EP3900113B1 - Elementare mikrostreifenantenne und gruppenantenne - Google Patents

Elementare mikrostreifenantenne und gruppenantenne Download PDF

Info

Publication number
EP3900113B1
EP3900113B1 EP19829574.3A EP19829574A EP3900113B1 EP 3900113 B1 EP3900113 B1 EP 3900113B1 EP 19829574 A EP19829574 A EP 19829574A EP 3900113 B1 EP3900113 B1 EP 3900113B1
Authority
EP
European Patent Office
Prior art keywords
excitation
elementary
point
radiating element
conducting line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19829574.3A
Other languages
English (en)
French (fr)
Other versions
EP3900113A1 (de
Inventor
Christian Renard
Isabelle LE ROY-NANEIX
José-Alberto ZEVALLOS LUNA
Jean-François FOURMONT
Benjamin Riviere
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP3900113A1 publication Critical patent/EP3900113A1/de
Application granted granted Critical
Publication of EP3900113B1 publication Critical patent/EP3900113B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/35Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using two or more simultaneously fed points
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
    • H01Q9/0457Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means electromagnetically coupled to the feed line

Definitions

  • the present invention relates to the field of array-type electromagnetic antennas and in particular active antennas. It applies in particular to radars, electronic warfare systems (such as radar detectors and radar jammers) as well as communication systems or other multifunction systems.
  • a so-called array antenna comprises a plurality of elementary antennas which can preferably be of the microstrip type, also called patch antennas or “patch antenna” in English terminology.
  • These patch antennas comprise a stack of layers of dielectric substrates provided with metal tracks, spaced if necessary by non-etched materials or substrates.
  • An elementary microstrip antenna conventionally comprises a radiating element placed on a layer of dielectric disposed above a conductive plane serving as ground so as to constitute a resonator.
  • the elementary antenna also comprises a power distribution device making it possible to excite the radiating element from an input signal.
  • the radiating device is coupled to its excitation by a metallized hole (called a via) or by a slot.
  • the electromagnetic coupling by slot makes it easier to generate a wide frequency band. It also makes it possible to avoid any connection via between the radiating elements and the excitation, which simplifies the manufacture of the elementary antenna.
  • excitation means capable of simultaneously exciting the radiating device according to two orthogonal linear polarizations are provided. This makes it possible to choose the most suitable polarization for a given environment (by combining these 2 polarizations with an appropriate amplitude-phase relationship).
  • the array antennas form an array of elementary antennas whose pitch is ⁇ Fmax /2, where ⁇ Fmax is the smallest wavelength corresponding to the maximum frequency Fmax of the band, which is a strong constraint on the dimensions of the elementary antennae.
  • a practical solution for increasing the width of the bandwidth of the elementary antenna consists in increasing the volume of the antenna, therefore the height (the thickness), the lateral dimensions being limited by the pitch of the array. Simply increasing the height between the radiating device and the ground plane, however, leads to spurious phenomena when placing within a grating (transverse propagation of undesirable modes).
  • the conventionally adopted solution consists in using several superposed radiating elements. This type of stacking is called double superimposed patch (DPS) in the case of two radiating elements.
  • DPS double superimposed patch
  • one solution consists in forming the two power distributors on different planes of the microstrip antenna.
  • the two faces of the same layer of dielectric substrate are each occupied by a power splitter .
  • the two power distributors comprise branches whose projections on a plane perpendicular to the stacking direction intersect. These branches are orthogonal in order to reduce the coupling between the distributors.
  • Each of the distributors comprises two branches meeting outside the surface covered by each of the radiating elements. This configuration is incompatible with the networking of the elementary antenna with a tight mesh (mesh of the order of ⁇ Fmax /2).
  • the splitters are arranged on different planes spaced apart along the stacking direction. Vias are necessary to pass the signals to the second splitter through the layer containing the first splitter, through a ground plane separating the planes of the two couplers. This generates a strong asymmetry on the geometry and therefore on the behavior of the two linear polarizations.
  • An object of the present invention is to limit at least one of the disadvantages listed above.
