EP1305846B1 - Doppelpolarisierter aktiver mikrowellenreflektor, insbesondere für antenne mit elektronischer strahlschwenkung - Google Patents

Doppelpolarisierter aktiver mikrowellenreflektor, insbesondere für antenne mit elektronischer strahlschwenkung Download PDF

Info

Publication number
EP1305846B1
EP1305846B1 EP01958154A EP01958154A EP1305846B1 EP 1305846 B1 EP1305846 B1 EP 1305846B1 EP 01958154 A EP01958154 A EP 01958154A EP 01958154 A EP01958154 A EP 01958154A EP 1305846 B1 EP1305846 B1 EP 1305846B1
Authority
EP
European Patent Office
Prior art keywords
reflector
phase shift
layer
guides
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01958154A
Other languages
English (en)
French (fr)
Other versions
EP1305846A1 (de
Inventor
Claude Thales Intellectual Property CHEKROUN
Serge Thales Intellectual Property DRABOWITCH
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP1305846A1 publication Critical patent/EP1305846A1/de
Application granted granted Critical
Publication of EP1305846B1 publication Critical patent/EP1305846B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/44Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
    • H01Q3/46Active lenses or reflecting arrays

Definitions

  • the present invention relates to a bi-polarization active electron-beam reflector capable of being illuminated by a microwave source to form an antenna.
  • antennas comprising an active microwave reflector.
  • the latter also called “reflect array” in the Anglo-Saxon literature, is a network of electronically controllable phase shifters.
  • This network extends in a plane and comprises an array of phase-controlled elements, or phased array, disposed in front of reflector means, constituted for example by a ground plane forming a ground plane.
  • the reflector network comprises in particular elementary cells each performing the electronically variable reflection and phase shift, of the microwave wave it receives.
  • a primary source for example a horn, arranged in front of the reflector network emits microwave waves towards the latter.
  • a patent US-A-3,706,998 presents an antenna with two polarizations with nested networks.
  • An object of the invention is in particular to allow the realization of an electronic scanning antenna using an active reflector network and operating in two independent polarizations.
  • the subject of the invention is an active microwave reflector capable of receiving an electromagnetic wave comprising two interwoven waveguide arrays. The bottom of each guide is closed by a circuit performing the reflection and phase shift of the wave it receives, a network being intended to receive a polarization and the other network being intended to receive a polarization perpendicular to the previous one.
  • An embodiment may be as defined by claim 1.
  • the invention also relates to an electronic scanning antenna comprising a reflector as defined above.
  • This antenna may for example be of the "Reflect Array” type or of the Cassegrain type.
  • the invention has the particular advantage that it provides a compact reflector and low weight, it is simple to implement and it is economical.
  • FIG. 1 schematically illustrates an exemplary embodiment of an electron-ray scanning antenna with an active reflector network facing an orthonormal Oxyz coordinate system.
  • the microwave distribution is for example of the so-called optical type, that is to say for example provided by means of a primary source illuminating the reflector network.
  • the antenna comprises a primary source 1, for example a horn.
  • the primary source 1 transmits microwave waves 3 to the active reflector network 4 disposed in the Oxy plane.
  • This reflector network 4 comprises a set of elementary cells performing the reflection and phase shift of the waves they receive.
  • the primary source 1 may be double polarized.
  • FIG. 2 illustrates the principle of producing a reflector according to the invention.
  • the latter comprises two networks of waveguides 21, 22 nested. These guides are seen according to F, that is to say according to a front view of the reflector 4.
  • the figure thus represents in particular the section of the guides in the plane Oxy, the walls of the guides extending in the direction Oz.
  • Each guide belongs to an elementary cell as mentioned above.
  • a first array of guides 21 is intended to receive the vertical polarization and a second array of guides 22 is intended to receive the horizontal polarization.
  • the incident microwave waves penetrate the guides.
