EP1133000A1 - Réflecteur hyperfréquence actif pour antenne à balayage électronique - Google Patents

Réflecteur hyperfréquence actif pour antenne à balayage électronique Download PDF

Info

Publication number
EP1133000A1
EP1133000A1 EP00400610A EP00400610A EP1133000A1 EP 1133000 A1 EP1133000 A1 EP 1133000A1 EP 00400610 A EP00400610 A EP 00400610A EP 00400610 A EP00400610 A EP 00400610A EP 1133000 A1 EP1133000 A1 EP 1133000A1
Authority
EP
European Patent Office
Prior art keywords
circuit
reflector
microwave
conductive
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00400610A
Other languages
German (de)
English (en)
Other versions
EP1133000B1 (fr
Inventor
Claude Thomson-CSF Prop. Intellectuelle Chekroun
Michel Thomson-CSF Prop. Intellectuelle Dubois
Georges Thomson-CSF Prop. Intell. Guillaumot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA, Thomson CSF SA filed Critical Thales SA
Priority to DE2000606353 priority Critical patent/DE60006353T2/de
Priority to EP20000400610 priority patent/EP1133000B1/fr
Publication of EP1133000A1 publication Critical patent/EP1133000A1/fr
Application granted granted Critical
Publication of EP1133000B1 publication Critical patent/EP1133000B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/44Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
    • H01Q3/46Active lenses or reflecting arrays

