EP1139484B1 - Déphaseur hyperfréquence, et antenne à balayage électronique comportant de tels déphaseurs - Google Patents
Déphaseur hyperfréquence, et antenne à balayage électronique comportant de tels déphaseurs Download PDFInfo
- Publication number
- EP1139484B1 EP1139484B1 EP01400769A EP01400769A EP1139484B1 EP 1139484 B1 EP1139484 B1 EP 1139484B1 EP 01400769 A EP01400769 A EP 01400769A EP 01400769 A EP01400769 A EP 01400769A EP 1139484 B1 EP1139484 B1 EP 1139484B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- phase
- phase shifters
- shifters
- microwave
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/18—Phase-shifters
- H01P1/185—Phase-shifters using a diode or a gas filled discharge tube
Definitions
- the present invention relates to a phase shifter. It applies in particular for an electronic scanning antenna.
- the invention also applies in particular for low cost electronic scanning antennas, used both in the radar field, such as for example the management of air traffic at airports, and in the field of telecommunications, for example civil ones.
- Passive electronic scanning antennas use phase shifters to ensure the mobility of their beam. These phase shifters can act directly on the radiated wave constituting what is known as a microwave lens. These phase shifters can still act within an energy distribution device. The amplification of the wave to be transmitted is centralized then the wave thus amplified is distributed to the phase shifters.
- An antenna "a plane" comprises a linear array of radiating sources each in series with a phase shifter. The direction of the beam is then electronically controlled in a single plane, comprising the radiating sources and the direction of radiation.
- each phase shifter is controlled so as to create a wave plane perpendicular to the radiation direction ⁇ .
- Phase shifters are basic components that typically combine heterogeneous technologies to achieve microwave and control functions.
- the microwave functions are in particular provided by waveguides or ceramic substrates.
- the control functions are in particular ensured by logic circuits and power circuits. These different functions are dissociated and require interconnections. Controlling a group of phase shifters also requires interconnections. This results in a high cost of producing these phase shifters and therefore scanning antennas which includes them, and all the more so as the number of phase shifters is important.
- a document US-A-4,568,893 describes a microwave phase shifter using a waveguide coupler coupled to phase shift cells.
- the subject of the invention is a microwave phase shifter, comprising at least one waveguide coupler 3db and a pair of phase shift cells, the incident wave E entering a first input of the coupler to be divided into two waves E1, E2, these two waves each reflecting on one of the pair of elementary cells with identical phases and recomposing into a phase-shifted resulting wave output from the coupler juxtaposed to the first input.
- an elementary phase-shifting cell comprises a phase shift circuit in front of a conductive plane whose function is to reflect the incident wave and disposed substantially parallel to the phase-shift circuit, the phase-shifting circuit comprising at least two half-waves. phase-shifters, the incident waves E1, E2 being linearly polarized in a first given direction Oy.
- a half-phase-shifter comprises at least one dielectric support, at least two electrically conductive wires substantially parallel to the given direction Oy, arranged on the support and carrying the each minus a two-state semiconductor element D1, D2, each wire being connected to control conductors of the semiconductor elements, these conductors being substantially normal to the wires, and two conductive zones disposed towards the periphery of the cell, substantially parallel to the control conductors.
- the control conductors are at least three in each half-phase-shifter and are electrically isolated from one half-phase-shifter to the other to control the state of all the semiconductor elements independently of each other .
- the geometric and electrical characteristics of the half-phase-shifters being such that at each of the states of the semiconductor elements corresponds a given phase-shift value (d ⁇ 1 , ... d ⁇ 8 ) of the electromagnetic wave which is reflected by the cell, the state of the semiconductor elements being controlled by an electronic circuit.
- the dielectric support may advantageously carry the electronic control circuit semiconductors and their interconnections, these semiconductors being for example diodes.
- the invention also relates to a microwave antenna with electronic scanning comprising phase shifters as defined above.
- the phase shifters are distributed in at least one block, a block comprising a set of pairs of phase shift cells made on the same part and a set of couplers forming a single piece.
- This allows collective tests of phase shifters. In case of failure of a phase shift block, it can easily be replaced by another.
- the test and maintenance of the antenna are thus particularly simplified, and increased reliability.
- the figure 1 illustrates with a synoptic an electronic scanning antenna "a plane".
- This antenna comprises a linear network of phase shifters where the microwave wave is amplified by a centralized transmitter.
- the network includes associated radiating sources 1 each phase shifter 23.
- Each phase shifter 23 is for example supplied by distribution means, that is to say it receives the microwave provided by these distribution means 4 from the microwave provided 5 by the issuer. On reception, the received wave is transmitted to the reception circuits by the distribution means 4.
- Each phase-shifter is controlled so as to create a wave plane 6 perpendicular to the radiation direction ⁇ , this angle defining the direction of rotation. pointing the antenna beam in the plane of the radiating sources 1.
- FIGS. 2a and 2b illustrate a possible embodiment of an antenna according to the invention. More particularly, these figures illustrate the production of phase shifters 23 according to the invention. In this embodiment, the cost is reduced and the implementation of phase shifters, and more generally of the antenna, is considerably simplified.
- a support or multilayer printed circuit 21 forming a phase shift device, represented in a plane Oxy, is for example associated with a coupling device 22 waveguide. This makes it possible in particular to perform and test the phase shifters collectively, thus greatly reducing the cost and facilitating their integration into the antenna.
- the figure 2b illustrates part 23 of the figure 2a , this part actually representing an elementary phase shifter according to the invention.
- the figure 2b illustrates in particular a waveguide coupler 3db 24 associated with a pair of phase shift cells 25, 26.
- the elementary phase shifter 23 is thus produced by associating the coupler 3dB 24 with a pair of cells 25, 26 of the phase-shifter 21 functioning in reflection.
- the incident wave E passing through a first input 27 of the coupler 24, is divided into two incident waves E1, E2 to the two phase shift cells 25, 26. These two cells reflect the incident waves with identical phase shifts.
- the reflected waves enter the coupler to recompose with each other and the resulting wave S out of phase with respect to E is found on the output 28 of the coupler, juxtaposed with the first input 27.
- the phase shift device consisting of the two cells 25, 26, is equivalent to two variable shorts electrically controlled. This device is made for example on the support 21 comprising semiconductors in look at the coupler to ensure the phase shift.
- the control circuits 29 of these semiconductors are for example implanted on the same support, on its face opposite the semiconductors, the multilayer support then ensuring the interconnections between the control circuits and the semiconductors. These are for example diodes.
- the incident microwave frequency E entering the coupler is for example derived from the distribution circuit 4.
- the figure 2a shows an example of phase shift device 21 where the pairs of elementary cells 25, 26 are formed on the same part, for example of the printed circuit type.
- the couplers 24 associated with each of these pairs can form a single piece 22 as illustrated by this same figure 2a .
- This piece 22 is then attached to the phase shifter 21.
- the guides constituting the couplers are for example machined in the same metal part.
- the implementation of the couplers, individual or collective may include using molding techniques, injection or metallization of a plastic part that can reduce costs.
- the figure 3a schematically shows a portion of the phase shifter shown in the Oxy plane, in a view from above, according to F.
- This phase shifter comprises an alignment of pairs of phase shift cells 25, 26 forming a linear array of phase shift cell pairs. It should be noted that other forms of alignment are feasible, in particular on a circle to form a cylindrical antenna, as will be shown by Figures 7 and 8 thereafter.
- a pair forms an elementary phase shifter 23 as described with respect to the figure 1 .
- the phase shift cells 25, 26 are separated by zones 20, used in particular for the microwave decoupling of these cells. These last realize the reflection and the phase shift of the waves which they receive.
- An elementary cell 25, 26 comprises a phase-shifting microwave circuit disposed in front of a conductive plane.
- the figure 3b is a schematic sectional view in the plane Oxz of an exemplary possible embodiment of the phase shift device.
- the device phase shift consists of a microwave circuit 31 distributed in the elementary cells 25, 26 and a conductive plane 32, disposed substantially parallel to the microwave circuit 31, at a distance d predefined. This microwave circuit receives the incident waves E1 and E2 coming from the coupler 24.
- the conductive plane 32 has the particular function of reflecting the microwave waves. It can be constituted by any known means, for example parallel wires or wire mesh, sufficiently tight, or a continuous plane.
- the microwave circuit 31 and the conductive plane 32 are preferably made on two sides of a dielectric support 33, for example of the printed circuit type.