  • the first conductive line is opposite the first excitation point
  • the second conductive line is opposite the second excitation point
  • the third conductive line is opposite the third excitation point
  • the fourth conductive line is gaze from the fourth point of excitement.
  • the first conductive line and the second conductive line extend linearly perpendicular to the first straight line, and the third conductive line and the fourth conductive line extending linearly perpendicular to the second line.
  • the first conductive line and the second conductive line are coplanar, the third conductive line and the fourth conductive line being coplanar and distant from the first conductive line and from the second conductive line along the stacking direction.
  • the first power distributor is connected to the first conductive line and to the second conductive line at access points of the power distributor whose orthogonal projections on the first radiating element are distant from the first excitation point and from the second excitation point along the second straight line, and in which the second power splitter is connected to the third conductive line and to the fourth conductive line at access points of the power splitter whose orthogonal projections on the first radiating element are distant from the third excitation point and from the fourth excitation point along the first straight line.
  • the power splitters are Wilkinson splitters, each power splitter comprising two S-shaped branches, first diverging from each other from the junction point to two parts then approaching from each other to the respective ends of a resistor by which the branches are connected, then diverging again from each other to reach respective access points of the power splitter, the end parts being separated from each other by a distance greater than the distance separating the junction point of the resistor.
  • the first distributor and the second distributor are separated from each other by a line being an orthogonal projection of a bisector of the first line and of the second line on the plane of the distributors.
  • the first distributor and the second distributor are symmetrical to each other with respect to the line.
  • the first and the second distributors are asymmetrical with respect to the right.
  • a surface delimiting the first and the second power splitters is substantially rectangular, each of the first and second power splitters comprises a common branch comprising an entry-exit point and being connected to two branches, each of the two branches being coupled to one of the conductive lines via an access point of the branch, a straight line connecting the access points of each power splitter extending parallel and close to a first side of the rectangle and an entry/exit point of the power splitter being closer to another side of the rectangle parallel to the first side than said straight line.
  • the first radiating element comprises a center, the first point of excitation and the second point of excitation being positioned symmetrically with respect to the center, and the third point of excitation and the fourth point of excitation being positioned symmetrically about the center.
  • the elementary antenna comprises a second radiating element superimposed on the first radiating element.
  • the antenna comprises a first elementary assembly of at least one slot extending linearly opposite the first straight line and facing the first excitation point and the second excitation point and a second elementary assembly of at least one at least one slot extending linearly opposite the second straight line and facing the third excitation point and the fourth excitation point, the first elementary set of at least one slit and the second elementary set of at least at least one slot for coupling the excitation device and the first conductive radiating element.
  • the invention also relates to an array antenna comprising a plurality of elementary antennas according to the invention.
  • the elementary antennas form an array of elementary antennas.
  • the invention also relates to an elementary antenna as well as to an array antenna comprising an array of elementary antennas according to the invention.
  • FIG. 1 schematically represents an exploded view of an example of an elementary antenna of the planar type also called a microstrip antenna.
  • the elementary antenna is capable of being in a flat configuration in which the stack comprises a stack of layers that are substantially flat and perpendicular to a stacking direction represented by the axis z.
  • the elementary antenna can be flexible and able to present a curved configuration in which the layers are curved.
  • the stack comprises parallel conductive planes, spaced along the z axis which is orthogonal to them.
  • a sectional view of the elementary antenna is represented in picture 2 .
  • the figures 1 and 2 In order not to overload the figures 1 and 2 , only the conductive planes are represented.
