EP0237429B1 - Phasengesteuerte Reflektorstrahlergruppe und Antenne mit einer solchen Gruppe - Google Patents

Phasengesteuerte Reflektorstrahlergruppe und Antenne mit einer solchen Gruppe Download PDF

Info

Publication number
EP0237429B1
EP0237429B1 EP87400514A EP87400514A EP0237429B1 EP 0237429 B1 EP0237429 B1 EP 0237429B1 EP 87400514 A EP87400514 A EP 87400514A EP 87400514 A EP87400514 A EP 87400514A EP 0237429 B1 EP0237429 B1 EP 0237429B1
Authority
EP
European Patent Office
Prior art keywords
diodes
strips
dipole
antenna
rods
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87400514A
Other languages
English (en)
French (fr)
Other versions
EP0237429A2 (de
EP0237429A3 (en
Inventor
Yves Commault
François Gautier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0237429A2 publication Critical patent/EP0237429A2/de
Publication of EP0237429A3 publication Critical patent/EP0237429A3/fr
Application granted granted Critical
Publication of EP0237429B1 publication Critical patent/EP0237429B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/44Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
    • H01Q3/46Active lenses or reflecting arrays

Definitions

  • the main object of the invention is a reflective phase control network, an antenna comprising such a network and a method for its manufacture.
  • Such a network makes it possible to locally modify the phase of a wave, for example planar or cylindrical reflecting on it.
  • Such an array makes it possible to focus and / or divert the electromagnetic energy beams from an antenna by electronic scanning.
  • each module includes an elementary antenna and a phase shifter closed on a short circuit.
  • a wave whose beam we want to direct is emitted by a microwave source towards the network.
  • the wave is picked up by the elementary antennas, and undergoes a first phase shift when crossing the phase shifters is reflected on the short circuits again crosses the phase shifters and is radiated by the elementary antennas;
  • control of the phase of the transmitted wave is available at any point in the network.
  • Such networks are described by F. GAUTIER in "Reflective network” Revue TH-CSF March 1972, vol.4 N ° 1 pages 89 to 104 and by Olivier and Knittel in "Phased arrays antennas” Artech House, page 23.
  • Such a set which corresponds to the preamble of the main claim, is for example exposed in an article by JA SALMON et al., Entitled “An X-Band Reflect-Array with Integrated PIN Diodes", 1974 International IEEE / AP-S Symposium Program 8 Digest, June 10-12, 1974, Georgia Institute of Technology, Atlanta, Georgia.
  • Reactive impedances are dipoles with two branches connected by at least one diode. Depending on the passing or blocked state of the diodes the dipoles reflect a more or less large part of the incident waves.
  • phase-shifting modules capable of working in the millimeter bands.
  • the modules must be of small dimensions, less than the wavelength; the network must include a very large number.
  • the present invention proposes to produce the known structure with the characteristics set out in its characterizing part of claim 1, thus making it possible to achieve an entirely monolithic embodiment of the phase shifter network.
  • FIG. 1 is illustrated one of the principles in themselves known implemented in a device according to the invention.
  • a variable reactive impedance 1 On the two supply wires 3 is placed at a distance d from a short circuit 2 a variable reactive impedance 1. If the value of reactive impedance 1 corresponds to a short circuit for an incident signal this signal will be reflected on said reactive impedance 1. On the other hand, if reactive impedance 1 is adapted to the signal it will let it pass. The signal will then be reflected on the short circuit 2. Thus, there is a phase shift between the signal reflected by reactive impedance 1 and the signal reflected by short-circuit 2. Depending on the setting value of reactive impedance 1 it reflects a more or less significant part of the incident signal. the signals reflected on reactive impedance 1 and on short circuit 2 combine. Thus, the device illustrated in FIG. 1 makes it possible to obtain the phase shift ⁇ between maximum, the intermediate values depending on the value of the impedance.
  • each reactive impedance 1 is constituted for example by a dipole 4, the two branches of which are connected by a diode 6.
  • the diode 6 is for example a diode with variable capacitance.
  • a plurality of diodes with two states connected in series between the two branches of a dipole 4 are used.
  • the diodes with two states are for example PIN diodes.