- the assembly 21 also comprises, preferably on the same printed circuit 33, which is then a multilayer circuit, the electronic circuit necessary for the control of the phase values.
- the figure 4 illustrates an elementary phase-shift circuit 10 included in the microwave circuit 31.
- Each phase-shift circuit is separated from another by a decoupling zone 20 comprising for example a conductive strip 48 parallel to the direction Oy and a conductive strip 49 parallel to the direction Ox. It therefore comprises for example at its periphery two conductive strips 48 in the direction Oy and two conductive strips in the direction Ox.
- Each phase shift circuit associated with the corresponding portion of the conductive plane 32 forms a phase shift cell 25, 26.
- a phase shift circuit 10 comprises a plurality of conductive wires 42 substantially parallel to the direction Oy and each carrying a semiconductor element D1, D2 with two states, for example a diode.
- the phase shift circuit also comprises conductive zones connecting the diodes to reference potentials and control circuits. More particularly, a phase shift circuit consists of two circuits 50 subsequently called half-phase-shifter. We first describe a half-phase shifter.
- a half-phase-shifter 50 comprises a dielectric support 33, two wires 42 each carrying a diode D1, D2.
- the two wires are connected to the ground potential, or to any other reference potential, via a conductive line 43.
- This line 43 is for example of the microstrip type made by metal deposition on the front face of the dielectric support 33 for example by a screen printing technique.
- the diodes D1 and D2 are thus wired in opposition so that, for example, their anodes are connected to the ground potential via this line 43.
- the latter is for example connected to a conductive strip 48 of the decoupling means 20.
- Diode supply voltage D1 and D2 is supplied by control conductors 44.
- the anode of the diodes being connected to the ground potential, the control conductors are then connected to the cathode of the diodes.
- the supply voltage supplied by these conductors is for example of the order of -15 volts.
- the control leads are controlled to have at least two voltage states. In a first state, their voltage is for example at the supply voltage, which makes the diode pass, or in other words polarized live. In a second state, their voltage is such that the diode is blocked, or in other words polarized in reverse.
- the controls of the two control conductors 44, 45 are independent of one another so as to control the diodes independently of one another.
- control conductors 44, 45 and the connected ground conductor 43 are substantially parallel to the direction Ox and therefore perpendicular to the wires 42.
- the ground conductor 43 is common to the two son especially for space and material gains, it could however provide a specific driver for each wire. It could also be expected to connect not directly these conductors directly to a reference potential but through a control circuit.
- the control conductors 44, 45 are connected to the electronic control circuit carried by the reflector, via metallized holes 46 made for example at the decoupling zone 20, in particular for reasons of space, but also for do not disturb the functioning of the elementary cells.
- Metallic holes 46 are of course electrically isolated from the conductive strips of the decoupling zone. For this purpose, there is provided an interruption of the strip 20 around the ends of the control conductors directly connected to the metallized holes 46.
- a half-phase-shifter 50 may have four different values for its susceptance B D , these values being denoted B D1 , B D2 , B D3 and B D4 , according to the command (direct or inverse bias) applied to each of the diodes D1, D2.
- the susceptance values B D1 , B D2 , B D3 and B D4 are a function of the parameters of the circuit, that is to say the values chosen for the geometrical parameters, in particular as regards the dimensions, shapes and spacings of the different conductive surfaces 43, 44, 45, and electrical phase shifter, particularly with regard to the electrical characteristics of the diodes.
- B CC - cotg ⁇ 2 ⁇ ⁇ d ⁇ where ⁇ is the wavelength corresponding to the preceding puls pulse.
- the susceptance B C can take four distinct values (denoted B C1 , B C2 , B C3 , and B C4 ) respectively corresponding to the four values of B D , the distance d representing an additional parameter for the determination of the values B C1 - B C4 .
- null susceptances or substantially zero
- the parameters of the circuit are described above so that the null susceptances (or substantially zero) are such that they correspond to the diodes polarized in the forward direction, but that can of course choose a symmetrical operation; more generally, it is not necessary for one of the susceptances B d or B r to be zero, these values being determined so that the equidistribution condition of the phase shifts d ⁇ 1 -d ⁇ 4 is fulfilled.
- phase shifter The geometric and electrical parameters of the phase shifter are for example defined to obtain eight phase shifts equidistant between 0 ° and 360 °.
- phase-shifter Depending on the desired phase shifts are defined susceptance B values of C and hence susceptance B D values according to the equations (1) and (2), distance d being known.
- the geometric and electrical parameters of the phase-shifter can then be obtained by conventional simulation means.
- a phase shift circuit as illustrated by the figure 4 is simple to implement, it makes it possible to obtain eight phase shifts by simply playing on geometric parameters of conductors and on the choice of diodes.
- the phase shifter 21 which comprises an array of phase shift cell pairs can therefore be obtained economically.
- the printed circuit supporting the microwave circuits and the electronic control circuits is also thin.
- the phase shifter comprises decoupling means 20 between the cells 25, 26.
- the microwave wave E received by the cells is polarized linearly, parallel to the direction Oy. It is desirable that this wave be does not propagate from one cell to another, in the Ox direction.
- the decoupling means comprise at least the conductive zone 48. It is therefore expected to provide this substantially strip-shaped conductive zone 48, made by metal deposition on the surface 34, for example, between the cells, parallel to the direction Oy. This strip 48 forms, with the reflective plane 32 which is below, a waveguide-like space whose width is the distance d.
- the distance d is chosen to be less than ⁇ / 2, ⁇ being the length of the microwave wave, knowing that a wave whose polarization is parallel to the bands can not propagate in such a space.
- the reflector according to the invention operates in a certain frequency band and d is chosen to be less than half the smallest of the wavelengths of the band.
- the band 48 must have a width, in the direction Ox, sufficient for the effect described above is sensitive. In practice, the width may be of the order of ⁇ / 5.
- it may be parasitically created in a cell, a wave whose polarization is directed in the direction Oz, perpendicular to the plane formed by the directions Ox and Oy containing a phase shift circuit. It is also desirable to prevent its spread to neighboring cells.
- the metallized holes 46 for connecting the control conductors to the electronic circuits. Indeed, these being parallel to the polarization of the parasitic wave, they are equivalent to a shielding conductive plane if they are sufficiently close together (at a distance from each other much less than the length of the operating wave of the reflector), so many, for the operating wavelengths of the reflector. If this condition is not fulfilled, additional metallized holes can be formed, having no connection function. It should be noted that the metallized connection holes 46 are preferably made at the level of the strips 48 so as not to disturb the operation of the cells. This provision also provides a saving of space.
- metallized holes 40 similar to the connection holes 46 but aligned in the Ox direction opening into the conductive strip 49.
- These metallized holes 40 such as the metallized holes of FIG. connection 46 are made in a direction Oz substantially perpendicular to the plane Oxy. For example, it is still possible to provide a continuous conductive surface in the xOz plane.
- the figure 5 illustrates a phase shifter according to the invention for controlling the phase shifts on 4 bits, thus on an additional bit compared to the circuit illustrated by the figure 4 .
- the phase shifting circuit always comprises two half-phase shifters 50 made as previously described. However, the two half-phase-shifters are no longer separated by a line 47 isolating the controls of the diodes, but by two conductive zones 71, 72 connected by a diode D3, or any other semiconductor with two states. These two zones 71, 72 are for example made by metal deposition on the front face 34 of the dielectric. These zones form control conductors of the diode D3. For this purpose, a conductive zone 71 is for example connected to the electronic control circuits by a metallized hole 46.
- this zone 71 is at a supply potential, for example -15 volts or to another potential, for example the mass potential.
- the other conductive zone 72 is for example connected to the ground potential.
- it is for example connected to the conductive strip 48 parallel to the direction Oy of the decoupling means 20.
- the phase shift circuit is similar to that of the figure 4 , it presents in this state eight possible phase shifts. It is of course necessary to redefine its geometrical and electrical parameters because of the introduction of the additional zones 71, 72.
- the conductive zone 71 has a potential that makes the diode D3 conducting, that is to say in direct polarization , the electrical parameters of the phase shift circuit are modified compared to the previous state. In particular, the capacity formed of the space between the two conductive zones 71, 72 becomes short-circuited by the diodes D3.
- the eight susceptances possible of the previous state, controlled on three bits, are then modified by the conduction of the diode D3.
- the eight new susceptances thus obtained make it possible to obtain eight additional phase shifts.
- a total of sixteen phase shifts are possible.