  • Intervals are provided between the successive conductive planes. These gaps each include at least one layer of a dielectric substrate which may, for example, be an air or foam layer.
  • the first radiating element 1 is called the excited block and the second radiating element 2, which is coupled by proximity to the first radiating element 1, is called the director block.
  • the double superimposed patch is adjusted to achieve a double resonator.
  • Each radiating element 1, 2 is in the form of a conductive plate. It has, for example, a substantially rectangular shape as shown in figure 1 . Alternatively, each radiating element may have another shape (square, disc, etc.). Whatever the geometry of each radiating element, it is possible to define a center there.
  • the radiating elements 1, 2 are arranged so that the center C1 of the first radiating element is located opposite the center C2 of the second radiating element, that is to say on the same axis parallel to the stacking direction represented by the z axis.
  • the radiating device B comprises a single radiating element.
  • the elementary antenna A comprises an excitation device C coupled to the radiating device B so as to make it possible to simultaneously excite the radiating device B according to two orthogonal linear polarizations.
  • the excitation device C overcomes a lower ground plane D.
  • the excitation of the points p1 and p2 by the first elementary excitation device makes it possible to radiate a wave polarized along the second straight line D2.
  • the excitation of the points p3 and p4 by the second elementary excitation device makes it possible to radiate a wave polarized along the first straight line D1.
  • the proposed coupling makes it possible to choose the polarization of the total wave emitted by the antenna, the most suitable for a given environment (by combining these two polarizations with an appropriate amplitude-phase relationship). It is possible to obtain a total wave polarized circularly in both directions, or linearly in any direction depending on the phase shifts between these two linearly polarized waves.
  • Lines D1 and D2 are orthogonal to each other and to the z axis and pass through center C1.
  • the points p1 and p2 are symmetrical to each other with respect to the center C1 and the points p3 and p4 are symmetrical to each other with respect to the center C1.
  • the points p1, p2, p3 and p4 are located at the same distance from the center C1.
  • each conductive line L1, L2, L3, or L4 passes opposite the excitation point p1, p2, p3 or p4, to which it is coupled.
  • an orthogonal projection of each conductive line on the plane of the first conductive element 1 passes through the excitation point to which the conductive line is coupled.
  • the two power distributors 11 and 21 are coplanar, that is to say, placed or etched on the same layer of dielectric substrate.
  • the conductive lines L1, L2, L3 and L4 are interposed between the radiating device B and the power distributors 11 and 21, according to the stacking direction z.
  • the conductive lines L1, L2, L3 and L4 are arranged in planes distant from the power splitters 21, 22 along the stacking axis.
  • each power splitter it is the conductive lines which must be located opposite these excitation points in order to be able to be coupled with these points.
  • This arrangement is advantageous for the symmetry of the electrical paths intended to excite the two pairs of points, which is favorable to obtaining a perfectly stable and symmetrical radiation pattern throughout the working frequency band.
  • the arrangement of the two power distributors on the same plane (or same layer) makes it possible to avoid the installation of vias to pass the current to one of the splitters through a layer containing the other splitter and two ground planes surrounding this other splitter. This makes it possible to limit the asymmetry between the excitation branches of the two pairs of points.
  • the power splitters are separated from the conductive lines by a ground plane called the lower intermediate ground plane E, which makes it possible to produce structures of the stripline type.
  • the elementary excitation devices are configured and arranged so that the second elementary excitation device is substantially obtained by rotation of the first elementary excitation device by 90° around an axis parallel to z and passing through C1.
  • This characteristic makes it possible to obtain a high symmetry between the excitations of the two polarizations due to the symmetry of the electrical paths within the distributors.
  • the two power distributors are symmetrical with each other with respect to a straight line DB which is an orthogonal projection of a bisector of the straight lines D1 and D2 on the plane of the distributors.
  • This symmetry is an orthogonal symmetry.
  • This solution also makes it possible to arrange shielding/decoupling vias between the two power splitters 11 and 21 as we will see later.