  • Each of the diodes can be controlled individually. With two diodes of the same capacity, per dipole, three possible phase shift values are obtained. With two diodes of different capacitance, four possible phase shift values are obtained.
  • the diodes with continuously variable capacity are for example varicaps or varactors.
  • the reflector 2 is constituted by a metal plate placed at a distance close to dipoles 4.
  • the electric lines 28 are connected by a capacitor 5.
  • each of the reactive impedances 1 allows deflection in the site plane and in the bearing plane of the waves which illuminate the network according to the invention.
  • FIG. 3 illustrates an embodiment, according to the teachings of the invention, of the principle illustrated with reference to FIGS. 1 and 2.
  • the supply line 7 connecting, for example, the lower branches of the dipoles 4 is connected to ground 8.
  • the supply line 7 connecting, for example, the upper branches of the dipoles 4 is connected to a voltage source 9.
  • the voltage source 9 is capable of delivering, for example, voltages varying between + 1V and -20V.
  • a capacitor 52 connects the two supply lines 7 and thus makes it possible to decouple the dipoles 4 from the microwave field.
  • it is ensured to have stable impedance conditions at the terminals of the microwave circuit.
  • the value of the capacity of this decoupling capacitor is limited, for PIN diodes, by the switching time of the diodes.
  • the reflector 2 is formed by the ground plane of the printed circuit.
  • a network composed of a combination of the devices illustrated in FIG. 3 will only allow scanning and / or focusing of electromagnetic waves in a single plane.
  • the coupling elements 4, the control diodes 6 and the cables 7 are produced on the same semiconductor substrate 11 by means of monolithic integration techniques.
  • these identical reactive elements are arranged on a regular mesh, for example rectangular or triangular, with a pitch close to on a semiconductor substrate 11.
  • the integration technology is used on a whole slice (Wafer Scale Integration or WSI in English terminology).
  • WSI Wafer Scale Integration
  • large slices for example four or five inches (10.16 cm or 12.7 cm)
  • we arrive for example equal to 3.2 mm, to be produced in a single operation of the order of thousand of the reactive element.
  • Such an antenna has the advantage of a reduced cost price.
  • the dimensions of the diode carrier chip are of the order of 0.5 mm, which for a permeability substrate of the order of 12 corresponds to half the wavelength for a frequency of 100 GHz.
  • the chip carrying the diode 6 is by itself a significant element of the circuit.
  • the manufacturing dispersions of this chip and its wiring can make it impossible to produce an antenna by techniques other than monolithic integration techniques.
  • the chips carrying the diode 6 are too large for a periodic circuit whose mesh is approximately 1.5 mm and which in certain cases comprises a plurality of diodes.
  • Planar technology is used for the realization of the network according to the invention.
  • the face of the substrate 11 opposite the coupling elements 4 and the supply metallizations comprises a ground plane 12.
  • the ground plane 12 ensures the mechanical strength and the cooling of the network according to the invention. If the thickness e of the substrate 11 is too small, for example for frequencies below 35 GHz, a dielectric is interposed between the ground plane 12 and the substrate 11. This solution is illustrated in FIG. 5.
  • the semiconductor substrate 11 is made integral with a dielectric 120, for example a low loss dielectric.
  • the dielectric 120 is for example made of polyethylene tetrafluoride (PTFE) or a composite material adapted to the wavelength.
  • the dielectric 120 is made integral with a metal plate 12 parallel to the metallizations of the substrate 11. The distance e between the metallizations of the semiconductor substrate 11 and the plate 12 is substantially equal to a quarter of the weighted wavelength on the two dielectrics.
  • the device of Figure 5 is particularly well suited to low and medium frequencies.
  • FIG. 6 we can see a first embodiment of a periodic circuit for phase control.
  • the device of FIG. 6 comprises three metallized strips 70.
  • the strip 70 in the middle and one of the external strips 70, for example the upper strip 70 comprises opposite rectangular projections 71.
  • the projections 71 facing the two strips 70 are connected by a diode 6.
  • Above the diodes 6 connecting the metallized strip 70 above the central metallized strip 70 is a diode 6 connecting the metallized strip 70 below the central metallic strip 70.
  • At least one of the extremes mites the successive bands 70 are connected together by capacitors 52.