  • Each guide 21, 22 is short-circuited by a phase-shifter as described for example in the patent application French n ° 97 01326 , controllable in two to four bits or more.
  • FIG. 3 schematically illustrates a phase shift cell.
  • This therefore comprises a guide 21, 22 and a phase shift circuit 31, the latter being arranged at the bottom of the guide in the plane Oxy.
  • a phase shifter circuit 31 comprises at least one conductive wire 32, 33 itself carrying at least two semiconductors D 1 , D 2 , for example two-state diodes. Conductor wires and diodes are placed on a support dielectric 34 whose opposite face comprises a conductive plane reflecting the microwave wave. This conductive plane is for example in electrical contact with the walls of the guide 21, 22.
  • An elementary cell 31 thus realizes the reflection and the phase shift of the microwave wave 3 that it receives for the wave component whose polarization is substantially parallel to the son son 32, 33.
  • the cell as shown in Figure 3 acts on a polarized wave in the direction Oy parallel to the direction of the son of conductive 32, 33 of the cell.
  • horizontal polarization only the guides intended to receive this polarization are active, the others being short-circuited.
  • vertical polarization only the guides intended to receive this polarization are active, the others being short-circuited.
  • Figures 4a, 4b and 4c illustrate a possible nesting mode of the two guide arrays.
  • Figure 4a shows three guides 21 of the first network, representing a mesh, intended for example to receive the vertical polarization.
  • Figure 4b shows three guides 22 of the second network, representing a mesh, intended for example to receive the horizontal polarization.
  • the two networks are intended to receive cross-polarization waves, the second network of guides 22 being assigned to a polarization perpendicular to the polarization of the first network of guides 21.
  • the section of each guide comprises a midpoint C. Since this section is angular, the midpoint C is the intersection of its two median lines.
  • the sections of the guides are represented in the plane Oxy of the reflector.
  • the Ox axis corresponds to the direction of a first polarization.
  • the axis Oy corresponds to the direction of the second polarization, crossed with respect to the previous one.
  • FIG. 4a thus presents a first network of guides 21 intended to receive the vertical polarizations.
  • the network has several sets of aligned guides.
  • a guide line extends in the horizontal direction Ox and the set of lines extends in the direction Vertical Oy.
  • the centers C of two consecutive guides 21 are separated by a distance d.
  • Two consecutive lines are separated by a distance h, according to Oy, and offset relative to each other by the distance d / 2, according to Ox.
  • two median lines 41, 42 consecutive are distant from h, the center lines being the center lines of the guides taken according to Ox. Between two consecutive lines, there is a shift of d / 2 of the middle points of the guides.
  • Figure 4b shows the second array of guides 22 for receiving horizontal polarization.
  • the arrangement of the guides is similar to that of the network of Figure 4a, but with a rotation of the whole 90 °.
  • the lines extend along the axis Oy and the set of lines extends along the axis Ox.
  • the centers C of two consecutive guides 22 are separated by a distance d.
  • Two consecutive lines are separated by a distance h, according to Ox, and offset relative to each other by the distance d / 2, according to Oy.
  • two consecutive median lines 43, 44 are distant. of h, the median lines being the median lines of the guides taken according to Oy. Between two consecutive lines, there is a shift of d / 2 of the middle points of the guides.
  • FIG. 4c defines the nesting of the two guide arrays by showing how a guide 22 of a network is positioned relative to the guides 21 of the other network.
  • This guide 22 is contiguous with guides 21 of the other network.
  • the guide 22 is contiguous to four guides 21 of the other network.
  • the midpoint C of this guide 22 is aligned with the middle points of the two pairs of guides 21 flanking the guide 22.
  • a mesh is thus obtained as shown in FIG. 2.
  • the distance d between the middle points C of two consecutive guides of the same line is then equal ⁇ for example and the distance h between the medians 41, 42, 43, 44 of two consecutive lines is for example ⁇ / 2.