- the geometric and electrical characteristics of the two half-phase-shifters 50 but also the additional conductive zones 71, 72 and their diode D3 must be defined so as to obtain the sixteen desired phase-shifts for each of the states of the diodes.
- phase shifter 21 shows examples of possible realization of the phase shifter 21, and more particularly the phase shift cells 25, 26.
- phase shift cells 25, 26 of the same pair, associated with a coupler 24, produce the same phase shift. They can, for example, be controlled by the same circuit.
- the figure 6 illustrates an exemplary embodiment of an antenna according to the invention comprising phase shifters as described above.
- the antenna comprises a linear array of phase shifters providing, for example, electronic scanning in azimuth, for example in the context of an air traffic surveillance application.
- This antenna comprises means 4 of energy distribution, and more particularly the microwave provided by a power transmitter. It comprises radiating elements 1.
- a phase shift block 81 itself composed of phase shifters according to the invention.
- This phase shift block is for example that illustrated by the figure 2a .
- the pairs of phase shift cells 25, 26 are made on the same dielectric support.
- the dielectric support 33 is then common to all the cells.
- the phase shift block therefore comprises a set of couplers 22 placed on a phase shift device 21 as illustrated by the Figures 3a, 3b to 5 .
- the phase shift block 81 consists for example of several assemblies conforming to the figure 2a arranged end to end.
- An assembly 21, 22 comprises several phase shifters, for example 16 as illustrated by this figure 2a .
- a phase shift block comprising 5 sets 21, 22 then has 80 phase shifters.
- the microwave links are such that the outputs of the distribution means 4 are connected to the inputs 27 of the couplers 24, which also form the inputs of the phase shifters. Similarly, the outputs of the latter, which are the outputs 28 of the couplers are connected to the radiating elements.
- Waveguides 82, 83 conduct the microwave from the transmitter to the distribution circuit 4, and similarly conduct the received wave to the receiving circuits.
- a first guide 82 corresponds, for example, to the sum path of the antenna pattern and a second guide 83 corresponds, for example, to the difference path, thus enabling deviation measurements.
- the radiating sources are arranged linearly, that is to say rectilinearly. It is possible to envisage examples of realization where the sources radiators, and also the phase shifters are not aligned rectilinearly. Other examples of embodiments are proposed to Figures 7 and 8 .
- the figure 7 shows, in a partial perspective view, an embodiment where the phase shift block 81 is cylindrical. It is then in particular composed of elementary phase shifters arranged side by side on a cylindrical surface, in particular the phase shifter 21 has in this case a cylindrical shape.
- the figure 8 shows, in a partial view, an embodiment where the phase shift block 81 is in the form of a ring.
- the elementary phase shifters are then arranged in a ring, the phase shifter having for example in this case a ring shape. They are in this figure seen from above, that is to say for example on the side of the input of the microwave wave.
- the transmitter which feeds the distribution circuits 4 may be tube or solid state. The technological choice may depend in particular on the powers involved.
- An antenna according to the invention produced for example according to the figure 6 , is economical and very compact. In particular, it is economical because of the considerable simplification of connections and the reduction in the number of construction and assembly operations. It is also economical because of the simplification of testing, debugging and maintenance. In particular, the phase shifters are tested collectively, hence saving time. In case of problems, replacing one phase-shifter with another is very easy. In particular, if a phase shifter of an assembly 21, 22 is faulty, it is very easy to replace the assembly comprising the faulty phase shifter by another set of phase shifters. The maintenance of the antenna is thus simplified.
- the invention is particularly well suited for an electronic scanning antenna "a plane". It can nevertheless be applied for a "two-plane" electronic scanning antenna.
- the support of the phase shifter 21 contains, for example, several rows of pairs of phase shift cells 25, 26 instead of just one, in particular to obtain a planar array of phase shifters.
- Other means of supplying the couplers 24 are possible.
- the power supply may be of the "Rattle Snake" type where the elementary phase shifters 23 are arranged on a snaked line. In this type of power supply, the electric field is perpendicular to the field by guide feed, that is to say parallel to the direction Ox of the figure 4 instead of the direction Oy.
- the power supply of the couplers 24 can also be done by active sources, the two field directions being possible.
- the antenna comprises active microwave sources, an active elementary source is for example associated with each coupler 24.
- phase shift device 21 of the printed circuit type can be replaced by ferrite circuits or any other type of phase shift circuit.
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Waveguide Switches, Polarizers, And Phase Shifters (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Description
- La présente invention concerne un déphaseur. Elle s'applique notamment pour une antenne à balayage électronique. L'invention s'applique aussi en particulier pour des antennes à balayage électroniques à faible coût, utilisées tant dans le domaine radar, tel que par exemple la gestion du trafic aérien des aéroports, que dans le domaine des télécommunications, par exemple civiles.
- Des antennes passives à balayage électronique utilisent des déphaseurs pour assurer la mobilité de leur faisceau. Ces déphaseurs peuvent agir directement sur l'onde rayonnée constituant ce qu'il est connu d'appeler une lentille hyperfréquence. Ces déphaseurs peuvent encore agir au sein d'un dispositif de répartition d'énergie. L'amplification de l'onde à émettre est centralisée puis l'onde ainsi amplifiée est répartie vers les déphaseurs. Il existe des antennes à balayage électronique « un plan » et des antennes à balayage électronique « deux plans ». Une antenne « un plan » comporte un réseau linéaire de sources rayonnantes chacune en série avec un déphaseur. La direction du faisceau est alors commandée électroniquement selon un seul plan, comportant les sources rayonnantes et la direction de rayonnement. Pour pointer un faisceau dans une direction donnée θ, chaque déphaseur est commandé de façon à créer un plan d'onde perpendiculaire à la direction de rayonnement θ. Pour obtenir un balayage « deux plans », il est nécessaire d'étendre le réseau linéaire de sources rayonnantes selon une deuxième direction.
- Les déphaseurs sont des composants élémentaires qui associent généralement des technologies hétérogènes pour réaliser les fonctions hyperfréquence et de commande. Les fonctions hyperfréquence sont notamment assurées par des guides d'onde ou des substrats céramiques. Les fonctions de commande sont notamment assurées par des circuits logiques et des circuits de puissance. Ces différentes fonctions sont dissociées et nécessitent des interconnexions. La commande d'un groupe de déphaseurs nécessite également des interconnexions. Il en résulte un coût élevé de réalisation de ces déphaseurs et donc des antennes à balayage électronique qui les comportent, et cela d'autant plus que le nombre de déphaseurs est important.
- Un document
US-A-4 568 893 décrit un déphaseur hyperfréquence utilisant un coupleur en guide d'onde couplé à des cellules de déphasage. - Un but de l'invention est notamment de permettre la réalisation d'une antenne à balayage électronique à faible coût. A cet effet, l'invention a pour objet un déphaseur hyperfréquence, comportant au moins un coupleur 3db en guide d'onde et une paire de cellules de déphasage, l'onde incidente E entrant dans une première entrée du coupleur pour se répartir en deux ondes E1, E2, ces deux ondes se réfléchissant chacune sur une de la paire de cellules élémentaire avec des phases identiques et se recomposant en une onde résultante déphasée sortant par la sortie du coupleur juxtaposée à la première entrée.
- Pour obtenir un déphaseur plus compact et économique une cellule élémentaire de déphasage comporte un circuit de déphasage devant un plan conducteur ayant pour fonction de réfléchir l'onde incidente et disposé sensiblement parallèle au circuit de déphasage, le circuit de déphasage comportant au moins deux demi-déphaseurs, les ondes incidentes E1, E2 étant polarisées linéairement selon une première direction donnée Oy. Un demi-déphaseur comporte au moins un support diélectrique, au moins deux fils électriquement conducteurs sensiblement parallèles à la direction donnée Oy, disposés sur le support et portant au moins chacun un élément semi-conducteur à deux états D1, D2, chaque fil étant connecté à des conducteurs de commande des éléments semi-conducteurs, ces conducteurs étant sensiblement normaux aux fils, et deux zones conductrices disposées vers la périphérie de la cellule, sensiblement parallèlement aux conducteurs de commande. Les conducteurs de commande sont au moins au nombre de trois dans chaque demi-déphaseur et sont isolés électriquement d'un demi-déphaseur à l'autre pour commander l'état de tous les éléments semi-conducteurs indépendamment l'un de l'autre. Les caractéristiques géométriques et électriques des demi-déphaseurs étant telles qu'à chacun des états des éléments semi-conducteurs correspond une valeur de déphasage donnée (dϕ1, ...dϕ8) de l'onde électromagnétique qui est réfléchie par la cellule, l'état des éléments semi-conducteurs étant commandé par un circuit électronique.
