EP1234356B1 - Aktiver hf reflektor unter verwendung von elektronischer strahlschwenkung - Google Patents

Aktiver hf reflektor unter verwendung von elektronischer strahlschwenkung Download PDF

Info

Publication number
EP1234356B1
EP1234356B1 EP00988873A EP00988873A EP1234356B1 EP 1234356 B1 EP1234356 B1 EP 1234356B1 EP 00988873 A EP00988873 A EP 00988873A EP 00988873 A EP00988873 A EP 00988873A EP 1234356 B1 EP1234356 B1 EP 1234356B1
Authority
EP
European Patent Office
Prior art keywords
phase
reflector
microwave
cell
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00988873A
Other languages
English (en)
French (fr)
Other versions
EP1234356A1 (de
Inventor
Claude Thales Intell. Prop. CHEKROUN
Jean-Paul Thales Intell.Prop. LARGENT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP1234356A1 publication Critical patent/EP1234356A1/de
Application granted granted Critical
Publication of EP1234356B1 publication Critical patent/EP1234356B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/44Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
    • H01Q3/46Active lenses or reflecting arrays

Definitions

  • the present invention relates to an electron-beam active microwave reflector capable of being illuminated by a microwave source to form an antenna.
  • antennas comprising an active microwave reflector.
  • the latter also called “reflect array” in the Anglo-Saxon literature, is a network of electronically controllable phase shifters.
  • This network extends in a plane and comprises an array of phase-controlled elements, or phased array, disposed in front of reflector means, constituted for example by a ground plane forming a ground plane.
  • the reflector network comprises in particular elementary cells each performing the electronically variable reflection and phase shift, of the microwave wave it receives.
  • a primary source for example a horn, arranged in front of the reflector network emits microwave waves towards the latter.
  • phase shifts applied by the elementary cells vary in a discrete manner. Since the phase shifts are evenly distributed, they are digitally controlled as a function of a number of bits. If we write N this number, the phase shift pitch is then 2 ⁇ / 2 N. The accuracy of a phase shift is therefore at best equal to a phase shift step.
  • the lack of precision entails certain disadvantages, in particular it causes the existence of relatively high side lobes and poor pointing accuracy of the antenna.
  • Patent applications FR-A-2 708 808 and FR-A-2 747 842 describe active phase shift networks.
  • the subject of the invention is an active microwave reflector, capable of receiving a linearly polarized electromagnetic wave in a given first direction Oy.
  • the reflector according to the invention comprises a set of elementary cells arranged one beside the other. another on a surface, each cell comprising a phase-shifting microwave circuit and a conductive plane disposed substantially parallel to the microwave circuit, the phase-shifting circuit comprising at least two half-phase-shifters.
  • a half-phase-shifter comprises at least one support dielectric, at least two electrically conductive wires substantially parallel to the given direction Oy, arranged on the support and at least each carrying a semiconductor element with two states, each wire being connected to control conductors of the semiconductor elements, these conductors being substantially normal to the son, and two conductive zones disposed towards the periphery of the cell, substantially parallel to the control conductors.
  • the control conductors are at least three in each half-phase-shifter and are electrically isolated from one half-phase-shifter to the other to control the state of all the semiconductor elements independently of each other .
  • the geometric and electrical characteristics of the half-phase-shifters are such that at each of the states of the semiconductor elements corresponds a given phase shift value (d ⁇ 1 , ... d ⁇ 8 ) of the electromagnetic wave which is reflected by the cell.
  • the reflector further comprising an electronic control circuit (36) of the state of the semiconductor elements.
  • the invention also relates to an antenna provided with such a reflector.
  • the main advantages of the invention are that it makes it possible to produce a low-profile and low-weight reflector, that it adapts to many types of antennas, that it improves the heat exchange between the reflector and the reflector circuits. outside, that it allows a great reliability and that it is economic.