  • the inner dimensions of a waveguide are 1.8 cm and 0.9 cm, and the distances d and h are respectively 3 cm and 1.5 cm. This mesh allows in particular a misalignment of the beam reflected by the reflector 4 on a cone of about 60 °.
  • FIG. 5 presents, in a sectional view, the possible constituent layers of a reflector according to the invention. It comprises at least three layers 51, 52, 53.
  • a first layer 51 comprises the phase-shift microwave circuits, that is to say in particular the diodes D 1 , D 2 , the conducting wires which carry them and the connection circuits. associates.
  • the microwave circuits are for example supported by a substrate 54. On the face opposite to the microwave circuits, this substrate is covered with a metallized layer 56, forming a conductive plane, whose particular function is to reflect the microwave waves 3.
  • the thickness e h of the substrate is for example of the order of 3 mm, the relative dielectric constant ⁇ r being of the order of 2.5.
  • a second layer 52 comprises the control circuits 55 of the diodes D 1 , D 2 of the phase shifters.
  • This layer also ensures the connection between the control circuits and the diodes.
  • it has for example the structure of a multilayer printed circuit comprising interconnection planes of the control circuits to the microwave circuits.
  • a third layer 53 arranged opposite the microwave circuits D 1 , D 2 comprises the two waveguide gratings.
  • FIG. 6 shows a possible embodiment of the waveguide layer 53.
  • the walls of the guides 21, 22 are formed by metallized holes 61, 62 oriented in the direction Oz. These metallized holes could be replaced by conductive son, that is to say straight electrical conductors, oriented in the direction Oz.
  • the guides thus produced have for example common wall portions, that is to say that metallized holes 63, 64 are common to two guides. In this case, two neighboring guides have metallized holes in common.
  • the metallized holes are made in a plate of dielectric material of thickness eg, this thickness constituting the length of the guides.
  • the metallized holes are close enough to act as walls of waveguides. These metallized holes 61, 62 thus cross the entire third layer 53.
  • certain metallized holes 61, 64 may extend in the layer 52 comprising the control circuits. These holes which extend allow in particular to electrically connect the control circuits to the diodes of the phase-shifter circuits of the microwave layer 51. These metallized holes 61, 64 thus convey the control of the diodes and the power supply circuits. They are for example connected to the different interconnection planes of the control layer 52.
  • the metallized holes 61, 64 shown in black are also used for the supply and control of the microwave circuits. These holes 61, 64 pass through the conductive plane 56 without electrical contact with the latter.
  • the other holes 62, 63 stop for example at this conductive plane 56, in electrical contact with the latter.
  • the thickness e g of the waveguide layer is for example of the order of one centimeter.
  • the weight of a reflector according to the invention is low because of the low weight of the different layers. . Moreover, despite the waveguide layer, the reflector remains compact.
  • FIG. 7 illustrates a complementary embodiment making it possible in particular to reduce the active standing wave ratio (TOS) in the guides.
  • the inlet of the guides 21, 22 comprises an iris 71 of rectangular opening, the assembly being closed by a dielectric plate 72.
  • the waveguide layer 53 may be covered with a layer forming the irises, the assembly being closed by a dielectric layer.
  • a reflector according to the invention can be used for different types of antennas. It can be used as shown in Figure 1 to form a antenna of the "reflect array” type. Similarly, it can be used in a Cassegrain type antenna. In the latter case, the primary source is placed in the center of the reflector and illuminates an auxiliary reflector. The latter in turn illuminates, by reflection, the reflector according to the invention.
  • a reflector or an antenna according to the invention are simple to implement. They are also economical because the components and technologies used are cheap.
  • the invention also provides all the advantages associated with bipolarization.
  • An antenna according to the invention can thus for example be used for polarimetric measurements on targets, in particular by transmitting on one polarization and receiving on the other polarization. It can be used in telecommunication applications, for example bi-band.