- Le support diélectrique peut avantageusement porter le circuit électronique de commande des semi-conducteurs et leurs interconnexions, ces semi-conducteurs étant par exemple des diodes.
- L'invention a également pour objet une antenne hyperfréquence à balayage électronique comportant des déphaseurs tels que définis précédemment.
- Avantageusement, les déphaseurs sont répartis en au moins un bloc, un bloc comportant un ensemble de paires de cellules de déphasage réalisées sur une même pièce et un ensemble de coupleurs formant une seule pièce. Cela permet notamment des tests collectifs des déphaseurs. En cas de défaillance d'un bloc de déphasage, ce dernier peut facilement être remplacé par un autre. Le test et la maintenance de l'antenne sont ainsi notamment simplifiés, et la fiabilité accrue.
- D'autres caractéristiques et avantages de l'invention apparaîtront à l'aide de la description qui suit faite en regard de dessins annexés qui représentent :
- la
figure 1 , par un synoptique, la structure d'une antenne à balayage électronique alimentée par un émetteur de puissance centralisé ; - les
figures 2a et2b , des exemples de réalisation de déphaseurs selon l'invention ; - les
figures 3a et 3b , la structure d'un circuit imprimé comportant des déphaseurs selon l'invention et leurs commandes associées ; - la
figure 4 , un premier exemple de réalisation d'une cellule élémentaire d'un déphaseur selon l'invention ; - la
figure 5 , un deuxième exemple de réalisation d'une cellule élémentaire d'un déphaseur selon l'invention ; - la
figure 6 , un exemple de réalisation d'une antenne selon l'invention ; - les
figures 7 et 8 , des exemples de réalisation de blocs de déphasage. - La
figure 1 illustre par un synoptique une antenne à balayage électronique « un plan ». Cette antenne comporte un réseau linéaire de déphaseurs où l'onde hyperfréquence est amplifiée par un émetteur centralisé. Le réseau comporte des sources rayonnantes 1 associées chacune à un déphaseur 23. Chaque déphaseur 23 est par exemple alimenté par des moyens de répartition, c'est-à-dire qu'il reçoit l'onde hyperfréquence fournie par ces moyens de répartition 4 à partir de l'onde hyperfréquence 5 fournie par l'émetteur. A la réception, l'onde reçue est transmise vers les circuits de réception par les moyens de répartition 4. Chaque déphaseur est commandé de façon à créer un plan d'onde 6 perpendiculaire à la direction de rayonnement θ, cet angle définissant la direction de pointage du faisceau d'antenne dans le plan des sources rayonnantes 1. - Les
figures 2a et2b illustrent un mode de réalisation possible d'une antenne selon l'invention. Plus particulièrement, ces figures illustrent la réalisation de déphaseurs 23 selon l'invention. Dans ce mode de réalisation, le coût est réduit et la mise en oeuvre des déphaseurs, et plus généralement de l'antenne, est considérablement simplifiée. A cet effet, un support ou circuit imprimé multicouche 21 formant un dispositif de déphasage, représenté dans un plan Oxy, est par exemple associé à un dispositif de couplage 22 en guide d'onde. Cela permet notamment de réaliser et de tester les déphaseurs de façon collective, donc de réduire fortement le coût et de faciliter leur intégration dans l'antenne. - La
figure 2b illustre une partie 23 de lafigure 2a , cette partie représentant en fait un déphaseur élémentaire selon l'invention. Lafigure 2b illustre en particulier un coupleur 3db en guide d'onde 24 associé à une paire de cellules de déphasage 25, 26. Le déphaseur élémentaire 23 est donc réalisé en associant le coupleur 3dB 24 à une paire de cellules 25, 26 du dispositif de déphasage 21 fonctionnant en réflexion. En particulier l'onde incidente E, passant par une première entrée 27 du coupleur 24, se répartit en deux ondes incidentes E1, E2 vers les deux cellules de déphasage 25, 26. Ces deux cellules réfléchissent les ondes incidentes avec des déphasages identiques. Les ondes réfléchies entrent dans le coupleur pour se recomposer entre elles et l'onde résultante S déphasée par rapport à E se retrouve sur la sortie 28 du coupleur, juxtaposé à la première entrée 27. Le dispositif de déphasage, constitué des deux cellules 25, 26, est équivalent à deux courts-circuits variables commandés électriquement. Ce dispositif est réalisé par exemple sur le support 21 comportant des semi-conducteurs en regard du coupleur pour assurer le déphasage. Par ailleurs, les circuits de commande 29 de ces semi-conducteurs sont par exemple implantés sur ce même support, sur sa face opposée aux semi-conducteurs, le support multicouche assurant alors les interconnexions entre les circuits de commande et les semi-conducteurs. Ces derniers sont par exemple des diodes. L'onde hyperfréquence incidente E entrant dans le coupleur est par exemple issue du circuit de répartition 4. - La
figure 2a présente un exemple de dispositif de déphasage 21 où les paires de cellules élémentaires 25, 26 sont réalisées sur une même pièce, par exemple du type circuit imprimé. Les coupleurs 24 associés à chacune de ces paires peuvent former une seule pièce 22 comme l'illustre cette mêmefigure 2a . Cette pièce 22 est alors rapportée sur le dispositif de déphasage 21. Les guides constituant les coupleurs sont par exemple usinés dans une même pièce métallique. Toutefois, il est bien sûr possible de réaliser un déphaseur selon l'invention qui ne soit pas réalisé de façon collective, comme illustré par exemple par lafigure 2b . La réalisation des coupleurs, individuelle ou collective, peut notamment faire appel aux techniques de moulage, d'injection ou encore de métallisation d'une pièce plastique qui peuvent permettre de réduire les coûts. - La
figure 3a montre schématiquement une partie du dispositif de déphasage représenté dans le plan Oxy, par une vue de dessus, suivant F. Ce dispositif de déphasage comporte un alignement de paires de cellules de déphasages 25, 26 formant un réseau linéaire de paires de cellules de déphasage. Il est à noter que d'autres formes d'alignement sont réalisables, notamment sur un cercle pour former une antenne cylindrique, comme le montreront lesfigures 7 et 8 par la suite. En association avec un coupleur 3dB, une paire forme un déphaseur élémentaire 23 tel que décrit relativement à lafigure 1 . Les cellules de déphasage 25, 26 sont séparées par des zones 20, utilisées notamment pour le découplage hyperfréquence de ces cellules. Ces dernières réalisent la réflexion et le déphasage des ondes qu'elles reçoivent. Une cellule élémentaire 25, 26 comporte un circuit hyperfréquence déphaseur disposé devant un plan conducteur. - La
figure 3b est une vue schématique en coupe, dans le plan Oxz d'un exemple de réalisation possible du dispositif de déphasage. Le dispositif de déphasage se compose d'un circuit hyperfréquence 31 réparti dans les cellules élémentaires 25, 26 et d'un plan conducteur 32, disposé sensiblement parallèlement au circuit hyperfréquence 31, à une distance d prédéfinie. Ce circuit hyperfréquence reçoit les ondes incidentes E1 et E2 issues du coupleur 24. - Le plan conducteur 32 a notamment pour fonction de réfléchir les ondes hyperfréquences. Il peut être constitué par tout moyen connu, par exemple des fils parallèles ou un grillage, suffisamment serrés, ou un plan continu. Le circuit hyperfréquence 31 et le plan conducteur 32 sont de préférence réalisés sur deux faces d'un support diélectrique 33, par exemple du type circuit imprimé. L'ensemble 21 comporte encore, de préférence sur le même circuit imprimé 33, qui est alors un circuit multicouche, le circuit électronique nécessaire à la commande des valeurs de phase. Sur la
figure 3b , on a représenté un circuit multicouche dont la face avant 34 porte le circuit hyperfréquence 31, la face arrière 35 porte des composants 36 du circuit électronique de commande précité, et les couches intermédiaires forment le plan conducteur 32 et par exemple deux plans 37 d'interconnexions des composants 36 au circuit hyperfréquence 31. - La
figure 4 illustre un circuit de déphasage élémentaire 10 compris dans le circuit hyperfréquence 31. Chaque circuit de déphasage est séparé d'un autre par une zone de découplage 20 comportant par exemple une bande conductrice 48 parallèle à la direction Oy et une bande conductrice 49 parallèle à la direction Ox. Il comporte donc par exemple à sa périphérie deux bandes conductrices 48 dans la direction Oy et deux bandes conductrices dans la direction Ox. Chaque circuit de déphasage, associé avec la partie correspondante du plan conducteur 32 forme une cellule de déphasage 25, 26. - Un circuit de déphasage 10 comporte plusieurs fils conducteurs 42 sensiblement parallèles à la direction Oy et portant chacun un élément semi-conducteur D1, D2 à deux états, par exemple une diode. Le circuit de déphasage comporte par ailleurs des zones conductrices reliant les diodes à des potentiels de référence et des circuits de commande. Plus particulièrement, un circuit de déphasage est constitué de deux circuits 50 appelés par la suite demi-déphaseur. On décrit donc dans un premier temps un demi-déphaseur.
