EP1234356B1 - Reflecteur hyperfrequence actif a balayage electronique - Google Patents

Reflecteur hyperfrequence actif a balayage electronique Download PDF

Info

Publication number
EP1234356B1
EP1234356B1 EP00988873A EP00988873A EP1234356B1 EP 1234356 B1 EP1234356 B1 EP 1234356B1 EP 00988873 A EP00988873 A EP 00988873A EP 00988873 A EP00988873 A EP 00988873A EP 1234356 B1 EP1234356 B1 EP 1234356B1
Authority
EP
European Patent Office
Prior art keywords
phase
reflector
microwave
cell
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00988873A
Other languages
German (de)
English (en)
Other versions
EP1234356A1 (fr
Inventor
Claude Thales Intell. Prop. CHEKROUN
Jean-Paul Thales Intell.Prop. LARGENT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP1234356A1 publication Critical patent/EP1234356A1/fr
Application granted granted Critical
Publication of EP1234356B1 publication Critical patent/EP1234356B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/44Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
    • H01Q3/46Active lenses or reflecting arrays

Definitions

  • the present invention relates to an electron-beam active microwave reflector capable of being illuminated by a microwave source to form an antenna.
  • antennas comprising an active microwave reflector.
  • the latter also called “reflect array” in the Anglo-Saxon literature, is a network of electronically controllable phase shifters.
  • This network extends in a plane and comprises an array of phase-controlled elements, or phased array, disposed in front of reflector means, constituted for example by a ground plane forming a ground plane.
  • the reflector network comprises in particular elementary cells each performing the electronically variable reflection and phase shift, of the microwave wave it receives.
  • a primary source for example a horn, arranged in front of the reflector network emits microwave waves towards the latter.
  • phase shifts applied by the elementary cells vary in a discrete manner. Since the phase shifts are evenly distributed, they are digitally controlled as a function of a number of bits. If we write N this number, the phase shift pitch is then 2 ⁇ / 2 N. The accuracy of a phase shift is therefore at best equal to a phase shift step.
  • the lack of precision entails certain disadvantages, in particular it causes the existence of relatively high side lobes and poor pointing accuracy of the antenna.
  • Patent applications FR-A-2 708 808 and FR-A-2 747 842 describe active phase shift networks.
  • the subject of the invention is an active microwave reflector, capable of receiving a linearly polarized electromagnetic wave in a given first direction Oy.
  • the reflector according to the invention comprises a set of elementary cells arranged one beside the other. another on a surface, each cell comprising a phase-shifting microwave circuit and a conductive plane disposed substantially parallel to the microwave circuit, the phase-shifting circuit comprising at least two half-phase-shifters.
  • a half-phase-shifter comprises at least one support dielectric, at least two electrically conductive wires substantially parallel to the given direction Oy, arranged on the support and at least each carrying a semiconductor element with two states, each wire being connected to control conductors of the semiconductor elements, these conductors being substantially normal to the son, and two conductive zones disposed towards the periphery of the cell, substantially parallel to the control conductors.
  • the control conductors are at least three in each half-phase-shifter and are electrically isolated from one half-phase-shifter to the other to control the state of all the semiconductor elements independently of each other .
  • the geometric and electrical characteristics of the half-phase-shifters are such that at each of the states of the semiconductor elements corresponds a given phase shift value (d ⁇ 1 , ... d ⁇ 8 ) of the electromagnetic wave which is reflected by the cell.
  • the reflector further comprising an electronic control circuit (36) of the state of the semiconductor elements.
  • the invention also relates to an antenna provided with such a reflector.
  • the main advantages of the invention are that it makes it possible to produce a low-profile and low-weight reflector, that it adapts to many types of antennas, that it improves the heat exchange between the reflector and the reflector circuits. outside, that it allows a great reliability and that it is economic.
  • FIG. 1 schematically illustrates an exemplary embodiment of an active reflective grating electronic scanning antenna where the microwave distribution is for example of the so-called optical type, that is to say, for example, provided by means of FIG. a primary source illuminating the reflector network.
  • the antenna comprises a primary source 1, for example a horn.
  • the primary source 1 transmits microwave waves 3 to the active reflector network 4 disposed in the Oxy plane.
  • This reflector network 4 comprises a set of elementary cells performing the reflection and phase shift of the waves they receive.
  • the reflector may be illuminated by more than one source. It can in particular be illuminated by two elementary sources, having for example inverse circular polarizations.
  • FIG. 2 schematically shows a reflector network portion 4 in the Oxy plane, in a view from above, according to F.
  • the reflector comprises a set of elementary cells 10 arranged side by side and separated by zones 20, used for the microwave decoupling cells. These cells 10 perform the reflection and the phase shift of the waves they receive.
  • An elementary cell 10 comprises a phase-shifting microwave circuit disposed in front of a conductive plane. More precisely, as will appear later, the microwave circuit has two transverse phase shifters, each dedicated to a linear polarization.
  • FIG. 3 is a diagrammatic sectional view, in the Oxz plane, of an exemplary embodiment of the active reflector 4.
  • the reflector 4 consists of a microwave circuit 31 distributed in the elementary cells 10 and a conductive plane 32 , disposed substantially parallel to the microwave circuit 31, at a distance d predefined. This microwave circuit receives the incident waves emitted by the primary source 1.
  • the conductive plane 32 has the particular function of reflecting the microwave waves. It can be constituted by any known means, for example parallel wires or a grid, sufficiently tight, or a continuous plane.
  • the microwave circuit 31 and the conductive plane 32 are preferably made on two sides of a dielectric support 33, for example of the printed circuit type.
  • the reflector 4 further comprises, preferably on the same printed circuit 33, which is then a multilayer circuit, the electronic circuit necessary for the control of the phase values.
  • FIG. 3 shows a multilayer circuit whose front face 34 carries the microwave circuit 31, the rear face 35 carries components 36 of the aforementioned electronic control circuit, and the intermediate layers form the conductive plane 32 and for example two plans 37 interconnections of the components 36 to the microwave circuit 31.
  • FIG. 4 shows in a view from above an example of possible embodiment of the microwave circuit 31 of a reflector according to the invention. More particularly, FIG. 4 illustrates an elementary phase shifter 31 of the microwave circuit. Each phase-shifter is separated from another phase-shifter by a decoupling zone 20 comprising for example a conductive strip 48 parallel to the direction Oy and a conductive strip 49 parallel to the direction Ox. It therefore has for example at its periphery two conductive strips 48 in the direction Oy and two conductive strips in the direction Ox.
  • Each elementary phase shifter 31, associated with the corresponding portion of the conductive plane 32 forms an elementary cell 10 of FIG.
  • the microwave circuit of a phase-shifter 31 comprises a plurality of conducting wires 42 substantially parallel to the direction Oy and each carrying a semiconductor element with two states D1, D2, for example a diode.
  • the phase shifter circuit also comprises conductive zones connecting the diodes to reference potentials and control circuits. More particularly, an elementary phase shifter 31 consists of two circuits 50, hereinafter called half-phase shifter. We first describe a half-phase shifter.
  • a half-phase-shifter 50 comprises a dielectric support 33, two wires 42 each carrying a diode D1, D2.
  • the two wires are connected to the ground potential, or to any other reference potential, via a conductive line 43.
  • This line 43 is for example of the microstrip type made by metal deposition on the front face of the dielectric support 33 for example by a screen printing technique.
  • the diodes D1 and D2 are thus wired in opposition so that, for example, their anodes are connected to the ground potential via this line 43.
  • the latter is for example connected to a conductive strip 48 of the decoupling means 20.
  • Diode supply voltage D1 and D2 is supplied by control conductors 44.
  • the anode of the diodes being connected to the ground potential, the control conductors are then connected to the cathode of the diodes.
  • the supply voltage supplied by these conductors is for example of the order of -15 volts.
  • the control leads are controlled to have at least two voltage states. In a first state, their voltage is for example at the supply voltage, which makes the diode pass, or in other words polarized live. In a second state, their voltage is such that the diode is blocked, or in other words polarized in reverse.
  • the controls of the two control conductors 44, 45 are independent of one another so as to control the diodes independently of one another.
  • the control conductors 44, 45 and the connected ground conductor 43 are substantially parallel to the Ox direction and therefore perpendicular to the wires 42.
  • the ground conductor is common to the two wires, in particular for space and power savings. material, it could however provide a specific driver for each wire. We could also plan to not directly connect these conductors directly to a reference potential but through a control circuit.
  • the control conductors 44, 45 are connected to the electronic control circuit carried by the reflector, via metallized holes 46 made for example at the decoupling zone 20, in particular for reasons of space, but also for do not disturb the functioning of the elementary cells.
  • the metallized holes 46 are of course electrically isolated from the conductive strips of the decoupling zone. For this purpose, there is provided an interruption of the strip 20 around the ends of the control conductors directly connected to the metallized holes 46.
  • the equivalent circuit relates to the conducting wires 42 and the two diodes D1, D2, in fact what corresponds to a half-phase-shifter, associated with a given polarization and therefore a given frequency band.
