US3761943A - Dual-band array antenna - Google Patents

Dual-band array antenna Download PDF

Info

Publication number
US3761943A
US3761943A US00273915A US3761943DA US3761943A US 3761943 A US3761943 A US 3761943A US 00273915 A US00273915 A US 00273915A US 3761943D A US3761943D A US 3761943DA US 3761943 A US3761943 A US 3761943A
Authority
US
United States
Prior art keywords
elements
antenna
band
array
array antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00273915A
Inventor
W Harper
W Thrift
R Hailey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Navy
Original Assignee
US Department of Navy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Department of Navy filed Critical US Department of Navy
Application granted granted Critical
Publication of US3761943A publication Critical patent/US3761943A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/42Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements using two or more imbricated arrays

Definitions

  • This invention relates to array antennas and especially to array antennas which can be used effectively on more than one frequency band.
  • An object of this invention is to provide a dual-band, unitary, radar array antenna.
  • FIG. 1 is a schematic illustration of an embodiment of the invention.
  • FIG. 2 is a diagram illustrating typical end dimensions for the waveguide antenna elements.
  • the range of frequencies used at S-band is centered at a frequency nominally three times that of the L-band center frequency.
  • nine S-band radiators are to be placed in the same space as a single L-band radiator.
  • the element spacings for both frequency bands have been chosen such that no grating lobes are formed in visible space (for normal shipboard coverage).
  • the spacing of the radiating elements in a planar array is constrained by the required scanning coverage of the array. For both arrays of the dual-band aperture to be completely filled, it is necessary to move the higher-frequency elements apart and to make them as small as practical. This makes area available for the lower frequency elements.
  • the maximum element spacing without grating lobes in visible space is achievable with a triangular grid configuration.
  • the element spacings are given by sin 1 sin ⁇ [1 i1; maximum azimuth scan angle,
  • each of four shipboard arrays would cover i50 in azimuth (normal shipboard coverage) to allow overlap between arrays. Furthermore the array face would be tilted back about 15 to allow coverage at high elevation angles.
  • Open-ended waveguides have advantages as radiating elements for both: bands: there is no problem of shading of one set of radiators by the other, radiators of both bands may be dielectrically loaded to reduce their size, and the radiators can be oriented to radiate orthogonal polarization and thus enhance the isolation between frequency bands.
  • Both the S- band and L-band radiators l0 and 12, respectively, are dielectrically loaded (i.e., the interior of each waveguide is filled with dielectric material) to reduce their size.
  • the L-band radiators are double ridged.
  • the S-band radiators are formed by loading standard C-band waveguide with a material 14 having a dielectric constant e-4.0.
  • the elements of the array are in a triangular grid configuration if attention is focused on the typical S-band elements ll, l3, 15, for example.
  • the interleaved L-band elements 12 are also arranged in a triangular grid configuration, alternate rows being displaced to the right or the left. Each L-band element extends from an S-band element in one row to an S-band element in a row twice removed from it; thus, counting the topmost row of S-band elements in FIG. 1 as row 1, the L-band elements extend from the bottom of row 1 to the top of row 3.
  • the L-band elements are also I-shaped to fit between the S-band elements in row 2.
  • the triangular grid arrangement permits the same space coverage with fewer array elements than a rectangular grid arrangement.
  • the element spacings of FIG. 1 were chosen to insure that no grating lobes exist in visible space at the center frequencies. At the upper end of an 8 percent band (1.3 or 3.9 GHz) a grating lobe just enters visible space. Even though the grating lobe enters visible space at these frequencies, the element pattern will probably not be broad enough to allow the grating lobe to have an appreciable amplitude.
  • the array may, for example, consist of nine L-band and 110 S-band radiators l2 and 10, respectively.
  • the physical center 22 of the array is marked by a circled cross.
  • the L-band elements are physically longer than the S-band elements to allow a sidewall coax-to-waveguide transition.
  • the dielectric material used to load the waveguides has a styrene base and a dielectric constant of 4.0.
  • the array is scanned electronically; the necessary scanning equipment is well-known and therefore will not be described herein.
  • Isolation between frequency bands is provided by utilizing orthogonal polarization for the radiation of the two groups of elements. Interaction between the two groups of elements is quite low so that either timesharing or simultaneous operation is possible.
  • FIG. 2 one of the S-band elements 10 and one of the L-band elements are shown and typical dimensions for the loaded elements are shown.
  • the loading allows the dimensions of the elements to be less than those of elements which are unloaded. This provides a saving in space.
  • An array antenna comprising, in combination:
  • first rectangular antenna elements de signed to radiate efficiently at a first predetermined frequency band, said elements being arranged in rows wherein alternate rows are displaced laterally from each other so that a triangular grid structure is formed;
  • each second antenna element designed to radiate efficiently at a second predetermined frequency band which is different from the first, said elements being arranged in rows and alternate rows being displaced from each other so that a triangular grid structure is formed, wherein each second element extends between a first element in one row and a first element in a row twice removed from said one row,
  • said group of second antenna elements being interleaved among said elements of the first group
  • the radiation from said first group of antenna elements being polarized orthogonally with respect to the radiation from said second group of antenna elements.
  • antenna elements are formed from waveguide sections, all said antenna waveguide elements being dielectrically loaded by dielectric material which is placed within each waveguide element.
  • each second antenna element is I-shaped.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