  • the two power distributors are separated by the straight line DB.
  • the conductive lines are linear.
  • the conductive lines L1 and L2 are perpendicular to D1 and the lines L3 and L4 are perpendicular to D2.
  • the orthogonality between the two pairs of conductive lines also ensures minimal coupling between these pairs of lines.
  • the conductive lines L1 and L2 are spaced from the lines L3 and L4 along the stacking axis z.
  • Lines L1 and L2 are coplanar and included in a first plane P1, perpendicular to the stacking direction z
  • the lines L3 and L4 are coplanar and included in a second plane P2, perpendicular to the stacking direction z, distant from the first plane P1 in the direction d stacking z.
  • the second elementary excitation device is substantially obtained by rotation of the first elementary excitation device by 90° around an axis parallel to z and passing through C1.
  • the residual asymmetry of the excitation between the two pairs of excitation points is limited to the distance between the two planes carrying the two pairs of lines, which makes it possible to obtain a very stable radiation pattern.
  • the two pairs of conductive lines are for example placed or etched on the two respective faces of a dielectric or insulating substrate.
  • the thickness of the substrate along the z axis is substantially the necessary and sufficient thickness to provide electrical insulation between the two pairs of lines.
  • the minimum thickness of dielectric or insulating material makes it possible to limit the asymmetry between the excitations of the two pairs of excitation points.
  • the supply lines are curved.
  • each first dispatcher is a Wilkinson dispatcher.
  • the first elementary power distributor 11 comprises three branches including a common branch b and a first branch b1 comprising an access point a1 electrically connected to the conductive line L1 by a via v1 and a second branch b2 comprising an access point a2 electrically connected to the second conductive line L2 by a via v2.
  • the second elementary power splitter 21 comprises three branches including a common branch b' and a first branch b1' comprising an access point a1' electrically connected to the line L3 by a via v1' and a second branch b2' comprising a point access a2 'electrically connected to the second line L4 by a via v2'.
  • the vias v1, v2, v1', v2' extend longitudinally in the stacking direction z as visible on the figures 1 and 2 .
  • Each via passes through the intermediate ground plane lower E interposed between the conductive lines and the power splitters 11, 21.
  • each elementary splitter extends from an input/output point I/S, E/S' on which the excitation signal is intended to be injected to a junction point J , J' to which are connected the two branches b1 and b2 or b1' and b2'.
  • the distributors being Wilkinson resistive distributors
  • the two branches b1 and b2 (b1' and b2') of each distributor have an S shape, they first deviate from each other from the junction point J (J') up to two extreme parts e and f (e' and f'), then approach each other up to the respective ends of a resistance R (R') by which they are connected then move apart again to join the respective access points a1 and a2 (a1' and a2').
  • the Wilkinson distributors are flattened.
  • the end parts e and f are separated from each other, along D1, by a distance greater than the distance separating the junction point of resistor J along line D2.
  • the end parts e' and f' are distant from each other, along D2, by a distance greater than the distance separating the junction point of the resistor J' along the straight line D1.
  • each distributor 11 (21) each comprise two rectilinear elongated portions p, q and r, s (p', q' and r', s') substantially parallel l 'one to the other located between the junction point J (J') and one of the ends of the resistor.
  • the distributors are of the reactive type, for example T-shaped, are less bulky and simpler to produce than resistive distributors.
  • Reactive T distributors 31, 41 are shown in figure 5 . They each comprise a common branch 34, 44 and two branches 32, 33 and 42, 43 connected to a common branch.
  • the two branches 32 and 33 (42 and 43) are collinear.
  • parasitic resonance phenomena between the power distributors and the DPS, very narrow in frequency appear, disturbing the operation of the DPS at these frequencies.
  • the use of a resistive splitter, for example, of the Wilkinson type makes it possible to limit these disturbances. It makes it possible to obtain a stable diagram and to suppress any parasitic resonance in a wide frequency band.
  • couplers of the ring type can be considered, but these couplers are hardly broadband.
  • each access point a1, a2, a3 or a4 is opposite a point on its conductive line L1, L2, L3, or respectively L4 which is closer to one of the ends of the conductive line L1, L2, L3, or respectively L4, that the orthogonal projection of the excitation point p1, p2, p3, or respectively p4, to which the conductive line L1, L2, L3, or respectively L4 is coupled, on the plane of the conductive line L1, L2, L3, or respectively L4.