  • the incident microwave, of linear polarization and parallel to Oy and son 42 is received on terminals B 1 and B 2 and meets three capacitors C O , C I1 , C I2 in series, connected in parallel to terminals B 1 and B 2 .
  • the capacitance C O represents the linear capacitance of decoupling between the control conductors 44 and the conductive strip of the decoupling zone 20.
  • the capacitance C I1 is the linear capacitance between the control conductor 44 connected to the first diode D1 and the conductor
  • the capacitance C I2 is the linear capacitance between the control conductor 45 connected to the second diode D2 and the central conductor 43.
  • the second diode D2 represented by its equivalent diagram.
  • the latter is similar to that of the first diode D1, its components bearing an index 2.
  • the microwave output voltage is taken between terminals B 3 and B 4, terminals of the capacitors C 0, C I1, and I2 C.
  • the operation of the half-phase-shifter 50 is explained below by considering, in a first step, the behavior of such a circuit in the absence of the second diode D2, which returns to the equivalent diagram of FIG. the D2 as well as the capacity C I2 .
  • B di Z . VS 0 . ⁇ . 1 - The 1 ⁇ VS 11 ⁇ ⁇ 2 The 1 ⁇ VS not ⁇ ⁇ 2 + The 1 ⁇ VS 0 ⁇ ⁇ 2 - 1 where Z is the impedance of the incident wave and ⁇ is the pulse corresponding to the center frequency of one of the two operating bands of the antenna.
  • B Services Z . VS 0 . ⁇ . 1 - The 1 ⁇ VS 11 ⁇ ⁇ 2 + VS 11 / This The 1 ⁇ VS 11 ⁇ ⁇ 2 + The 1 ⁇ VS 0 ⁇ ⁇ 2 - 1 + VS 0 + VS 11 This
  • a half-phase-shifter may have four different values for its susceptance B D , these values being denoted B D1 , B D2 , B D3 and B D4 , according to the command (direct or inverse biasing) applied to each of the diodes. D1, D2.
  • the susceptance values B D1 , B D2 , B D3 and B D4 are a function of the parameters of the circuit of FIG. 5, that is to say the values chosen for the geometrical parameters, in particular with respect to relates to the dimensions, shapes and spacings of the various conductive surfaces 43, 44, 45, and electrical phase shifter, particularly with respect to the electrical characteristics of the diodes.
  • B CC - cotg ⁇ 2 ⁇ ⁇ d ⁇ where ⁇ is the wavelength corresponding to the preceding puls pulse.
  • B VS B D + B CC
  • the susceptance B C can take four distinct values (denoted B C1 , B C2 , B C3 , and B C4 ) respectively corresponding to the four values of B D , the distance d representing an additional parameter for determining the values B C1 - B C4 .
  • the null susceptances or substantially zero
  • the parameters of the circuit are such that they correspond to the diodes polarized in the forward direction, but that can of course choose a symmetrical operation in which the parameters are determined to substantially cancel susceptances B r ; more generally, it is not necessary for one of the susceptances B d or B r to be zero, these values being determined so that the equidistribution condition of the phase shifts d ⁇ 1 -d ⁇ 4 is fulfilled.
  • FIG. 6 shows an equivalent diagram of the entire phase shifter constituted by the two half-phase-shifters as previously described. It can be considered that the equivalent diagrams of the two half-phase-shifters 50 as shown in FIG. 5 operate in parallel. Indeed, the capacitive links between the control conductors 44 of the diodes D1 and between the control conductors 45 of the diodes D2 can be likened to microwave short circuits. One can play on the length and width of the isolation line 47 to obtain a capacitance value between the conductors that allows to assimilate the capacitive connection to a short circuit. For circuits in parallel, susceptances are added.
  • phase shifter The geometric and electrical parameters of the phase shifter are for example defined to obtain eight phase shifts equidistant between 0 ° and 360 °.
  • a phase shifter as shown in FIG. 4 is simple to implement, it makes it possible to obtain eight phase shifts by simply playing on geometric parameters of conductors and on the choice of diodes.
  • the printed circuit supporting the microwave circuits and the electronic control circuits is also thin. Such a circuit can be obtained economically and the reflector can be extremely flat, and therefore low weight.
  • an active reflector comprises decoupling means 20 between the cells 10.
  • the microwave wave received by the cells is polarized linearly, parallel to the direction Oy. It is desirable that this wave not does not propagate from one cell to another, in the Ox direction.
  • the decoupling means comprise at least the conductive zone 48. It is therefore expected to provide this substantially strip-shaped conductive zone 48, made by metal deposition on the surface 34, for example, between the cells, parallel to the direction Oy. This strip 48 forms, with the reflective plane 32 which is below, a waveguide-like space whose width is the distance d.
  • the distance d is chosen to be less than ⁇ / 2, ⁇ being the length of the microwave wave, knowing that a wave whose polarization is parallel to the bands can not propagate in such a space.
  • the reflector according to the invention operates in a certain frequency band and d is chosen so that it is smaller than the smallest of the wavelengths of the band.
  • the band 48 must have a width, in the direction Ox, sufficient for the effect described above is sensitive. In practice, the width may be of the order of ⁇ / 5.
  • it may be parasitically created in a cell, a wave whose polarization is directed in the direction Oz, perpendicular to the plane formed by the directions Ox and Oy. It is also desirable to avoid its propagation to neighboring cells .
  • the metallized holes 46 for connection from control conductors to electronic circuits. Indeed, these being parallel to the polarization of the parasitic wave, they are equivalent to a shielding conductive plane if they are sufficiently close together (at a distance from each other much less than the length of the operating wave of the reflector), so many, for the operating wavelengths of the reflector. If this condition is not fulfilled, additional metallized holes can be formed, having no connection function. It should be noted that the metallized connection holes 46 are preferably made at the level of the strips 48 so as not to disturb the operation of the cells. This provision also provides a saving of space.
  • metallized holes 40 similar to the connection holes 46 but aligned in the Ox direction opening into the conductive strip 49.
  • These metallized holes 40 as the metallized connection holes 46 are made in a direction Oz substantially perpendicular to the plane Oxy. For example, it is still possible to provide a continuous conductive surface in the xOz plane.
  • FIG. 7 illustrates a phase-shifter according to the invention making it possible to control the phase-shifts on 4 bits, thus on an additional bit with respect to the phase-shifter illustrated by FIG. 4.
  • the phase-shifter always comprises two half-phase-shifters 50 made as previously described. However, the two half-phase-shifters are no longer separated by a line 47 isolating the controls of the diodes, but by two conductive zones 71, 72 connected by a diode D3, or any other semiconductor with two states. These two zones 71, 72 are for example made by metal deposition on the front face 34 of the dielectric. These zones form control conductors of the diode D3.
  • a conductive zone 71 is for example connected to the electronic control circuits by a metallized hole 46. Depending on the state of the electronic control, this zone 71 is at a supply potential, for example -15 volts or to another potential, for example the mass potential.
  • the other conductive zone 72 is for example connected to the ground potential. For this purpose, it is for example connected to the conductive strip 48 parallel to the direction Oy of the decoupling means 20.
  • the phase shifter is similar to that of FIG. state eight possible phase shifts. It is of course necessary to redefine its geometrical and electrical parameters because of the introduction of the additional zones 71, 72.
  • the conductive zone 71 has a potential which makes the diode D3 conducting, that is to say in direct polarization , the electrical parameters of the phase-shifter are modified with respect to the previous state. In particular, the capacity formed of the space between the two conductive zones 71, 72 becomes short-circuited by the diodes D3.
  • the eight susceptances possible of the previous state, controlled on three bits, are then modified by the conduction of the diode D3.
  • the eight new susceptances thus obtained make it possible to obtain eight additional phase shifts.
  • a total of sixteen phase shifts are possible.
  • the geometric and electrical characteristics of the two half-phase-shifters 50 but also the additional conductive zones 71, 72 and their diode D3 must be defined so as to obtain the sixteen desired phase-shifts for each of the states of the diodes.
  • FIG. 8 illustrates a possible variant embodiment of a reflector according to the invention, the elementary cells 10 being for example of the type shown in FIG. 4 or 7.
  • a metal gate is placed on the front face of the reflector, that is to say the face which is opposite the microwave source 1.
  • This grid is formed of meshes 81 each having the surface of an elementary cell, more particularly the base of a mesh surrounds a cell.
  • the grid also has a thickness e G.
  • FIG. 8 presents in perspective a single elementary cell.
  • the grid is formed of meshes whose walls 82 extend in the direction Oz, substantially opposite the conductive strips 48, 49 of the decoupling means 20.
  • the base of the grid is in contact with these bands 48, 49 and in particular with the metallized holes 40, 46 that they comprise.
  • the thickness eG of the grid which corresponds in fact to the length of the walls 82 is for example of the order of one centimeter, preferably of the order of half a centimeter. The relative small thickness of the grid thus allows to keep a very flat reflector, and therefore of low weight.
  • This metal gate makes it possible to decouple the phase shift function from the radiation function, and makes it possible to control the active coupling coefficients by making them independent of the antenna pointing law and thus makes it possible to cancel the parasitic radiation lobes such as as the image lobe and the lobes of magicity.
  • the metal grid which is in particular in contact with the metallized holes, allows a better heat exchange between the reflector circuits and the outside through a larger exchange surface. The reliability of the reflector is thus increased.
  • An active reflector array according to the invention can be used for many types of antennas. It can in particular be used for space communication antennas thanks to its low weight or be used for meteorological radar antennas thanks to its low cost. Finally, it can be used for all types of application reflector antennas requiring good pointing accuracy and a low level of sidelobes.