  • FIG. 1 schematically illustrates an exemplary embodiment of an active reflective grating electronic scanning antenna where the microwave distribution is for example of the so-called optical type, that is to say, for example, provided by means of FIG. a primary source illuminating the reflector network.
  • the antenna comprises a primary source 1, for example a horn.
  • the primary source 1 transmits microwave waves 3 to the active reflector network 4 disposed in the Oxy plane.
  • This reflector network 4 comprises a set of elementary cells performing the reflection and phase shift of the waves they receive.
  • the reflector may be illuminated by more than one source. It can in particular be illuminated by two elementary sources, having for example inverse circular polarizations.
  • FIG. 2 schematically shows a reflector network portion 4 in the Oxy plane, in a view from above, according to F.
  • the reflector comprises a set of elementary cells 10 arranged side by side and separated by zones 20, used for the microwave decoupling cells. These cells 10 perform the reflection and the phase shift of the waves they receive.
  • An elementary cell 10 comprises a phase-shifting microwave circuit disposed in front of a conductive plane. More precisely, as will appear later, the microwave circuit has two transverse phase shifters, each dedicated to a linear polarization.
  • FIG. 3 is a diagrammatic sectional view, in the Oxz plane, of an exemplary embodiment of the active reflector 4.
  • the reflector 4 consists of a microwave circuit 31 distributed in the elementary cells 10 and a conductive plane 32 , disposed substantially parallel to the microwave circuit 31, at a distance d predefined. This microwave circuit receives the incident waves emitted by the primary source 1.
  • the conductive plane 32 has the particular function of reflecting the microwave waves. It can be constituted by any known means, for example parallel wires or a grid, sufficiently tight, or a continuous plane.
  • the microwave circuit 31 and the conductive plane 32 are preferably made on two sides of a dielectric support 33, for example of the printed circuit type.
  • the reflector 4 further comprises, preferably on the same printed circuit 33, which is then a multilayer circuit, the electronic circuit necessary for the control of the phase values.
  • FIG. 3 shows a multilayer circuit whose front face 34 carries the microwave circuit 31, the rear face 35 carries components 36 of the aforementioned electronic control circuit, and the intermediate layers form the conductive plane 32 and for example two plans 37 interconnections of the components 36 to the microwave circuit 31.
  • FIG. 4 shows in a view from above an example of possible embodiment of the microwave circuit 31 of a reflector according to the invention. More particularly, FIG. 4 illustrates an elementary phase shifter 31 of the microwave circuit. Each phase-shifter is separated from another phase-shifter by a decoupling zone 20 comprising for example a conductive strip 48 parallel to the direction Oy and a conductive strip 49 parallel to the direction Ox. It therefore has for example at its periphery two conductive strips 48 in the direction Oy and two conductive strips in the direction Ox.
  • Each elementary phase shifter 31, associated with the corresponding portion of the conductive plane 32 forms an elementary cell 10 of FIG.
  • the microwave circuit of a phase-shifter 31 comprises a plurality of conducting wires 42 substantially parallel to the direction Oy and each carrying a semiconductor element with two states D1, D2, for example a diode.
  • the phase shifter circuit also comprises conductive zones connecting the diodes to reference potentials and control circuits. More particularly, an elementary phase shifter 31 consists of two circuits 50, hereinafter called half-phase shifter. We first describe a half-phase shifter.
  • a half-phase-shifter 50 comprises a dielectric support 33, two wires 42 each carrying a diode D1, D2.
  • the two wires are connected to the ground potential, or to any other reference potential, via a conductive line 43.
  • This line 43 is for example of the microstrip type made by metal deposition on the front face of the dielectric support 33 for example by a screen printing technique.
