EP0017530B1 - Durch einen von einem Hohlleiter gespeisten Dipol gebildete Strahlungsquelle und ihre Verwendung in einer elektronisch abtastenden Antenne - Google Patents

Durch einen von einem Hohlleiter gespeisten Dipol gebildete Strahlungsquelle und ihre Verwendung in einer elektronisch abtastenden Antenne Download PDF

Info

Publication number
EP0017530B1
EP0017530B1 EP80400342A EP80400342A EP0017530B1 EP 0017530 B1 EP0017530 B1 EP 0017530B1 EP 80400342 A EP80400342 A EP 80400342A EP 80400342 A EP80400342 A EP 80400342A EP 0017530 B1 EP0017530 B1 EP 0017530B1
Authority
EP
European Patent Office
Prior art keywords
dipole
radiating source
metal
source according
longitudinal middle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80400342A
Other languages
English (en)
French (fr)
Other versions
EP0017530A1 (de
Inventor
Albert Dupressoir
François Salvat
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0017530A1 publication Critical patent/EP0017530A1/de
Application granted granted Critical
Publication of EP0017530B1 publication Critical patent/EP0017530B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/06Waveguide mouths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters
    • H01Q3/38Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters the phase-shifters being digital
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole

Definitions

  • the present invention relates to a radiating source constituted by a dipole excited by an ultra-flat waveguide of rectangular section, more particularly used in antennas with electronic scanning. It also aims, as a particular application, for the production of an electronic scanning antenna.
  • the radiating part of an electronic scanning antenna requires a large number of repetitive elements called modules, each composed of an elementary source and an associated phase-shifter to constitute the phase-shift network.
  • such an elementary source consists of a dipole carried by a metal plate introduced at the pinched end of a waveguide by which it is excited.
  • This embodiment has the disadvantage of having a large footprint due to the dimensions of the waveguide and the arrangement of the dipole on a metal plate.
  • Another drawback comes from the need for machining and assembly operations leading to difficulties in industrial production, to uncertain reproducibility and at relatively high cost.
  • the present invention aims to remedy these drawbacks and relates to a radiating source constituted by a dipole excited by an extra-flat waveguide.
  • the extra-flat waveguide exciting the dipole consists of a dielectric strip of rectangular parallelepiped shape, of longitudinal axis to, the four of which faces symmetrical about the axis to and opposite two by two are each covered with a metal plate.
  • the two larger faces each extend towards the end of the dielectric strip by a metal tab leading to the strands of the dipole.
  • One of the advantages of the invention is the reduction in the size of the device constituted by the dipole and the waveguide and which is not increased by the phase shifter which is associated with it to make a module which can be used in an antenna with electronic scanning. Another advantage is the lower cost of equipment and technology.
  • Figure 1 shows a radiating source consisting of a dipole 1 excited by a waveguide 2.
  • the dipole is mounted on a metal plate 3 which fits into the opening 6 of the waveguide 2, along the mediator plane longitudinal of it.
  • the strands 4 of the dipole are parallel to the direction of polarization of the electric field E propagating in the guide 2 according to the TE 01 mode for example.
  • the metal plate 3 being introduced along the longitudinal plane of the waveguide 2, the two strands 4 of the dipole 1 are excited in the same way.
  • the impedance matching between the dipole 1 and the waveguide 2 is done by pinching the end 5 of the guide and adjusting the depression of the dipole 1 relative to the opening 6 of the guide.
  • FIG. 2 represents a radiating source according to the invention. It consists of a dielectric strip 7 of rectangular parallelepiped shape of length L1 and of width L2 determined and of height L3 very small, of longitudinal mediating plane ⁇ and of longitudinal median axis ⁇ .
  • the dielectric can be air.
  • the extra-flat waveguide 8 is produced from a determined length L less than L1 of the dielectric strip 7, the large opposite faces parallel to the plane ⁇ and the small opposite faces perpendicular to the previous ones and parallel to the axis are each covered with a metal plate of determined length less than L1.