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Description

  • La présente invention concerne un réflecteur hyperfréquence actif à balayage électronique, susceptible d'être illuminé par une source d'onde hyperfréquence pour former une antenne.
  • Il est connu de réaliser des antennes comportant un réflecteur hyperfréquence actif. Ce dernier, par ailleurs nommé « reflect array » dans la littérature anglo-saxonne, est un réseau de déphaseurs commandables électroniquement. Ce réseau s'étend dans un plan et comporte un réseau d'éléments à contrôle de phase, ou réseau phasé, disposé devant des moyens réflecteurs, constitués par exemple par un plan de masse métallique formant plan de masse. Le réseau réflecteur comporte notamment des cellules élémentaires réalisant chacune la réflexion et le déphasage, variable sur commande électronique, de l'onde hyperfréquence qu'elle reçoit. Une telle antenne apporte une grande agilité de faisceau. Une source primaire, par exemple un cornet, disposée devant le réseau réflecteur émet vers ce dernier les ondes hyperfréquence.
  • Les déphasages appliqués par les cellules élémentaires varient de façon discrète. Les déphasages étant équirépartis, ils sont commandés de façon numérique en fonction d'un nombre de bits. Si on note N ce nombre, le pas de déphasage est alors à 2π/2N. La précision d'un déphasage est donc égale au mieux à un pas de déphasage. Le manque de précision entraîne certains inconvénients, en particulier elle entraîne l'existence de lobes secondaires relativement élevés et une mauvaise précision de pointage de l'antenne.
  • Des demandes de brevet FR-A-2 708 808 et FR-A-2 747 842 décrivent des réseaux de déphasage actifs.
  • Un but de l'invention est notamment de pallier les inconvénients précités. A cet effet, l'invention a pour objet un réflecteur hyperfréquence actif, susceptible de recevoir une onde électromagnétique polarisée linéairement selon une première direction donnée Oy. Le réflecteur selon l'invention comporte un ensemble de cellules élémentaires disposées l'une à côté de l'autre sur une surface, chaque cellule comportant un circuit hyperfréquence déphaseur et un plan conducteur disposé sensiblement parallèle au circuit hyperfréquence, le circuit déphaseur comportant au moins deux demi-déphaseurs. Un demi-déphaseur comporte au moins un support diélectrique, au moins deux fils électriquement conducteurs sensiblement parallèles à la direction donnée Oy, disposés sur le support et portant au moins chacun un élément semi-conducteur à deux états, chaque fil étant connecté à des conducteurs de commande des éléments semi-conducteurs, ces conducteurs étant sensiblement normaux aux fils, et deux zones conductrices disposées vers la périphérie de la cellule, sensiblement parallèlement aux conducteurs de commande. Les conducteurs de commande sont au moins au nombre de trois dans chaque demi-déphaseur et sont isolés électriquement d'un demi-déphaseur à l'autre pour commander l'état de tous les éléments semi-conducteurs indépendamment l'un de l'autre. Les caractéristiques géométriques et électriques des demi-déphaseurs sont telles qu'à chacun des états des éléments semi-conducteurs correspond une valeur de déphasage donnée (dϕ1, ...dϕ8) de l'onde électromagnétique qui est réfléchie par la cellule. Le réflecteur comportant en outre un circuit électronique de commande (36) de l'état des éléments semi-conducteurs.
  • L'invention concerne également une antenne munie d'un tel réflecteur.
  • L'invention a pour principaux avantages qu'elle permet de réaliser un réflecteur de faible encombrement et de faible poids, qu'elle s'adapte à de nombreux types d'antennes, qu'elle améliore les échanges thermiques entre les circuits du réflecteur et l'extérieur, qu'elle permet une grande fiabilité et qu'elle est économique.
  • D'autres caractéristiques et avantages de l'invention apparaîtront à l'aide de la description qui suit faite en regard de dessins annexés qui représentent :
    • la figure 1, un exemple d'antenne à balayage électronique à réflecteur hyperfréquence actif en regard d'un système d'axes orthogonaux Ox,y,z;
    • la figure 2, une vue partielle de la face avant d'un exemple de réseau réflecteur actif selon l'invention;
    • la figure 3, une vue partielle en coupe d'un exemple d'un réflecteur selon l'invention;
    • la figure 4, un premier exemple de réalisation d'une cellule élémentaire d'un réflecteur selon l'invention ;
    • la figure 5, un schéma électrique équivalent d'un demi-déphaseur compris dans la cellule précitée ;
    • la figure 6, un schéma électrique équivalent de la cellule;
    • la figure 7, un deuxième exemple de réalisation possible d'un réflecteur selon l'invention ;
    • la figure 8, un autre exemple de réalisation d'un réflecteur selon l'invention comportant une grille disposée sur sa face avant.
  • La figure 1 illustre de façon schématique un exemple de réalisation d'une antenne à balayage électronique à réseau réflecteur actif où la distribution hyperfréquence est par exemple du type dit optique, c'est-à-dire par exemple assurée à l'aide d'une source primaire illuminant le réseau réflecteur. A cet effet, l'antenne comporte une source primaire 1, par exemple un cornet. La source primaire 1 émet des ondes hyperfréquence 3 vers le réseau réflecteur actif 4, disposé dans le plan Oxy. Ce réseau réflecteur 4 comporte un ensemble de cellules élémentaires réalisant la réflexion et le déphasage des ondes qu'elles reçoivent. Ainsi, par commande des déphasages imprimés à l'onde reçue par chaque cellule, il est possible ainsi qu'il est connu, de former un faisceau hyperfréquence dans la direction souhaitée. Eventuellement, le réflecteur peut être éclairé par plus d'une source. II peut notamment être éclairé par deux sources élémentaires, ayant par exemple des polarisations circulaires inverses.
  • La figure 2 montre schématiquement une partie de réseau réflecteur 4 dans le plan Oxy, par une vue de dessus, suivant F. Le réflecteur comporte un ensemble de cellules élémentaires 10 disposées côte à côte et séparées par des zones 20, utilisées pour le découplage hyperfréquence des cellules. Ces cellules 10 réalisent la réflexion et le déphasage des ondes qu'elles reçoivent. Une cellule élémentaire 10 comporte un circuit hyperfréquence déphaseur disposé devant un plan conducteur. Plus précisément, comme cela apparaîtra par la suite, le circuit hyperfréquence comporte deux déphaseurs transversaux, dédiés chacun à une polarisation linéaire.
  • La figure 3 est une vue schématique en coupe, dans le plan Oxz d'un exemple de réalisation possible du réflecteur actif 4. Le réflecteur 4 se compose d'un circuit hyperfréquence 31 réparti dans les cellules élémentaires 10 et d'un plan conducteur 32, disposé sensiblement parallèlement au circuit hyperfréquence 31, à une distance d prédéfinie. Ce circuit hyperfréquence reçoit les ondes incidentes émises par la source primaire 1.