Definitions

  • the subject of the invention is an active microwave reflector with electronic scanning, capable of being illuminated by a wave source microwave to form an antenna.
  • Electronic scanning antennas are commonly made up of a set of radiating elements emitting a wave microwave whose phase is electronically controllable, independently for each element or group of elements.
  • An antenna whose beam is capable of scanning space in two directions orthogonal (2D) requires a large number of radiating elements; their cost, that of the phase shifters and associated electronics generally makes this very expensive type of antenna.
  • the object of the invention is to allow the realization of an antenna with 2D electronic scanning at a cost which is significantly lower, at performance comparable to that of known antennas.
  • the antenna according to the invention consists of a source linearly polarized wave wave, illuminating an active reflector microwave.
  • the active reflector according to the invention comprises an assembly of elementary cells each comprising a microwave circuit phase shifter arranged in front of a conducting plane.
  • the phase shifter has conductive wires arranged on a support, the wires each comprising at at least two semiconductor elements with two states, diodes for example, and being connected to conductors enabling the state of the diodes independently of each other, each of the diodes can be in the on or blocked state; we thus obtain four possible states and geometric and electrical characteristics of the cell are such that at each of these states corresponds to a given phase shift value.
  • microwave decoupling means are provided which consist in particular in forming between two neighboring cells, guides waves whose walls are parallel to the polarization of the wave and whose the spacing is such that it prohibits the propagation of the wave.
  • FIG. 1 schematically illustrates the principle used by the antenna according to the invention.
  • the antenna is formed by a source S of microwave wave O 1 with linear polarization, parallel to a predefined direction OY, which illuminates an active reflector RA situated in a plane, for example XOY containing the direction OY.
  • the reflector RA is shown diagrammatically in FIG. 2, seen from above (in the XOY plane).
  • Each cell is capable of reflect the wave it receives with a controllable phase value electrically, according to a process described later.
  • Figure 3 is a schematic sectional view (in a YOZ plane normal to plane XOY) of an embodiment of the active reflector RA.
  • the reflector RA is composed of a microwave circuit CH, receiving the incident wave O 1 , for example substantially planar, and of a conductive plane CC, disposed substantially parallel to the circuit CH, at a predefined distance d from the latter.
  • the function of the CC conducting plane is to reflect waves microwave. It can be constituted by any known means, for example sufficiently tight parallel threads or wire mesh, or a continuous plane.
  • the CH circuit and the CC plane are preferably made on two sides of a dielectric support 32, of the printed circuit type.
  • the RA reflector also comprises, preferably on the same printed circuit 32, which is then a multilayer circuit, the electronic circuit (components and interconnections) necessary to control the values of phase.
  • a multilayer circuit whose face front 30 carries the CH circuit, the rear face 31 carries components 132, and the intermediate layers form the CC plane and by example two PI plans for interconnecting components 132 to the CH circuit.
  • FIG. 4 represents an embodiment of the circuit microwave CH.
  • the CH circuit consists of elementary phase shifters D made on the surface 30 and separated by decoupling zones. Each phase shifter D, associated with the corresponding part of the conductive plane CC, forms one of the elementary cells C in FIG. 2.
  • a D comprises one or more wires F (only one in FIG. 4), substantially parallel to the direction OY and each carrying at least two semiconductor elements with two states, D 1 and D 2 , for example diodes, for example connected in opposition, for example by their cathode.
  • the supply voltage of the diodes D 1 and D 2 is brought by control conductors which are substantially parallel to each other and perpendicular to the wires F, marked CD. There are at least three, or four as shown in the figure, so as to control the diodes independently of one another.
  • phase shifters D are surrounded by conductive zones arranged towards their periphery, marked 74 in a direction parallel to OX and 75 in a direction parallel to OY, used for decoupling as explained below.
  • the CD conductors are connected to the electronic circuit carried by the reflector, via metallized holes 40 (41) made at the level of the conductive zones 75 but of course electrically isolated of the latter (for example for an interruption 43 of the zone 75).
  • the surface of the various conductors for example made in the form of metallic deposits on the surface 30, is shown hatched although not seen in section.
  • the incident microwave wave is received on terminals B 1 and B 2 and meets four capacitors C O , C I1 , C I2 , C I3 in series , connected in parallel on terminals B 1 and B 2 .
  • the capacitance C O represents the linear decoupling capacity between the extreme CD conductors and the conductive zones 74;
  • the capacitance C I1 is the linear capacitance between the CD conductors surrounding the diode D 1 , the capacitance C I3 , the linear capacitance between the central CD conductors, and the capacitance C I2 , the equivalent of C I1 for the diode D2.
  • diode D 2 represented by its equivalent diagram.
  • the latter is analogous to that of diode D 1 , its components bearing an index 2.
  • the microwave output voltage is taken between terminals B 3 and B 4 , terminals of the capacitors C 0 , C I1 , C I2 and C I3 .
  • phase shifter D The operation of the phase shifter D is explained below by considering, in a first step, the behavior of such a circuit in the absence of the diode D 2 and the central CD conductors, which returns to the equivalent diagram of the figure 5 to delete the block D 2 as well as the capacities C I2 and C I3 .
  • B d1 ZC 0 . ⁇ . 1-LC I1 ⁇ 2 LC I1 ⁇ 2 + LC 0 ⁇ 2 -1
  • Z is the impedance of the incident wave
  • is the pulse corresponding to the center frequency of the operating band of the device.
  • phase shifter D can have four different values for its susceptance B D (denoted B D1 , B D2 , B D3 and B D4 ) according to the command (direct or reverse polarization) applied to each of the diodes D 1 and D 2 .
  • These values are a function of the parameters of the circuit of FIG. 5, that is to say of the values chosen for the geometric (dimensions, shapes and spacings of the different conductive surfaces) and electrical (electrical characteristics of the diodes) parameters of the phase shifter.
  • B CC -cotg 2 ⁇ d ⁇ where ⁇ is the wavelength corresponding to the pulsation ⁇ .
  • the susceptance B C can take four distinct values (denoted B C1 , B C2 , B C3 , and B C4 ) corresponding respectively to the four values of B D , the distance d representing an additional parameter for the determination of the values B C1 - B C4 .
  • the parameters of the circuit are chosen so that the zero (or substantially zero) susceptances are such that they correspond to the diodes polarized in the direct direction, but that can of course choose a symmetrical operation in which the parameters are determined to substantially cancel the susceptances B r ; more generally, it is not necessary that one of the susceptances B d or B r is zero, these values being determined so that the condition of equal distribution of the phase shifts d ⁇ 1 -d ⁇ 4 is fulfilled.
  • the active reflector according to the invention also comprises means of decoupling between C cells.
  • the microwave wave received by the cells is linearly polarized, parallel to the OY direction. It is desirable that this wave does not propagate from one cell to another, in the direction OX.
  • the invention provides for having a conductive zone 75 substantially in the form of a strip, produced by metallic deposition on the surface 30 for example, between the cells, parallel to the direction OY.
  • This strip 75 forms, with the reflective plane CC which is below, a space of the waveguide type whose width is the distance d .
  • the distance d is chosen so that it is less than ⁇ / 2, knowing that a wave whose polarization is parallel to the bands cannot propagate in such a space.
  • the reflector according to the invention operates in a certain frequency band and d is chosen so that it is less than the smallest of the wavelengths of the band.
  • d is chosen so that it is less than the smallest of the wavelengths of the band.
  • the strip 75 must have a width e, in the direction OX, sufficient for the effect described above to be significant.
  • the width e may be of the order of ⁇ / 15.
  • Figure 7 shows another embodiment of the circuit microwave CH, allowing to realize a bipolarization antenna.
  • phase-shifting circuit carried on the surface 30 of the substrate 32 now consists of two wires F 1 , F 2 , each carrying two semiconductor elements such as diodes (D 11 , D 21 , D 12 , D 22 ), connected for example to the same central conductor 71 itself connected by a metallized hole 72 to the electronic circuit for controlling the reflector.
  • Each of the diode wires acts here on the only waves whose polarization has a component which is parallel to them, according to the same process as that which was described previously, subject to taking into account the differences in the geometry of the conductors.