  • the two metal plates 9 and 10 parallel to the plane ⁇ each extend respectively by a metal tongue 11 and 12 leading to the strands 13 and 14 of the dipole which extend in opposite directions.
  • the width of the tongues 11 and 12 decreases from the waveguide 8 towards the strands 13 and 14 of the dipole, thus realizing with the length of these same tongues the impedance adaptation between the guide and the dipole.
  • the strands 13 and 14 of the dipole are coated at the end of the dielectric strip 7 perpendicular to the direction of polarization of the electric field E in the guide 8.
  • These strands 13 and 14 each consist of a narrow metal strip, parallel to the longitudinal mediator plane ( ⁇ ) and perpendicular to the adaptive tongues and in contact with their ends.
  • the width of these metal strips also helps the impedance matching between the dipole and the waveguide.
  • the fact that the direction of the strands 13 and 14 is perpendicular to the direction of polarization of the electric wave propagating the waveguide 8 causes the appearance of a cross-polarized wave. In some antenna cases, the cross-polarization residue can be used to improve detection.
  • the dielectric strip (7) is not an air layer
  • the waveguide 8, the tongues 11 and 12 and the strands 13 and 14 of the dipole can be obtained by metallization or photoengraving.
  • FIG. 3 shows another type of embodiment of a primary radiating source according to the invention.
  • the strands 15 and 16 of the dipole are parallel to the direction of polarization of the electric field E circulating in the waveguide.
  • the waveguide 8 and the tongues 11 and 12 can be produced by metal plates or by photoengraving, but the strands 15 and 16 are narrow metallic tongues ensuring a certain mechanical strength and perpendicular to the longitudinal mediator plane ( ⁇ ).
  • the strands 15 and 16 of the dipole are in contact with the end of the tongues 11 and 12.
  • This radiating source can serve as an elementary source of an electronic scanning antenna.
  • it is connected to the output of one or more diode phase shifters providing the phase shift network of the antenna.
  • the phase shifters 17, 18 and 19 respectively shifting by 3X / 4, ⁇ / 2 and ⁇ / 4, each consist of a diode 20 placed in a hole 21 made throughout the thickness L3 of the dielectric strip 7.
  • This diode 20 is connected on one side directly to the metal plate covering one of the two faces parallel to the mediator plane and on the other side to a triplate trap placed on the other face parallel to the plane so that in microwave, the diode is connected on both sides to ground.
  • a printed circuit 22 is connected to the phase shifters to supply them and control them.
  • the height L3 of the dielectric strip 7 is equal to the thickness of the diodes 20 of the phase shifters.
  • FIG. 4 shows another exemplary embodiment of a radiating source according to the invention, in which the strands of the dipole have better mechanical strength than in the previous figure.
  • a dielectric substrate board 23 of rectangular parallelepiped shape and of the same width as the adaptive tongue 11 or 12, so that its long sides 24 and 25 are perpendicular to the longitudinal mediator plane ⁇ and such that the short side perpendicular to the plane ⁇ located at the end of the metal tongue 11 or 12 is metallized to form the strands 26 and 27 of the dipole.
  • the strands 28 and 29 are formed by narrow metal blades machined so as to have a T-shaped section, while in Figure 6, the strands 30 and 31 consist of metal blades of U-shaped section.
  • FIG. 7 represents an antenna with electronic scanning where the elementary sources are produced in accordance with the invention.
  • All the dipoles 32 are oriented in the same direction which is that of the polarization of the antenna.
  • At a distance equal to a quarter of the operating wavelength A / 4 reflective parts are placed, constituting the reflector of the antenna.
  • each row of dipoles 32, of longitudinal axis perpendicular to the direction of the strands of the dipoles is surrounded on one side by a metal plate 33 of length equal to the height of the row and on the other hand by small metal plates 34 of length equal to the distance separating two dipoles.
  • the shape of the antenna can be arbitrary, flat or parabolic for example.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)

Claims (15)