- Un demi-déphaseur 50 comporte un support diélectrique 33, deux fils 42 portant chacun une diode D1, D2. Les deux fils sont reliés au potentiel de masse, ou à tout autre potentiel de référence, par l'intermédiaire d'une ligne conductrice 43. Cette ligne 43 est par exemple du type microruban réalisée par dépôt métallique sur la face avant du support diélectrique 33, par exemple par une technique de sérigraphie. Les diodes D1 et D2 sont ainsi câblées en opposition de sorte que par exemple leurs anodes soient reliées au potentiel de masse par cette ligne 43. A cet effet, cette dernière est par exemple reliée à une bande conductrice 48 des moyens de découplage 20. La tension d'alimentation des diodes D1 et D2 est amenée par des conducteurs de commande 44. L'anode des diodes étant reliée au potentiel de masse, les conducteurs de commande sont alors reliés à la cathode des diodes. La tension d'alimentation amenée par ces conducteurs est par exemple de l'ordre de -15 volts. Les conducteurs de commande sont commandés de façon à présenter au moins deux états de tension. Dans un premier état, leur tension est par exemple à la tension d'alimentation, ce qui rend la diode passante, ou en d'autres termes polarisée en direct. Dans un deuxième état, leur tension est telle que la diode est bloquée, ou en d'autres termes polarisée en inverse. Les commandes des deux conducteurs de commande 44, 45 sont indépendantes l'une de l'autre de façon à assurer la commandes des diodes indépendamment l'une de l'autre. Les conducteurs de commande 44, 45 et le conducteur relié de masse 43 sont sensiblement parallèles à la direction Ox et donc perpendiculaires aux fils 42. Sur la
figure 4 le conducteur de masse 43 est commun aux deux fils notamment pour des gains d'encombrement et de matière, on pourrait cependant prévoir un conducteur spécifique pour chaque fil. On pourrait par ailleurs prévoir de relier non pas directement ces conducteurs directement à un potentiel de référence mais par l'intermédiaire d'un circuit de commande. - Les conducteurs de commande 44, 45 sont reliés au circuit électronique de commande porté par le réflecteur, par l'intermédiaire de trous métallisés 46 réalisés par exemple au niveau de la zone de découplage 20, notamment pour des raisons d'encombrement, mais aussi pour ne pas perturber le fonctionnement des cellules élémentaires. Les trous métallisés 46 sont bien sûr isolés électriquement des bandes conductrices de la zone de découplage. A cet effet, il est prévu une interruption de la bande 20 autour des extrémités des conducteurs de commande directement reliées aux trous métallisés 46.
- Un demi-déphaseur 50 peut présenter quatre valeurs différentes pour sa susceptance BD, ces valeurs étant notées BD1, BD2, BD3 et BD4, selon la commande (polarisation directe ou inverse) appliquée à chacune des diodes D1, D2. Les valeurs des susceptances BD1, BD2, BD3 et BD4 sont fonction des paramètres du circuit, c'est-à-dire des valeurs choisies pour les paramètres géométriques, notamment en ce qui concerne les dimensions, formes et espacements des différentes surfaces conductrices 43, 44, 45, et électriques du déphaseur, notamment en ce qui concerne les caractéristiques électriques des diodes. En particulier, il est nécessaire de tenir compte de la contrainte de définition de la bande conductrice de la zone de découplage 20 évoquée précédemment lors de la détermination des différents paramètres pour la fixation des déphasages dϕ1 - dϕ4.
- Si, maintenant, on étudie le comportement de l'ensemble du demi-déphaseur 50 en association avec le plan conducteur 32, on doit tenir compte de la susceptance due à ce plan 32, ramenée dans le plan du demi-déphaseur et notée BCC, qui s'écrit :
-
- II suit que la susceptance BC peut prendre quatre valeurs distinctes (notées BC1, BC2, BC3, et BC4) correspondant respectivement aux quatre valeurs de BD, la distance d représentant un paramètre supplémentaire pour la détermination des valeurs BC1 - BC4.
-
- Il apparaît ainsi que, en négligeant la partie réelle de l'admittance d'une cellule, on a :
- Il est à noter qu'on a décrit ci-dessus le cas dans lequel on choisit les paramètres du circuit pour que les susceptances nulles (ou sensiblement nulles) soient telles qu'elles correspondent aux diodes polarisées dans le sens direct, mais qu'on peut bien entendu choisir un fonctionnement symétrique ; plus généralement, il n'est pas nécessaire que l'une des susceptances Bd ou Br soit nulle, ces valeurs étant déterminées pour que la condition d'équirépartition des déphasages dϕ1-dϕ4 soit remplie.
- Pour montrer comment une cellule élémentaire 25, 26 permet huit déphasages possibles, c'est-à-dire une commande des déphasages sur trois bits, on considère maintenant l'ensemble de deux demi-déphaseurs 50. En faisant fonctionner les deux demi-déphaseurs 50 indépendamment l'un de l'autre, on peut obtenir deux fois plus d'états, c'est-à-dire de déphasages, que dans le cas d'un seul demi-déphaseur. Il faut néanmoins pour cela prévoir une isolation électrique entre les deux demi-déphaseurs. Ces deux derniers étant par exemple juxtaposés, les conducteurs de commande 44, 45 sont isolés par exemple par une ligne 47 de diélectrique, correspondant en fait à une ligne de coupure dans la métallisation des conducteurs 44, 45. Cette première isolation permet en fait une isolation des commandes électriques des diodes.
- Aux quatre valeurs de susceptances BD1, BD2, BD3, BD4 obtenue par l'influence d'un demi-déphaseur, on obtient donc quatre nouvelles valeurs B'D1, B'D2, B'D3, B'D4 obtenues par l'influence du deuxième déphaseur.
- Les paramètres géométriques et électriques du déphaseur sont par exemple définis pour obtenir huit déphasages équirépartis entre 0° et 360°.
- En fonction des déphasages souhaités, on définit des valeurs de susceptance BC et donc des valeurs de susceptance BD selon les relations (1) et (2), la distance d étant connue. Les paramètres géométriques et électriques du déphaseur peuvent ensuite être obtenus par des moyens de simulation classique.
- Un circuit de déphasage tel qu'illustré par la
figure 4 est simple à mettre en oeuvre, il permet en effet d'obtenir huit déphasages en jouant simplement sur des paramètres géométriques de conducteurs et sur le choix de diodes. Le dispositif de déphasage 21 qui comporte un réseau de paires de cellules de déphasages peut donc être obtenu de façon économique. Le circuit imprimé supportant les circuits hyperfréquence et les circuits électroniques de commande est par ailleurs peu épais. - Comme il a été indiqué précédemment, le dispositif de déphasage comporte des moyens de découplage 20 entre les cellules 25, 26. L'onde hyperfréquence E reçue par les cellules est polarisée linéairement, parallèlement à la direction Oy. Il est souhaitable que cette onde ne se propage pas d'une cellule à l'autre, dans la direction Ox. Pour éviter une telle propagation les moyens de découplage comportent au moins la zone conductrice 48. On prévoit donc de disposer cette zone conductrice 48 sensiblement en forme de bande, réalisée par dépôt métallique sur la surface 34 par exemple, entre les cellules, parallèlement à la direction Oy. Cette bande 48 forme, avec le plan réflecteur 32 qui est en dessous, un espace du type guide d'onde dont la largeur est la distance d. On choisit la distance d pour qu'elle soit inférieure à λ/2, λ étant la longueur de l'onde hyperfréquence, sachant qu'une onde dont la polarisation est parallèle aux bandes ne peut pas se propager dans un tel espace. En pratique, le réflecteur selon l'invention fonctionne dans une certaine bande de fréquences et on choisit d pour qu'elle soit inférieure à la moitié de la plus petite des longueurs d'onde de la bande. Bien entendu, il est nécessaire de tenir compte de cette contrainte lors de la détermination des différents paramètres pour la fixation des déphasages dϕ1, ... dϕ8. En outre, la bande 48 doit avoir une largeur, selon la direction Ox, suffisante pour que l'effet décrit précédemment soit sensible. En pratique, la largeur peut être de l'ordre de λ/5.