  • the central metallized strip 70 is connected to ground 8, the upper and lower metallized strips 70 being connected to two generators 9.
  • the generators 9 are capable of delivering, for example, voltages included between + 1V and - 20V. The supply voltages depend on the diodes 6 used.
  • FIG 7 we can see a section along CC 'of the device illustrated in Figure 6 as part of a Planar technology.
  • the diodes 6 are directly diffused from the semiconductor wafer 110.
  • the semiconductor is for example silicon.
  • the ground plane 12 has a thickness sufficient to ensure the mechanical strength and the cooling of the network according to the invention.
  • the metallized strips 70 are produced by depositing, for example, a layer of aluminum or copper.
  • said metallizations 70 are covered by a layer of gold ensuring protection against corrosion.
  • the bands 70 are produced by depositing a layer of gold.
  • the two diodes 6 connecting the metallized strip 70 below the central metallized strip 70 are replaced in each mesh by a single diode 6, the capacity of which is equal, for example, to the sum of the capacities of the diodes 6 that it replaces.
  • the total capacity, in each mesh, connecting the metallized strip 70 lower than the central metallized strip 70 is different from the capacity of the diode 6 connecting the metallized strip 70 higher than the central metallized strip 70 .
  • the direction of polarization of the diodes can be reversed as long as the supply voltages are also reversed.
  • the lower and upper metallized strips 70 are connected to ground, the central metallized strip 70 being connected to a voltage generator capable of delivering voltages between + 1 V and - 20V.
  • FIG. 9 one can see an embodiment of the periodic circuit according to the invention comprising six diodes per mesh B of the network substantially equal to , which provides four separate states.
  • the periodic circuits include four metallized strips 70 constituted by rectilinear tapes, referenced from top to bottom DEF G.
  • the metallized tape 70D is connected to the metallized tape 70E by regularly spaced diodes 6, two diodes 6 successive being distant from%.
  • the metallized strip 70G is connected to the metallized strip 70F by regularly spaced diodes 6, successive diodes 6 being spaced apart by g.
  • the metallized bands 70 E and F are connected to ground.
  • the metallized strips 70 D and G are connected to voltage generators capable, for example, of delivering voltages between + 1 V and - 20V.
  • the periodic circuits comprise five metal bands 70 referenced from top to bottom H 1 JK L.
  • the metallized band 70H and the metallized band 701 are provided opposite projections 71.
  • the projections 71 are spaced .
  • the metallized strip 701 is connected to the metallized strip 70H by diodes 6 connecting the projections 71 of said strips.
  • the metallic bands 70J and K are straight ribbons.
  • the metallized strip 70J is connected to the metallized strip 70K by regularly spaced diodes 6, two successive diodes 6 being distant by%.
  • the metallized strip 70L comprises notches 73 in the middle of which an projection 74 is arranged.
  • the projections 74 are regularly distributed, two successive projections 74 being spaced from
  • the diodes connecting the ban metallized 70J to the metallized strip 70K and the diodes connecting the metallized strips 70L to the metallized strip 70K are on the same abscissa.
  • the different coupling states must be spaced out over 360 as regularly as possible.
  • the cost price is only slightly influenced by the geometry of the strips 70 and the number of diodes 6 used.
  • an antenna according to the invention can be seen.
  • the antenna comprises a phase control array 81 allowing electronic scanning in a plane.
  • the network 81 is illuminated by a source 82 of radiation 83.
  • the source 82 of radiation is for example a linear source or a point source focused in a plane.
  • the network 81 is illuminated by a cylindrical wave.
  • the phase control network 81 reflects the incident waves 83 for example at angles between + 45 and - 20 . compared to normal 85 to the network.
  • the energy beam 84 can be directed by electronic scanning while ensuring the transformation of the cylindrical wave 83 into a plane wave 84.
  • FIG. 12 we can see another embodiment of an antenna with electronic scanning, for example with a scanning frequency of the order of megahertz.
  • the antenna comprises a point source 82, a reflective network 81 and a lens 86, for example dielectric.
  • the network in addition to these capacities for electronic scanning in a plane is divided into a plurality of zones, for example 4, 9 or 16 supplied individually. Thus it allows three-dimensional scanning with a small amplitude in one plane and with a large electronic scanning amplitude in the plane which is perpendicular to it.