Claims (9)

  1. Aktiver Mikrowellenreflektor, der eine elektromagnetische Welle (3) empfangen kann, mit zwei Netzen von Wellenleitern (21, 22), wobei der Boden jedes Wellenleiters von einer Phasenverschiebungsschaltung (31) verschlossen wird, die die Reflexion und die Phasenverschiebung der Welle durchführt, die sie empfängt, wobei ein Netz dazu bestimmt ist, eine Polarisation zu empfangen und das andere Netz dazu bestimmt ist, eine Polarisation lotrecht zur vorhergehenden zu empfangen, dadurch gekennzeichnet, dass die Netze so verschachtelt sind, dass:
    - ein erstes Netz mehrere Gruppen von fluchtend ausgerichteten Wellenleitern (21) mit Rechteckquerschnitt aufweist, wobei sich eine Zeile gemäß einer Richtung Ox erstreckt und sich die Gesamtheit der Zeilen gemäß einer lotrechten Richtung Oy erstrecken, wobei in einer Zeile die Mitten C der Querschnitte von zwei aufeinanderfolgenden Wellenleitern (21) um einen Abstand d getrennt sind, während zwei aufeinanderfolgende Zeilen um einen Abstand h=d/2 gemäß Oy getrennt und zueinander um den Abstand d/2 gemäß Ox verschoben sind;
    - das zweite Netz mehrere Gruppen von Wellenleitern (22) aufweist, die in der gleichen Weise wie im ersten Netz fluchtend ausgerichtet sind, wobei die Zeilen winkelmäßig um 90° bezüglich denjenigen des ersten Netzes verschoben sind.
  2. Reflektor nach Anspruch 1, dadurch gekennzeichnet, dass er mindestens drei Schichten aufweist:
    - eine Schicht (51), die die Phasenverschiebungsschaltungen aufweist;
    - eine Schicht (52), die die Steuerschaltungen (55) der Phasenverschiebungsschaltungen aufweist, wobei diese Schicht außerdem die Verbindung zwischen den Steuerschaltungen und den Dioden gewährleistet;
    - eine Schicht (53), die gegenüber den Phasenverschiebungsschaltungen angeordnet ist und die zwei Netze von Wellenleitern (21, 22) aufweist.
  3. Reflektor nach Anspruch 2, dadurch gekennzeichnet, dass die Wände der Wellenleiter (21, 22) von geradlinigen angenäherten elektrischen Leitern (61, 62, 63, 64) hergestellt werden, die die Schicht (53) durchqueren und lotrecht zur Ebene (Oxy) der Phasenverschiebungsschaltungen ausgerichtet sind.
  4. Reflektor nach Anspruch 3, dadurch gekennzeichnet, dass die Wellenleiter (21, 22) außerdem die Schicht (51) durchqueren, die die Phasenverschiebungsschaltungen aufweist, wobei die Leiter die Mikrowellenentkopplung zwischen benachbarten Phasenverschiebungsschaltungen gewährleisten.
  5. Reflektor nach Anspruch 4, dadurch gekennzeichnet, dass Leiter in die Steuerschicht (52) eindringen, um Steuersignale zu der Schicht (51) zu transportieren, die die Phasenverschiebungsschaltungen enthält.
  6. Reflektor nach einem der Ansprüche 3 bis 5,
    dadurch gekennzeichnet, dass die Leiter metallbeschichtete Löcher sind.
  7. Reflektor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Phasenverschiebungsschaltung (31) mindestens einen Leiterdraht (32, 33) aufweist, der selbst mindestens zwei Halbleiter (D1, D2) mit zwei Zuständen trägt, wobei die Leiterdrähte und die Halbleiter auf einem dielektrischen Träger (34) angeordnet sind, dessen gegenüberliegende Seite eine leitende Ebene aufweist, die die Mikrowelle reflektiert, wobei die Phasenverschiebungsschaltung die Welle, die sie empfängt, für die Komponente der Welle reflektiert und in Phase verschiebt, deren Polarisation im Wesentlichen parallel zu den Leiterdrähten ist.
  8. Mikrowellenantenne mit elektronischer Abtastung, dadurch gekennzeichnet, dass sie einen Reflektor (4) nach einem der vorhergehenden Ansprüche und eine Mikrowellenquelle (1) aufweist, die den Reflektor beleuchtet.
  9. Mikrowellenantenne mit elektronischer Abtastung, dadurch gekennzeichnet, dass sie einen Reflektor (4) nach einem der Ansprüche 1 bis 7 aufweist, um eine Antenne vom Typ Cassegrain zu bilden, wobei eine Mikrowellenquelle nahe der Mitte des Reflektors (4) angeordnet ist, um einen Hilfsreflektor zu beleuchten, der den Reflektor (4) durch Reflexion beleuchtet.
EP01958154A 2000-07-28 2001-07-20 Doppelpolarisierter aktiver mikrowellenreflektor, insbesondere für antenne mit elektronischer strahlschwenkung Expired - Lifetime EP1305846B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0009975A FR2812457B1 (fr) 2000-07-28 2000-07-28 Reflecteur hyperfrequence actif a bi-polarisation, notamment pour antenne a balalyage electronique
FR0009975 2000-07-28
PCT/FR2001/002383 WO2002011238A1 (fr) 2000-07-28 2001-07-20 Reflecteur hyperfrequence actif a bipolarisation, notamment pour antenne a balayage electronique

Publications (2)

Publication Number Publication Date
EP1305846A1 EP1305846A1 (de) 2003-05-02
EP1305846B1 true EP1305846B1 (de) 2007-09-19

Family

ID=8853063

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01958154A Expired - Lifetime EP1305846B1 (de) 2000-07-28 2001-07-20 Doppelpolarisierter aktiver mikrowellenreflektor, insbesondere für antenne mit elektronischer strahlschwenkung