  • This therefore frees up the central space, close to the pairs of excitation points, to install the different branches of the elementary distributors facing the radiating elements and therefore allow the tight networking of the elementary antenna.
  • each power splitter 11, and respectively 21 is configured so that a signal injected on its common branch is divided into two signals of the same power and of the same phase available at its two access points a1, a2 and respectively a1', a2'.
  • the two branches b1 and b2 of the first power splitter 11 are therefore symmetrical to each other with respect to a projection, on the plane of the power splitters, of a straight line of the first radiating element 1 passing through C1 and parallel to D2.
  • the two branches b1' and b2' of the second power splitter 21 are symmetrical to each other with respect to a projection, on the plane of the power splitters, of a straight line of the first radiating element 1 passing through C1 and parallel to D2.
  • the junction points J, J' each find on one of these projections. This characteristic favors the symmetry of the excitation.
  • the radiating elements are delimited by a substantially rectangular surface, for example square, comprising four sides c1, c2, c3, c4; c1 being parallel to c4 and c2 being parallel to c3.
  • the line d connecting the access points a1, a2 of the first power splitter 11 extends parallel to and close to a first side c1 of the square.
  • the straight line d' connecting the access points a1', a2' of the second power splitter 21 extends parallel to and close to c2.
  • junction point J and the entry/exit point I/O are located between the line d and the side c4.
  • the junction point J' and the entry/exit point are located between the line of and the side c3. This configuration is advantageous for the compactness of the device.
  • the I/O input/output point is closer to the side c3 than the points a1 and a2 and the I/O' input/output point is closer to the c4 side than the points a1' and a2'.
  • the elementary antenna comprises, as visible in figure 4 , shielding studs extending continuously from the lower ground plane D to the lower intermediate ground plane E. These studs are not shown in the other figures for greater clarity. These studs comprise several sets of shielding studs spaced apart two by two by a distance much less than the minimum wavelength of the microwave signals conveyed by the elementary antenna.
  • These shielding pads comprise first shielding pads 120 arranged and distributed between the two splitters so as to define electromagnetic shielding between the two power splitters 11 and 21.
  • Second shielding pads 121, 121' are arranged between each splitter 11 and 21 and the edges of the elementary antenna (in a plane perpendicular to z) so as to define shielding of the excitation of the elementary antenna with respect to the elementary antennas close to the array antenna and relative to the outside of the array antenna.
  • Third shielding pads 122, 122' are arranged between the common branch b, b' and one of the branches b1, b1' of each power splitter in order to ensure decoupling between these two branches.
  • Fourth shielding pads 123, 123' are arranged around the access points a1, a2, a1', a2' to form coaxial transmission media with the corresponding vias v1, v2, v1', v2'.
  • These studs are, for example, arranged in a circle or in an arc of a circle.
  • fourth shielding pads 124, 124' are arranged between the two portions p and q and between the two portions r and s and between the two portions p' and q' and between the two portions r' and s' to ensure a electromagnetic shielding between branches.
  • Each slot F1 of the first elementary assembly extends linearly along a straight line parallel to the straight line D1.
  • Each slot F2 of the second elementary assembly extends linearly along a straight line parallel to the straight line D2.
  • each elementary assembly of at least one slot is symmetrical with respect to a point located opposite the center C1 on the z axis.
  • the set of slots open in the upper intermediate ground plane 3 comprises a cruciform slot F.
  • the cruciform slot F is formed by two orthogonal linear slots F1 and F2 crossing facing the center C1.
  • the coupling is, for example, carried out vias electrically and mechanically connecting the radiating device A and the power distribution device B. These solutions are bulkier. Moreover, the slot coupling makes it possible to obtain good decoupling between the rectilinear polarizations and to overcome the parasitic radiation generated by the vias.
  • excitation devices are likely to be used in reception to ensure the reception of the signals polarized according to D1 and D2 and to transmit them on the inputs/outputs E/S and E/S'.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)