  • the diodes D1 and D2 are thus wired in opposition so that, for example, their anodes are connected to the ground potential via this line 43.
  • the latter is for example connected to a conductive strip 48 of the decoupling means 20.
  • Diode supply voltage D1 and D2 is supplied by control conductors 44.
  • the anode of the diodes being connected to the ground potential, the control conductors are then connected to the cathode of the diodes.
  • the supply voltage supplied by these conductors is for example of the order of -15 volts.
  • the control leads are controlled to have at least two voltage states. In a first state, their voltage is for example at the supply voltage, which makes the diode pass, or in other words polarized live. In a second state, their voltage is such that the diode is blocked, or in other words polarized in reverse.
  • the controls of the two control conductors 44, 45 are independent of one another so as to control the diodes independently of one another.
  • the control conductors 44, 45 and the connected ground conductor 43 are substantially parallel to the Ox direction and therefore perpendicular to the wires 42.
  • the ground conductor is common to the two wires, in particular for space and power savings. material, it could however provide a specific driver for each wire. We could also plan to not directly connect these conductors directly to a reference potential but through a control circuit.
  • the control conductors 44, 45 are connected to the electronic control circuit carried by the reflector, via metallized holes 46 made for example at the decoupling zone 20, in particular for reasons of space, but also for do not disturb the functioning of the elementary cells.
  • the metallized holes 46 are of course electrically isolated from the conductive strips of the decoupling zone. For this purpose, there is provided an interruption of the strip 20 around the ends of the control conductors directly connected to the metallized holes 46.
  • the equivalent circuit relates to the conducting wires 42 and the two diodes D1, D2, in fact what corresponds to a half-phase-shifter, associated with a given polarization and therefore a given frequency band.
  • the incident microwave, of linear polarization and parallel to Oy and son 42 is received on terminals B 1 and B 2 and meets three capacitors C O , C I1 , C I2 in series, connected in parallel to terminals B 1 and B 2 .
  • the capacitance C O represents the linear capacitance of decoupling between the control conductors 44 and the conductive strip of the decoupling zone 20.
  • the capacitance C I1 is the linear capacitance between the control conductor 44 connected to the first diode D1 and the conductor
  • the capacitance C I2 is the linear capacitance between the control conductor 45 connected to the second diode D2 and the central conductor 43.
  • the second diode D2 represented by its equivalent diagram.
  • the latter is similar to that of the first diode D1, its components bearing an index 2.
  • the microwave output voltage is taken between terminals B 3 and B 4, terminals of the capacitors C 0, C I1, and I2 C.
  • the operation of the half-phase-shifter 50 is explained below by considering, in a first step, the behavior of such a circuit in the absence of the second diode D2, which returns to the equivalent diagram of FIG. the D2 as well as the capacity C I2 .
  • B di Z . VS 0 . ⁇ . 1 - The 1 ⁇ VS 11 ⁇ ⁇ 2 The 1 ⁇ VS not ⁇ ⁇ 2 + The 1 ⁇ VS 0 ⁇ ⁇ 2 - 1 where Z is the impedance of the incident wave and ⁇ is the pulse corresponding to the center frequency of one of the two operating bands of the antenna.
  • B Services Z . VS 0 . ⁇ . 1 - The 1 ⁇ VS 11 ⁇ ⁇ 2 + VS 11 / This The 1 ⁇ VS 11 ⁇ ⁇ 2 + The 1 ⁇ VS 0 ⁇ ⁇ 2 - 1 + VS 0 + VS 11 This
  • a half-phase-shifter may have four different values for its susceptance B D , these values being denoted B D1 , B D2 , B D3 and B D4 , according to the command (direct or inverse biasing) applied to each of the diodes. D1, D2.
  • the susceptance values B D1 , B D2 , B D3 and B D4 are a function of the parameters of the circuit of FIG. 5, that is to say the values chosen for the geometrical parameters, in particular with respect to relates to the dimensions, shapes and spacings of the various conductive surfaces 43, 44, 45, and electrical phase shifter, particularly with respect to the electrical characteristics of the diodes.
  • B CC - cotg ⁇ 2 ⁇ ⁇ d ⁇ where ⁇ is the wavelength corresponding to the preceding puls pulse.