A unitary antenna comprising two different arrays. The first is a group of waveguide antenna elements in alternately displaced rows forming a triangular grid structure and the second is another group of waveguide antenna elements forming a triangular grid structure within the first grid structure. The two groups of elements are dielectrically loaded, are polarized to radiate orthogonally to each other, and are designed to radiate at different frquency bands.

Description

United States Patent [191 Harper et a1.
[ DUAL-BAND ARRAY ANTENNA [75] Inventors: W. Harold Harper, Oxon Hill;
William L. Thrift, Waldorf; Robert E. Hailey, Jr., Forestville, all of Md.
[73] Assignee: The United States of America as represented by the Secretary of the Navy, Washington, DC.
[22] Filed: July 21, 1972 [21] App]. No.: 273,915
US. Cl. 343/776, 343/777 Int. Cl. HOlq 13/00 Field of Search 343/725, 729, 754, 343/776, 777
[56] References Cited UNITED STATES PATENTS 3,706,998 12/1972 Hatchet 343/754 [m mmmm@ mama 14 wwm wm 22 mmm mm [451 Sept. 25, 1973 3,623,111 11/1971 Provencher 343/727 Primary ExaminerEli Lieberman Att0rneyR. S. Sciascia et a1.
5 Claims, 2 Drawing Figures m m w w m w 5132-? w LKBA'ND w w m w %i- (O.476Xl SBAND m w w @5 II DUAL-BAND ARRAY ANTENNA STATEMENT OF GOVERNMENT INTEREST The invention described herein may be manufactured and used by or for The Government of the United States of America for governmental purposes without the payment of any royalties thereon or therefor.
BACKGROUND OF THE INVENTION This invention relates to array antennas and especially to array antennas which can be used effectively on more than one frequency band.
Modern ships of the US. fleet are loaded down with radar equipment which operates at various frequency bands in the microwave spectrum. Each radar set has its own antenna which takes up space on the masts. It would obviously be advantageous if a single antenna could be utilized for more than one set and more than one frequency band, since the number of antennas could then be reduced. Another advantage is that large apertures can be used at all the frequencies even on small ships.
BRIEF SUMMARY OF THE INVENTION The objects and advantages of the present invention are accomplished by interleaving two arrays of waveguide antenna elements, the elements being dielectrically loaded and each array being polarized orthogonally to the other so that each array is effectively isolated from the radiation of the other.
An object of this invention is to provide a dual-band, unitary, radar array antenna.
Other objects, advantages and novel features of the invention will become apparent from the follwong detailed description of the invention when considered in conjunction with the accompanying drawings wherein:
BRIEF DESCRIPTION OF THE FIGURE FIG. 1 is a schematic illustration of an embodiment of the invention; and
FIG. 2 is a diagram illustrating typical end dimensions for the waveguide antenna elements.
DETAILED DESCRIPTION The range of frequencies used at S-band is centered at a frequency nominally three times that of the L-band center frequency. Thus nine S-band radiators are to be placed in the same space as a single L-band radiator. In the design of the aperture of the dual-band array, the element spacings for both frequency bands have been chosen such that no grating lobes are formed in visible space (for normal shipboard coverage).
The spacing of the radiating elements in a planar array is constrained by the required scanning coverage of the array. For both arrays of the dual-band aperture to be completely filled, it is necessary to move the higher-frequency elements apart and to make them as small as practical. This makes area available for the lower frequency elements. The maximum element spacing without grating lobes in visible space is achievable with a triangular grid configuration. The element spacings are given by sin 1 sin \[1 i1; maximum azimuth scan angle,
-r tilt angle of the array,
E maximum positive elevation angle,
d, horizontal element spacing,
d,,= vertical element spacing.
It is assumed that each of four shipboard arrays would cover i50 in azimuth (normal shipboard coverage) to allow overlap between arrays. Furthermore the array face would be tilted back about 15 to allow coverage at high elevation angles. Using these coverage angles cil1=50, E,,=, and -r=l5) in Eqs. (1) and (2), it is found that d =O.627A and d,,=0.509A, which are the maximum element spacings. Element spacings less than 0.627A and/or 0509A may be chosen and no grating lobe peaks will enter visible space for the given scan coverage. If a 1],, less than (1509A is chosen, the d, calculated by Eq. (2) will be greater then 0627A, but the grating-lobe criterion still holds because d is a function of d Open-ended waveguides have advantages as radiating elements for both: bands: there is no problem of shading of one set of radiators by the other, radiators of both bands may be dielectrically loaded to reduce their size, and the radiators can be oriented to radiate orthogonal polarization and thus enhance the isolation between frequency bands.
