07 2014-03-18 Toyota Motor Engineering & Manufacturing North America, Inc. Tunable metamaterials
US20090206963A1 (en) * 2008-02-15 2009-08-20 Toyota Motor Engineering & Manufacturing North America, Inc. Tunable metamaterials using microelectromechanical structures
US8547286B2 (en) * 2008-08-22 2013-10-01 Tyco Electronics Services Gmbh Metamaterial antennas for wideband operations
US7965250B2 (en) * 2008-10-02 2011-06-21 Toyota Motor Engineering & Manufacturing North America, Inc. Microwave lens
FR2936906B1 (en) * 2008-10-07 2011-11-25 Thales Sa OPTIMIZED ARRANGEMENT REFLECTOR NETWORK AND ANTENNA HAVING SUCH A REFLECTIVE NETWORK
US8212573B2 (en) * 2009-01-15 2012-07-03 The Curators Of The University Of Missouri High frequency analysis of a device under test
US8044874B2 (en) * 2009-02-18 2011-10-25 Harris Corporation Planar antenna having multi-polarization capability and associated methods
US8681050B2 (en) 2010-04-02 2014-03-25 Tyco Electronics Services Gmbh Hollow cell CRLH antenna devices
FR2980044B1 (en) 2011-09-14 2016-02-26 Thales Sa RECONFIGURABLE RADIANT DEPHASEUSE CELL BASED ON SLOT RESONANCES AND COMPLEMENTARY MICRORUBANS
US9046605B2 (en) 2012-11-05 2015-06-02 The Curators Of The University Of Missouri Three-dimensional holographical imaging
CN103345057B (en) * 2013-05-31 2016-06-01 华中科技大学 A kind of miniature bridge architecture and its preparation method
CN115149226B (en) * 2021-03-31 2023-08-25 北京京东方技术开发有限公司 Phase shifter, preparation method thereof and antenna
WO2023106238A1 (en) * 2021-12-07 2023-06-15 京セラ株式会社 Composite resonator, and radio wave refracting plate
CN116259962B (en) * 2023-03-02 2024-08-20 中国人民解放军战略支援部队航天工程大学 Reflective super-surface unit adopting resonance phase-shifting structure and array antenna thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6184839B1 (en) * 1996-12-19 2001-02-06 Lockheed Martin Missiles & Space Company Large instantaneous bandwidth reflector array
US6417807B1 (en) * 2001-04-27 2002-07-09 Hrl Laboratories, Llc Optically controlled RF MEMS switch array for reconfigurable broadband reflective antennas
US6307519B1 (en) * 1999-12-23 2001-10-23 Hughes Electronics Corporation Multiband antenna system using RF micro-electro-mechanical switches, method for transmitting multiband signals, and signal produced therefrom
US6388631B1 (en) * 2001-03-19 2002-05-14 Hrl Laboratories Llc Reconfigurable interleaved phased array antenna
US6864848B2 (en) * 2001-12-27 2005-03-08 Hrl Laboratories, Llc RF MEMs-tuned slot antenna and a method of making same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9088075B2 (en) 2009-06-09 2015-07-21 Broadcom Corporation Method and system for configuring a leaky wave antenna utilizing micro-electro mechanical systems
TWI493791B (en) * 2009-06-09 2015-07-21 美國博通公司 Method and system for configuring a leaky wave antenna utilizing micro-electro mechanical systems
US9417318B2 (en) 2009-06-09 2016-08-16 Broadcom Corporation Method and system for configuring a leaky wave antenna utilizing micro-electro mechanical systems

Also Published As

Publication number Publication date
DE602005014900D1 (en) 2009-07-30
US7358915B2 (en) 2008-04-15
US20050212705A1 (en) 2005-09-29
ES2327650T3 (en) 2009-11-02
FR2868216A1 (en) 2005-09-30
FR2868216B1 (en) 2006-07-21
ATE434276T1 (en) 2009-07-15
EP1580844A1 (en) 2005-09-28

Similar Documents

Publication Publication Date Title
EP1580844B1 (en) Phase shifter with linear polarization and a resonating length which can be varied using mem switches.
EP2564466B1 (en) Compact radiating element having resonant cavities
EP2656438B1 (en) Radio cell with two phase states for transmit array
EP3392959B1 (en) Elementary cell of a transmitter network for a reconfigurable antenna
EP2571098B1 (en) Reconfigurable radiating phase-shifter cell based on resonances, slots and complementary microstrips
EP0899814B1 (en) Radiating structure
CA2687161C (en) Dual polarization planar emitting element and network antenna comprising such emitting element
EP2710676B1 (en) Radiating element for an active array antenna consisting of elementary tiles
FR3039711A1 (en) ELEMENTARY CELL OF A TRANSMITTER NETWORK FOR A RECONFIGURABLE ANTENNA.
EP2047564A1 (en) Compact orthomode transduction device optimized in the mesh plane, for an antenna
EP1519444A1 (en) Low loss reconfigurable reflectarray antenna
EP1234356B1 (en) Active electronic scan microwave reflector
EP2637254B1 (en) Planar antenna for terminal operating with dual circular polarisation, airborne terminal and satellite telecommunication system comprising at least one such antenna
FR2901062A1 (en) Radiating device for e.g. passive focal array fed reflector antenna, has air resonant cavity with dielectric cover to establish electromagnetic field in transverse electromagnetic mode presenting uniform distribution on opening of device
FR2829300A1 (en) CIRCULARLY POLARIZED DIELECTRIC RESONATOR ANTENNA
FR3105612A1 (en) Compact resonant cavity antenna
FR3105610A1 (en) Reconfigurable antenna with transmitter network with monolithic integration of elementary cells
FR2858469A1 (en) Antenna for e.g. motor vehicle obstacles detecting radar, has assembly with two zones of active material layer that are controlled by respective polarization zones defined by metallic patterned layers
WO2023218008A1 (en) Low-profile antenna with two-dimensional electronic scanning
FR2814594A1 (en) Active electromagnetic wave reflector for use in hyperfrequency electronic scanning antennae
FR2815479A1 (en) Active ultrahigh frequency reflector with two independent polarizations, notably in an electronic scanning antenna
EP1231673A1 (en) Microwave reflector panel
FR2914112A1 (en) Rectangular-section waveguide for e.g. Doppler navigation radar aerial, has selective surface reflective or transparent to electro-magnetic waves at operating frequency of waveguide such that waveguide radiated in two distinct directions

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

17P Request for examination filed

Effective date: 20051202

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCATEL LUCENT

17Q First examination report despatched

Effective date: 20080620

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THALES

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 602005014900

Country of ref document: DE

Date of ref document: 20090730

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090617

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090617

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090617

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2327650

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090617

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090617

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090617

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090617

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091017

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090617

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091017

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090917

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090617

26N No opposition filed

Effective date: 20100318

BERE Be: lapsed

Owner name: THALES

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090918

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091218

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100323

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190311

Year of fee payment: 15

Ref country code: FR

Payment date: 20190305

Year of fee payment: 15

Ref country code: DE

Payment date: 20190312

Year of fee payment: 15

Ref country code: IT

Payment date: 20190326

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20190311

Year of fee payment: 15

Ref country code: TR

Payment date: 20190312

Year of fee payment: 15

Ref country code: NL

Payment date: 20190313

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20190401

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005014900

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20200401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200324

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200323

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20210805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200323