EP1139484A1 - Déphaseur hyperfréquence, et antenne à balayage électronique comportant de tels déphaseurs - Google Patents
Déphaseur hyperfréquence, et antenne à balayage électronique comportant de tels déphaseurs Download PDFInfo
- Publication number
- EP1139484A1 EP1139484A1 EP01400769A EP01400769A EP1139484A1 EP 1139484 A1 EP1139484 A1 EP 1139484A1 EP 01400769 A EP01400769 A EP 01400769A EP 01400769 A EP01400769 A EP 01400769A EP 1139484 A1 EP1139484 A1 EP 1139484A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- phase
- phase shift
- shifters
- phase shifter
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/18—Phase-shifters
- H01P1/185—Phase-shifters using a diode or a gas filled discharge tube
Definitions
- the present invention relates to a phase shifter. It applies especially for an electronic scanning antenna.
- the invention applies also in particular for low-cost electronic scanning antennas, used both in the radar field, such as for example traffic management airports, than in the telecommunications sector, for example civilian examples.
- Passive electronically scanned antennas use phase shifters to ensure the mobility of their beam. These phase shifters can act directly on the radiated wave constituting what is known to call a microwave lens. These phase shifters can still act within an energy distribution device. Amplification of the wave at send is centralized then the amplified wave is distributed to the phase shifters.
- An antenna plan "includes a linear network of radiating sources each in series with a phase shifter. The direction of the beam is then controlled electronically in a single plane, comprising the radiating sources and the direction of radiation. To point a beam in one direction data ⁇ , each phase shifter is controlled to create a wave plane perpendicular to the direction of radiation ⁇ . To get a scan "Two planes", it is necessary to extend the linear network of sources radiant in a second direction.
- phase shifters are elementary components which combine generally heterogeneous technologies to perform the functions microwave and control.
- the microwave functions are in particular provided by waveguides or ceramic substrates.
- the control functions are provided in particular by circuits logic and power circuits. These different functions are dissociated and require interconnections.
- the command of a group of phase shifters also require interconnections. This results in a cost high realization of these phase shifters and therefore scanning antennas which include them, and all the more so as the number of phase shifters is important.
- An object of the invention is in particular to allow the realization a low cost electronic scanning antenna.
- the invention has subject of a microwave phase shifter, comprising at least one coupler 3db in waveguide and a pair of phase shift cells, the incident wave E entering a first input of the coupler to split into two waves E1, E2, these two waves each reflecting on a cell elementary with identical phases and recomposing into a wave resulting phase shifted exiting through the output of the coupler juxtaposed with the first entry.
- an elementary phase shift cell comprises a phase shift circuit and a conductive plane disposed substantially parallel to the phase shift circuit, the phase shift circuit comprising at least two half-phase shifters, the incident waves E1 , E2 being linearly polarized in a first given direction Oy.
- a half-phase shifter comprises at least one dielectric support, at least two electrically conductive wires substantially parallel to the given direction Oy, arranged on the support and each carrying at least one semi-element two-state conductor D1, D2, each wire being connected to control conductors of the semiconductor elements, these conductors being substantially normal to the wires, and two conductive zones arranged towards the periphery of the cell, substantially parallel to the control conductors.
- the control conductors are at least three in number in each half-phase shifter and are electrically isolated from one half-phase shifter to the other to control the state of all the semiconductor elements independently of one another. .
- the geometric and electrical characteristics of the half-phase shifters being such that to each of the states of the semiconductor elements corresponds a given phase shift value (d ⁇ 1 , ... d ⁇ 8 ) of the electromagnetic wave which is reflected by the cell, the state of the semiconductor elements being controlled by an electronic circuit.
- the dielectric support can advantageously carry the circuit semiconductor control electronics and their interconnections, these semiconductors being for example diodes.
- the invention also relates to a microwave antenna with electronic scanning comprising phase shifters as defined previously.
- the phase shifters are distributed in at least one block, a block comprising a set of pairs of phase shift cells made on the same piece and a set of couplers forming a single piece.
- This allows in particular collective tests of phase shifters. In in the event of a phase shift block failure, it can easily be replaced by another.
- the antenna test and maintenance are thus notably simplified, and increased reliability.
- FIG. 1 illustrates a block diagram of a scanning antenna electronic "a plan".
- This antenna has a linear array of phase shifters where the microwave wave is amplified by a transmitter centralized.
- the network includes associated radiating sources 1 each with a phase shifter 23.
- Each phase shifter 23 is for example powered by distribution means, i.e. it receives the wave microwave provided by these distribution means 4 from the wave microwave 5 supplied by the transmitter. On reception, the received wave is transmitted to the reception circuits by the distribution means 4.