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

L'invention a pour objet un réflecteur hyperfréquence actif à balayage électronique, susceptible d'être illuminé par une source d'onde hyperfréquence pour former une antenne. Le réflecteur actif selon l'invention comporte un ensemble de cellules élémentaires comportant chacune un circuit hyperfréquence déphaseur (D) disposé devant un plan conducteur. Le déphaseur comporte des fils conducteurs (F) disposés sur un support (30), les fils comportant chacun au moins deux éléments semi-conducteurs (D1, D2) à deux états, diodes par exemple, et étant connectés à des conducteurs (CD) permettant de commander l'état des diodes indépendamment l'une de l'autre, chacune des diodes pouvant être dans l'état passant ou bloqué ; on obtient ainsi quatre états possibles et les caractéristiques géométriques et électriques de la cellule sont telles qu'à chacun de ces états correspond une valeur de déphasage donnée de l'onde hyperfréquence reçue. Enfin, entre les cellules sont prévus des moyens de découplage hyperfréquence (74, 75) qui consistent notamment à former entre deux cellules voisines, des guides d'ondes dont les parois sont parallèles à la polarisation de l'onde et dont l'espacement est tel qu'il interdit la propagation de l'onde. <IMAGE>

Description

L'invention a pour objet un réflecteur hyperfréquence actif à balayage électronique, susceptible d'être illuminé par une source d'onde hyperfréquence pour former une antenne.
Les antennes à balayage électronique sont couramment constituées d'un ensemble d'éléments rayonnants émettant une onde hyperfréquence dont la phase est électroniquement commandable, indépendamment pour chaque élément ou groupe d'éléments. Une antenne dont le faisceau est capable de balayer l'espace selon deux directions orthogonales (2D) nécessite un grand nombre d'éléments rayonnants ; leur coût, celui des déphaseurs et de l'électronique associés rend en général ce type d'antenne très onéreux.
Le but de l'invention est de permettre la réalisation d'une antenne à balayage électronique 2D pour un coût qui soit sensiblement inférieur, à performances comparables, à celui des antennes connues.
A cet effet, l'antenne selon l'invention est constituée d'une source d'onde hyperfréquence polarisée linéairement, éclairant un réflecteur actif hyperfréquence. Le réflecteur actif selon l'invention comporte un ensemble de cellules élémentaires comportant chacune un circuit hyperfréquence déphaseur disposé devant un plan conducteur. Le déphaseur comporte des fils conducteurs disposés sur un support, les fils comportant chacun au moins deux éléments semi-conducteurs à deux états, diodes par exemple, et étant connectés à des conducteurs permettant de commander l'état des diodes indépendamment l'une de l'autre, chacune des diodes pouvant être dans l'état passant ou bloqué ; on obtient ainsi quatre états possibles et les caractéristiques géométriques et électriques de la cellule sont telles qu'à chacun de ces états correspond une valeur de déphasage donnée. Enfin, entre les cellules sont prévus des moyens de découplage hyperfréquence qui consistent notamment à former entre deux cellules voisines, des guides d'ondes dont les parois sont parallèles à la polarisation de l'onde et dont l'espacement est tel qu'il interdit la propagation de l'onde.
D'autres objets, particularités et résultats de l'invention ressortiront de la description suivante, donnée à titre d'exemple et illustrée par les dessins annexés, qui représentent :
  • la figure 1, le schéma général de l'antenne selon l'invention ;
  • la figure 2, un schéma vu de dessus du réflecteur actif selon l'invention ;
  • la figure 3, le schéma vu en coupe d'un mode de réalisation du réflecteur actif ;
  • la figure 4, un mode de réalisation d'un circuit hyperfréquence utilisé dans le réflecteur actif ;
  • la figure 5, le circuit équivalent du circuit hyperfréquence précédent ;
  • la figure 6, un mode de réalisation pratique d'un élément de découplage des cellules entre elles ;
  • la figure 7, un autre mode de réalisation du circuit hyperfréquence, permettant de réaliser une antenne bi-polarisation.
Sur ces différentes figures, les mêmes références se rapportent aux mêmes éléments.
La figure 1 illustre schématiquement le principe utilisé par l'antenne selon l'invention.