  • Le plan conducteur 32 a notamment pour fonction de réfléchir les ondes hyperfréquences. II peut être constitué par tout moyen connu, par exemple des fils parallèles ou un grillage, suffisamment serrés, ou un plan continu. Le circuit hyperfréquence 31 et le plan conducteur 32 sont de préférence réalisés sur deux faces d'un support diélectrique 33, par exemple du type circuit imprimé. Le réflecteur 4 comporte encore, de préférence sur le même circuit imprimé 33, qui est alors un circuit multicouche, le circuit électronique nécessaire à la commande des valeurs de phase. Sur la figure 3. on a représenté un circuit multicouche dont la face avant 34 porte le circuit hyperfréquence 31, la face arrière 35 porte des composants 36 du circuit électronique de commande précité, et les couches intermédiaires forment le plan conducteur 32 et par exemple deux plans 37 d'interconnexions des composants 36 au circuit hyperfréquence 31.
  • La figure 4 présente par une vue de dessus un exemple de réalisation possible du circuit hyperfréquence 31 d'un réflecteur selon l'invention. Plus particulièrement, la figure 4 illustre un déphaseur élémentaire 31 du circuit hyperfréquence. Chaque déphaseur est séparé d'un autre déphaseur par une zone de découplage 20 comportant par exemple une bande conductrice 48 parallèle à la direction Oy et une bande conductrice 49 parallèle à la direction Ox. II comporte donc par exemple à sa péripherie deux bandes conductrices 48 dans la direction Oy et deux bandes conductrices dans la direction Ox. Chaque déphaseur élémentaire 31, associé avec la partie correspondante du plan conducteur 32 forme une cellule élémentaire 10 de la figure 2.
  • Le circuit hyperfréquence d'un déphaseur 31 comporte plusieurs fils conducteurs 42 sensiblement parallèles à la direction Oy et portant chacun un élément semi-conducteur à deux états D1, D2, par exemple une diode. Le circuit déphaseur comporte par ailleurs des zones conductrices reliant les diodes à des potentiels de référence et des circuits de commande. Plus particulièrement, un déphaseur élémentaire 31 est constitué de deux circuits 50 appelés par la suite demi-déphaseur. On décrit donc dans un premier temps un demi-déphaseur.
  • Un demi-déphaseur 50 comporte un support diélectrique 33, deux fils 42 portant chacun une diode D1, D2. Les deux fils sont reliés au potentiel de masse, ou à tout autre potentiel de référence, par l'intermédiaire d'une ligne conductrice 43. Cette ligne 43 est par exemple du type microruban réalisée par dépôt métallique sur la face avant du support diélectrique 33, par exemple par une technique de sérigraphie. Les diodes D1 et D2 sont ainsi câblées en opposition de sorte que par exemple leurs anodes soient reliées au potentiel de masse par cette ligne 43. A cet effet, cette dernière est par exemple reliée à une bande conductrice 48 des moyens de découplage 20. La tension d'alimentation des diodes D1 et D2 est amenée par des conducteurs de commande 44. L'anode des diodes étant reliée au potentiel de masse, les conducteurs de commande sont alors reliés à la cathode des diodes. La tension d'alimentation amenée par ces conducteurs est par exemple de l'ordre de -15 volts. Les conducteurs de commande sont commandés de façon à présenter au moins deux états de tension. Dans un premier état, leur tension est par exemple à la tension d'alimentation, ce qui rend la diode passante, ou en d'autres termes polarisée en direct. Dans un deuxième état, leur tension est telle que la diode est bloquée, ou en d'autres termes polarisée en inverse. Les commandes des deux conducteurs de commande 44, 45 sont indépendantes l'une de l'autre de façon à assurer la commandes des diodes indépendamment l'une de l'autre. Les conducteurs de commande 44, 45 et le conducteur relié de masse 43 sont sensiblement parallèles à la direction Ox et donc perpendiculaires aux fils 42. Sur la figure 4 le conducteur de masse est commun aux deux fils notamment pour des gains d'encombrement et de matière, on pourrait cependant prévoir un conducteur spécifique pour chaque fil. On pourrait par ailleurs prévoir de relier non pas directement ces conducteurs directement à un potentiel de référence mais par l'intermédiaire d'un circuit de commande.
  • Les conducteurs de commande 44, 45 sont reliés au circuit électronique de commande porté par le réflecteur, par l'intermédiaire de trous métallisés 46 réalisés par exemple au niveau de la zone de découplage 20, notamment pour des raisons d'encombrement, mais aussi pour ne pas perturber le fonctionnement des cellules élémentaires. Les trous métallisés 46 sont bien sûr isolés électriquement des bandes conductrices de la zone de découplage. A cet effet, il est prévu une interruption de la bande 20 autour des extrémités des conducteurs de commande directement reliées aux trous métallisés 46.
  • Pour décrire le fonctionnement d'un demi-déphaseur 50, il est nécessaire de considérer son circuit équivalent tel que représenté par la figure 5. Le circuit équivalent concerne les fils conducteurs 42 et les deux diodes D1, D2, en fait ce qui correspond à un demi-déphaseur, associé à une polarisation donnée et donc à une bande de fréquence donnée. L'onde hyperfréquence incidente, de polarisation linéaire et parallèle à Oy et aux fils 42 est reçue sur des bornes B1 et B2 et rencontre trois capacités CO, CI1, CI2 en série, connectées en parallèle sur les bornes B1 et B2. La capacité CO représente la capacité linéique de découplage entre les conducteurs de commande 44 et la bande conductrice de la zone de découplage 20. La capacité CI1 est la capacité linéique entre le conducteur de commande 44 relié à la première diode D1 et le conducteur de masse 43. La capacité CI2 est la capacité linéique entre le conducteur de commande 45 relié à la deuxième diode D2 et le conducteur central 43.
  • Aux bornes de la capacité CI1 est connectée la première diode D1, également représentée par son schéma équivalent. Ce dernier est constitué d'une inductance L1, inductance de la diode D1 compte tenu de son fil 42 de connexion, en série avec :
    • soit une capacité Ci1 (capacité de jonction de la diode) en série avec une résistance Ri1 (résistance inverse),
    • soit une résistance Rd1 (résistance directe de la diode), selon que la diode D1 est en sens inverse ou direct, ce qui est symbolisé par un interrupteur 21.
  • De la même manière, aux bornes de la capacité CI2 est connectée la deuxième diode D2 représentée par son schéma équivalent. Ce dernier est analogue à celui de la première diode D1, ses composants portant un indice 2.
  • La tension de sortie hyperfréquence est prise entre des bornes B3 et B4, bornes des capacités C0, CI1, et CI2.
  • Le fonctionnement du demi-déphaseur 50 est expliqué ci-après en considérant, dans une première étape, le comportement d'un tel circuit en l'absence de la deuxième diode D2, ce qui revient sur le schéma équivalent de la figure 5 à supprimer le D2 ainsi que la capacité CI2.
  • Lorsque la première diode D1 est polarisée en direct, la susceptance Bd1 du circuit de la figure 5 (modifié) s'écrit : B di = Z . C 0 . ω . 1 - L 1 C 11 ω 2 L 1 C n ω 2 + L 1 C 0 ω 2 - 1
    Figure imgb0001