- Each phase shifter is controlled to create a wave plane 6 perpendicular to the direction of radiation ⁇ , this angle defining the pointing direction of the antenna beam in the source plane radiant 1.
- FIGS 2a and 2b illustrate a possible embodiment of an antenna according to the invention. More specifically, these figures illustrate the production of phase shifters 23 according to the invention. In this embodiment, the cost is reduced and the implementation of the phase shifters, and more generally of the antenna, is considerably simplified.
- Figure 2b illustrates part 23 of Figure 2a, this part representing in fact an elementary phase shifter according to the invention.
- Figure 2b illustrates in particular a 3db coupler in waveguide 24 associated with a pair of phase shift cells 25, 26.
- the elementary phase shifter 23 is therefore produced by associating the 3dB coupler 24 with a pair of cells 25, 26 of the phase shift device 21 operating in reflection.
- the wave incident E passing through a first input 27 of the coupler 24, is distributed in two incident waves E1, E2 towards the two phase shift cells 25, 26. These two cells reflect the incident waves with identical phase shifts.
- the reflected waves enter the coupler to recompose between them and the resulting wave S out of phase with respect to E found on output 28 of the coupler, juxtaposed with the first input 27.
- the phase shift device consisting of two cells 25, 26, is equivalent to two electrically controlled variable short circuits. This device is produced for example on the support 21 comprising semiconductors in look of the coupler to ensure the phase shift.
- the circuits of control 29 of these semiconductors are for example installed on this same support, on its face opposite to the semiconductors, the support multilayer then ensuring the interconnections between the circuits of control and semiconductors. These are for example diodes.
- the incident microwave wave E entering the coupler is by example from the distribution circuit 4.
- Figure 2a shows an example of a phase shift device 21 where the pairs of elementary cells 25, 26 are made on the same part, for example of the printed circuit type.
- the couplers 24 associated with each of these pairs can form a single piece 22 as illustrated this same figure 2a.
- This part 22 is then attached to the device for phase shift 21.
- the guides constituting the couplers are for example machined in the same metal part.
- FIG. 2b it is of course possible to make a phase shifter according to the invention which is not made so collective, as illustrated for example by FIG. 2b.
- the realization of couplers, individual or collective can in particular call upon molding, injection or metallization techniques for a part plastic that can help cut costs.
- FIG 3a shows schematically a part of the device phase shift represented in the Oxy plane, by a top view, along F.
- This phase shift device comprises an alignment of pairs of cells of phase shifts 25, 26 forming a linear network of pairs of cells of phase shift. It should be noted that other forms of alignment are possible, especially on a circle to form a cylindrical antenna, like the will show Figures 7 and 8 below.
- a pair forms an elementary phase shifter 23 as described relative to FIG. 1.
- the phase shift cells 25, 26 are separated by zones 20, used in particular for microwave decoupling of these cells. These latter reflect and phase shift the waves they receive.
- An elementary cell 25, 26 has a circuit phase shift microwave arranged in front of a conductive plane.
- FIG. 3b is a schematic sectional view in the Oxz plane of a possible embodiment of the phase shift device.
- the device phase shift consists of a microwave circuit 31 distributed in the elementary cells 25, 26 and a conducting plane 32, arranged substantially parallel to the microwave circuit 31, at a distance d predefined. This microwave circuit receives the incident waves E1 and E2 from coupler 24.
- the function of the conducting plane 32 is in particular to reflect the microwave waves. It can be constituted by any known means, by example of parallel wires or a sufficiently tight mesh, or a plane continued.
- the microwave circuit 31 and the conductive plane 32 are preferably made on two sides of a dielectric support 33, for example of the printed circuit type.
- the assembly 21 also comprises, preferably on the same printed circuit 33, which is then a multilayer circuit, the circuit electronics required for controlling phase values.
- On the Figure 3b there is shown a multilayer circuit whose front face 34 carries the microwave circuit 31, the rear face 35 carries components 36 of the aforementioned electronic control circuit, and the intermediate layers form the conducting plane 32 and for example two planes 37 of interconnections of the components 36 to the microwave circuit 31.
- FIG. 4 illustrates an elementary phase shift circuit 10 included in the microwave circuit 31.
- Each phase shift circuit is separate another by a decoupling zone 20 comprising for example a conductive strip 48 parallel to the direction Oy and a conductive strip 49 parallel to the direction Ox. It therefore comprises for example at its periphery two conductive strips 48 in the direction Oy and two strips conductive in the direction Ox.
- Each phase shift circuit, associated with the corresponding part of the conducting plane 32 forms a cell phase shift 25, 26.
- a phase shift circuit 10 comprises several conductive wires 42 substantially parallel to direction Oy and each carrying a semiconductor element D1, D2 with two states, for example a diode.