  • B VS B D + B CC
  • the susceptance B C can take four distinct values (denoted B C1 , B C2 , B C3 , and B C4 ) respectively corresponding to the four values of B D , the distance d representing an additional parameter for determining the values B C1 - B C4 .
  • the null susceptances or substantially zero
  • the parameters of the circuit are such that they correspond to the diodes polarized in the forward direction, but that can of course choose a symmetrical operation in which the parameters are determined to substantially cancel susceptances B r ; more generally, it is not necessary for one of the susceptances B d or B r to be zero, these values being determined so that the equidistribution condition of the phase shifts d ⁇ 1 -d ⁇ 4 is fulfilled.
  • FIG. 6 shows an equivalent diagram of the entire phase shifter constituted by the two half-phase-shifters as previously described. It can be considered that the equivalent diagrams of the two half-phase-shifters 50 as shown in FIG. 5 operate in parallel. Indeed, the capacitive links between the control conductors 44 of the diodes D1 and between the control conductors 45 of the diodes D2 can be likened to microwave short circuits. One can play on the length and width of the isolation line 47 to obtain a capacitance value between the conductors that allows to assimilate the capacitive connection to a short circuit. For circuits in parallel, susceptances are added.
  • phase shifter The geometric and electrical parameters of the phase shifter are for example defined to obtain eight phase shifts equidistant between 0 ° and 360 °.
  • a phase shifter as shown in FIG. 4 is simple to implement, it makes it possible to obtain eight phase shifts by simply playing on geometric parameters of conductors and on the choice of diodes.
  • the printed circuit supporting the microwave circuits and the electronic control circuits is also thin. Such a circuit can be obtained economically and the reflector can be extremely flat, and therefore low weight.
  • an active reflector comprises decoupling means 20 between the cells 10.
  • the microwave wave received by the cells is polarized linearly, parallel to the direction Oy. It is desirable that this wave not does not propagate from one cell to another, in the Ox direction.
  • the decoupling means comprise at least the conductive zone 48. It is therefore expected to provide this substantially strip-shaped conductive zone 48, made by metal deposition on the surface 34, for example, between the cells, parallel to the direction Oy. This strip 48 forms, with the reflective plane 32 which is below, a waveguide-like space whose width is the distance d.
  • the distance d is chosen to be less than ⁇ / 2, ⁇ being the length of the microwave wave, knowing that a wave whose polarization is parallel to the bands can not propagate in such a space.
  • the reflector according to the invention operates in a certain frequency band and d is chosen so that it is smaller than the smallest of the wavelengths of the band.
  • the band 48 must have a width, in the direction Ox, sufficient for the effect described above is sensitive. In practice, the width may be of the order of ⁇ / 5.
  • it may be parasitically created in a cell, a wave whose polarization is directed in the direction Oz, perpendicular to the plane formed by the directions Ox and Oy. It is also desirable to avoid its propagation to neighboring cells .
  • the metallized holes 46 for connection from control conductors to electronic circuits. Indeed, these being parallel to the polarization of the parasitic wave, they are equivalent to a shielding conductive plane if they are sufficiently close together (at a distance from each other much less than the length of the operating wave of the reflector), so many, for the operating wavelengths of the reflector. If this condition is not fulfilled, additional metallized holes can be formed, having no connection function. It should be noted that the metallized connection holes 46 are preferably made at the level of the strips 48 so as not to disturb the operation of the cells. This provision also provides a saving of space.
  • metallized holes 40 similar to the connection holes 46 but aligned in the Ox direction opening into the conductive strip 49.
  • These metallized holes 40 as the metallized connection holes 46 are made in a direction Oz substantially perpendicular to the plane Oxy. For example, it is still possible to provide a continuous conductive surface in the xOz plane.