Country Status (8)

Country Link
US (1) US6703980B2 (de)
EP (1) EP1305846B1 (de)
JP (1) JP2004505582A (de)
AU (1) AU2001279889A1 (de)
CA (1) CA2385787A1 (de)
DE (1) DE60130561T2 (de)
FR (1) FR2812457B1 (de)
WO (1) WO2002011238A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2539040A1 (en) 2003-09-15 2005-03-24 The Council For The Central Laboratory Of The Research Councils Millimetre and sub-millimetre imaging device
FR2879359B1 (fr) * 2004-12-15 2007-02-09 Thales Sa Antenne a balayage electronique large bande
US7333055B2 (en) * 2005-03-24 2008-02-19 Agilent Technologies, Inc. System and method for microwave imaging using an interleaved pattern in a programmable reflector array
US7283085B2 (en) * 2005-03-24 2007-10-16 Agilent Technologies, Inc. System and method for efficient, high-resolution microwave imaging using complementary transmit and receive beam patterns
FR2907262B1 (fr) 2006-10-13 2009-10-16 Thales Sa Cellule dephaseuse a dephaseur analogique pour antenne de type"reflectarray".
FR2920597B1 (fr) * 2007-08-31 2010-04-16 Thales Sa Reflecteur hyperfrequence a balayage electronique a double polarisation, large bande, et antenne equipee d'un tel reflecteur
JP5371633B2 (ja) 2008-09-30 2013-12-18 株式会社エヌ・ティ・ティ・ドコモ リフレクトアレイ
JP5297349B2 (ja) * 2009-11-13 2013-09-25 株式会社エヌ・ティ・ティ・ドコモ リフレクトアレイ
GB201122324D0 (en) 2011-12-23 2012-02-01 Univ Edinburgh Antenna element & antenna device comprising such elements
DE102013218555A1 (de) * 2013-07-18 2015-01-22 Rohde & Schwarz Gmbh & Co. Kg System und Verfahren zur Ausleuchtung und Abbildung eines Objekts
TWI713517B (zh) * 2016-04-20 2020-12-21 智邦科技股份有限公司 天線系統