- the circuit of phase shift also includes conductive areas connecting the diodes to reference potentials and control circuits. More in particular, a phase shift circuit consists of two circuits 50 hereinafter called half-phase shifter. We therefore first describe half a phase shifter.
- a half-phase shifter 50 includes a dielectric support 33, two wires 42 each carrying a diode D1, D2.
- the two wires are connected to the potential mass, or any other reference potential, through a conductive line 43.
- This line 43 is for example of the microstrip type produced by metallic deposition on the front face of the dielectric support 33, by example by a screen printing technique.
- the diodes D1 and D2 are thus wired in opposition so that for example their anodes are connected to the ground potential by this line 43.
- the latter is by example connected to a conductive strip 48 of the decoupling means 20.
- the supply voltage of diodes D1 and D2 is brought by control conductors 44.
- the anode of the diodes being connected to the potential ground, the control conductors are then connected to the cathode of diodes.
- the supply voltage brought by these conductors is by example of the order of -15 volts.
- the control conductors are controlled so as to present at least two voltage states. In one first state, their voltage is for example at the supply voltage, which makes the diode passable, or in other words polarized live. In one second state, their voltage is such that the diode is blocked, or in others reverse polarized terms.
- the controls of the two conductors of control 44, 45 are independent of each other so as to ensure the diode controls independently of each other.
- the drivers 44, 45 and the grounded conductor 43 are substantially parallel to the direction Ox and therefore perpendicular to the wires 42.
- the ground conductor 43 is common to the two wires, in particular for space and material savings, we could however provide a specific conductor for each wire. We could also plan to not directly connect these conductors directly to a potential of reference but via a control circuit.
- the control conductors 44, 45 are connected to the circuit control electronics carried by the reflector, through holes metallized 46 produced for example at the level of the decoupling zone 20, especially for reasons of space, but also not to disrupt the functioning of elementary cells.
- Metallized holes 46 are of course electrically isolated from the conductive strips in the area decoupling. For this purpose, provision is made for an interruption of the strip 20 around of the ends of the control conductors directly connected to the holes metallized 46.
- a half-phase shifter 50 can have four different values for its susceptance B D , these values being denoted B D1 , B D2 , B D3 and B D4 , according to the command (direct or reverse bias) applied to each of the diodes D1, D2.
- the values of the susceptances B D1 , B D2 , B D3 and B D4 are a function of the parameters of the circuit, that is to say of the values chosen for the geometric parameters, in particular as regards the dimensions, shapes and spacings of the different conductive 43, 44, 45 and electrical surfaces of the phase shifter, in particular as regards the electrical characteristics of the diodes.
- B CC -cotg 2 ⁇ d ⁇ where ⁇ is the wavelength corresponding to the previous pulsation ⁇ .
- the susceptance B C can take four distinct values (denoted B C1 , B C2 , B C3 , and B C4 ) corresponding respectively to the four values of B D , the distance d representing an additional parameter for the determination of the values B C1 - B C4 .
- phase shifter The geometric and electrical parameters of the phase shifter are for example defined to obtain eight equally spaced phase shifts between 0 ° and 360 °.
- susceptance values B C and therefore susceptance values B D are defined according to relations (1) and (2), the distance d being known.
- the geometric and electrical parameters of the phase shifter can then be obtained by conventional simulation means.
- phase shift circuit as illustrated in FIG. 4 is simple to implement, it makes it possible to obtain eight phase shifts by playing simply on geometric parameters of conductors and on the choice of diodes.
- the phase shift device 21 which comprises a network of pairs phase shift cells can therefore be obtained economically.
- the printed circuit supporting microwave circuits and circuits control electronics is also not very thick.
- the phase shift device includes decoupling means 20 between the cells 25, 26.
- the microwave wave E received by the cells is linearly polarized, parallel to the direction Oy. It is desirable that this wave does not does not spread from one cell to another, in the direction Ox.
- the decoupling means comprise at least the conductive zone 48. Provision is therefore made for this conductive zone 48 to be substantially in the form of a strip, produced by metallic deposition on the surface 34 for example, between the cells, parallel to the direction Oy.
- This strip 48 forms, with the reflective plane 32 which is below, a space of the waveguide type whose width is the distance d.
- the reflector according to the invention operates in a certain frequency band and we choose d so that it is less than half of the smallest of the wavelengths of the band.
- the strip 48 must have a width, in the direction Ox, sufficient for the effect described above to be appreciable. In practice, the width can be of the order of ⁇ / 5.
- the metallized connection holes 46 control conductors to electronic circuits. Indeed, these being parallel to the polarization of the stray wave, they are equivalent to a conductive plane forming shielding if they are sufficiently close together (at a distance from each other much less than the operating wavelength of the reflector), therefore numerous, for the operating wavelengths of the reflector. If this condition is not met, holes can be formed additional metallized, having no connection function. He is at note that the metallic connection holes 46 are preferably made at the level of the bands 48 so as not to disturb the operation of the cells. This arrangement also provides a gain in size.