The preceding considerations have led to the dualband grid configuration shown in FIG. 1. Both the S- band and L-band radiators l0 and 12, respectively, are dielectrically loaded (i.e., the interior of each waveguide is filled with dielectric material) to reduce their size. In addition the L-band radiators are double ridged. The S-band radiators are formed by loading standard C-band waveguide with a material 14 having a dielectric constant e-4.0. The L-band elements are loaded with the same =4.0) material and positioned so as to radiate orthogonally to the S-band elements. Furthermore, the element spacings, d -=0.635)t and d,,=0.476)\, satisfy Eqs. (1) and (2) such that scan coverage of a quadrant of a hemisphere can be achieved without grating lobes.
It can be seen that the elements of the array are in a triangular grid configuration if attention is focused on the typical S-band elements ll, l3, 15, for example.
The interleaved L-band elements 12 are also arranged in a triangular grid configuration, alternate rows being displaced to the right or the left. Each L-band element extends from an S-band element in one row to an S-band element in a row twice removed from it; thus, counting the topmost row of S-band elements in FIG. 1 as row 1, the L-band elements extend from the bottom of row 1 to the top of row 3. The L-band elements are also I-shaped to fit between the S-band elements in row 2.
The triangular grid arrangement permits the same space coverage with fewer array elements than a rectangular grid arrangement.
The element spacings of FIG. 1 were chosen to insure that no grating lobes exist in visible space at the center frequencies. At the upper end of an 8 percent band (1.3 or 3.9 GHz) a grating lobe just enters visible space. Even though the grating lobe enters visible space at these frequencies, the element pattern will probably not be broad enough to allow the grating lobe to have an appreciable amplitude.
Some of typical dimensions that may be employed are indicated in FIGS. 1 and 2. The array may, for example, consist of nine L-band and 110 S-band radiators l2 and 10, respectively. The physical center 22 of the array is marked by a circled cross. The L-band elements are physically longer than the S-band elements to allow a sidewall coax-to-waveguide transition. The dielectric material used to load the waveguides has a styrene base and a dielectric constant of 4.0.
The array is scanned electronically; the necessary scanning equipment is well-known and therefore will not be described herein.
Isolation between frequency bands is provided by utilizing orthogonal polarization for the radiation of the two groups of elements. Interaction between the two groups of elements is quite low so that either timesharing or simultaneous operation is possible.
In FIG. 2, one of the S-band elements 10 and one of the L-band elements are shown and typical dimensions for the loaded elements are shown. The loading, of course, allows the dimensions of the elements to be less than those of elements which are unloaded. This provides a saving in space.
Obviously many modifications and variations of the present invention are possible in the light of the above teachings. It is therefore to be understood that within the scope of the appended claims the invention may be practiced otherwise than as specifically described.
What is claimed and desired to be secured by Letters Patent of the United States ls:
1. An array antenna comprising, in combination:
a plurality of first rectangular antenna elements de signed to radiate efficiently at a first predetermined frequency band, said elements being arranged in rows wherein alternate rows are displaced laterally from each other so that a triangular grid structure is formed; and
a plurality of second antenna elements designed to radiate efficiently at a second predetermined frequency band which is different from the first, said elements being arranged in rows and alternate rows being displaced from each other so that a triangular grid structure is formed, wherein each second element extends between a first element in one row and a first element in a row twice removed from said one row,
said group of second antenna elements being interleaved among said elements of the first group,
the radiation from said first group of antenna elements being polarized orthogonally with respect to the radiation from said second group of antenna elements.
2. An array antenna as in claim I, wherein said antenna elements are formed from waveguide sections, all said antenna waveguide elements being dielectrically loaded by dielectric material which is placed within each waveguide element.
3. An array antenna as in claim 1, wherein both groups of antenna elements are symmetrical with respect to the center of said array antenna.
4. An array antenna as in claim 1, wherein the spacing of the antenna elements is such that no grating lobes are formed in visible space.
5. An array antenna as in claim 1, wherein each second antenna element is I-shaped.