1. Strahlungsquelle, bestehend aus einem von einem sehr flachen Hohlleiter rechteckförmigen Querschnitts erregten Dipol, dessen Zweige sich in entgegengesetzte Richtungen erstrecken, dadurch gekennzeichnet, daß sie ein dielektrisches Plättchen (7) in Form eines geraden Rechtecks bestimmter Länge (L1) und Breite (L2) und sehr geringer Dicke (L3) aufweist, dessen beide gegenüberliegende Hauptflächen, die zur Längs-Mittelebene (π) des Plättchens parallel liegen, und dessen beide gegenüberliegende Seitenflächen, die senkrecht zu den ebengenannten Flächen und parallel zur mittleren Längsachse (Δ) des Plättchens verlaufen, je von einer Metallschicht auf eine gegebene Länge (L), die geringer als die Länge (L1) des dielektrischen Plättchens ist, bedeckt sind, so daß die Metallschichten den Hohlleiter bilden, wobei die Metallschichten (9 und 10), die die beiden parallel zur Längs-Mittelebene (π) verlaufenden gegenüberliegenden Flächen entlang der mittleren Längsachse (Δ) bedecken, je durch eine metallische Zunge (11 und 12) verlängert ist, die in die Zweige (13 und 14 ; 15 und 16 ; 26 und 27 ; 28 und 29 ; 30 und 31) des Dipols übergeht.
2. Strahlungsquelle nach Anspruch 1, dadurch gekennzeichnet, daß jeder der Dipol-Zweige (13 und 14), der in senkrechter Richtung zum elektrischen Feld E der sich im Hohlleiter fortpflanzenden Welle verläuft, aus einem schmalen, parallel zur Längs-Mittelebene (TI) und senkrecht zu einer der metallischen Zungen (11, 12) verlaufenden Metallband besteht und mit deren Ende in Berührung steht.
3. Strahlungsquelle nach Anspruch 1, dadurch gekennzeichnet, daß jeder der Dipol-Zweige (15, und 16 ; 26 und 27 ; 28 und 29 ; 30 und 31), der parallel zur Polarisationsebene der sich im Hohlleiter (8) fortpflanzenden Welle verläuft, aus einer schmalen Metallzunge besteht, die senkrecht zur Längs-Mittelebene (π) verläuft und die mit dem Ende einer der Metallzungen (11 und 12) in Berührung steht.
4. Strahlungsquelle nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Metallzunge (11 oder 12) eine abnehmende Breite vom Hohlleiter (8) in Richtung auf die Dipolzweige (13, und 14 ; 15 und 16 ; 26 und 27 : 28 und 29 ; 30 und 31) besitzt, wodurch also die Impedanzanpassung zwischen dem Hohlleiter und dem Dipol erfolgt.
5. Strahlungsquelle nach Anspruch 1, dadurch gekennzeichnet, daß die beiden gegenüberliegenden und zur Längs-Mittelebene (π) parallelen Flächen des Plättchens sowie die hierzu senkrechten einander gegenüberliegenden Flächen des Plättchens über eine bestimmte Länge (L) metallisiert sind, die geringer ist als die Länge (L1) des dielektrischen Plättchens, und somit den Hohlleiter (8) bilden.
6. Strahlungsquelle nach Anspruch 3, dadurch gekennzeichnet, daß die Dipolzweige (15 und 16) aus schmalen aufgebrachten Metallblechen bestehen, um einen verbesserten mechanischen Halt sicherzustellen.
7. Strahlungsquelle nach Anspruch 3, dadurch gekennzeichnet, daß jeder Dipolzweig (28 und 29) aus schmalen Metallblechen besteht, die einen T-förmigen Querschnitt besitzen.
8. Strahlungsquelle nach Anspruch 3, dadurch gekennzeichnet, daß jeder Dipolzweig (30 und 31) aus schmalen Metallblechen besteht, die einen U-förmigen Querschnitt besitzen.
9. Strahlungsquelle nach Anspruch 3, dadurch gekennzeichnet, daß ein Plättchen (23) aus dielektrischem Material und in Form eines rechteckigen Parallelepipeds, dessen Dicke der der metallischen Zunge (11 oder 12) gleicht, so auf letzterer angegebracht ist, daß seine großen Seiten (24 und 25) senkrecht auf der Längs-Mitteleben (π) stehen, und daß seine kleine Seite, die senkrecht zur Längs-Mittelebene (π) und in Höhe des Endes der metallischen Zunge liegt, metallisiert ist und so einen der Dipolzweige (26 und 27) bildet.
10. Strahlungsquelle nach einem beliebigen der Ansprüche 1 bis 4, 6 bis 9, dadurch gekennzeichnet, daß das dielektrische Plättchen (7) ein Luftplättchen ist.
11. Verwendung der Strahlungsquelle nach einem beliebigen der Ansprüche 1 bis 7 in einer Antenne mit elektronischer Überstreichung, dadurch gekennzeichnet, daß diese Strahlungsquelle unmittelbar an den Ausgang eines Diodenphasenschiebers angeschlossen ist.
12. Verwendung nach Anspruch 11, dadurch gekennzeichnet, daß der der Strahlungsquelle zugeordnete Phasenschieber aus einer Diode (20) besteht, die in einem die ganze Dicke des dielektrischen Plättchens (7) einnehmenden Loch (21) angeordnet ist und die einerseits an eine Dreiplattenfalle, welche auf der auf der ersten parallel zur Längs-Mittelebene (π) ausgerichteten Seite des Plättchens liegenden Metallschicht angeordnet ist, und die andererseits unmittelbar an die Metallschicht angeschlossen ist, die auf der zweiten, der ersten Seite gegenüberliegenden Seite angeordnet ist.
13. Verwendung nach Anspruch 12, dadurch gekennzeichnet, daß die Dicke (L3) des dielektrischen Plättchens gleich der Dicke der den Phasenschieber bildenden Diode (20) gewählt ist.
14. Verwendung nach einem beliebigen der Ansprüche 11 bis 13, dadurch gekennzeichnet, daß der Diodenphasenschieber, der der Quelle zugeordnet ist, durch einen gedruckten Schaltkreis (22) versorgt und gesteuert wird, der parallel zum dielektrischen Plättchen (7) angeordnet ist.
15. Verwendung nach Anspruch 11 für die Strahlungsquelle nach einem beliebigen der Ansprüche 3 bis 9, dadurch gekennzeichnet, daß die Quelle einen Reflektorteil umfaßt, der senkrecht und zu beiden Seiten des dielektrischen Plättchens (7) in einem Abstand von der die Dipolzweige (32) einschließenden Ebene angeordnet ist, der ein Viertel der Betriebswellenlänge beträgt.
EP80400342A 1979-03-28 1980-03-14 Durch einen von einem Hohlleiter gespeisten Dipol gebildete Strahlungsquelle und ihre Verwendung in einer elektronisch abtastenden Antenne Expired EP0017530B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR7907801A FR2452804A1 (fr) 1979-03-28 1979-03-28 Source rayonnante constituee par un dipole excite par un guide d'onde, et antenne a balayage electronique comportant de telles sources
FR7907801 1979-03-28