    où Z est l'impédance de l'onde incidente et ω est la pulsation correspondant à la fréquence centrale d'une des deux bandes de fonctionnement de l'antenne.
  • On choisit par exemple les paramètres du circuit pour avoir Bd1 ≅ 0, c'est-à-dire que, en négligeant sa conductance, le circuit soit adapté ou, en d'autres termes, qu'il soit transparent à l'onde hyperfréquence incidente, n'introduisant ni réflexion parasite, ni déphasage (dφd1 = 0). Plus précisément, on choisit : L 1 C 11 ω 2 = 1
    Figure imgb0002
    ce qui conduit à Bd1 ≅ 0, quelle que soit notamment la valeur de la capacité Ci1.
  • Lorsque la première diode D1 est polarisée en inverse, la susceptance Br1 du circuit s'écrit : B rl = Z . C 0 . ω . 1 - L 1 C 11 ω 2 + C 11 / Ci L 1 C 11 ω 2 + L 1 C 0 ω 2 - 1 + C 0 + C 11 Ci
    Figure imgb0003
  • La capacité CI1 étant fixée précédemment, il apparaît qu'on peut ajuster la valeur de la susceptance Br1 par action sur la valeur de la capacité Ci, c'est-à-dire le choix de la diode D1.
  • Si maintenant, dans une deuxième étape, on prend en considération l'existence de la deuxième diode D2, on voit que, par un raisonnement analogue, on obtient deux autres valeurs distinctes pour la susceptance, selon que la diode D2 est polarisée en direct ou en inverse.
  • Il apparaît ainsi qu'un demi-déphaseur peut présenter quatre valeurs différentes pour sa susceptance BD, ces valeurs étant notées BD1, BD2, BD3 et BD4, selon la commande (polarisation directe ou inverse) appliquée à chacune des diodes D1, D2., Les valeurs des susceptances BD1, BD2, BD3 et BD4 sont fonction des paramètres du circuit de la figure 5, c'est-à-dire des valeurs choisies pour les paramètres géométriques, notamment en ce qui concerne les dimensions, formes et espacements des différentes surfaces conductrices 43, 44, 45, et électriques du déphaseur, notamment en ce qui concerne les caractéristiques électriques des diodes. En particulier, il est nécessaire de tenir compte de la contrainte de définition de la bande conductrice de la zone de découplage 20 évoquée précédemment lors de la détermination des différents paramètres pour la fixation des déphasages dϕ1 - dϕ4.
  • Si, maintenant, on étudie le comportement de l'ensemble du demi-déphaseur 50 en association avec le plan conducteur 32, on doit tenir compte de la susceptance due à ce plan 32, ramenée dans le plan du demi-déphaseur et notée BCC, qui s'écrit : B cc = - cotg 2 πd λ
    Figure imgb0004

    où λ est la longueur d'onde correspondant à la pulsation ω précédente.
    La susceptance BC de la cellule est alors donnée par : B C = B D + B CC
    Figure imgb0005
  • Il suit que la susceptance BC peut prendre quatre valeurs distinctes (notées BC1, BC2, BC3, et BC4) correspondant respectivement aux quatre valeurs de BD, la distance d représentant un paramètre supplémentaire pour la détermination des valeurs BC1 - BC4.
  • On sait par ailleurs que le déphasage dϕ imprimé par une admittance Y à une onde hyperfréquence est de la forme : = 2  arctg Y
    Figure imgb0006
  • II apparaît ainsi que, en négligeant la partie réelle de l'admittance d'une cellule, on a : 2  arctg B C
    Figure imgb0007