L'antenne est formée par une source S d'onde hyperfréquence O1 à polarisation linéaire, parallèle à une direction OY prédéfinie, qui illumine un réflecteur actif RA situé dans un plan, par exemple XOY contenant la direction OY.
Le réflecteur RA est représenté schématiquement figure 2, vu de dessus (dans le plan XOY).
Il se compose d'un ensemble de cellules élémentaires C, disposées côte à côte et séparées par des zones 20, utilisées pour le découplage hyperfréquence des cellules. Chaque cellule est capable de réfléchir l'onde qu'elle reçoit avec une valeur de phase commandable électriquement, selon un processus décrit plus loin.
Ainsi, par commande des déphasages imprimés à l'onde reçue par chaque cellule, il est possible ainsi qu'il est connu de former un faisceau hyperfréquence O2 (figure 1) dans la direction souhaitée.
La figure 3 est une vue schématique en coupe (dans un plan YOZ normal au plan XOY) d'un mode de réalisation du réflecteur actif RA.
Le réflecteur RA se compose d'un circuit hyperfréquence CH, recevant l'onde incidente O1, par exemple sensiblement plan, et d'un plan conducteur CC, disposé sensiblement parallèlement au circuit CH, à une distance d prédéfinie de ce dernier.
Le plan conducteur CC a pour fonction de réfléchir les ondes hyperfréquences. Il peut être constitué par tout moyen connu, par exemple des fils parallèles ou un grillage, suffisamment serrés, ou un plan continu. Le circuit CH et le plan CC sont de préférence réalisés sur deux faces d'un support diélectrique 32, du type circuit imprimé.
Le réflecteur RA comporte encore, de préférence sur le même circuit imprimé 32, qui est alors un circuit multicouche, le circuit électronique (composants et interconnexions) nécessaire à la commande des valeurs de phase. Sur la figure, on a représenté un circuit multicouche dont la face avant 30 porte le circuit CH, la face arrière 31 porte des composants électroniques 132, et les couches intermédiaires forment le plan CC et par exemple deux plans PI d'interconnexion des composants 132 au circuit CH.
La figure 4 représente un mode de réalisation du circuit hyperfréquence CH.
Le circuit CH est constitué de déphaseurs élémentaires D réalisés sur la surface 30 et séparés par des zones de découplage. Chaque déphaseur D, associé avec la partie correspondante du plan conducteur CC, forme une des cellules élémentaires C de la figure 2.
Un D comporte un ou plusieurs fils F (un seul sur la figure 4), sensiblement parallèles à la direction OY et portant chacun au moins deux éléments semi-conducteurs à deux états, D1 et D2, par exemple des diodes, par exemple connectées en opposition, par exemple par leur cathode. La tension d'alimentation des diodes D1 et D2 est amenée par des conducteurs de commande sensiblement parallèles entre eux et perpendiculaires aux fils F, repérés CD. Ils sont au moins trois, ou quatre comme représenté sur la figure, de sorte à assurer la commande des diodes indépendamment l'une de l'autre.
Les déphaseurs D sont entourés de zones conductrices disposées vers leur périphérie, repérées 74 dans une direction parallèle à OX et 75 dans une direction parallèle à OY, utilisées pour le découplage comme expliqué plus loin.
Les conducteurs CD sont reliés au circuit électronique porté par le réflecteur, par l'intermédiaire de trous 40 métallisés (41) réalisés au niveau des zones conductrices 75 mais bien entendu électriquement isolés de ces dernières (par exemple pour une interruption 43 de la zone 75).
Pour la clarté des figures, la surface des différents conducteurs, par exemple réalisés sous forme de dépôts métalliques sur la surface 30, est représentée hachurée bien que non vue en coupe.
Pour décrire le fonctionnement d'une cellule, il est tout d'abord nécessaire de considérer le circuit équivalent d'un déphaseur D, tel que représenté figure 5.
L'onde hyperfréquence incidente, de polarisation (vecteur champ électrique) rectiligne et parallèle à OY et aux fils F, est reçue sur des bornes B1 et B2 et rencontre quatre capacités CO, CI1, CI2, CI3 en série, connectées en parallèle sur les bornes B1 et B2. La capacité CO représente la capacité linéique de découplage entre les conducteurs CD extrêmes et les zones conductrices 74 ; la capacité CI1 est la capacité linéique entre les conducteurs CD entourant la diode D1, la capacité CI3, la capacité linéique entre les conducteurs CD centraux, et la capacité CI2, l'équivalent de CI1 pour la diode D2.