  • FIG. 7 illustrates a phase-shifter according to the invention making it possible to control the phase-shifts on 4 bits, thus on an additional bit with respect to the phase-shifter illustrated by FIG. 4.
  • the phase-shifter always comprises two half-phase-shifters 50 made as previously described. However, the two half-phase-shifters are no longer separated by a line 47 isolating the controls of the diodes, but by two conductive zones 71, 72 connected by a diode D3, or any other semiconductor with two states. These two zones 71, 72 are for example made by metal deposition on the front face 34 of the dielectric. These zones form control conductors of the diode D3.
  • a conductive zone 71 is for example connected to the electronic control circuits by a metallized hole 46. Depending on the state of the electronic control, this zone 71 is at a supply potential, for example -15 volts or to another potential, for example the mass potential.
  • the other conductive zone 72 is for example connected to the ground potential. For this purpose, it is for example connected to the conductive strip 48 parallel to the direction Oy of the decoupling means 20.
  • the phase shifter is similar to that of FIG. state eight possible phase shifts. It is of course necessary to redefine its geometrical and electrical parameters because of the introduction of the additional zones 71, 72.
  • the conductive zone 71 has a potential which makes the diode D3 conducting, that is to say in direct polarization , the electrical parameters of the phase-shifter are modified with respect to the previous state. In particular, the capacity formed of the space between the two conductive zones 71, 72 becomes short-circuited by the diodes D3.
  • the eight susceptances possible of the previous state, controlled on three bits, are then modified by the conduction of the diode D3.
  • the eight new susceptances thus obtained make it possible to obtain eight additional phase shifts.
  • a total of sixteen phase shifts are possible.
  • the geometric and electrical characteristics of the two half-phase-shifters 50 but also the additional conductive zones 71, 72 and their diode D3 must be defined so as to obtain the sixteen desired phase-shifts for each of the states of the diodes.
  • FIG. 8 illustrates a possible variant embodiment of a reflector according to the invention, the elementary cells 10 being for example of the type shown in FIG. 4 or 7.
  • a metal gate is placed on the front face of the reflector, that is to say the face which is opposite the microwave source 1.
  • This grid is formed of meshes 81 each having the surface of an elementary cell, more particularly the base of a mesh surrounds a cell.
  • the grid also has a thickness e G.
  • FIG. 8 presents in perspective a single elementary cell.
  • the grid is formed of meshes whose walls 82 extend in the direction Oz, substantially opposite the conductive strips 48, 49 of the decoupling means 20.
  • the base of the grid is in contact with these bands 48, 49 and in particular with the metallized holes 40, 46 that they comprise.
  • the thickness eG of the grid which corresponds in fact to the length of the walls 82 is for example of the order of one centimeter, preferably of the order of half a centimeter. The relative small thickness of the grid thus allows to keep a very flat reflector, and therefore of low weight.
  • This metal gate makes it possible to decouple the phase shift function from the radiation function, and makes it possible to control the active coupling coefficients by making them independent of the antenna pointing law and thus makes it possible to cancel the parasitic radiation lobes such as as the image lobe and the lobes of magicity.
  • the metal grid which is in particular in contact with the metallized holes, allows a better heat exchange between the reflector circuits and the outside through a larger exchange surface. The reliability of the reflector is thus increased.
  • An active reflector array according to the invention can be used for many types of antennas. It can in particular be used for space communication antennas thanks to its low weight or be used for meteorological radar antennas thanks to its low cost. Finally, it can be used for all types of application reflector antennas requiring good pointing accuracy and a low level of sidelobes.