- metallized holes 40 similar to the holes of connection 46 but aligned in the Ox direction opening into the strip conductive 49.
- These metallized holes 40 like the metallized holes of connection 46 are made in a direction Oz substantially perpendicular to the Oxy plane.
- FIG. 5 illustrates a phase shifter according to the invention making it possible to control the phase shifts on 4 bits, therefore on an additional bit by compared to the circuit illustrated in Figure 4.
- the phase shift circuit includes always two half-phase shifters 50 produced as described above. However, the two half-phase shifters are no longer separated by a line 47 isolating the diode controls, but by two conductive zones 71, 72 connected by a diode D3, or any other two-state semiconductor. These two zones 71, 72 are for example produced by metallic deposition on the front face 34 of the dielectric. These areas form conductors of control of the diode D3. For this purpose, a conductive zone 71 is by example connected to electronic control circuits by a metallized hole 46.
- this zone 71 is located at a supply potential, for example -15 volts or at another potential, for example the mass potential.
- the other conductive area 72 is for example related to ground potential. For this purpose, it is for example linked to the conductive strip 48 parallel to the direction Oy of the means of decoupling 20.
- the phase shift circuit is analogous to that of FIG. 4, it presents in this state eight possible phase shifts. It is of course necessary to redefine its geometric and electrical parameters due to the introduction of additional areas 71, 72.
- the conductive area 71 has a potential which makes the diode D3 passable, that is to say in direct polarization, the electrical parameters of the phase shift are modified compared to the previous state. In particular, the capacity formed of the space between the two conductive areas 71, 72 becomes short-circuited by diodes D3.
- the eight possible susceptibilities of the previous state, controlled on three bits, are then modified by setting in conduction of the diode D3.
- the eight new susceptances as well obtained allow eight additional phase shifts to be obtained. In total sixteen phase shifts are therefore possible.
- the geometric characteristics and electrics of the two half-phase shifters 50 but also of the zones additional conductors 71, 72 and their diode D3 must be defined so as to obtain the sixteen phase shifts desired for each of the states diodes.
- Figures 4 and 5 show possible embodiments of the phase shift device 21, and more particularly of the phase shift 25, 26. Other embodiments on multilayer support are possible.
- the phase shift cells 25, 26 of the same pair, associated with a coupler 24, produce the same phase shift. They can therefore for example be ordered by the same circuit.
- FIG. 6 illustrates an exemplary embodiment of an antenna according to the invention comprising phase shifters as described above.
- the antenna includes a linear network of phase shifters ensuring for example an electronic azimuth scan, for example in the context of a air traffic monitoring application.
- This antenna has means 4 for distributing energy, and more particularly of the wave microwave supplied by a power transmitter. It includes radiating elements 1.
- a phase shift block 81 itself composed of phase shifters according to the invention.
- This phase shift block is for example that illustrated by FIG. 2a.
- the pairs of phase shift cells 25, 26 are produced on the same support dielectric.
- the dielectric support 33 is then common to all cells.
- the phase shift block therefore comprises a set of couplers 22 placed on a phase shift device 21 as illustrated in FIGS.
- the phase shift block 81 is for example consisting of several assemblies according to Figure 2a arranged end to end end.
- a set 21, 22 includes several phase shifters, for example 16 as illustrated in this figure 2a.
- a phase shift block comprising 5 sets 21, 22 then has 80 phase shifters.
- Connections microwave are such that the outputs of the distribution means 4 are connected to the inputs 27 of the couplers 24, which also form the inputs of the phase shifters.
- the outputs of the latter which are the outputs 28 couplers are connected to the radiating elements.
- Waveguides 82, 83 conduct the microwave wave from the transmitter to the distribution 4, and likewise conduct the received wave to the circuits of reception.
- a first guide 82 corresponds for example to the sum channel of antenna diagram and a second guide 83 corresponds for example to the difference path, thus allowing deviation measurements.
- the sources radiant are arranged linearly, that is to say in a straight line. he it is possible to provide examples of implementation where the sources radiant, and also the phase shifters are not aligned in a straight line. Other embodiments are proposed in FIGS. 7 and 8.
- Figure 7 shows, in a partial perspective view, a exemplary embodiment where the phase shift block 81 is cylindrical. It is so in particular composed of elementary phase shifters arranged side by side on a cylindrical surface, in particular the phase shift device 21 a in this case a cylindrical shape.
- Figure 8 presents, by a view partial, an embodiment where the phase shift block 81 is shaped ring.