Aux bornes de la capacité CI1 est connectée la diode D1, également représentée par son schéma équivalent. Ce dernier est constitué d'une inductance L1, inductance de la diode D1 compte tenu de son fil (F) de connexion, en série avec :
  • soit une capacité Ci1 (capacité de jonction de la diode) en série avec une résistance Ri1 (résistance inverse),
  • soit une résistance Rd1 (résistance directe de la diode), selon que la diode D1 est en sens inverse ou direct, ce qui est symbolisé par un interrupteur 21.
De la même manière, aux bornes de la capacité CI2 est connectée une diode D2 représentée par son schéma équivalent. Ce dernier est analogue à celui de la diode D1, ses composants portant un indice 2.
La tension de sortie hyperfréquence est prise entre des bornes B3 et B4, bornes des capacités C0, CI1, CI2 et CI3.
Le fonctionnement du déphaseur D est expliqué ci-après en considérant, dans une première étape, le comportement d'un tel circuit en l'absence de la diode D2 et des conducteurs CD centraux, ce qui revient sur le schéma équivalent de la figure 5 à supprimer le bloc D2 ainsi que les capacités CI2 et CI3.
Lorsque la diode D1 est polarisée en direct, la susceptance (Bd1) du circuit de la figure 5 (modifié) s'écrit : Bd1 = Z.C0.ω. 1-LCI1ω2 LCI1ω2+LC0ω2-1 où Z est l'impédance de l'onde incidente et ω est la pulsation correspondant à la fréquence centrale de la bande de fonctionnement du dispositif.
On choisit par exemple les paramètres du circuit pour avoir Bd1 ≅ 0, c'est-à-dire que, en négligeant sa conductance, le circuit soit adapté ou, en d'autres termes, qu'il soit transparent à l'onde hyperfréquence incidente, n'introduisant ni réflexion parasite, ni déphasage (dd1 = 0). Plus précisément, on choisit : LCI1ω2 = ce qui conduit à Bd1 ≅ 0, quelle que soit notamment la valeur de la capacité Ci1.
Lorsque la diode D1 est polarisée en inverse, la susceptance (Br2) du circuit s'écrit : BΓ1 = Z.C0.ω.1-LCI1ω2+(CI1/Ci)LCI1ω2+LC0ω2-1+C0+CI1 Ci
La capacité CI1 étant fixée précédemment, il apparaít qu'on peut ajuster la valeur de la susceptance Br1 par action sur la valeur de la capacité Ci, c'est-à-dire le choix de la diode D1.
Si maintenant, dans une deuxième étape, on prend en considération l'existence de la diode D2 et des conducteurs CD centraux, on voit que, par un raisonnement analogue, on obtient deux autres valeurs distincts pour la susceptance, selon que la diode D2 est polarisée en direct ou en inverse.
Il apparaít ainsi qu'un déphaseur D peut présenter quatre valeurs différentes pour sa susceptance BD (notées BD1, BD2, BD3 et BD4) selon la commande (polarisation directe ou inverse) appliquée à chacune des diodes D1 et D2. Ces valeurs sont fonction des paramètres du circuit de la figure 5, c'est-à-dire des valeurs choisies pour les paramètres géométriques (dimensions, formes et espacements des différentes surfaces conductrices) et électriques (caractéristiques électriques des diodes) du déphaseur.
Si, maintenant, on étudie le comportement de l'ensemble de la cellule, c'est-à-dire le déphaseur D et le plan conducteur CC, on doit tenir compte de la susceptance due au plan CC, ramenée dans le plan du déphaseur et notée BCC, qui s'écrit : Bcc = -cotg2πdλ où λ est la longueur d'onde correspondant à la pulsation ω.
La susceptance BC de la cellule est alors donnée par : BC = BD + BCC
II suit que la susceptance BC peut prendre quatre valeurs distinctes (notées BC1, BC2, BC3 ,et BC4) correspondant respectivement aux quatre valeurs de BD, la distance d représentant un paramètre supplémentaire pour la détermination des valeurs BC1 - BC4.
On sait par ailleurs que le déphasage (dϕ) imprimé par une admittance (Y) à une onde hyperfréquence est de la forme : dϕ = 2 arctg Y
Il apparaít ainsi que, en négligeant la partie réelle de l'admittance d'une cellule, on a : dϕ≅2 arctg BC    et qu'on obtient quatre valeurs possible (dϕ1 - dϕ4) de déphasage par cellule, selon la commande appliquée à chacune des diodes D1 et D2. Les différents paramètres sont choisis pour que les quatre valeurs dϕ1 - dϕ4 soient équiréparties, par exemple mais non obligatoirement : 0, 90°, 180°, 270°.
Il est à noter qu'on a décrit ci-dessus le cas dans lequel on choisit les paramètres du circuit pour que les susceptances nulles (ou sensiblement nulles) soient telles qu'elles correspondent aux diodes polarisées dans le sens direct, mais qu'on peut bien entendu choisir un fonctionnement symétrique dans lequel les paramètres sont déterminés pour annuler sensiblement les susceptances Br ; plus généralement, il n'est pas nécessaire que l'une des susceptances Bd ou Br soit nulle, ces valeurs étant déterminées pour que la condition d'équirépartition des déphasages dϕ1-dϕ 4 soit remplie.