    et qu'on obtient quatre valeurs possibles dϕ1 - dϕ4 de déphasage par demi-déphaseur 50, selon la commande appliquée à chacune des diodes D1 et D2. Les différents paramètres sont choisis pour que les quatre valeurs dϕ1 - dϕ4 soient équiréparties, par exemple mais non obligatoirement : 0, 90°, 180°, 270°. Ces quatre états correspondent à une commande numérique codée sur deux bits.
  • Il est à noter qu'on a décrit ci-dessus le cas dans lequel on choisit les paramètres du circuit pour que les susceptances nulles (ou sensiblement nulles) soient telles qu'elles correspondent aux diodes polarisées dans le sens direct, mais qu'on peut bien entendu choisir un fonctionnement symétrique dans lequel les paramètres sont déterminés pour annuler sensiblement les susceptances Br ; plus généralement, il n'est pas nécessaire que l'une des susceptances Bd ou Br soit nulle, ces valeurs étant déterminées pour que la condition d'équirépartition des déphasages dϕ1-dϕ4 soit remplie.
  • Pour montrer comment une cellule élémentaire 10 permet huit déphasages possibles, c'est-à-dire une commande des déphasages sur trois bits, on considère maintenant l'ensemble de deux demi-déphaseurs 50. En faisant fonctionner les deux demi-déphaseurs 50 indépendamment l'un de l'autre, on peut obtenir deux fois plus d'états, c'est-à-dire de déphasages, que dans le cas d'un seul demi-déphaseur. Il faut néanmoins pour cela prévoir une isolation électrique entre les deux demi-déphaseurs. Ces deux derniers étant par exemple juxtaposés, les conducteurs de commande 44, 45 sont isolés par exemple par une ligne 47 de diélectrique, correspondant en fait à une ligne de coupure dans la métallisation des conducteurs 44, 45. Cette première isolation permet en fait une isolation des commandes électriques des diodes.
  • La figure 6 présente un schéma équivalent de l'ensemble du déphaseur constitué des deux demi-déphaseurs tels que précédemment décrits. On peut considérer que les schémas équivalents des deux demi-déphaseurs 50 tels que présentés par la figure 5 fonctionne en parallèle. En effet, les liaisons capacitives entre les conducteurs de commande 44 des diodes D1 et entre les conducteurs de commande 45 des diodes D2 peuvent être assimilées à des courts-circuits hyperfréquence. On peut jouer sur la longueur et la largeur de la ligne d'isolation 47 pour obtenir une valeur de capacité entre les conducteurs qui permette d'assimiler la liaison capacitive à un court-circuit. Pour des circuits en parallèle, les susceptances s'ajoutent. Dès lors, aux quatre valeurs de susceptances BD1, BD2, BD3, BD4 obtenue par l'influence d'un demi-déphaseur, on obtient donc quatre nouvelle valeurs B'D1, B'D2, B'D3, B'D4 obtenues par l'influence du deuxième déphaseur.
  • Les paramètres géométriques et électriques du déphaseur sont par exemple définis pour obtenir huit déphasages équirépartis entre 0° et 360°.
  • Les paramètres géométriques qui concernent notamment les dimensions, les formes et les espacements des différentes surfaces conductrices 44, 45, 33 jouent sur les valeurs des capacités et inductances du schéma équivalent des figures 5 et 6, reprises dans les relations (1) et (2). En fonction des déphasages souhaités, on définit des valeurs de susceptance BC et donc des valeurs de susceptance BD selon les relations (3) et (4), la distance d étant connue. Les valeurs des susceptances BD étant imposées, on en déduit alors les valeurs des paramètres des relations (1) et (2). Les paramètres géométriques et électriques du déphaseur peuvent ensuite être obtenus par des moyens de simulation classique. La figure 4 montre que les surfaces conductrices 44, 45, 43 ont des formes particulières. Les conducteurs de commande 44, 45 présentent notamment des surfaces crénelées. Ces surfaces correspondent à des valeurs de déphasages préalablement définis.
  • Un déphaseur tel qu'illustré par la figure 4 est simple à mettre en oeuvre, il permet en effet d'obtenir huit déphasages en jouant simplement sur des paramètres géométriques de conducteurs et sur le choix de diodes. Le circuit imprimé supportant les circuits hyperfréquence et les circuits électroniques de commande est par ailleurs peu épais. Un tel circuit peut être obtenu de façon économique et le réflecteur peut donc être extrêmement plat, et donc de faible poids.
  • Comme il a été indiqué précédemment, un réflecteur actif selon l'invention comporte des moyens de découplage 20 entre les cellules 10. L'onde hyperfréquence reçue par les cellules est polarisée linéairement, parallèlement à la direction Oy. II est souhaitable que cette onde ne se propage pas d'une cellule à l'autre, dans la direction Ox. Pour éviter une telle propagation les moyens de découplage comportent au moins la zone conductrice 48. On prévoit donc de disposer cette zone conductrice 48 sensiblement en forme de bande, réalisée par dépôt métallique sur la surface 34 par exemple, entre les cellules, parallèlement à la direction Oy. Cette bande 48 forme, avec le plan réflecteur 32 qui est en dessous, un espace du type guide d'onde dont la largeur est la distance d. On choisit la distance d pour qu'elle soit inférieure à λ/2, λ étant la longueur de l'onde hyperfréquence, sachant qu'une onde dont la polarisation est parallèle aux bandes ne peut pas se propager dans un tel espace. En pratique, le réflecteur selon l'invention fonctionne dans une certaine bande de fréquences et on choisit d pour qu'elle soit inférieure à la plus petite des longueurs d'onde de la bande. Bien entendu, il est nécessaire de tenir compte de cette contrainte lors de la détermination des différents paramètres pour la fixation des déphasages dϕ1, ... dϕ8. En outre, la bande 48 doit avoir une largeur, selon la direction Ox, suffisante pour que l'effet décrit précédemment soit sensible. En pratique, la largeur peut être de l'ordre de λ/5.
  • Par ailleurs, il peut être créé de façon parasite dans une cellule, une onde dont la polarisation serait dirigée selon la direction Oz, perpendiculaire au plan formé par les directions Ox et Oy. II est également souhaitable d'éviter sa propagation vers les cellules voisines.
  • Pour ce qui est des cellules voisines dans la direction Ox, on peut utiliser comme représenté sur la figure 4 les trous métallisés 46 de connexion des conducteurs de commande aux circuits électroniques. En effet, ceux-ci étant parallèles à la polarisation de l'onde parasite, ils sont équivalents à un plan conducteur formant blindage s'ils sont suffisamment rapprochés (à une distance l'un de l'autre très inférieure à la longueur d'onde de fonctionnement du réflecteur), donc nombreux, pour les longueurs d'onde de fonctionnement du réflecteur. Si cette condition n'est pas remplie, on peut former des trous métallisés supplémentaires, n'ayant pas de fonction de connexion. Il est à noter que les trous métallisés de connexion 46 sont de préférence réalisés au niveau des bandes 48 afin de ne pas perturber le fonctionnement des cellules. Cette disposition apporte par ailleurs un gain d'encombrement.
  • Enfin, pour ce qui est des cellules voisines dans la direction Oy, on peut utiliser des trous métallisés 40 analogues aux trous de connexion 46 mais alignés selon la direction Ox débouchant dans la bande conductrice 49. Ces trous métallisés 40 comme les trous métallisés de connexion 46 sont réalisés selon une direction Oz sensiblement perpendiculaire au plan Oxy. On peut encore prévoir par exemple une surface conductrice continue dans le plan xOz.
  • La figure 7 illustre un déphaseur selon l'invention permettant de commander les déphasages sur 4 bits, donc sur un bit supplémentaire par rapport au déphaseur illustré par la figure 4. Le déphaseur comporte toujours deux demi-déphaseurs 50 réalisés comme décrit précédemment. Cependant, les deux demi-déphaseurs ne sont plus séparés par une ligne 47 isolant les commandes des diodes, mais par deux zones conductrices 71, 72 reliée par une diode D3, ou tous autres semi-conducteurs à deux états. Ces deux zones 71, 72 sont par exemple réalisées par dépôt métallique sur la face avant 34 du diélectrique. Ces zones forment des conducteurs de commande de la diode D3. A cet effet, une zone conductrice 71 est par exemple reliée aux circuits électroniques de commande par un trou métallisé 46. Selon l'état de la commande électronique, cette zone 71 se trouve à un potentiel d'alimentation, par exemple -15 volts ou à un autre potentiel, par exemple le potentiel de masse. L'autre zone conductrice 72 est par exemple reliée au potentiel de masse. A cet effet, elle est par exemple reliée à la bande conductrice 48 parallèle à la direction Oy des moyens de découplage 20.
  • Lorsque la zone conductrice 71 est commandée pour être au potentiel de masse, ou plus généralement pour rendre la diode D3 bloquée, c'est-à-dire en polarisation inverse, le déphaseur est analogue à celui de la figure 4, il présente dans cet état huit déphasages possibles. II est bien sûr nécessaire de redéfinir ses paramètres géométriques et électriques en raison de l'introduction des zones supplémentaires 71, 72. Lorsque la zone conductrice 71 présente un potentiel qui rend la diode D3 passante, c'est-à-dire en polarisation directe, les paramètres électriques du déphaseur se trouvent modifiées par rapport à l'état précédent. En particulier, la capacité formée de l'espace entre les deux zones conductrices 71, 72 devient court-circuitée par les diodes D3. Les huit susceptances possibles de l'état précédent, commandées sur trois bits, sont alors modifiées par la mise en conduction de la diode D3. Les huit nouvelles susceptances ainsi obtenues permettent d'obtenir huit déphasages supplémentaires. Au total seize déphasages sont donc possibles. Les caractéristiques géométriques et électriques des deux demi-déphaseurs 50 mais aussi des zones conductrices supplémentaires 71, 72 et de leur diode D3 doivent être définis de façon à obtenir les seize déphasages souhaités pour chacun des états des diodes.
  • La figure 8 illustre une variante de réalisation possible d'un réflecteur selon l'invention, les cellules élémentaires 10 étant par exemple du type de celle présentée par les figures 4 ou 7. Dans ce mode de réalisation, une grille métallique est placée sur la face avant du réflecteur, c'est-à-dire la face qui est en regard de la source hyperfréquence 1. Cette grille est formée de mailles 81 ayant chacune la surface d'une cellule élémentaire, plus particulièrement la base d'une maille entoure une cellule. La grille a par ailleurs une épaisseur eG.
  • Pour illustrer la disposition de cette grille par rapport aux cellules élémentaires 10 du réflecteur, la figure 8 présente en perspective une seule cellule élémentaire. La grille est formée de mailles dont les parois 82 s'étendent dans la direction Oz, sensiblement en vis-à-vis des bandes conductrices 48, 49 des moyens de découplage 20. En particulier la base de la grille est en contact avec ces bandes 48, 49 et notamment avec les trous métallisés 40, 46 qu'elles comportent. L'épaisseur eG de la grille, qui correspond en fait à la longueur des parois 82 est par exemple de l'ordre du centimètre, de préférence de l'ordre du demi-centimètre. La relative faible épaisseur de la grille permet donc de conserver un réflecteur très plat, et donc de faible poids.
  • Cette grille métallique permet de découpler la fonction de déphasage de la fonction de rayonnement, et permet de maîtriser les coefficients de couplage actifs en les rendant indépendants de la loi de pointage de l'antenne et ainsi permet d'annuler les lobes de rayonnement parasite tels que le lobe image et les lobes de magicité.
  • Par ailleurs, la grille métallique, qui est notamment au contact des trous métallisés, permet un meilleur échange thermique entre les circuits du réflecteur et l'extérieur grâce à une plus grande surface d'échange. La fiabilité du réflecteur est donc augmentée.
  • Un réseau réflecteur actif selon l'invention peut être utilisé pour de nombreux types d'antennes. Il peut notamment être utilisé pour des antennes de communication spatiales grâce à son faible poids ou encore être utilisé pour des antennes de radar météorologiques grâce à son faible coût. Enfin, il peut être utilisé pour tous types d'antennes à réflecteur d'applications nécessitant une bonne précision de pointage et un faible niveau de lobes secondaires.