- the elementary phase shifters are then arranged in a ring, the phase shift device, for example in this case in the form of a ring. They are on this figure seen from above, that is to say for example on the side of the entry of the microwave wave.
- the transmitter which feeds the distribution circuits 4 can be tube or solid state. The technological choice may depend in particular on powers brought into play.
- An antenna according to the invention produced for example according to the Figure 6 is economical and very compact. It is particularly economical due to the considerable simplification of connections and the reduction the number of construction and assembly operations. She is too economical due to simplified testing, tuning and maintenance. In particular, the phase shifters be tested collectively, hence time saving. In the event of a problem, replacing a phase shifter with another is very easy. In particular, if a phase shifter of a set 21, 22 is faulty, it is very easy to replace the assembly comprising this phase shifter failing by another set of phase shifters. Maintenance antenna is thus simplified.
- the invention is particularly well suited for an antenna with "one plan” electronic scanning. It can nevertheless be applied for a “two-plane” electronic scanning antenna.
- the support of the phase shift device 21 contains for example several rows of pairs of phase shift cells 25, 26 instead of one alone, in particular to obtain a plane network of phase shifters.
- Others means for supplying couplers 24 are possible.
- the power supply can be of the so-called “Rattle Snake” type where the phase shifters elementary elements 23 are arranged on a serpentine line. In this type the electric field is perpendicular to the field by feed by guide, that is to say parallel to the direction Ox of FIG. 4 instead the direction Oy.
- the supply of the couplers 24 can also be done by active sources, the two field directions being possible.
- the antenna includes active microwave sources, a active elementary source is for example associated with each coupler 24.
- phase shift device 21 of the printed circuit type can be replaced by ferrite circuits or any other type of phase shift circuit.
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Waveguide Switches, Polarizers, And Phase Shifters (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
Description
- la figure 1, par un synoptique, la structure d'une antenne à balayage électronique alimentée par un émetteur de puissance centralisé ;
- les figures 2a et 2b, des exemples de réalisation de déphaseurs selon l'invention ;
- les figures 3a et 3b, la structure d'un circuit imprimé comportant des déphaseurs selon l'invention et leurs commandes associées ;
- la figure 4, un premier exemple de réalisation d'une cellule élémentaire d'un déphaseur selon l'invention ;
- la figure 5, un deuxième exemple de réalisation d'une cellule élémentaire d'un déphaseur selon l'invention ;
- la figure 6, un exemple de réalisation d'une antenne selon l'invention ;
- les figures 7 et 8, des exemples de réalisation de blocs de déphasage.
Claims (15)
- Déphaseur hyperfréquence, caractérisé en ce qu'il comporte au moins un coupleur 3db en guide d'onde (24) et une paire de cellules de déphasage (25, 26), l'onde incidente (E) entrant dans une première entrée (27) du coupleur pour se répartir en deux ondes (E1, E2), ces deux ondes se réfléchissant chacune sur une cellule élémentaire (25, 26) avec des phases identiques et se recomposant en une onde résultante (S) déphasée sortant par la sortie (28) du coupleur juxtaposée à la première entrée (27).
- Déphaseur selon la revendication 1, caractérisé en ce que, une onde incidente (E1, E2) étant polarisée linéairement selon une première direction donnée (Oy), une cellule de déphasage (25, 26) comporte un circuit de déphasage (10) et un plan conducteur (32) disposé sensiblement parallèle au circuit de déphasage, le circuit de déphasage (10) comportant au moins deux demi-déphaseurs (50),un demi-déphaseur (50) comportant au moins un support diélectrique (33), au moins deux fils électriquement conducteurs (42) sensiblement parallèles à la direction donnée (Oy), disposés sur le support et portant au moins chacun un élément semi-conducteur à deux états (D1, D2), chaque fil étant connecté à des conducteurs de commande (43, 44, 45) des éléments semi-conducteurs, ces conducteurs étant sensiblement normaux aux fils, et deux zones conductrices (49) disposées vers la périphérie de la cellule, sensiblement parallèlement aux conducteurs de commande,les conducteurs de commande étant au moins au nombre de trois dans chaque demi-déphaseur et étant isolés électriquement d'un demi-déphaseur à l'autre pour commander l'état de tous les éléments semi-conducteurs indépendamment l'un de l'autre,les caractéristiques géométriques et électriques des demi-déphaseurs étant telles qu'à chacun des états des éléments semi-conducteurs correspond une valeur de déphasage donnée (dϕ1, ...dϕ8) de l'onde électromagnétique qui est réfléchie par la cellule, l'état des éléments semi-conducteurs étant commandé par un circuit électronique (36).