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Claims (10)

  1. Aktiver Mikrowellenreflektor, der ausgelegt ist, um eine gemäß einer ersten gegebenen Richtung (Oy) linear polarisierte elektromagnetische Welle (3) zu empfangen, mit einer Einheit von Elementarzellen (10), die nebeneinander auf einer Fläche angeordnet sind,
    wobei jede Zelle eine Phasenschieber-Mikrowellenschaltung (31) und eine Leiterebene (32) aufweist, die im Wesentlichen parallel zur Mikrowellenschaltung angeordnet ist, dadurch gekennzeichnet, dass die Phasenschieberschaltung (31) mindestens zwei Halb-Phasenschieber (50) aufweist,
    wobei ein Halb-Phasenschieber (50) mindestens einen dielektrischen Träger (33), mindestens zwei zur gegebenen Richtung (Oy) im Wesentlichen parallele elektrische leitende Drähte (42), die auf dem Träger angeordnet sind und je mindestens ein Halbleiterelement mit zwei Zuständen (D1, D2) tragen, wobei jeder Draht mit Steuerleitern (43, 44, 45) der Halbleiterelemente verbunden ist,
    wobei diese Leiter im Wesentlichen senkrecht zu den Drähten liegen, und zwei leitende Zonen (49) aufweist, die zum Umfang der Zelle hin im Wesentlichen parallel zur den Steuerleitern angeordnet sind,
    wobei die Steuerleiter elektrisch von einem Halb-Phasenschieber zum anderen isoliert sind, um den Zustand aller Halbleiterelemente unabhängig voneinander zu steuern,
    wobei die Formen und die Abstände der Flächen der Steuerleiter (43, 44, 45) und die elektrischen Eigenschaften der Halbleiter so sind, dass jedem der Zustände der Halbleiterelemente ein gegebener Phasenverschiebungswert (dϕ1, ..., dϕ8) der elektromagnetischen Welle entspricht, die von der Zelle reflektiert wird,
    wobei der Reflektor ein Metallgitter aufweist, das von Maschen (81) gebildet wird, deren Wände (82) sich in der Richtung (Oz) lotrecht zur Ebene des Reflektors erstrecken, wobei die Basis einer Masche eine Zelle (10) umgibt.
  2. Reflektor nach Anspruch 1, dadurch gekennzeichnet, dass ein leitendes Band (48), das zwischen jeder Zelle parallel zur gegebenen Richtung (Oy) angeordnet ist, mit der leitenden Ebene einen geleiteten Raum bildet, in dem die Welle sich nicht ausbreiten kann, wobei die Basis des Gitters mit diesem Band (48) in Kontakt ist.
  3. Reflektor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die zwei Phasenschieber durch zwei leitende Zonen (71, 72) getrennt werden, die durch ein Halbleiterelement mit zwei Zuständen (D3) verbunden sind, wobei mindestens eine der Zonen (71) mit einer elektronischen Steuerschaltung (36) verbunden ist, um den Zustand des Halbleiters zu steuern, wobei die geometrischen und elektrischen Eigenschaften der Halb-Phasenschieber und der leitenden Zonen (71, 72) und ihrer Halbleiterelemente so sind, dass jedem der Zustände der Halbleiterelemente ein gegebener Phasenverschiebungswert (dϕ1, ..., dϕ16) der elektromagnetischen Welle entspricht, die von der Zelle reflektiert wird.
  4. Reflektor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der dielektrische Träger (33) vom Typ mehrschichtige integrierte Schaltung ist, von der eine erste Seite (34) die Mikrowellenschaltung, eine erste Zwischenschicht die Leiterebene (32) und die zweite Seite (35) Bestandteile der Steuerschaltung trägt.
  5. Reflektor nach Anspruch 4, dadurch gekennzeichnet, dass der dielektrische Träger (33) außerdem mindestens eine zweite Zwischenschicht (37) aufweist, die Verbindungen der Steuerschaltung trägt.
  6. Reflektor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass er durchmetallisierte Löcher (40, 46) aufweist, die im dielektrischen Träger (33) in der Richtung (Oz) lotrecht zur Ebene (Oxy) des Reflektors in einem Abstand zueinander ausgebildet sind, der sehr viel kleiner ist als die elektromagnetische Wellenlänge, wobei zumindest manche dieser durchmetallisierten Löcher die Verbindung zwischen der Steuerschaltung und den Steuerleitern gewährleisten.
  7. Reflektor nach Anspruch 6, dadurch gekennzeichnet, dass die durchmetallisierten Löcher (40, 46) auf leitenden Bändern (48, 49) münden, die um Umfang einer Zelle angeordnet sind.
  8. Reflektor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Halbleiterelemente Dioden sind.
  9. Reflektor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es in jedem Halb-Phasenschieber drei Steuerleiter gibt.
  10. Mikrowellenantenne mit elektronischer Abtastung, dadurch gekennzeichnet, dass sie einen Reflektor (4) nach einem der vorhergehenden Ansprüche und eine Mikrowellenquelle (1) aufweist, die den Reflektor beleuchtet.
EP00988873A 1999-11-26 2000-11-24 Aktiver hf reflektor unter verwendung von elektronischer strahlschwenkung Expired - Lifetime EP1234356B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9914933A FR2801729B1 (fr) 1999-11-26 1999-11-26 Reflecteur hyperfrequence actif a balayage electronique
FR9914933 1999-11-26
PCT/FR2000/003286 WO2001039325A1 (fr) 1999-11-26 2000-11-24 Reflecteur hyperfrequence actif a balayage electronique