Publications (2)

Publication Number Publication Date
EP0017530A1 EP0017530A1 (de) 1980-10-15
EP0017530B1 true EP0017530B1 (de) 1983-05-11

Family

ID=9223664

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80400342A Expired EP0017530B1 (de) 1979-03-28 1980-03-14 Durch einen von einem Hohlleiter gespeisten Dipol gebildete Strahlungsquelle und ihre Verwendung in einer elektronisch abtastenden Antenne

Country Status (4)

Country Link
US (1) US4298878A (de)
EP (1) EP0017530B1 (de)
DE (1) DE3063029D1 (de)
FR (1) FR2452804A1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2506082A1 (fr) * 1981-05-15 1982-11-19 Thomson Csf Radiateur d'onde electromagnetique polarisee circulairement
FR2518827A1 (fr) * 1981-12-18 1983-06-24 Thomson Csf Dispositif d'alimentation d'un dipole rayonnant
US4500887A (en) * 1982-09-30 1985-02-19 General Electric Company Microstrip notch antenna
US4710775A (en) * 1985-09-30 1987-12-01 The Boeing Company Parasitically coupled, complementary slot-dipole antenna element
US4782346A (en) * 1986-03-11 1988-11-01 General Electric Company Finline antennas
US4816839A (en) * 1987-12-18 1989-03-28 Amtech Corporation Transponder antenna
US4905013A (en) * 1988-01-25 1990-02-27 United States Of America As Represented By The Secretary Of The Navy Fin-line horn antenna
US4978965A (en) * 1989-04-11 1990-12-18 Itt Corporation Broadband dual-polarized frameless radiating element
US6052889A (en) * 1996-11-21 2000-04-25 Raytheon Company Radio frequency antenna and its fabrication
US5867130A (en) * 1997-03-06 1999-02-02 Motorola, Inc. Directional center-fed wave dipole antenna
US6396449B1 (en) 2001-03-15 2002-05-28 The Boeing Company Layered electronically scanned antenna and method therefor
US7193575B2 (en) * 2003-04-25 2007-03-20 Qualcomm Incorporated Wideband antenna with transmission line elbow
US7804456B2 (en) 2004-04-28 2010-09-28 National Institute Of Information And Communications Technology Ultra wideband loop antenna
US8704718B2 (en) * 2009-09-15 2014-04-22 Honeywell International Inc. Waveguide to dipole radiator transition for rotating the polarization orthogonally
US9876282B1 (en) * 2015-04-02 2018-01-23 Waymo Llc Integrated lens for power and phase setting of DOEWG antenna arrays