Claims (12)

  1. Elementare Antenne (1) vom Mikrostreifentyp, die einen Stapel von Schichten umfasst, wobei die elementare Antenne eine ebene Konfiguration haben kann, in der die Schichten im Wesentlichen eben und lotrecht zu einer Stapelachse (z) sind, entlang derer die Schichten gestapelt sind, wobei der Stapel ein erstes leitendes Strahlungselement (1) und eine mit dem ersten Strahlungselement (1) gekoppelte Anregungsvorrichtung (C) umfasst, so dass das Strahlungselement (1) in zwei orthogonalen linearen Polarisationen angeregt werden kann, wobei die Anregungsvorrichtung (C) Folgendes umfasst:
    - eine erste elementare Anregungsvorrichtung, die so konfiguriert und mit dem ersten Strahlungselement (1) gekoppelt ist, dass sie ein erstes Paar Anregungspunkte bestehend aus einem ersten Anregungspunkt (p1) und einem zweiten Anregungspunkt (p2) anregen kann, die auf einer ersten Geraden (D1) des ersten Strahlungselements (1) angeordnet sind, wobei die erste elementare Anregungsvorrichtung eine erste Leiterbahn (L1), eine zweite Leiterbahn (L2) und einen ersten Leistungsverteiler (11) umfasst, der eine Leistung eines an einem Ein-/Ausgangspunkt (E/S) des ersten Leistungsverteilers (11) empfangenen Eingangssignals auf die erste Leiterbahn (L1) und die zweite Leiterbahn (L2) verteilen kann, wobei sich die erste Leiterbahn (L1) und die zweite Leiterbahn (L2) linear lotrecht zur ersten Geraden (D1) erstrecken,
    - eine zweite elementare Anregungsvorrichtung, die so konfiguriert und mit dem ersten Strahlungselement (1) gekoppelt ist, dass sie ein zweites Paar Anregungspunkte bestehend aus einem dritten Anregungspunkt (p3) und einem vierten Anregungspunkt (p4) anregen kann, die auf einer zweiten Geraden (D2) des ersten Strahlungselements (1) angeordnet sind, wobei die zweite elementare Anregungsvorrichtung eine dritte Leiterbahn (L3), eine vierte Leiterbahn (L4) und einen zweiten Leistungsverteiler (21) umfasst, der eine Leistung eines an einem Ein-/Ausgangspunkt (E/S') des zweiten Leistungsverteilers (21) empfangenen Eingangssignals auf die dritte Leiterbahn (L3) und die vierte Leiterbahn (L4) verteilen kann, wobei sich die dritte Leiterbahn (L1) und die vierte Leiterbahn linear lotrecht zur zweiten Geraden (D2) erstrecken;
    wobei die erste, zweite, dritte und vierte Leiterbahn zwischen dem ersten Strahlungselement (1) und dem ersten und zweiten Leistungsverteiler (11, 21) in der Stapelachse (z) angeordnet sind, wobei der erste Leistungsverteiler (11) und der zweite Leistungsverteiler (21) koplanar sind.
  2. Elementare Antenne (1) nach Anspruch 1, wobei die erste Leiterbahn (L1) dem ersten Anregungspunkt (p1) gegenüberliegt, die zweite Leiterbahn (L2) dem zweiten Anregungspunkt (p2) gegenüberliegt, die dritte Leiterbahn (L3) dem dritten Anregungspunkt (p3) gegenüberliegt und die vierte Leiterbahn (L4) dem vierten Anregungspunkt (p4) gegenüberliegt.
  3. Elementare Antenne nach einem der vorherigen Ansprüche, wobei die erste Leiterbahn (L1) und die zweite Leiterbahn (L2) koplanar sind, die dritte Leiterbahn (L3) und die vierte Leiterbahn (L4) koplanar und in der Stapelrichtung (z) von der ersten Leiterbahn (L1) und der zweiten Leiterbahn (L2) beabstandet sind.
  4. Elementare Antenne nach einem der vorherigen Ansprüche, wobei der erste Leistungsverteiler (11) mit der ersten Leiterbahn (L1) und der zweiten Leiterbahn (L2) an Zugangspunkten des Leistungsverteilers verbunden ist, deren orthogonale Projektionen auf das erste Strahlungselement (11) entlang der zweiten Geraden (D2) vom ersten Anregungspunkt (p1) und vom zweiten Anregungspunkt (p2) entfernt sind, und wobei der zweite Leistungsverteiler an Zugangspunkten des Leistungsverteilers, von denen orthogonale Projektionen auf das erste Strahlungselement (11) entlang der ersten Geraden (D1) vom dritten Anregungspunkt (p3) und vom vierten Anregungspunkt (p4) entfernt sind, mit der dritten Leiterbahn (L3) und der vierten Leiterbahn (L4) verbunden ist.