- Par ailleurs, il peut être créé de façon parasite dans une cellule, une onde dont la polarisation serait dirigée selon la direction Oz, perpendiculaire au plan formé par les directions Ox et Oy contenant un circuit de déphasage. Il est également souhaitable d'éviter sa propagation vers les cellules voisines.
- Pour ce qui est des cellules voisines dans la direction Ox, on peut utiliser comme représenté sur la
figure 4 les trous métallisés 46 de connexion des conducteurs de commande aux circuits électroniques. En effet, ceux-ci étant parallèles à la polarisation de l'onde parasite, ils sont équivalents à un plan conducteur formant blindage s'ils sont suffisamment rapprochés (à une distance l'un de l'autre très inférieure à la longueur d'onde de fonctionnement du réflecteur), donc nombreux, pour les longueurs d'onde de fonctionnement du réflecteur. Si cette condition n'est pas remplie, on peut former des trous métallisés supplémentaires, n'ayant pas de fonction de connexion. Il est à noter que les trous métallisés de connexion 46 sont de préférence réalisés au niveau des bandes 48 afin de ne pas perturber le fonctionnement des cellules. Cette disposition apporte par ailleurs un gain d'encombrement. - Enfin, pour ce qui est de deux cellules voisines dans la direction Oy, on peut utiliser des trous métallisés 40 analogues aux trous de connexion 46 mais alignés selon la direction Ox débouchant dans la bande conductrice 49. Ces trous métallisés 40 comme les trous métallisés de connexion 46 sont réalisés selon une direction Oz sensiblement perpendiculaire au plan Oxy. On peut encore prévoir par exemple une surface conductrice continue dans le plan xOz.
- La
figure 5 illustre un déphaseur selon l'invention permettant de commander les déphasages sur 4 bits, donc sur un bit supplémentaire par rapport au circuit illustré par lafigure 4 . Le circuit de déphasage comporte toujours deux demi-déphaseurs 50 réalisés comme décrit précédemment. Cependant, les deux demi-déphaseurs ne sont plus séparés par une ligne 47 isolant les commandes des diodes, mais par deux zones conductrices 71, 72 reliée par une diode D3, ou tous autres semi-conducteurs à deux états. Ces deux zones 71, 72 sont par exemple réalisées par dépôt métallique sur la face avant 34 du diélectrique. Ces zones forment des conducteurs de commande de la diode D3. A cet effet, une zone conductrice 71 est par exemple reliée aux circuits électroniques de commande par un trou métallisé 46. Selon l'état de la commande électronique, cette zone 71 se trouve à un potentiel d'alimentation, par exemple -15 volts ou à un autre potentiel, par exemple le potentiel de masse. L'autre zone conductrice 72 est par exemple reliée au potentiel de masse. A cet effet, elle est par exemple reliée à la bande conductrice 48 parallèle à la direction Oy des moyens de découplage 20. - Lorsque la zone conductrice 71 est commandée pour être au potentiel de masse, ou plus généralement pour rendre la diode D3 bloquée, c'est-à-dire en polarisation inverse, le circuit de déphasage est analogue à celui de la
figure 4 , il présente dans cet état huit déphasages possibles. Il est bien sûr nécessaire de redéfinir ses paramètres géométriques et électriques en raison de l'introduction des zones supplémentaires 71, 72. Lorsque la zone conductrice 71 présente un potentiel qui rend la diode D3 passante, c'est-à-dire en polarisation directe, les paramètres électriques du circuit de déphasage se trouvent modifiés par rapport à l'état précédent. En particulier, la capacité formée de l'espace entre les deux zones conductrices 71, 72 devient court-circuitée par les diodes D3. Les huit susceptances possibles de l'état précédent, commandées sur trois bits, sont alors modifiées par la mise en conduction de la diode D3. Les huit nouvelles susceptances ainsi obtenues permettent d'obtenir huit déphasages supplémentaires. Au total seize déphasages sont donc possibles. Les caractéristiques géométriques et électriques des deux demi-déphaseurs 50 mais aussi des zones conductrices supplémentaires 71, 72 et de leur diode D3 doivent être définis de façon à obtenir les seize déphasages souhaités pour chacun des états des diodes. - Les
figures 4 et5 présentent des exemples de réalisation possible du dispositif de déphasage 21, et plus particulièrement des cellules de déphasage 25, 26. D'autres exemples de réalisation sur support multicouche sont envisageables. D'une façon générale, les cellules de déphasage 25, 26 d'une même paire, associée à un coupleur 24, produisent le même déphasage. Elles peuvent donc par exemple être commandée par un même circuit. - La
figure 6 illustre un exemple de réalisation d'une antenne selon l'invention comportant des déphaseurs tels que décrits précédemment. L'antenne comporte un réseau linéaire de déphaseurs assurant par exemple un balayage électronique en azimut, dans le cadre par exemple d'une application de surveillance de trafic aérien. Cette antenne comporte des moyens 4 de répartition d'énergie, et plus particulièrement de l'onde hyperfréquence fournie par un émetteur de puissance. Elle comporte des éléments rayonnant 1. Enfin elle comporte un bloc de déphasage 81 composé lui-même de déphaseurs selon l'invention. Ce bloc de déphasage est par exemple celui illustré par lafigure 2a . Dans ce cas, les paires de cellules de déphasage 25, 26 sont réalisées sur un même support diélectrique. Le support diélectrique 33 est alors commun à toutes les cellules. Le bloc de déphasage comporte donc un ensemble de coupleurs 22 placé sur un dispositif de déphasage 21 tel qu'illustré par lesfigures 3a, 3b à 5 . Plus particulièrement, le bloc de déphasage 81 est par exemple constitués de plusieurs ensembles conformes à lafigure 2a disposés bout à bout. Un ensemble 21, 22 comporte plusieurs déphaseurs, par exemple 16 comme l'illustre cettefigure 2a . A titre d'exemple, un bloc de déphasage comportant 5 ensembles 21, 22 possède alors 80 déphaseurs. Les liaisons hyperfréquence sont telles que les sorties des moyens de répartition 4 soient reliées aux entrées 27 des coupleurs 24, qui forment aussi les entrées des déphaseurs. De même, les sorties de ces derniers, qui sont les sorties 28 des coupleurs sont reliées aux éléments rayonnant. Des guides d'onde 82, 83 conduisent l'onde hyperfréquence depuis l'émetteur jusqu'au circuit de répartition 4, et conduisent de même l'onde reçue jusqu'aux circuits de réception. Un premier guide 82 correspond par exemple à la voie somme du diagramme d'antenne et un deuxième guide 83 correspond par exemple à la voie différence, permettant ainsi des mesures d'écartométrie. - Dans l'exemple de réalisation de la
figure 6 , les sources rayonnantes sont disposées linéairement, c'est-à-dire de façon rectiligne. Il est possible de prévoir des exemples de réalisation où les sources rayonnantes, et aussi les déphaseurs ne sont pas alignés de façon rectiligne. D'autres exemples de réalisation sont proposés auxfigures 7 et 8 . - La
figure 7 présente, par une vue partielle en perspective, un exemple de réalisation où le bloc de déphasage 81 est cylindrique. Il est alors notamment composé de déphaseurs élémentaires disposés côte à côte sur une surface cylindrique, en particulier le dispositif de déphasage 21 a dans ce cas une forme cylindrique. Lafigure 8 présente, par une vue partielle, un exemple de réalisation où le bloc de déphasage 81 est en forme d'anneau. Les déphaseurs élémentaires sont alors disposés en anneau, le dispositif de déphasage ayant par exemple dans ce cas une forme d'anneau. Il sont sur cette figure vus de dessus, c'est-à-dire par exemple du côté de l'entrée de l'onde hyperfréquence. - L'émetteur qui alimente les circuits de répartition 4 peut être à tube ou à état solide. Le choix technologique peut dépendre notamment des puissances mises en jeu.