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA660553A (en) * 1963-04-02 F. Radford Matthew Aerial systems
US2880417A (en) * 1955-02-11 1959-03-31 Lockheed Aircraft Corp Traveling wave device
GB787756A (en) * 1955-06-02 1957-12-18 Marconi Wireless Telegraph Co Improvements in or relating to wave guide mouth structures for projecting beams of electro-magnetic waves
US3553702A (en) * 1968-08-07 1971-01-05 Itt Waveguide radiator with perpendicular scattering posts at aperture
US3623112A (en) * 1969-12-19 1971-11-23 Bendix Corp Combined dipole and waveguide radiator for phased antenna array
US3778839A (en) * 1971-07-30 1973-12-11 Hallicrafters Co Double ridged wave guide feed for signal antenna
US3739391A (en) * 1972-06-12 1973-06-12 Us Air Force Metallized channel guide antenna
US4053897A (en) * 1976-10-14 1977-10-11 Honeywell Inc. Microwave element including source antenna and cavity portions
DE2811521A1 (de) * 1977-04-18 1978-10-19 Bendix Corp Symmetrierter bandleitungsdipol

Also Published As

Publication number Publication date
FR2452804A1 (fr) 1980-10-24
FR2452804B1 (de) 1983-06-10
DE3063029D1 (en) 1983-06-16
EP0017530A1 (de) 1980-10-15
US4298878A (en) 1981-11-03

Similar Documents

Publication Publication Date Title
EP0017530B1 (de) Durch einen von einem Hohlleiter gespeisten Dipol gebildete Strahlungsquelle und ihre Verwendung in einer elektronisch abtastenden Antenne
EP0013222B1 (de) Diodenphasenschieber für Mikrowellen und elektronisch abtastende Antenne mit einem solchen Schieber
EP0205212B1 (de) Modulare Mikrowellenantenneneinheiten und Antenne mit solchen Einheiten
EP0605046B1 (de) Mikrowellenanordnung mit mindestens einem Übergang zwischen einer auf einem Substrat integrierten Übertragungsleitung und einem Hohlleiter
EP0899814B1 (de) Strahlende Struktur
EP1580844B1 (de) Phasenschieber mit linearer Polarisation und einer durch mems-Schalter variablen Resonanzlänge
EP1038333B1 (de) Plattenantenne
EP0320404A1 (de) Wendeltyp-Antenne und Verfahren zu ihrer Herstellung
EP0667984B1 (de) Monopolantenne mit platten- und stabstrahlern
EP0082751B1 (de) Mikrowellenstrahler und seine Verwendung für eine Antenne mit elektronischer Abtastung
FR2582865A1 (fr) Modules unitaires d'antenne hyperfrequences et antenne hyperfrequences comprenant de tels modules
CA2310125C (fr) Antenne
FR2739225A1 (fr) Element d'antenne a hyperfrequences
EP0115983A2 (de) Raumfilter für zirkularpolarisierte Mikrowellen und Cassegrain-Antenne mit einem solchen Filter
EP1234356B1 (de) Aktiver hf reflektor unter verwendung von elektronischer strahlschwenkung
EP1305846B1 (de) Doppelpolarisierter aktiver mikrowellenreflektor, insbesondere für antenne mit elektronischer strahlschwenkung
EP0335788B1 (de) Mikrowellenphasenschieber
EP0048190B1 (de) Dispersionsfreie Gruppenantenne und ihre Anwendung in einer elektronisch schwenkbaren Antenne
FR2677176A1 (fr) Convertisseur mode coaxial-mode guide d'ondes.
EP0065467B1 (de) Mikrowellenantenne für Zirkularpolarisation
FR2518828A1 (fr) Filtre spatial de frequences et antenne comportant un tel filtre
FR2668304A1 (fr) Dephaseur reciproque en guide dielectrique a ferrite.
FR2834131A1 (fr) Panneau dephaseur monolithique a diodes pin en silicium polycristallin et antenne utilisant ce panneau dephaseur
FR2538960A1 (fr) Antenne reseau bi-fonction pour radar
FR2703516A1 (fr) Antenne à ondes progressives.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE GB IT LU NL SE

17P Request for examination filed

Effective date: 19801024

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE DE GB IT LU NL SE

REF Corresponds to:

Ref document number: 3063029

Country of ref document: DE

Date of ref document: 19830616

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19831222

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19840331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19840331

Year of fee payment: 5

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19890331

BERE Be: lapsed

Owner name: THOMSON-CSF

Effective date: 19890331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19900331

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910222

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19910225

Year of fee payment: 12

Ref country code: DE

Payment date: 19910225

Year of fee payment: 12

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19911001

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920315

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19921201

EUG Se: european patent has lapsed

Ref document number: 80400342.4

Effective date: 19921005