  5. Elementare Antenne nach einem der vorherigen Ansprüche, wobei die Leistungsverteiler Wilkinson-Verteiler sind, wobei jeder Leistungsverteiler zwei S-förmige Schenkel aufweist, die sich vom Verbindungspunkt zu zwei Teilen zunächst voneinander entfernen und sich dann zu den jeweiligen Endpunkten eines Widerstands (R), über den die Schenkel verbunden sind, einander annähern, und sich dann wieder voneinander entfernen, um respektive Zugangspunkte des Leistungsverteilers wieder zu erreichen, wobei die Endteile um einen Abstand voneinander entfernt sind, der größer ist als der Abstand zwischen dem Verbindungspunkt (1) und dem Widerstand (R).
  6. Elementare Antenne (1) nach einem der vorherigen Ansprüche, wobei der erste Verteiler (11) und der zweite Verteiler (21) durch eine Gerade (DB) voneinander getrennt sind, die eine orthogonale Projektion einer Winkelhalbierenden der ersten Geraden (D1) und der zweiten Geraden (D2) auf die Ebene der Verteiler ist.
  7. Elementare Antenne (1) nach dem vorherigen Anspruch, wobei der erste Verteiler (11) und der zweite Verteiler (21) in Bezug auf die Gerade (DB) symmetrisch zueinander sind.
  8. Elementare Antenne nach einem der vorherigen Ansprüche, wobei eine den ersten und den zweiten Leistungsverteiler begrenzende Fläche im Wesentlichen rechteckig ist, wobei jeder von erstem und zweitem Leistungsverteiler (11) einen gemeinsamen Zweig (b) umfasst, der einen Ein-/Ausgangspunkt umfasst und mit zwei Zweigen verbunden ist, wobei jeder der beiden Zweige über einen Zugangspunkt des Zweigs mit einer der Leiterbahnen gekoppelt ist, wobei sich eine die Zugangspunkte jedes Leistungsverteilers verbindende Gerade parallel und nahe einer ersten Seite des Rechtecks erstreckt und ein Ein-/Ausgangspunkt des Leistungsverteilers näher an einer anderen Seite des Rechtecks parallel zur ersten Seite liegt als die Gerade.
  9. Elementare Antenne nach einem der vorherigen Ansprüche, wobei das erste Strahlungselement ein Zentrum (C1) umfasst, wobei der erste Anregungspunkt (p1) und der zweite Anregungspunkt (p2) symmetrisch zum Zentrum (C1) positioniert sind und wobei der dritte Anregungspunkt (p3) und der vierte Anregungspunkt (p4) symmetrisch zum Zentrum (C1) positioniert sind.
  10. Elementare Antenne (1) nach einem der vorherigen Ansprüche, die ein zweites Strahlungselement umfasst, das dem ersten Strahlungselement überlagert ist.
  11. Elementare Antenne nach einem der vorherigen Ansprüche, die eine erste elementare Anordnung von mindestens einem Schlitz (F1), der sich linear gegenüber der ersten Geraden (D1) erstreckt und dem ersten Anregungspunkt (p1) und dem zweiten Anregungspunkt (p2) zugewandt ist, und eine zweite elementare Anordnung von mindestens einem Schlitz (F2) aufweist, der sich linear gegenüber der zweiten Geraden (D2) erstreckt und dem dritten Anregungspunkt (p3) und dem vierten Anregungspunkt (p4) zugewandt ist, wobei die erste elementare Anordnung von mindestens einem Schlitz und die zweite elementare Anordnung von mindestens einem Schlitz die Kopplung der Anregungsvorrichtung und des ersten leitfähigen Strahlungselements ermöglichen.
  12. Netzwerkantenne, die mehrere Elementarantennen nach einem der vorherigen Ansprüche umfasst.
EP19829574.3A 2018-12-20 2019-12-19 Elementare mikrostreifenantenne und gruppenantenne Active EP3900113B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1873475A FR3091046B1 (fr) 2018-12-20 2018-12-20 Antenne microruban élémentaire et antenne réseau
PCT/EP2019/086495 WO2020127854A1 (fr) 2018-12-20 2019-12-19 Antenne microruban élémentaire et antenne réseau