Par ailleurs, dans le cas où une cellule comporte plus d'un fil F chargé de diodes, le fonctionnement et la détermination des paramètres sont du même type, sous réserve de modifier corrélativement le circuit équivalent et de tenir compte de l'interaction entre les fils à diodes.
Le réflecteur actif selon l'invention comporte encore des moyens de découplage entre les cellules C.
L'onde hyperfréquence reçue par les cellules est polarisée linéairement, parallèlement à la direction OY. Il est souhaitable que cette onde ne se propage pas d'une cellule à l'autre, dans la direction OX. Pour éviter une telle propagation, l'invention prévoit de disposer une zone conductrice 75 sensiblement en forme de bande, réalisée par dépôt métallique sur la surface 30 par exemple, entre les cellules, parallèlement à la direction OY. Cette bande 75 forme, avec le plan réflecteur CC qui est en dessous, un espace du type guide d'onde dont la largeur est la distance d. Selon l'invention, on choisit la distance d pour qu'elle soit inférieure à λ/2, sachant qu'une onde dont la polarisation est parallèle aux bandes ne peut pas se propager dans un tel espace. En pratique, le réflecteur selon l'invention fonctionne dans une certaine bande de fréquences et on choisit d pour qu'elle soit inférieure à la plus petite des longueurs d'onde de la bande. Bien entendu, il est nécessaire de tenir compte de cette contrainte lors de la détermination des différents paramètres pour la fixation des déphasages dϕ1 - dϕ4. En outre, la bande 75 doit avoir une largeur e, selon la direction OX, suffisante pour que l'effet décrit précédemment soit sensible. En pratique, la largeur e peut-être de l'ordre de λ/15.
Par ailleurs, il peut être créé de façon parasite dans une cellule, une onde dont la polarisation serait dirigée selon la direction OZ (normale aux directions OX et OY). Il est également souhaitable d'éviter sa propagation vers les cellules voisines.
Pour ce qui est des cellules voisines dans la direction OX, on peut utiliser comme représenté figure 4 les trous métallisés 40-41 de connexion des conducteurs CD au circuit électronique de commande. En effet, ceux-ci étant parallèles à la polarisation de l'onde parasite, ils sont équivalents à un plan conducteur formant blindage s'ils sont suffisamment rapprochés (à une distance l'un de l'autre très inférieure à la longueur d'onde de fonctionnement du réflecteur), donc nombreux, pour les longueurs d'onde de fonctionnement du réflecteur. Si cette condition n'est pas remplie, on peut bien entendu former des trous métallisés supplémentaires, n'ayant pas de fonction de connexion Il est à noter que ces trous métallisés 40-41 sont préférentiellement réalisés au niveau des bandes 75 afin de ne pas perturber le fonctionnement des cellules.
Enfin, pour ce qui est des cellules voisines dans la direction OY, on peut soit utiliser des trous métallisés analogues aux trous 40-41 mais alignés selon la direction OX, soit disposer une surface conductrice continue dans le plan XOZ, comme illustré sur la figure 6, où on a représenté des plaques 61 s'étendant parallèlement au plan XOZ à partir du plan CC (l'intersection de ces plaques 61 avec la surface 30 forme les zones 74 de la figure 4). Ces plaques peuvent avantageusement se prolonger au delà de la surface 30, sur une hauteur qui n'est pas critique, qui peut être par exemple inférieure à λ/10, égale à λ/10 ou à quelques multiples de λ/10, pour améliorer le découplage.
La figure 7 représente un autre mode de réalisation du circuit hyperfréquence CH, permettant de réaliser une antenne bipolarisation.
Sur cette figure, on a représenté en perspective une seule cellule C. Le circuit déphaseur porté sur la surface 30 du substrat 32 est maintenant constitué de deux fils F1, F2, portant chacun deux éléments semi-conducteurs tels que des diodes (D11, D21, D12, D22), reliés par exemple à un même conducteur central 71 lui-même relié par un trou métallisé 72 au circuit électronique de commande du réflecteur. Chacun des fils à diode agit ici sur les seules ondes dont la polarisation a une composante qui leur est parallèle, selon le même processus que celui qui a été décrit précédemment, sous réserve de tenir compte des différences dans la géométrie des conducteurs.