Claims (5)

1. An array antenna comprising, in combination: a plurality of first rectangular antenna elements designed to radiate efficiently at a first predetermined frequency band, said elements being arranged in rows wherein alternate rows are displaced laterally from each other so that a triangular grid structure is formed; and a plurality of second antenna elements designed to radiate efficiently at a second predetermined frequency band which is different from the first, said elements being arranged in rows and alternate rows being displaced from each other so that a triangular grid structure is formed, wherein each second element extends between a first element in one row and a first element in a row twice removed from said one row, said group of second antenna elements being interleaved among said elements of the first group, the radiation from said first group of antenna elements being polarized orthogonally with respect to the radiation from said second group of antenna elements.
2. An array antenna as in claim 1, wherein said antenna elements are formed from waveguide sections, all said antenna waveguide elements being dielectrically loaded by dielectric material which is placed within each waveguide element.
3. An array antenna as in claim 1, wherein both groups of antenna elements are symmetrical with respect to the center of said array antenna.
4. An array antenna as in claim 1, wherein the spacing of the antenna elements is such that no grating lobes are formed in visible space.
5. An array antenna as in claim 1, wherein each second antenna element is I-shaped.
US00273915A 1972-07-21 1972-07-21 Dual-band array antenna Expired - Lifetime US3761943A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US27391572A 1972-07-21 1972-07-21

Publications (1)

Publication Number Publication Date
US3761943A true US3761943A (en) 1973-09-25

Family

ID=23045969

Family Applications (1)

Application Number Title Priority Date Filing Date
US00273915A Expired - Lifetime US3761943A (en) 1972-07-21 1972-07-21 Dual-band array antenna

Country Status (2)

Country Link
US (1) US3761943A (en)
CA (1) CA984963A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0372451A1 (en) * 1988-12-08 1990-06-13 Alcatel Espace Multifrequency radiating device
WO1999019939A1 (en) * 1997-10-11 1999-04-22 The Secretary Of State For Defence Dual band phased array antenna
US6101705A (en) * 1997-11-18 2000-08-15 Raytheon Company Methods of fabricating true-time-delay continuous transverse stub array antennas
FR2812457A1 (en) * 2000-07-28 2002-02-01 Thomson Csf ACTIVE BI-POLARIZATION MICROWAVE REFLECTOR, PARTICULARLY FOR AN ELECTRONICALLY BALANCED ANTENNA
WO2002025775A1 (en) * 2000-09-22 2002-03-28 Sarnoff Corporation Ultra-wideband multi-beam adaptive antenna
US6552687B1 (en) * 2002-01-17 2003-04-22 Harris Corporation Enhanced bandwidth single layer current sheet antenna
WO2004025774A2 (en) * 2002-09-11 2004-03-25 Lockheed Martin Corporation Partly interleaved phased arrays with different antenna elements in central and outer region
FR2920597A1 (en) * 2007-08-31 2009-03-06 Thales Sa Active dual-polarization and wideband electronically scanning microwave reflector for reflecting-type electronically scanning antenna, has metallic interior protrusions formed along width of interleaved waveguides
US20100328188A1 (en) * 2009-06-26 2010-12-30 Raytheon Company Compact loaded-waveguide element for dual-band phased arrays
CN1943126B (en) * 2004-02-27 2014-07-23 智能宇宙研究院 RFID tag device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3623111A (en) * 1969-10-06 1971-11-23 Us Navy Multiaperture radiating array antenna
US3706998A (en) * 1971-02-03 1972-12-19 Raytheon Co Multiple interleaved phased antenna array providing simultaneous operation at two frequencies and two polarizations

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3623111A (en) * 1969-10-06 1971-11-23 Us Navy Multiaperture radiating array antenna
US3706998A (en) * 1971-02-03 1972-12-19 Raytheon Co Multiple interleaved phased antenna array providing simultaneous operation at two frequencies and two polarizations