- Une antenne selon l'invention, réalisée par exemple selon la
figure 6 , est économique et très compacte. Elle est notamment économique en raison de la simplification considérable des connexions et de la réduction du nombre d'opérations de construction et d'assemblage. Elle est aussi économique en raison de la simplification de test, de mise au point et de maintenance. En particulier, les déphaseurs être testés collectivement, d'où un gain de temps. En cas de problème, le remplacement d'un déphaseur par un autre est très facile. En particulier, si un déphaseur d'un ensemble 21, 22 est défaillant, il est très aisé de remplacé l'ensemble comportant ce déphaseur défaillant par un autre ensemble de déphaseurs. La maintenance de l'antenne est ainsi simplifiée. - L'invention est particulièrement bien adaptée pour une antenne à balayage électronique « un plan ». Elle peut néanmoins être appliquée pour une antenne à balayage électronique « deux plans ». En particulier dans ce dernier cas, le support du dispositif de déphasage 21 contient par exemple plusieurs rangées de paires de cellules de déphasages 25, 26 au lieu d'une seule, pour obtenir notamment un réseau plan de déphaseurs. D'autres moyens d'alimentation des coupleurs 24 sont possibles. En particulier l'alimentation peut être du type dit « Rattle Snake » où les déphaseurs élémentaires 23 sont disposés sur une ligne serpentée. Dans ce type d'alimentation, le champ électrique est perpendiculaire au champ par alimentation par guide, c'est-à-dire parallèle à la direction Ox de la
figure 4 au lieu la direction Oy. Il est alors nécessaire de faire une rotation de 90° des déphaseurs pour que l'orientation des fils 42 portant les diodes soient dans la direction du champ électrique. L'alimentation des coupleurs 24 peut aussi se faire par des sources actives, les deux directions de champ étant possibles. Dans ce cas, l'antenne comporte des sources hyperfréquence actives, une source élémentaire active est par exemple associée à chaque coupleur 24. - Si une économie et une compacité moindres sont suffisantes, le dispositif de déphasage 21 du type circuit imprimé peut être remplacé par des circuits à ferrite ou tout autre type de circuit de déphasage.
Claims (14)
- Déphaseur hyperfréquence, comportant au moins un coupleur 3db en guide d'onde (24) et une paire de cellules de déphasage (25, 26), l'onde incidente (E) entrant dans une première entrée (27) du coupleur pour se répartir en deux ondes (E1, E2), ces deux ondes se réfléchissant chacune sur une de la paire de cellules de déphasage (25, 26) avec des phases identiques et se recomposant en une onde résultante (S) déphasée sortant par la sortie (28) du coupleur juxtaposée à la première entrée (27), une onde incidente (E1, E2) étant polarisée linéairement selon une première direction donnée (Oy), une cellule de déphasage (25, 26) comporte un circuit de déphasage (10) devant plan conducteur (32) ayant pour fonction de réfléchir l'onde incidente (E1, E2) et disposé sensiblement parallèle au circuit de déphasage, le circuit de déphasage (10) comportant au moins deux demi-déphaseurs (50),
un demi-déphaseur (50) comportant au moins un support diélectrique (33), au moins deux fils électriquement conducteurs (42) sensiblement parallèles à la direction donnée (Oy), disposés sur le support et comportant au moins chacun un élément semi-conducteur à deux états (D1, D2), chaque fil étant connecté à des conducteurs de commande (43, 44, 45) des éléments semi-conducteurs, ces conducteurs étant sensiblement normaux aux fils, et deux zones conductrices (49) disposées vers la périphérie de la cellule, sensiblement parallèlement aux conducteurs de commande,
les conducteurs de commande étant au moins au nombre de trois dans chaque demi-déphaseur et étant isolés électriquement d'un demi-déphaseur à l'autre pour commander l'état de tous les éléments semi-conducteurs indépendamment l'un de l'autre,
les caractéristiques géométriques et électriques des demi-déphaseurs étant telles qu'à chacun des états des éléments semi-conducteurs correspond une valeur de déphasage donnée (dϕ1, ...dϕ8) de l'onde électromagnétique qui est réfléchie par la cellule, l'état des éléments semi-conducteurs étant commandé par un circuit électronique (36). - Déphaseur selon la revendication 1, caractérisé en ce que les deux demi-déphaseurs (50) sont séparés par deux zones conductrices (71, 72) reliées par un élément semi-conducteur à deux états (D3), au moins une des zones (71) étant reliée au circuit de commande électronique (36) pour commander l'état du semi-conducteur, les caractéristiques géométriques et électriques des demi-déphaseurs et des zones conductrices (71, 72) et de leurs éléments semi-conducteurs étant telles qu'à chacun des états des éléments semi-conducteurs correspond une valeur de déphasage donnée (dϕ1, ...dϕ16) de l'onde électromagnétique qui est réfléchie par la cellule.
- Déphaseur selon l'une quelconque des revendications précédentes, caractérisé en ce qu'une bande conductrice (48) est disposée entre chaque cellule, parallèlement à la direction donnée (Oy), qui forme avec le plan conducteur un espace guidé où l'onde ne peut pas se propager.
- Déphaseur selon l'une quelconque des revendications précédentes, caractérisé en ce que le support diélectrique (33) est du type circuit imprimé multicouche dont une première face (34) porte le circuit hyperfréquence, une première couche intermédiaire porte le plan conducteur (32) et la deuxième face (35) porte des composants du circuit de commande.
- Déphaseur selon la revendication 4, caractérisé en ce que le support diélectrique (33) comporte en outre au moins une deuxième couche intermédiaire (37) portant des interconnexions du circuit de commande.
- Déphaseur selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte des trous métallisés (40, 46) réalisés dans le support diélectrique (33), dans la direction (Oz) perpendiculaire au plan (Oxy) du circuit de déphasage, à une distance l'un de l'autre très inférieure à la longueur d'onde électromagnétique, certains au moins de ces trous métallisés assurant la liaison entre le circuit de commande et les conducteurs de commande.
- Déphaseur selon l'une quelconque des revendications précédentes, caractérisé en ce que les éléments semi-conducteurs sont des diodes.
- Antenne hyperfréquence à balayage électronique, caractérisée en ce qu'elle comporte au moins des éléments rayonnants (1), des déphaseurs (23) selon l'une quelconque des revendications précédentes et des moyens (4, 5) d'alimentation de ces déphaseurs, les entrées des coupleurs (24) formant les entrées des déphaseurs étant reliées aux moyens d'alimentation (4), les sorties des coupleurs étant reliées aux éléments rayonnants.
- Antenne selon la revendication 8, caractérisée en ce que les déphaseurs sont répartis en au moins un bloc (81), un bloc comportant un ensemble (21) de paires de cellules de déphasage (25, 26) réalisées sur une même pièce et un ensemble (22) de coupleurs (24) formant une seule pièce.
- Antenne selon l'une quelconque des revendications 8 ou 9, caractérisée en ce que les déphaseurs (23) sont répartis sur un cylindre.
- Antenne selon l'une quelconque des revendications 8 ou 9, caractérisée en ce que les déphaseurs (23) sont répartis sur un anneau.
- Antenne selon l'une quelconque des revendications 8 ou 9, caractérisée en ce qu'elle comporte un réseau plan de déphaseurs (23).
- Antenne selon l'une quelconque des revendications 8 à 12, caractérisée en ce que les moyens d'alimentation des déphaseurs (23) comportent des moyens de répartition (4) d'une onde hyperfréquence (5) fournie par un émetteur centralisé.