- Déphaseur selon la revendication 2, caractérisé en ce que les deux demi-déphaseurs (50) sont séparés par deux zones conductrices (71, 72) reliées par un élément semi-conducteur à deux états (D3), au moins une des zones (71) étant reliée au circuit de commande électronique (36) pour commander l'état du semi-conducteur, les caractéristiques géométriques et électriques des demi-déphaseurs et des zones conductrices (71, 72) et de leurs éléments semi-conducteurs étant telles qu'à chacun des états des éléments semi-conducteurs correspond une valeur de déphasage donnée (dϕ1, ...dϕ16) de l'onde électromagnétique qui est réfléchie par la cellule.
- Déphaseur selon l'une quelconque des revendications précédentes, caractérisé en ce qu'une bande conductrice (48) est disposée entre chaque cellule, parallèlement à la direction donnée (Oy), qui forme avec le plan conducteur un espace guidé où l'onde ne peut pas se propager.
- Déphaseur selon l'une quelconque des revendications 2 à 4, caractérisé en ce que le support diélectrique (33) est du type circuit imprimé multicouche dont une première face (34) porte le circuit hyperfréquence, une première couche intermédiaire porte le plan conducteur (32) et la deuxième face (35) porte des composants du circuit de commande.
- Déphaseur selon la revendication 5, caractérisé en ce que le support diélectrique (33) comporte en outre au moins une deuxième couche intermédiaire (37) portant des interconnexions du circuit de commande.
- Déphaseur selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte des trous métallisés (40, 46) réalisés dans le support diélectrique (33), dans la direction (Oz) perpendiculaire au plan (Oxy) du circuit de déphasage, à une distance l'un de l'autre très inférieure à la longueur d'onde électromagnétique, certains au moins de ces trous métallisés assurant la liaison entre le circuit de commande et les conducteurs de commande.
- Déphaseur selon l'une quelconque des revendications précédentes, caractérisé en ce que les éléments semi-conducteurs sont des diodes.
- Antenne hyperfréquence à balayage électronique, caractérisée en ce qu'elle comporte au moins des éléments rayonnants (1), des déphaseurs (23) selon l'une quelconque des revendications précédentes et des moyens (4, 5) d'alimentation de ces déphaseurs, les entrées des coupleurs (24) formant les entrées des déphaseurs étant reliées aux moyens d'alimentation (4), les sorties des coupleurs étant reliées aux éléments rayonnants.
- Antenne selon la revendication 9, caractérisée en ce que les déphaseurs sont répartis en au moins un bloc (81), un bloc comportant un ensemble (21) de paires de cellules de déphasage (25, 26) réalisées sur une même pièce et un ensemble (22) de coupleurs (24) formant une seule pièce.
- Antenne selon l'une quelconque des revendications 9 ou 10, caractérisée en ce que les déphaseurs (23) sont répartis sur un cylindre.
- Antenne selon l'une quelconque des revendications 9 ou 10, caractérisée en ce que les déphaseurs (23) sont répartis sur un anneau.
- Antenne selon l'une quelconque des revendications 9 ou 10, caractérisée en ce qu'elle comporte un réseau plan de déphaseurs (23).
- Antenne selon l'une quelconque des revendications 9 à 13, caractérisée en ce que les moyens d'alimentation des déphaseurs (23) comportent des moyens de répartition (4) d'une onde hyperfréquence (5) fournie par un émetteur centralisé.
- Antenne selon l'une quelconque des revendications 9 à 13, caractérisée en ce qu'elle comporte des sources hyperfréquence actives alimentant les déphaseurs (23).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0004140 | 2000-03-31 | ||
FR0004140A FR2807213B1 (fr) | 2000-03-31 | 2000-03-31 | Dephaseur hyperfrequence, et antenne a balayage electronique comportant de tels dephaseurs |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1139484A1 true EP1139484A1 (fr) | 2001-10-04 |
EP1139484B1 EP1139484B1 (fr) | 2010-10-06 |
Family
ID=8848735
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01400769A Expired - Lifetime EP1139484B1 (fr) | 2000-03-31 | 2001-03-23 | Déphaseur hyperfréquence, et antenne à balayage électronique comportant de tels déphaseurs |
Country Status (5)
Country | Link |
---|---|
US (1) | US6429822B1 (fr) |
EP (1) | EP1139484B1 (fr) |
AT (1) | ATE484087T1 (fr) |
DE (1) | DE60143177D1 (fr) |
FR (1) | FR2807213B1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2901921A1 (fr) * | 2006-06-06 | 2007-12-07 | Thales Sa | Antenne cylindrique a balayage electronique |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6900710B2 (en) * | 2001-04-10 | 2005-05-31 | Picosecond Pulse Labs | Ultrafast sampler with non-parallel shockline |
US7084716B2 (en) | 2001-04-10 | 2006-08-01 | Picosecond Pulse Labs | Ultrafast sampler with coaxial transition |