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0372451A1 (en) * 1988-12-08 1990-06-13 Alcatel Espace Multifrequency radiating device
FR2640431A1 (en) * 1988-12-08 1990-06-15 Alcatel Espace RADIANT MULTI-FREQUENCY DEVICE
US5434580A (en) * 1988-12-08 1995-07-18 Alcatel Espace Multifrequency array with composite radiators
WO1999019939A1 (en) * 1997-10-11 1999-04-22 The Secretary Of State For Defence Dual band phased array antenna
US6101705A (en) * 1997-11-18 2000-08-15 Raytheon Company Methods of fabricating true-time-delay continuous transverse stub array antennas
FR2812457A1 (en) * 2000-07-28 2002-02-01 Thomson Csf ACTIVE BI-POLARIZATION MICROWAVE REFLECTOR, PARTICULARLY FOR AN ELECTRONICALLY BALANCED ANTENNA
WO2002011238A1 (en) * 2000-07-28 2002-02-07 Thales Active dual-polarization microwave reflector, in particular for electronically scanning antenna
US6703980B2 (en) 2000-07-28 2004-03-09 Thales Active dual-polarization microwave reflector, in particular for electronically scanning antenna
US6529166B2 (en) 2000-09-22 2003-03-04 Sarnoff Corporation Ultra-wideband multi-beam adaptive antenna
WO2002025775A1 (en) * 2000-09-22 2002-03-28 Sarnoff Corporation Ultra-wideband multi-beam adaptive antenna
US6552687B1 (en) * 2002-01-17 2003-04-22 Harris Corporation Enhanced bandwidth single layer current sheet antenna
WO2003063295A1 (en) * 2002-01-17 2003-07-31 Harris Corporation Enhanced bandwidth single layer current sheet antenna
AU2003202974B2 (en) * 2002-01-17 2005-08-18 Harris Corporation Enhanced bandwidth single layer current sheet antenna
WO2004025774A2 (en) * 2002-09-11 2004-03-25 Lockheed Martin Corporation Partly interleaved phased arrays with different antenna elements in central and outer region
WO2004025774A3 (en) * 2002-09-11 2009-06-18 Lockheed Corp Partly interleaved phased arrays with different antenna elements in central and outer region
CN1943126B (en) * 2004-02-27 2014-07-23 智能宇宙研究院 RFID tag device
FR2920597A1 (en) * 2007-08-31 2009-03-06 Thales Sa Active dual-polarization and wideband electronically scanning microwave reflector for reflecting-type electronically scanning antenna, has metallic interior protrusions formed along width of interleaved waveguides
US20100328188A1 (en) * 2009-06-26 2010-12-30 Raytheon Company Compact loaded-waveguide element for dual-band phased arrays
US8217852B2 (en) 2009-06-26 2012-07-10 Raytheon Company Compact loaded-waveguide element for dual-band phased arrays

Also Published As

Publication number Publication date
CA984963A (en) 1976-03-02

Similar Documents

Publication Publication Date Title
US3193830A (en) Multifrequency dual ridge waveguide slot antenna
US5485167A (en) Multi-frequency band phased-array antenna using multiple layered dipole arrays
US3623111A (en) Multiaperture radiating array antenna
US10944173B2 (en) Antenna array and arrangement comprising an antenna array and a network node
US3852762A (en) Scanning lens antenna
US3761943A (en) Dual-band array antenna
US9716309B1 (en) Multifunctional, multi-beam circular BAVA array
US11456544B2 (en) Multiband antenna array with massive multiple input multiple output array
US3568207A (en) Parallel-plate feed system for a circular array antenna
US4918458A (en) Secondary radar transponder
CA3015843C (en) Wideband multi-level antenna element and antenna array
US3842421A (en) Multiple band frequency selective reflectors
US2977594A (en) Spiral doublet antenna
GB2165097A (en) Biconical antennae
CN109167186A (en) A kind of Shared aperture two-band phased array antenna system based on 5G communication
US3747111A (en) Composite antenna feed
US3825932A (en) Waveguide antenna
EP3771033B1 (en) Wide frequency range dual polarized radiating element with integrated radome
AU2014332522B2 (en) Low profile high efficiency multi-band reflector antennas
US3273144A (en) Narrow beam antenna system
US3147479A (en) Plural juxtaposed parabolic reflectors with frequency independent feeds
US3524188A (en) Antenna arrays with elements aperiodically arranged to reduce grating lobes
CN112615166A (en) Modularized array antenna capable of simultaneously reconfiguring frequency, aperture and polarization and using method
Naseh et al. Miniaturized siw-cbs planar tx/rx antenna arrays for microwave cw/fmcw doppler radars
EP2879236B1 (en) Horn, elementary antenna, antenna structure and telecommunication method associated therewith