Claims (10)

  1. Réflecteur hyperfréquence actif, susceptible de recevoir une onde électromagnétique (3) polarisée linéairement selon une première direction donnée (Oy), comportant un ensemble de cellules élémentaires (10) disposées l'une à côté de l'autre sur une surface,
    chaque cellule comportant un circuit hyperfréquence déphaseur (31) et un plan conducteur (32) disposé sensiblement parallèle au circuit hyperfréquence, caractérisé en ce que le circuit déphaseur (31) comporte au moins deux demi-déphaseurs (50)
    un demi-déphaseur (50) comportant au moins un support diélectrique (33), au moins deux fils électriquement conducteurs (42) sensiblement parallèles à la direction donnée (Oy), disposés sur le support et portant au moins chacun un élément semi-conducteur à deux états (D1, D2), chaque fil étant connecté à des conducteurs de commande (43, 44, 45) des éléments semi-conducteurs, ces conducteurs étant sensiblement normaux aux fils, et deux zones conductrices (49) disposées vers la périphérie de la cellule, sensiblement parallèlement aux conducteurs de commande,
    les conducteurs de commande étant isolés électriquement d'un demi-déphaseur à l'autre pour commander l'état de tous les éléments semi-conducteurs indépendamment l'un de l'autre,
    les formes et les espacements des surfaces des conducteurs de commande (43, 44, 45), et les caractéristiques électriques des semi-conducteurs étant telles qu'à chacun des états des éléments semi-conducteurs correspond une valeur de déphasage donnée (dϕ1, ...dϕ8) de l'onde électromagnétique qui est réfléchie par la cellule,
    le réflecteur comportant une grille métallique formée de mailles (81) dont les parois (82) s'étendent dans la direction (Oz) perpendiculaire au plan du réflecteur, la base d'une maille entourant une cellule (10).
  2. Réflecteur selon la revendication 1, caractérisé en ce qu'une bande conductrice (48) disposée entre chaque cellule, parallèlement à la direction donnée (Oy), formant avec le plan conducteur un espace guidé où l'onde ne peut pas se propager, la base de la grille étant en contact avec cette bande (48).
  3. Réflecteur selon l'une quelconque des revendications précédentes, caractérisé en ce que les deux déphaseurs sont séparés par deux zones conductrices (71, 72) reliées par un élément semi-conducteur à deux états (D3), au moins une des zones (71) étant reliée à un circuit de commande électronique (36) pour commander l'état du semi-conducteur, les caractéristiques géométriques et électriques des demi-déphaseurs et des zones conductrices (71, 72) et de leurs éléments semi-conducteurs étant telles qu'à chacun des états des éléments semi-conducteurs correspond une valeur de déphasage donnée (dϕ1, ...dϕ16) de l'onde électromagnétique qui est réfléchie par la cellule.
  4. Réflecteur selon l'une quelconque des revendications précédentes, caractérisé en ce que le support diélectrique (33) est du type circuit imprimé multicouche dont une première face (34) porte le circuit hyperfréquence, une première couche intermédiaire porte le plan conducteur (32) et la deuxième face (35) porte des composants du circuit de commande.
  5. Réflecteur selon la revendication 4, caractérisé en ce que le support diélectrique (33) comporte en outre au moins une deuxième couche intermédiaire (37) portant des interconnexions du circuit de commande.
  6. Réflecteur selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte des trous métallisés (40, 46) réalisés dans le support diélectrique (33), dans la direction (Oz) perpendiculaire au plan (Oxy) du réflecteur, à une distance l'un de l'autre très inférieure à la longueur d'onde électromagnétique, certains au moins de ces trous métallisés assurant la liaison entre le circuit de commande et les conducteurs de commande.
  7. Réflecteur selon la revendication 6, caractérisé en ce que les trous métallisés (40, 46) débouchent sur les bandes conductrices (48, 49) disposées à la périphérie d'une cellule.
  8. Réflecteur selon l'une quelconque des revendications précédentes, caractérisé en ce que les éléments semi-conducteurs sont des diodes.
  9. Réflecteur selon l'une quelconque des revendications précédentes, caractérisé en ce les conducteurs de commande sont au moins au nombre de trois dans chaque demi-déphaseur.
  10. Antenne hyperfréquence à balayage électronique, caractérisée en ce qu'elle comporte un réflecteur (4) selon l'une quelconque des revendications précédentes et une source d'onde hyperfréquence (1) illuminant le réflecteur.
EP00988873A 1999-11-26 2000-11-24 Reflecteur hyperfrequence actif a balayage electronique Expired - Lifetime EP1234356B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9914933A FR2801729B1 (fr) 1999-11-26 1999-11-26 Reflecteur hyperfrequence actif a balayage electronique
FR9914933 1999-11-26
PCT/FR2000/003286 WO2001039325A1 (fr) 1999-11-26 2000-11-24 Reflecteur hyperfrequence actif a balayage electronique

Publications (2)