US7358834B1 (en) * | 2002-08-29 | 2008-04-15 | Picosecond Pulse Labs | Transmission line voltage controlled nonlinear signal processors |
US7612629B2 (en) * | 2006-05-26 | 2009-11-03 | Picosecond Pulse Labs | Biased nonlinear transmission line comb generators |
FR2907262B1 (fr) * | 2006-10-13 | 2009-10-16 | Thales Sa | Cellule dephaseuse a dephaseur analogique pour antenne de type"reflectarray". |
US8548525B2 (en) * | 2007-06-28 | 2013-10-01 | Fimax Technology Limited | Systems and methods using antenna beam scanning for improved communications |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4044360A (en) * | 1975-12-19 | 1977-08-23 | International Telephone And Telegraph Corporation | Two-mode RF phase shifter particularly for phase scanner array |
US4568893A (en) | 1985-01-31 | 1986-02-04 | Rca Corporation | Millimeter wave fin-line reflection phase shifter |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2395620A1 (fr) | 1977-06-24 | 1979-01-19 | Radant Etudes | Perfectionnement au procede de balayage electronique utilisant des panneaux dielectriques dephaseurs |
FR2412960A1 (fr) | 1977-12-20 | 1979-07-20 | Radant Etudes | Dephaseur hyperfrequence et son application au balayage electronique |
FR2448231A1 (fr) | 1979-02-05 | 1980-08-29 | Radant Et | Filtre spatial adaptatif hyperfrequence |
FR2469808A1 (fr) | 1979-11-13 | 1981-05-22 | Etude Radiant Sarl | Dispositif de balayage electronique dans le plan de polarisation |
FR2733091B1 (fr) | 1983-05-06 | 1997-05-23 | Cmh Sarl | Repondeur hyperfrequence electriquement controlable et ses applications a la realisation de leurres electromagnetiques |
FR2723210B1 (fr) | 1983-05-06 | 1997-01-10 | Cmh Sarl | Procede et dispositif antidetection pour radar |
FR2732469B1 (fr) | 1984-01-23 | 1997-04-11 | Cmh Sarl | Dispositif utilisant une antenne auxiliaire equipee d'un filtre spatial adaptatif pour l'embrouillage d'une antenne principale associee, et son procede de mise en oeuvre |
FR2629920B1 (fr) | 1984-01-23 | 1991-09-20 | Cmh Sarl | Filtre spatial adaptatif hyperfrequence fonctionnant a la reflexion et son procede de mise en oeuvre |
FR2634325B1 (fr) | 1988-07-13 | 1990-09-14 | Thomson Csf | Antenne comportant des circuits de distribution d'energie micro-onde du type triplaque |
FR2656468B1 (fr) | 1989-12-26 | 1993-12-24 | Thomson Csf Radant | Source de rayonnement microonde magique et son application a une antenne a balayage electronique. |
FR2725077B1 (fr) | 1990-11-06 | 1997-03-28 | Thomson Csf Radant | Lentille hyperfrequence bipolarisation et son application a une antenne a balayage electronique |
FR2671194B1 (fr) | 1990-12-27 | 1993-12-24 | Thomson Csf Radant | Systeme de protection d'un equipement electronique. |
FR2786610B1 (fr) | 1997-02-03 | 2001-04-27 | Thomson Csf | Reflecteur hyperfrequence actif pour antenne a balayage electronique |
FR2778026B1 (fr) | 1998-04-24 | 2007-01-26 | Thomson Csf | Antenne a balayage electronique a multifaisceaux |
-
2000
- 2000-03-31 FR FR0004140A patent/FR2807213B1/fr not_active Expired - Fee Related
-
2001
- 2001-03-23 EP EP01400769A patent/EP1139484B1/fr not_active Expired - Lifetime
- 2001-03-23 AT AT01400769T patent/ATE484087T1/de not_active IP Right Cessation
- 2001-03-23 DE DE60143177T patent/DE60143177D1/de not_active Expired - Lifetime
- 2001-03-30 US US09/820,645 patent/US6429822B1/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4044360A (en) * | 1975-12-19 | 1977-08-23 | International Telephone And Telegraph Corporation | Two-mode RF phase shifter particularly for phase scanner array |
US4568893A (en) | 1985-01-31 | 1986-02-04 | Rca Corporation | Millimeter wave fin-line reflection phase shifter |
Non-Patent Citations (1)
Title |
---|
W.W. LAM ET AL.: "MILLIMETER-WAVE DIODE-GRID PHASE SHIFTERS", IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES., vol. 36, no. 5, May 1988 (1988-05-01), IEEE INC. NEW YORK., US, pages 902 - 907, XP002151722, ISSN: 0018-9480 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2901921A1 (fr) * | 2006-06-06 | 2007-12-07 | Thales Sa | Antenne cylindrique a balayage electronique |
EP1865575A1 (fr) | 2006-06-06 | 2007-12-12 | Thales | Antenne cylindrique a balayage électronique |
US7548212B2 (en) | 2006-06-06 | 2009-06-16 | Thales | Cylindrical electronically scanned antenna |
Also Published As
Publication number | Publication date |
---|---|
US6429822B1 (en) | 2002-08-06 |
DE60143177D1 (de) | 2010-11-18 |
FR2807213A1 (fr) | 2001-10-05 |
EP1139484B1 (fr) | 2010-10-06 |
FR2807213B1 (fr) | 2003-07-25 |
ATE484087T1 (de) | 2010-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2656438B1 (fr) | Cellule rayonnante a deux etats de phase pour reseau transmetteur | |