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3308469A (en) 1962-10-19 1967-03-07 Thomson Houston Comp Francaise Multi-mode antenna system
FR1460030A (fr) 1965-10-14 1966-06-17 Thomson Houston Comp Francaise Perfectionnements aux antennes à balayage électronique
FR1460075A (fr) 1965-10-15 1966-06-17 Thomson Houston Comp Francaise Perfectionnements aux réseaux rayonnants
FR1462334A (fr) 1965-10-15 1966-04-15 Thomson Houston Comp Francaise Système d'antennes multifaisceau réalisant la spectro-analyse spatiale
FR2118848B1 (de) 1970-12-22 1974-03-22 Thomson Csf
US3706998A (en) * 1971-02-03 1972-12-19 Raytheon Co Multiple interleaved phased antenna array providing simultaneous operation at two frequencies and two polarizations
FR2148341B1 (de) 1971-08-09 1977-01-28 Thomson Csf
US3761943A (en) * 1972-07-21 1973-09-25 Us Navy Dual-band array antenna
FR2255716B1 (de) 1973-12-20 1978-03-24 Thomson Csf
US3978484A (en) * 1975-02-12 1976-08-31 Collier Donald C Waveguide-tuned phased array antenna
FR2302601A1 (fr) 1975-02-28 1976-09-24 Thomson Csf Dispositif d'extr
FR2646924B1 (fr) 1976-07-13 1991-10-25 Thomson Csf Procede et dispositif d'antibrouillage d'un equipement de detection electromagnetique comportant une antenne a reflecteur, antenne et equipement ainsi obtenus
FR2383530A1 (fr) 1977-03-11 1978-10-06 Thomson Csf Antenne reseau non dispersive et son application a la realisation d'une antenne a balayage electronique
FR2385233A1 (fr) 1977-03-25 1978-10-20 Thomson Csf Structure d'antenne a reflecteurs et notamment a reflecteurs excentres, et equipements de detection electromagnetique et de telecommunications spatiales comportant une telle structure
FR2395620A1 (fr) 1977-06-24 1979-01-19 Radant Etudes Perfectionnement au procede de balayage electronique utilisant des panneaux dielectriques dephaseurs
FR2412960A1 (fr) 1977-12-20 1979-07-20 Radant Etudes Dephaseur hyperfrequence et son application au balayage electronique
FR2445040A1 (fr) 1978-12-22 1980-07-18 Thomson Csf Antenne a balayage conique pour radar, notamment radar de poursuite
FR2448231A1 (fr) 1979-02-05 1980-08-29 Radant Et Filtre spatial adaptatif hyperfrequence
FR2456399A1 (fr) 1979-05-08 1980-12-05 Thomson Csf Antenne reseau hyperfrequence du type disque avec son dispositif d'alimentation, et application aux radars d'ecartometrie
FR2469808A1 (fr) 1979-11-13 1981-05-22 Etude Radiant Sarl Dispositif de balayage electronique dans le plan de polarisation
FR2511196A1 (fr) 1981-08-07 1983-02-11 Thomson Csf Ensemble d'antennes principale et auxiliaires a balayage electronique et radar comportant un tel ensemble
FR2513022A1 (fr) 1981-09-11 1983-03-18 Thomson Csf Guide d'onde a fentes rayonnantes et a large bande de frequence
FR2527785A1 (fr) 1982-05-27 1983-12-02 Thomson Csf Procede et dispositif de reduction de la puissance des signaux de brouillage recus par les lobes lateraux d'une antenne radar
FR2594274B1 (fr) 1982-08-27 1988-08-26 Thomson Csf Procede de compression d'impulsions par codage de l'espace et son application a un radar
FR2733091B1 (fr) 1983-05-06 1997-05-23 Cmh Sarl Repondeur hyperfrequence electriquement controlable et ses applications a la realisation de leurres electromagnetiques
FR2723210B1 (fr) 1983-05-06 1997-01-10 Cmh Sarl Procede et dispositif antidetection pour radar
FR2548836B1 (fr) 1983-07-08 1986-02-21 Thomson Csf Antenne a couverture quasi torique a deux reflecteurs
FR2557737B1 (fr) 1983-12-30 1987-12-18 Thomson Csf Antenne a deux reflecteurs cylindro-paraboliques croises et son procede de fabrication
FR2629920B1 (fr) 1984-01-23 1991-09-20 Cmh Sarl Filtre spatial adaptatif hyperfrequence fonctionnant a la reflexion et son procede de mise en oeuvre
FR2732469B1 (fr) 1984-01-23 1997-04-11 Cmh Sarl Dispositif utilisant une antenne auxiliaire equipee d'un filtre spatial adaptatif pour l'embrouillage d'une antenne principale associee, et son procede de mise en oeuvre
FR2574037B1 (fr) 1984-11-30 1993-09-10 Thomson Csf Dispositif et procede de commande de vehicules guides
FR2580868B1 (fr) 1985-04-19 1988-04-08 Thomson Csf Dispositif reflechissant les ondes electromagnetiques d'une polarisation et son procede de realisation
FR2589011B1 (fr) 1985-10-22 1988-10-14 Thomson Csf Antenne reseau a balayage conique et radar comportant une telle antenne
FR2604794B1 (fr) 1986-10-07 1988-12-02 Thomson Csf Filtre, dispositif de mesure de phase et procede mettant en oeuvre ledit filtre
US5262788A (en) 1986-12-30 1993-11-16 Thomson-Csf Device and method for data transmission and/or acquisition using two cross polarizations of an electromagnetic wave and magnetic recording device
FR2609224B1 (fr) 1986-12-30 1989-04-07 Thomson Csf Dispositif et procede de transmission et/ou d'acquisition des donnees utilisant deux polarisations croisees d'une onde electromagnetique et dispositif d'enregistrement magnetique
FR2656468B1 (fr) 1989-12-26 1993-12-24 Thomson Csf Radant Source de rayonnement microonde magique et son application a une antenne a balayage electronique.
FR2725077B1 (fr) 1990-11-06 1997-03-28 Thomson Csf Radant Lentille hyperfrequence bipolarisation et son application a une antenne a balayage electronique
FR2671194B1 (fr) 1990-12-27 1993-12-24 Thomson Csf Radant Systeme de protection d'un equipement electronique.
US5198827A (en) * 1991-05-23 1993-03-30 Hughes Aircraft Company Dual reflector scanning antenna system
FR2786610B1 (fr) * 1997-02-03 2001-04-27 Thomson Csf Reflecteur hyperfrequence actif pour antenne a balayage electronique
FR2801729B1 (fr) * 1999-11-26 2007-02-09 Thomson Csf Reflecteur hyperfrequence actif a balayage electronique