- Antenne selon l'une quelconque des revendications 8 à 12, caractérisée en ce qu'elle comporte des sources hyperfréquence actives alimentant les déphaseurs (23).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0004140 | 2000-03-31 | ||
FR0004140A FR2807213B1 (fr) | 2000-03-31 | 2000-03-31 | Dephaseur hyperfrequence, et antenne a balayage electronique comportant de tels dephaseurs |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1139484A1 EP1139484A1 (fr) | 2001-10-04 |
EP1139484B1 true EP1139484B1 (fr) | 2010-10-06 |
Family
ID=8848735
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01400769A Expired - Lifetime EP1139484B1 (fr) | 2000-03-31 | 2001-03-23 | Déphaseur hyperfréquence, et antenne à balayage électronique comportant de tels déphaseurs |
Country Status (5)
Country | Link |
---|---|
US (1) | US6429822B1 (fr) |
EP (1) | EP1139484B1 (fr) |
AT (1) | ATE484087T1 (fr) |
DE (1) | DE60143177D1 (fr) |
FR (1) | FR2807213B1 (fr) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6900710B2 (en) * | 2001-04-10 | 2005-05-31 | Picosecond Pulse Labs | Ultrafast sampler with non-parallel shockline |
US7084716B2 (en) | 2001-04-10 | 2006-08-01 | Picosecond Pulse Labs | Ultrafast sampler with coaxial transition |
US7358834B1 (en) * | 2002-08-29 | 2008-04-15 | Picosecond Pulse Labs | Transmission line voltage controlled nonlinear signal processors |
US7612629B2 (en) * | 2006-05-26 | 2009-11-03 | Picosecond Pulse Labs | Biased nonlinear transmission line comb generators |
FR2901921B1 (fr) | 2006-06-06 | 2009-01-30 | Thales Sa | Antenne cylindrique a balayage electronique |
FR2907262B1 (fr) * | 2006-10-13 | 2009-10-16 | Thales Sa | Cellule dephaseuse a dephaseur analogique pour antenne de type"reflectarray". |
US8548525B2 (en) * | 2007-06-28 | 2013-10-01 | Fimax Technology Limited | Systems and methods using antenna beam scanning for improved communications |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4044360A (en) * | 1975-12-19 | 1977-08-23 | International Telephone And Telegraph Corporation | Two-mode RF phase shifter particularly for phase scanner array |
FR2395620A1 (fr) | 1977-06-24 | 1979-01-19 | Radant Etudes | Perfectionnement au procede de balayage electronique utilisant des panneaux dielectriques dephaseurs |
FR2412960A1 (fr) | 1977-12-20 | 1979-07-20 | Radant Etudes | Dephaseur hyperfrequence et son application au balayage electronique |
FR2448231A1 (fr) | 1979-02-05 | 1980-08-29 | Radant Et | Filtre spatial adaptatif hyperfrequence |
FR2469808A1 (fr) | 1979-11-13 | 1981-05-22 | Etude Radiant Sarl | Dispositif de balayage electronique dans le plan de polarisation |
FR2733091B1 (fr) | 1983-05-06 | 1997-05-23 | Cmh Sarl | Repondeur hyperfrequence electriquement controlable et ses applications a la realisation de leurres electromagnetiques |
FR2723210B1 (fr) | 1983-05-06 | 1997-01-10 | Cmh Sarl | Procede et dispositif antidetection pour radar |
FR2732469B1 (fr) | 1984-01-23 | 1997-04-11 | Cmh Sarl | Dispositif utilisant une antenne auxiliaire equipee d'un filtre spatial adaptatif pour l'embrouillage d'une antenne principale associee, et son procede de mise en oeuvre |
FR2629920B1 (fr) | 1984-01-23 | 1991-09-20 | Cmh Sarl | Filtre spatial adaptatif hyperfrequence fonctionnant a la reflexion et son procede de mise en oeuvre |
US4568893A (en) * | 1985-01-31 | 1986-02-04 | Rca Corporation | Millimeter wave fin-line reflection phase shifter |
FR2634325B1 (fr) | 1988-07-13 | 1990-09-14 | Thomson Csf | Antenne comportant des circuits de distribution d'energie micro-onde du type triplaque |
FR2656468B1 (fr) | 1989-12-26 | 1993-12-24 | Thomson Csf Radant | Source de rayonnement microonde magique et son application a une antenne a balayage electronique. |
FR2725077B1 (fr) | 1990-11-06 | 1997-03-28 | Thomson Csf Radant | Lentille hyperfrequence bipolarisation et son application a une antenne a balayage electronique |
FR2671194B1 (fr) | 1990-12-27 | 1993-12-24 | Thomson Csf Radant | Systeme de protection d'un equipement electronique. |
FR2786610B1 (fr) | 1997-02-03 | 2001-04-27 | Thomson Csf | Reflecteur hyperfrequence actif pour antenne a balayage electronique |
FR2778026B1 (fr) | 1998-04-24 | 2007-01-26 | Thomson Csf | Antenne a balayage electronique a multifaisceaux |
-
2000
- 2000-03-31 FR FR0004140A patent/FR2807213B1/fr not_active Expired - Fee Related
-
2001
- 2001-03-23 EP EP01400769A patent/EP1139484B1/fr not_active Expired - Lifetime
- 2001-03-23 AT AT01400769T patent/ATE484087T1/de not_active IP Right Cessation
- 2001-03-23 DE DE60143177T patent/DE60143177D1/de not_active Expired - Lifetime
- 2001-03-30 US US09/820,645 patent/US6429822B1/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
US6429822B1 (en) | 2002-08-06 |
DE60143177D1 (de) | 2010-11-18 |
FR2807213A1 (fr) | 2001-10-05 |
FR2807213B1 (fr) | 2003-07-25 |
EP1139484A1 (fr) | 2001-10-04 |
ATE484087T1 (de) | 2010-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1580844B1 (fr) | Cellule déphaseuse à polarisation linéaire et à longueur résonante variable au moyen de commutateurs mems | |
EP0237429B1 (fr) | Réseau réflecteur à contrôle de phases, et antenne comportant un tel réseau | |
EP2532050B1 (fr) | Antenne plane directive embarquée, véhicule comportant une telle antenne et système de télécommunication par satellite comportant un tel véhicule | |
EP0012055B1 (fr) | Source primaire monopulse imprimée et antenne comportant une telle source | |
EP2710676B1 (fr) | Element rayonnant pour antenne reseau active constituee de tuiles elementaires | |
EP3179551B1 (fr) | Ensemble d'excitation compact bipolarisation pour un element rayonnant d'antenne et reseau compact comportant au moins quatre ensembles d'excitation compacts | |
EP2688142B1 (fr) | Antenne d'émission et de réception multifaisceaux à plusieurs sources par faisceau, système d'antennes et système de télécommunication par satellite comportant une telle antenne | |
EP1234356B1 (fr) | Reflecteur hyperfrequence actif a balayage electronique | |
EP1139484B1 (fr) | Déphaseur hyperfréquence, et antenne à balayage électronique comportant de tels déphaseurs | |
EP1305846B1 (fr) | Reflecteur hyperfrequence actif a bipolarisation, notamment pour antenne a balayage electronique | |
CA2808511C (fr) | Antenne plane pour terminal fonctionnant en double polarisation circulaire, terminal aeroporte et systeme de telecommunication par satellite comportant au moins une telle antenne | |
EP1157444B1 (fr) | Antenne a balayage electronique bi-bande, a reflecteur hyperfrequence actif | |
FR2664432A1 (fr) | Module hyperfrequence triplaque. | |
EP1473799B1 (fr) | Satellite à couverture multi-zones assurée par deviation de faisceau | |
FR2960100A1 (fr) | Calibrations d'une antenne electronique a balayage comportant un reseau d'elements rayonnants | |
FR2815479A1 (fr) | Reflecteur hyperfrequence actif a deux polarisations independantes, notamment pour antenne a balayage electronique | |
FR2907262A1 (fr) | Cellule dephaseuse a dephaseur analogique pour antenne de type"reflectarray". | |
FR2762717A1 (fr) | Source a deux voies pour antenne a optique focalisante | |
FR2807876A1 (fr) | Antenne plaque micro-onde | |
FR2973587A1 (fr) | Antenne reseau directive large bande, du type a circuit imprime | |
EP0546901A1 (fr) | Antenne légère à multipolarisation | |
FR2960101A1 (fr) | Calibration d'une antenne electronique a balayage comportant un reseau d'elements rayonnants | |
FR2814594A1 (fr) | Reseau reflecteur a capacites de decouplage integrees | |
EP1133000A1 (fr) | Réflecteur hyperfréquence actif pour antenne à balayage électronique |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20020403 |
|
AKX | Designation fees paid |
Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
17Q | First examination report despatched |
Effective date: 20090424 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: SOIRON, MICHEL,THOMSON-CSF PROPRIETE INTELLECTUELL Inventor name: NAUDIN, PHILIPPE,THOMSON-CSF PROPRIETE INTELLECTUE Inventor name: CHEKROUN, CLAUDE,THOMSON-CSF PROPRIETE INTELLECTUE |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REF | Corresponds to: |
Ref document number: 60143177 Country of ref document: DE Date of ref document: 20101118 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20101006 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101006 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110207 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101006 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101006 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101006 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110107 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101006 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110117 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101006 |
|
26N | No opposition filed |
Effective date: 20110707 |
|
BERE | Be: lapsed |
Owner name: THALES Effective date: 20110331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110331 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 60143177 Country of ref document: DE Effective date: 20110707 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20110323 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20111130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110331 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110331 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111001 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110331 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 60143177 Country of ref document: DE Effective date: 20111001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110323 Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110323 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110323 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101006 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101006 |