EP1580844B1 (fr) | Cellule déphaseuse à polarisation linéaire et à longueur résonante variable au moyen de commutateurs mems | |
EP0237429B1 (fr) | Réseau réflecteur à contrôle de phases, et antenne comportant un tel réseau | |
EP2710676B1 (fr) | Element rayonnant pour antenne reseau active constituee de tuiles elementaires | |
EP0108463A1 (fr) | Elément rayonnant ou récepteur de signaux hyperfréquences à polarisations orthogonales et antenne plane comprenant un réseau de tels éléments juxtaposés | |
EP1519444A1 (fr) | Antenne réseau réflecteur reconfigurable à faibles pertes | |
FR2956252A1 (fr) | Antenne plane directive embarquee, vehicule comportant une telle antenne et systeme de telecommunication par satellite comportant un tel vehicule | |
EP2869396A1 (fr) | Répartiteur de puissance comportant un coupleur en Té dans le plan E, réseau rayonnant et antenne comportant un tel réseau rayonnant | |
EP1234356B1 (fr) | Reflecteur hyperfrequence actif a balayage electronique | |
EP1139484B1 (fr) | Déphaseur hyperfréquence, et antenne à balayage électronique comportant de tels déphaseurs | |
EP1305846B1 (fr) | Reflecteur hyperfrequence actif a bipolarisation, notamment pour antenne a balayage electronique | |
CA2808511C (fr) | Antenne plane pour terminal fonctionnant en double polarisation circulaire, terminal aeroporte et systeme de telecommunication par satellite comportant au moins une telle antenne | |
EP1157444B1 (fr) | Antenne a balayage electronique bi-bande, a reflecteur hyperfrequence actif | |
FR2678438A1 (fr) | Antenne reseau lineaire. | |
FR2786610A1 (fr) | Reflecteur hyperfrequence actif pour antenne a balayage electronique | |
FR3091046A1 (fr) | Antenne microruban élémentaire et antenne réseau | |
FR2858469A1 (fr) | Antenne a cavite resonante, reconfigurable | |
EP1473799B1 (fr) | Satellite à couverture multi-zones assurée par deviation de faisceau | |
FR2907262A1 (fr) | Cellule dephaseuse a dephaseur analogique pour antenne de type"reflectarray". | |
FR2815479A1 (fr) | Reflecteur hyperfrequence actif a deux polarisations independantes, notamment pour antenne a balayage electronique | |
FR2820886A1 (fr) | Panneau reflecteur hyperfrequence | |
FR2807876A1 (fr) | Antenne plaque micro-onde | |
EP1133000A1 (fr) | Réflecteur hyperfréquence actif pour antenne à balayage électronique | |
FR2973587A1 (fr) | Antenne reseau directive large bande, du type a circuit imprime | |
FR2814594A1 (fr) | Reseau reflecteur a capacites de decouplage integrees |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20020403 |
|
AKX | Designation fees paid |
Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
17Q | First examination report despatched |
Effective date: 20090424 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: SOIRON, MICHEL,THOMSON-CSF PROPRIETE INTELLECTUELL Inventor name: NAUDIN, PHILIPPE,THOMSON-CSF PROPRIETE INTELLECTUE Inventor name: CHEKROUN, CLAUDE,THOMSON-CSF PROPRIETE INTELLECTUE |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REF | Corresponds to: |
Ref document number: 60143177 Country of ref document: DE Date of ref document: 20101118 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20101006 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101006 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110207 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101006 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101006 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101006 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110107 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101006 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110117 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101006 |
|
26N | No opposition filed |
Effective date: 20110707 |
|
BERE | Be: lapsed |
Owner name: THALES Effective date: 20110331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110331 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 60143177 Country of ref document: DE Effective date: 20110707 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20110323 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20111130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110331 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110331 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111001 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110331 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 60143177 Country of ref document: DE Effective date: 20111001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110323 Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110323 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110323 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101006 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101006 |