  • the lens 86 ensures the focusing of the radiation 84 coming from the antenna.
  • FIG. 13 an alternative embodiment of the network cabling according to the invention can be seen.
  • Figures 3, 6, 8 and 9 all the diodes 6 connecting two metal strips 70 are connected in parallel.
  • a short circuit caused by the failure of any of the diodes 6 connecting two metal strips 70 permanently puts said strips at the same potential.
  • the phase shift introduced by said metal strips 70 is lost over their entire length.
  • the formation of the electromagnetic energy beam is very strongly disturbed.
  • the failure of a diode 6 can be the consequence of a manufacturing defect. In such a case, it is possible to prevent the short circuit by destroying the faulty diode 6, for example with a laser. However, it is necessary to have important test equipment.
  • the metal strips 70 are cut into a plurality of segments 77.
  • the segments 77 are connected by groups 652 of diodes 6.
  • Each group of diodes comprises for example between one and six diodes 6 placed in parallel.
  • each group 653 of diodes 6 comprises three diodes 6. All the diodes 6 belonging to the same group have the same polarization.
  • Diode groups 6 are connected in series. It is possible to connect the segments 77 by polarizing the diodes 6 directly or to isolate them by polarizing the diodes 6 in reverse.
  • the generator bears the reference 9 and the switching means bear the reference 651.
  • FIG. 14 one can see the electrical diagram of the connections of the diodes 6 of FIG. 13.
  • the groups 652 of three diodes 6 placed in parallel are connected in series.
  • a short circuit at a diode 6 prevents phase control at a group 652 of diodes 6, but not of two metal strips 70.
  • An absence of electrical continuity at a diode 6, for example following a manufacturing defect or a "breakdown" only disturbs the phase locally at the level of two segments 77. All the groups 652 of diodes 6 are supplied by the other diodes 6 of group 652 comprising the diode 6 "struck down ".
  • the electrical supply is made between terminals 78 and 79 of the periodic circuit.
  • FIG. 20 an alternative embodiment of the device in FIG. 13 can be seen in which the reverse voltages are balanced at the terminals of the groups 652 of the diodes 6 placed in series. Balancing is achieved, for example, by connecting two successive segments 77 by resistors 791 and / or by connecting successive segments 77 belonging to the same metal strip 70 by resistors 781.
  • Resistors 781 and 791 have high values so as not to disturb the radio operation.
  • the resistors 781 and / or 791 are obtained by metallization.
  • a resistive alloy of nickel chromium is deposited.
  • the resistors 781 are deposited in the extension of the segments 77.
  • the resistors 791 are, for example thin strips.
  • the first group 652 of diodes 6 starting from terminal 78 illustrates the alternative embodiment comprising only resistors 791 connecting two successive segments 77.
  • the second and third groups 652 of the diodes 6 illustrate the alternative embodiment comprising resistors 791 connecting two successive segments 77 and resistors 781 connecting two successive segments 77 belonging to the same metal strip 70.
  • the fourth and fifth groups 652 of the diodes 6 illustrate the alternative embodiment comprising only resistors 781 connecting two successive segments 77 belonging to the same metal strip 70.
  • the antenna includes a radiation source 82, an auxiliary reflector network 81 and a main mirror 86.
  • the radiation source 82 is for example a horn.
  • the auxiliary reflective network 81 is a reflective phase control network according to the invention.
  • the network 81 allows electronic scanning in the two planes.
  • the main mirror is for example a focal point dish F.
  • the deflection of the electromagnetic energy beam by the network 81 causes a displacement of the focal point F or a displacement of the equivalent center of the source 82 for example in F i or in F 2 .
  • Periodic displacement of the focal point F makes it possible to carry out a target by scanning (scanning in English terminology).
  • the focus is moved between four positions Fi, F 2 , F 3 , F 4 , equidistant from F, the points Fi and F 2 on the one hand and the points F 3 and F4 of on the other hand being aligned on orthogonal lines of intersection F.