Publications (2)

Publication Number Publication Date
EP1234356A1 EP1234356A1 (de) 2002-08-28
EP1234356B1 true EP1234356B1 (de) 2007-01-24

Family

ID=9552596

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00988873A Expired - Lifetime EP1234356B1 (de) 1999-11-26 2000-11-24 Aktiver hf reflektor unter verwendung von elektronischer strahlschwenkung

Country Status (8)

Country Link
US (1) US6670928B1 (de)
EP (1) EP1234356B1 (de)
JP (1) JP2004508738A (de)
AT (1) ATE352883T1 (de)
AU (1) AU2522501A (de)
DE (1) DE60033173T2 (de)
FR (1) FR2801729B1 (de)
WO (1) WO2001039325A1 (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2812457B1 (fr) * 2000-07-28 2004-05-28 Thomson Csf Reflecteur hyperfrequence actif a bi-polarisation, notamment pour antenne a balalyage electronique
US6900710B2 (en) * 2001-04-10 2005-05-31 Picosecond Pulse Labs Ultrafast sampler with non-parallel shockline
US7084716B2 (en) * 2001-04-10 2006-08-01 Picosecond Pulse Labs Ultrafast sampler with coaxial transition
FR2834131B1 (fr) * 2001-12-21 2005-06-17 Thales Sa Panneau dephaseur monolithique a diodes pin en silicium polycristallin et antenne utilisant ce panneau dephaseur
US7358834B1 (en) * 2002-08-29 2008-04-15 Picosecond Pulse Labs Transmission line voltage controlled nonlinear signal processors
FR2847718B1 (fr) * 2002-11-22 2005-08-05 Thales Sa Diodes pin en materiaux polycristallins a heterostructures, panneau dephaseur et antenne comportant les diodes pin
FR2879359B1 (fr) * 2004-12-15 2007-02-09 Thales Sa Antenne a balayage electronique large bande
US7106265B2 (en) * 2004-12-20 2006-09-12 Raytheon Company Transverse device array radiator ESA
US7612629B2 (en) * 2006-05-26 2009-11-03 Picosecond Pulse Labs Biased nonlinear transmission line comb generators
US7345610B2 (en) * 2006-06-12 2008-03-18 Wisconsin Alumni Research Foundation High speed digital-to-analog converter
FR2907262B1 (fr) * 2006-10-13 2009-10-16 Thales Sa Cellule dephaseuse a dephaseur analogique pour antenne de type"reflectarray".
US8044866B2 (en) * 2007-11-06 2011-10-25 The Boeing Company Optically reconfigurable radio frequency antennas
JP4990310B2 (ja) * 2009-02-27 2012-08-01 日本放送協会 アンテナ装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2395620A1 (fr) * 1977-06-24 1979-01-19 Radant Etudes Perfectionnement au procede de balayage electronique utilisant des panneaux dielectriques dephaseurs
FR2412960A1 (fr) * 1977-12-20 1979-07-20 Radant Etudes Dephaseur hyperfrequence et son application au balayage electronique
FR2448231A1 (fr) * 1979-02-05 1980-08-29 Radant Et Filtre spatial adaptatif hyperfrequence
JP2692261B2 (ja) * 1989-05-12 1997-12-17 日本電気株式会社 アンテナ装置
FR2656468B1 (fr) * 1989-12-26 1993-12-24 Thomson Csf Radant Source de rayonnement microonde magique et son application a une antenne a balayage electronique.
FR2747842B1 (fr) * 1990-06-15 1998-09-11 Thomson Csf Radant Lentille hyperfrequence multibande et son application a une antenne a balayage electronique
FR2725077B1 (fr) * 1990-11-06 1997-03-28 Thomson Csf Radant Lentille hyperfrequence bipolarisation et son application a une antenne a balayage electronique
FR2708808B1 (fr) * 1993-08-06 1995-09-01 Thomson Csf Radant Panneau déphaseur à quatre états de phase et son application à une lentille hyperfréquence et à une antenne à balayage électronique.
FR2786610B1 (fr) * 1997-02-03 2001-04-27 Thomson Csf Reflecteur hyperfrequence actif pour antenne a balayage electronique
US6091371A (en) * 1997-10-03 2000-07-18 Motorola, Inc. Electronic scanning reflector antenna and method for using same