Claims (8)

  1. Réflecteur hyperfréquence actif, susceptible de recevoir une onde électromagnétique polarisée linéairement selon une première direction donnée (OY), caractérisé par le fait qu'il comporte un ensemble de cellules élémentaires (C) disposées l'une à côté de l'autre sur une surface,
    chaque cellule comportant un circuit hyperfréquence déphaseur (D) et un plan conducteur (CC) disposé sensiblement parallèlement au circuit hyperfréquence, à une distance (d) prédéfinie de ce dernier, inférieure à la moitié de la plus petite longueur d'onde de la bande de fonctionnement du réflecteur,
    le circuit déphaseur comportant un support diélectrique (32), au moins d'un fil électriquement conducteur (F) sensiblement parallèle à la direction donnée, disposé sur le support et portant au moins deux éléments semi-conducteurs (D1, D2) à deux états, le fil étant connecté à des conducteurs de commande (CD) des éléments semi-conducteurs, sensiblement normaux aux fils (F), les conducteurs de commande étant au moins au nombre de trois pour commander l'état des éléments semi-conducteurs indépendamment l'un de l'autre, et deux premières zones conductrices (74) disposées vers la périphérie de la cellule, sensiblement parallèlement aux conducteurs de commande,
    les caractéristiques géométriques et électriques de la cellule étant telles qu'à chacun des états des éléments semi-conducteurs correspond une valeur de déphasage donnée (dϕ1, dϕ2, dϕ3, dϕ4) de l'onde électromagnétique qui est réfléchie par la cellule,
    le réflecteur comportant en outre un circuit électronique de commande de l'état des éléments semi-conducteurs, relié aux conducteurs de commande, et des moyens de découplage hyperfréquence entre le cellules, ces moyens comportant deuxième zone conductrice (75) disposée entre chaque cellule, parallèlement à la direction donnée, qui forme avec le plan conducteur un espace guidé où l'onde ne peut pas se propager.
  2. Réflecteur selon la revendication 1, caractérisé par le fait que le support diélectrique (32) est du type circuit imprimé multicouche dont une première face (30) porte le circuit hyperfréquence, une première couche intermédiaire porte le plan conducteur et la deuxième face (31) porte des composants du circuit de commande.
  3. Réflecteur selon la revendication 2, caractérisé par le fait que le support diélectrique (32) comporte en outre au moins une deuxième couche intermédiaire (PI) portant des interconnexions du circuit de commande.
  4. Réflecteur selon l'une des revendications 2 ou 3, caractérisé par le fait qu'il comporte des trous métallisés (40, 41), réalisés dans le support diélectrique (32), dans une deuxième direction (OZ), sensiblement normale à la première direction, à une distance l'un de l'autre très inférieure à la longueur d'onde électromagnétique, certains au moins de ces trous métallisés assurant la liaison entre le circuit de commande et les conducteurs de commande.
  5. Réflecteur selon la revendication 4, caractérisé par le fait que les trous métallisés (40, 41) sont réalisés dans la deuxième zone conductrice (75) mais sans contact électrique avec cette dernière.
  6. Réflecteur selon l'une des revendications précédentes, caractérisé par le fait que les premières zones conductrices (74) se prolongent par des plans conducteurs (61) sensiblement perpendiculaires à la première direction (OY), s'étendant au moins entre le plan conducteur (CC) et le circuit déphaseur (D).
  7. Réflecteur selon l'une des revendications précédentes, caractérisé par le fait que les éléments semi-conducteurs sont des diodes.
  8. Antenne hyperfréquence à balayage électronique, caractérisée par le fait qu'elle comporte un réflecteur (RA) selon l'une des revendications précédentes et une source d'onde hyperfréquence(s), illuminant le réflecteur.
EP20000400610 2000-03-07 2000-03-07 Réflecteur hyperfréquence actif pour antenne à balayage électronique Expired - Lifetime EP1133000B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE2000606353 DE60006353T2 (de) 2000-03-07 2000-03-07 Aktiver Mikrowellenreflektor für Antenne mit elektronischer Strahlschwenkung
EP20000400610 EP1133000B1 (fr) 2000-03-07 2000-03-07 Réflecteur hyperfréquence actif pour antenne à balayage électronique

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20000400610 EP1133000B1 (fr) 2000-03-07 2000-03-07 Réflecteur hyperfréquence actif pour antenne à balayage électronique

Publications (2)

Publication Number Publication Date
EP1133000A1 true EP1133000A1 (fr) 2001-09-12
EP1133000B1 EP1133000B1 (fr) 2003-11-05

Family

ID=8173586

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20000400610 Expired - Lifetime EP1133000B1 (fr) 2000-03-07 2000-03-07 Réflecteur hyperfréquence actif pour antenne à balayage électronique

Country Status (2)