Also Published As

Publication number Publication date
DE60130561T2 (de) 2008-06-19
AU2001279889A1 (en) 2002-02-13
US6703980B2 (en) 2004-03-09
CA2385787A1 (fr) 2002-02-07
FR2812457A1 (fr) 2002-02-01
WO2002011238A1 (fr) 2002-02-07
DE60130561D1 (de) 2007-10-31
JP2004505582A (ja) 2004-02-19
EP1305846A1 (de) 2003-05-02
FR2812457B1 (fr) 2004-05-28
US20020145492A1 (en) 2002-10-10

Similar Documents

Publication Publication Date Title
EP2656438B1 (de) Strahlende zelle mit zwei phasenzuständen für ein sendendes netzwerk
EP0481417B1 (de) Vorrichtung zur Speisung eines Strahlungselementes für zwei orthogonale Polarisationen
EP0108463B1 (de) Strahlelement für orthogonal polarisierte Signale und flache Antennengruppe mit solchen nebeneinandergestellten Elementen
EP2869400B1 (de) Doppelpolarisierter kompakter Leistungsverteiler, Netz aus mehreren Verteilern, kompaktes Strahlungselement und Flachantenne, die einen solchen Verteiler umfasst
FR2956252A1 (fr) Antenne plane directive embarquee, vehicule comportant une telle antenne et systeme de telecommunication par satellite comportant un tel vehicule
EP1305846B1 (de) Doppelpolarisierter aktiver mikrowellenreflektor, insbesondere für antenne mit elektronischer strahlschwenkung
EP2807702A1 (de) Zweidimensionaler mehrstrahlformer, antenne mit einem solchen mehrstrahlformer und satellitentelekommunikationssystem mit einer derartigen antenne
EP1234356B1 (de) Aktiver hf reflektor unter verwendung von elektronischer strahlschwenkung
FR3044832A1 (fr) Architecture d'antenne active a formation de faisceaux hybride reconfigurable
EP3900113B1 (de) Elementare mikrostreifenantenne und gruppenantenne
CA2808511C (fr) Antenne plane pour terminal fonctionnant en double polarisation circulaire, terminal aeroporte et systeme de telecommunication par satellite comportant au moins une telle antenne
EP1139484B1 (de) Mikrowellenphasenschieber und phasengesteuerte Gruppenantenne mit derartigen Phasenschiebern
EP0477102B1 (de) Richtnetzwerk mit benachbarten Strahlerelementen für Funkübertragungssystem und Einheit mit einem derartigen Richtnetzwerk
EP1157444B1 (de) Antenne mit doppelbandiger elektronischerabtastung mit aktivem mirkowellenrefkelektor
FR2678438A1 (fr) Antenne reseau lineaire.
FR3102311A1 (fr) Antenne-reseau
FR2907262A1 (fr) Cellule dephaseuse a dephaseur analogique pour antenne de type"reflectarray".
FR2747842A1 (fr) Lentille hyperfrequence multibande et son application a une antenne a balayage electronique
FR2815479A1 (fr) Reflecteur hyperfrequence actif a deux polarisations independantes, notamment pour antenne a balayage electronique
WO2023218008A1 (fr) Antenne faible profil à balayage electronique bidimensionnel
FR2920597A1 (fr) Reflecteur hyperfrequence a balayage electronique a double polarisation, large bande, et antenne equipee d'un tel reflecteur
FR2703516A1 (fr) Antenne à ondes progressives.
FR2820886A1 (fr) Panneau reflecteur hyperfrequence

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020402

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20040212

RBV Designated contracting states (corrected)

Designated state(s): DE GB IT NL SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THALES

17Q First examination report despatched

Effective date: 20040212

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT NL SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 60130561

Country of ref document: DE

Date of ref document: 20071031

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070919

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080620

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100724

Year of fee payment: 10

Ref country code: DE

Payment date: 20100714

Year of fee payment: 10

Ref country code: SE

Payment date: 20100708

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100714

Year of fee payment: 10

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120201

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60130561

Country of ref document: DE

Effective date: 20120201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110721