Publication Number Publication Date
EP1234356A1 EP1234356A1 (fr) 2002-08-28
EP1234356B1 true EP1234356B1 (fr) 2007-01-24

Family

ID=9552596

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00988873A Expired - Lifetime EP1234356B1 (fr) 1999-11-26 2000-11-24 Reflecteur hyperfrequence actif a balayage electronique

Country Status (8)

Country Link
US (1) US6670928B1 (fr)
EP (1) EP1234356B1 (fr)
JP (1) JP2004508738A (fr)
AT (1) ATE352883T1 (fr)
AU (1) AU2522501A (fr)
DE (1) DE60033173T2 (fr)
FR (1) FR2801729B1 (fr)
WO (1) WO2001039325A1 (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2812457B1 (fr) * 2000-07-28 2004-05-28 Thomson Csf Reflecteur hyperfrequence actif a bi-polarisation, notamment pour antenne a balalyage electronique
US7084716B2 (en) * 2001-04-10 2006-08-01 Picosecond Pulse Labs Ultrafast sampler with coaxial transition
US6900710B2 (en) * 2001-04-10 2005-05-31 Picosecond Pulse Labs Ultrafast sampler with non-parallel shockline
FR2834131B1 (fr) * 2001-12-21 2005-06-17 Thales Sa Panneau dephaseur monolithique a diodes pin en silicium polycristallin et antenne utilisant ce panneau dephaseur
US7358834B1 (en) * 2002-08-29 2008-04-15 Picosecond Pulse Labs Transmission line voltage controlled nonlinear signal processors
FR2847718B1 (fr) * 2002-11-22 2005-08-05 Thales Sa Diodes pin en materiaux polycristallins a heterostructures, panneau dephaseur et antenne comportant les diodes pin
FR2879359B1 (fr) * 2004-12-15 2007-02-09 Thales Sa Antenne a balayage electronique large bande
US7106265B2 (en) * 2004-12-20 2006-09-12 Raytheon Company Transverse device array radiator ESA
US7612629B2 (en) * 2006-05-26 2009-11-03 Picosecond Pulse Labs Biased nonlinear transmission line comb generators
US7345610B2 (en) * 2006-06-12 2008-03-18 Wisconsin Alumni Research Foundation High speed digital-to-analog converter
FR2907262B1 (fr) * 2006-10-13 2009-10-16 Thales Sa Cellule dephaseuse a dephaseur analogique pour antenne de type"reflectarray".
US8044866B2 (en) * 2007-11-06 2011-10-25 The Boeing Company Optically reconfigurable radio frequency antennas
JP4990310B2 (ja) * 2009-02-27 2012-08-01 日本放送協会 アンテナ装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2395620A1 (fr) * 1977-06-24 1979-01-19 Radant Etudes Perfectionnement au procede de balayage electronique utilisant des panneaux dielectriques dephaseurs
FR2412960A1 (fr) * 1977-12-20 1979-07-20 Radant Etudes Dephaseur hyperfrequence et son application au balayage electronique
FR2448231A1 (fr) * 1979-02-05 1980-08-29 Radant Et Filtre spatial adaptatif hyperfrequence
JP2692261B2 (ja) * 1989-05-12 1997-12-17 日本電気株式会社 アンテナ装置
FR2656468B1 (fr) * 1989-12-26 1993-12-24 Thomson Csf Radant Source de rayonnement microonde magique et son application a une antenne a balayage electronique.
FR2747842B1 (fr) * 1990-06-15 1998-09-11 Thomson Csf Radant Lentille hyperfrequence multibande et son application a une antenne a balayage electronique
FR2725077B1 (fr) * 1990-11-06 1997-03-28 Thomson Csf Radant Lentille hyperfrequence bipolarisation et son application a une antenne a balayage electronique
FR2708808B1 (fr) * 1993-08-06 1995-09-01 Thomson Csf Radant Panneau déphaseur à quatre états de phase et son application à une lentille hyperfréquence et à une antenne à balayage électronique.
FR2786610B1 (fr) * 1997-02-03 2001-04-27 Thomson Csf Reflecteur hyperfrequence actif pour antenne a balayage electronique
US6091371A (en) * 1997-10-03 2000-07-18 Motorola, Inc. Electronic scanning reflector antenna and method for using same

Also Published As

Publication number Publication date
FR2801729A1 (fr) 2001-06-01
US6670928B1 (en) 2003-12-30
ATE352883T1 (de) 2007-02-15
JP2004508738A (ja) 2004-03-18
WO2001039325A1 (fr) 2001-05-31
DE60033173D1 (de) 2007-03-15
FR2801729B1 (fr) 2007-02-09
AU2522501A (en) 2001-06-04
EP1234356A1 (fr) 2002-08-28
DE60033173T2 (de) 2007-11-08

Similar Documents

Publication Publication Date Title
EP0237429B1 (fr) Réseau réflecteur à contrôle de phases, et antenne comportant un tel réseau
EP0013222B1 (fr) Déphaseur hyperfréquence à diodes et antenne à balayage électronique comportant un tel déphaseur
EP1580844B1 (fr) Cellule déphaseuse à polarisation linéaire et à longueur résonante variable au moyen de commutateurs mems
EP0123350B1 (fr) Antenne plane hyperfréquences à réseau de lignes microruban complètement suspendues
EP1234356B1 (fr) Reflecteur hyperfrequence actif a balayage electronique
EP2710676B1 (fr) Element rayonnant pour antenne reseau active constituee de tuiles elementaires
WO2008065311A2 (fr) Antenne multi secteurs
EP1519444A1 (fr) Antenne réseau réflecteur reconfigurable à faibles pertes
FR2725077A1 (fr) Lentille hyperfrequence bipolarisation et son application a une antenne a balayage electronique
EP2079131A1 (fr) Perfectionnement aux antennes planaires comportant au moins un élément rayonnant de type fente à rayonnnement longitudinal
EP1305846B1 (fr) Reflecteur hyperfrequence actif a bipolarisation, notamment pour antenne a balayage electronique
EP1139484B1 (fr) Déphaseur hyperfréquence, et antenne à balayage électronique comportant de tels déphaseurs
EP1157444B1 (fr) Antenne a balayage electronique bi-bande, a reflecteur hyperfrequence actif
EP2432072B1 (fr) Symétriseur large bande sur circuit multicouche pour antenne réseau
WO1991018428A1 (fr) Antenne orientable plane, fonctionnant en micro-ondes
FR2786610A1 (fr) Reflecteur hyperfrequence actif pour antenne a balayage electronique
EP1133000B1 (fr) Réflecteur hyperfréquence actif pour antenne à balayage électronique
EP3900113A1 (fr) Antenne microruban élémentaire et antenne réseau
FR2858469A1 (fr) Antenne a cavite resonante, reconfigurable
FR2907262A1 (fr) Cellule dephaseuse a dephaseur analogique pour antenne de type"reflectarray".
EP0156684A1 (fr) Elément rayonnant des ondes électromagnétiques, et son application à une antenne à balayage électronique
FR2815479A1 (fr) Reflecteur hyperfrequence actif a deux polarisations independantes, notamment pour antenne a balayage electronique
FR2973587A1 (fr) Antenne reseau directive large bande, du type a circuit imprime
FR2814594A1 (fr) Reseau reflecteur a capacites de decouplage integrees

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020603

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 20021218

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 60033173

Country of ref document: DE

Date of ref document: 20070315

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070505

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070625

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20071025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070425

BERE Be: lapsed

Owner name: THALES

Effective date: 20071130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20080930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20151118

Year of fee payment: 16

Ref country code: DE

Payment date: 20151118

Year of fee payment: 16

Ref country code: IT

Payment date: 20151124

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20151111

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60033173

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170601

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161124