Country Link
EP (1) EP1133000B1 (fr)
DE (1) DE60006353T2 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4044360A (en) * 1975-12-19 1977-08-23 International Telephone And Telegraph Corporation Two-mode RF phase shifter particularly for phase scanner array
EP0595726A1 (fr) * 1992-10-30 1994-05-04 Thomson-Csf Déphaseur d'ondes électromagnétiques et application à une antenne à balayage électronique
FR2708808A1 (fr) * 1993-08-06 1995-02-10 Thomson Csf Radant Panneau déphaseur à quatre états de phase et son application à une lentille hyperfréquence et à une antenne à balayage électronique.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4044360A (en) * 1975-12-19 1977-08-23 International Telephone And Telegraph Corporation Two-mode RF phase shifter particularly for phase scanner array
EP0595726A1 (fr) * 1992-10-30 1994-05-04 Thomson-Csf Déphaseur d'ondes électromagnétiques et application à une antenne à balayage électronique
FR2708808A1 (fr) * 1993-08-06 1995-02-10 Thomson Csf Radant Panneau déphaseur à quatre états de phase et son application à une lentille hyperfréquence et à une antenne à balayage électronique.

Also Published As

Publication number Publication date
EP1133000B1 (fr) 2003-11-05
DE60006353D1 (de) 2003-12-11
DE60006353T2 (de) 2004-10-14

Similar Documents

Publication Publication Date Title
EP0013222B1 (fr) Déphaseur hyperfréquence à diodes et antenne à balayage électronique comportant un tel déphaseur
FR2725077A1 (fr) Lentille hyperfrequence bipolarisation et son application a une antenne a balayage electronique
FR2540294A1 (fr) Filtre hyperfrequence a resonateurs lineaires
EP0145597A2 (fr) Antenne périodique plane
EP0667984B1 (fr) Antenne fil-plaque monopolaire
EP1234356B1 (fr) Reflecteur hyperfrequence actif a balayage electronique
EP0519772B1 (fr) Antenne hyperfréquence à balayage optoélectronique
EP1305846B1 (fr) Reflecteur hyperfrequence actif a bipolarisation, notamment pour antenne a balayage electronique
EP0435739B1 (fr) Source de rayonnement micro-onde magique et son application à une antenne à balayage électronique
EP0005096B1 (fr) Source d&#39;ondes millimétriques
FR2786610A1 (fr) Reflecteur hyperfrequence actif pour antenne a balayage electronique
EP1157444B1 (fr) Antenne a balayage electronique bi-bande, a reflecteur hyperfrequence actif
EP1133000B1 (fr) Réflecteur hyperfréquence actif pour antenne à balayage électronique
EP0335788A1 (fr) Circuit déphaseur hyperfréquence
EP1139484B1 (fr) Déphaseur hyperfréquence, et antenne à balayage électronique comportant de tels déphaseurs
FR2714768A1 (fr) Dispositif de balayage électronique à lentille active et source illuminatrice intégrée.
FR2738398A1 (fr) Panneau dephaseur a diodes et son application a une lentille hyperfrequence et une antenne a balayage electronique
FR2747842A1 (fr) Lentille hyperfrequence multibande et son application a une antenne a balayage electronique
FR2655482A1 (fr) Dispositif d&#39;absorption d&#39;ondes electromagnetiques, spatialement selectif, pour antenne hyperfrequence.
FR2668304A1 (fr) Dephaseur reciproque en guide dielectrique a ferrite.
EP0156684A1 (fr) Elément rayonnant des ondes électromagnétiques, et son application à une antenne à balayage électronique
EP0380397B1 (fr) Modulateur équilibré pour signal électromagnétique hyperfréquence de puissance
FR2519475A1 (fr) Dispositif selectif accordable a ondes magnetostatiques de volume
FR2675638A1 (fr) Dispositif resonateur dielectrique.
FR2548846A1 (fr) Circuit-resonateur accordable d&#39;une maniere discrete sur une pluralite de frequences d&#39;accord et filtre comportant au moins un tel circuit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THALES

17P Request for examination filed

Effective date: 20020221

AKX Designation fees paid

Free format text: DE FR GB IT NL SE

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RIC1 Information provided on ipc code assigned before grant

Ipc: 7H 01Q 3/46 A

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 60006353

Country of ref document: DE

Date of ref document: 20031211

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040224

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040806

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120317

Year of fee payment: 13

Ref country code: SE

Payment date: 20120313

Year of fee payment: 13

Ref country code: GB

Payment date: 20120307

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120404

Year of fee payment: 13

Ref country code: NL

Payment date: 20120321

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130325

Year of fee payment: 14

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20131001

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130308

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130307

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60006353

Country of ref document: DE

Effective date: 20131001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130307

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130307

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131001

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20141128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140331