Also Published As

Publication number Publication date
FR2801729B1 (fr) 2007-02-09
US6670928B1 (en) 2003-12-30
JP2004508738A (ja) 2004-03-18
DE60033173D1 (de) 2007-03-15
DE60033173T2 (de) 2007-11-08
WO2001039325A1 (fr) 2001-05-31
ATE352883T1 (de) 2007-02-15
EP1234356A1 (de) 2002-08-28
AU2522501A (en) 2001-06-04
FR2801729A1 (fr) 2001-06-01

Similar Documents

Publication Publication Date Title
EP0237429B1 (de) Phasengesteuerte Reflektorstrahlergruppe und Antenne mit einer solchen Gruppe
EP0123350B1 (de) Flache Mikrowellenantenne mit einer völlig hängenden Mikrostreifengruppe
EP1234356B1 (de) Aktiver hf reflektor unter verwendung von elektronischer strahlschwenkung
EP2710676B1 (de) Strahlerelement für eine aktive gruppenantenne aus elementarfliesen
EP1580844A1 (de) Phasenschieber mit linearer Polarisation und einer durch mems-Schalter variablen Resonanzlänge
WO2008065311A2 (fr) Antenne multi secteurs
EP1519444A1 (de) Rekonfigurierbare Gruppenantenne mit niedrigem Verlust
FR2725077A1 (fr) Lentille hyperfrequence bipolarisation et son application a une antenne a balayage electronique
EP0598656A1 (de) Elementarstrahler für Gruppenantenne und solche Strahler enthaltende Baugruppe
EP2079131A1 (de) Perfektionierung für Planar-Antennen, die mindestens ein Strahlungselement vom Typ Schlitzantenne mit Längsstrahler umfasst
EP1305846B1 (de) Doppelpolarisierter aktiver mikrowellenreflektor, insbesondere für antenne mit elektronischer strahlschwenkung
EP1139484B1 (de) Mikrowellenphasenschieber und phasengesteuerte Gruppenantenne mit derartigen Phasenschiebern
EP1157444B1 (de) Antenne mit doppelbandiger elektronischerabtastung mit aktivem mirkowellenrefkelektor
EP2432072B1 (de) Breitband-Symmetrieüberträger auf mehrlagigem Schaltkreis für eine Netzantenne
FR2786610A1 (fr) Reflecteur hyperfrequence actif pour antenne a balayage electronique
EP0456579A1 (de) Flache, orientierbare Antenne, arbeitend im Mikrowellenbereich
EP1133000B1 (de) Aktiver Mikrowellenreflektor für Antenne mit elektronischer Strahlschwenkung
WO2020127854A1 (fr) Antenne microruban élémentaire et antenne réseau
FR2858469A1 (fr) Antenne a cavite resonante, reconfigurable
FR2907262A1 (fr) Cellule dephaseuse a dephaseur analogique pour antenne de type"reflectarray".
EP0156684A1 (de) Strahlendes Mirkowellenelement und seine Anwendung in einer elektronisch gesteuerten Antenne
FR2815479A1 (fr) Reflecteur hyperfrequence actif a deux polarisations independantes, notamment pour antenne a balayage electronique
FR2599899A1 (fr) Antenne plane a reseau avec conducteurs d'alimentation imprimes a faible perte et paires incorporees de fentes superposees rayonnantes a large bande
FR2973587A1 (fr) Antenne reseau directive large bande, du type a circuit imprime
FR2814594A1 (fr) Reseau reflecteur a capacites de decouplage integrees

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020603

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 20021218

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 60033173

Country of ref document: DE

Date of ref document: 20070315

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070505

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070625

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20071025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070425

BERE Be: lapsed

Owner name: THALES

Effective date: 20071130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20080930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20151118

Year of fee payment: 16

Ref country code: DE

Payment date: 20151118

Year of fee payment: 16

Ref country code: IT

Payment date: 20151124

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20151111

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60033173

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170601

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161124