Publications (2)

Publication Number Publication Date
EP3900113A1 EP3900113A1 (de) 2021-10-27
EP3900113B1 true EP3900113B1 (de) 2023-03-01

Family

ID=66641072

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19829574.3A Active EP3900113B1 (de) 2018-12-20 2019-12-19 Elementare mikrostreifenantenne und gruppenantenne

Country Status (4)

Country Link
EP (1) EP3900113B1 (de)
ES (1) ES2940567T3 (de)
FR (1) FR3091046B1 (de)
WO (1) WO2020127854A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7116270B1 (ja) * 2022-03-28 2022-08-09 株式会社フジクラ アンテナ基板

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1744399A1 (de) * 2005-07-12 2007-01-17 Galileo Joint Undertaking Mehrbandantenne für Satellitenpositionierungssystem

Also Published As

Publication number Publication date
ES2940567T3 (es) 2023-05-09
EP3900113A1 (de) 2021-10-27
WO2020127854A1 (fr) 2020-06-25
FR3091046B1 (fr) 2021-04-30
FR3091046A1 (fr) 2020-06-26

Similar Documents

Publication Publication Date Title
EP3547450B1 (de) Strahlungselement mit kreispolarisierung, bei dem eine resonanz in einem fabry-perot-interferometer angewandt wird
EP2869400B1 (de) Doppelpolarisierter kompakter Leistungsverteiler, Netz aus mehreren Verteilern, kompaktes Strahlungselement und Flachantenne, die einen solchen Verteiler umfasst
EP2795724B1 (de) Basisantenne und entsprechende ein-oder zweidimensionale gruppenantenne
EP0012055B1 (de) In Streifenleitertechnik ausgeführter Monopulsprimärstrahler und Antenne mit einem solchen Strahler
EP2710676B1 (de) Strahlerelement für eine aktive gruppenantenne aus elementarfliesen
EP3577720B1 (de) Elementare antenne mit einer planaren strahlungsvorrichtung
EP3602689B1 (de) Elektromagnetische antenne
FR3062524A1 (fr) Antenne elementaire a dispositif rayonnant planaire
EP3180816B1 (de) Mehrbandige quelle mit koaxialem horn mit monopulsnachführungsverfahren für eine reflektorantenne
EP3179559A1 (de) Aktive modulare dualband-antenne
EP3900113B1 (de) Elementare mikrostreifenantenne und gruppenantenne
EP1305846B1 (de) Doppelpolarisierter aktiver mikrowellenreflektor, insbesondere für antenne mit elektronischer strahlschwenkung
EP0520908B1 (de) Lineare Gruppenantenne
EP2432072B1 (de) Breitband-Symmetrieüberträger auf mehrlagigem Schaltkreis für eine Netzantenne
CA2808511A1 (fr) Antenne plane pour terminal fonctionnant en double polarisation circulaire, terminal aeroporte et systeme de telecommunication par satellite comportant au moins une telle antenne
EP4046241A1 (de) Gruppenantenne
FR2930844A1 (fr) Antenne rf d'emission et/ou de reception comportant des elements rayonnants excites par couplage electromagnetique sans contact
EP4092831A1 (de) Antenne mit lückenhaftem verteilungsnetz
FR2960100A1 (fr) Calibrations d'une antenne electronique a balayage comportant un reseau d'elements rayonnants
FR2960347A1 (fr) Element rayonnant comprenant un dispositif de filtrage, notamment pour un reseau formant une antenne active a balayage electronique
EP4199258A1 (de) Elementare mikrostreifenantenne und verbesserte gruppenantenne
FR2815479A1 (fr) Reflecteur hyperfrequence actif a deux polarisations independantes, notamment pour antenne a balayage electronique
FR2960101A1 (fr) Calibration d'une antenne electronique a balayage comportant un reseau d'elements rayonnants

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210610

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220927

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1551654

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019025963

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2940567

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20230509

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230427

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230601

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1551654

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230602

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230703

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230701

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602019025963

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231116

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231128

Year of fee payment: 5

Ref country code: FR

Payment date: 20231122

Year of fee payment: 5

Ref country code: DE

Payment date: 20231114

Year of fee payment: 5

26N No opposition filed

Effective date: 20231204

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240118

Year of fee payment: 5