  • a circular permutation of the displacements of the focus F is carried out, for example Fi, F 4 , F 2 , F 3 , Fi, ... It is understood that the use of a different number of positions F i , for example 8, 16 or 32 does not depart from the scope of the present invention.
  • the points F are for example distributed regularly over a circle with center F.
  • the network 81 comprises cells 131 periodically distributed over its surface.
  • the phase of each cell 131 is individually controllable.
  • the cells 131 are for example triangular, square or hexagonal.
  • a medium precision conical scan can be obtained with a small number of cells 131, for example 64 (8x8).
  • An increase in the scanning precision will be obtained by an increase in the number of cells 131.
  • FIGS. 17 and 18 a second and a third embodiment of the network 81 can be seen.
  • the networks 81 in FIGS. 17 and 18 are particularly well suited to conical scanning using four positions Fi, F 2 , F 3 and F4 of the focal point F illustrated in FIG. 19.
  • the network 81 in FIG. 17 has a cross shape.
  • the network 81 of FIG. 17 comprises four central cells 136 to 139, four intermediate cells 133, 135, 140 and 142 as well as four peripheral cells 132, 134, 141 and 143.
  • Cells 136 to 139 are square.
  • Cells 132, 133, 134, 135, 140, 141, 142 and 143 are rectangular; the surface of each of these cells corresponds to that of two square cells just next to each other.
  • the network 81 comprises four central square cells 136 to 139 and four peripheral trapezoid cells 132, 134, 141 and 143.
  • the invention mainly applies to the production of electronic scanning antennas, in particular in millimeter waves.
  • the invention mainly applies to the production of antennas comprising reflective arrays in phase control.
  • the invention also applies to the production of phase modulation panels for responder beacons in cooperative radar systems or localization systems.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)

Claims (16)

1. Vorrichtung zum Auffangen einer einfallenden elektromagnetischen Welle und zum Umlenken dieser elektromagnetischen Welle in eine gewünschte Richtung, mit
- die Masseebene bildenden leitenden Mitteln (12),
- einem Netz von in Zeilen und Spalten vor dieser Masseebene fluchtend angeordneten Dipolen (4), die je zwei Stäbe aufweisen,
- einer Mehrzahl von Verbindungsdioden (6), wobei mindestens eine dieser Dioden zwischen den beiden Stäben jedes einzelnen Dipols montiert ist,
- und mit Vorspannungsmitteln, die an jede der Dioden angeschlossen sind und eine Spannungsquelle (9) sowie Leiter (7, 70) aufweisen, um selektiv an diese jeweilige Diode eine Vorspannung anzulegen, die individuell die Reaktivimpedanz der Diode zwischen einem Kurzschlußwert und einem auf die einfallende elektromagnetische Welle abgestimmten Wert steuern, derart, daß der von dem dieser Diode zugeordneten Dipol reflektierte Anteil der elektromagnetischen Welle zwischen einem Höchstwert und einem Mindestwert verändert wird, wobei der durch den Dipol nicht reflektierte Teil der einfallenden elektromagnetischen Welle zur Masseebene übertragen und dann von dieser reflektiert wird und wobei der vom Dipol reflektierte Teil und der von der Masseebene reflektierte Teil sich zu einer elektromagnetischen Welle kombinieren, die örtlich eine variable gesteuerte Phasenverschiebung in Abhängigkeit vom relativen Verhältnis der jeweiligen reflektierten Anteile bildet,

dadurch gekennzeichnet, daß
- die Vorrichtung ein Halbleitersubstrat (11) mit einer Vorderseite und einer auf der Masseebene (12) aufliegenden Rückseite besitzt,
- und daß die Dipole (4) und Leiter (7, 70) der Vorspannungsmittel Bestandteile einer gemeinsamen Metallbeschichtung sind, die aus einer Vielzahl von parallelen leitenden Bändern besteht, die einer Mehrzahl von Dipolen gemeinsam sind und auf der Vorderseite des halbleitenden Substrats liegen, wobei einer der Stäbe jedes Dipols ausgehend von einem der Bänder und der andere Stab ausgehend von einem benachbarten Band gebildet werden und wobei die zwischen den Stäben jedes einzelnen Dipols geschaltete Diode zwischen den beiden leitenden Bändern montiert ist, aus denen die beiden Stäbe der Dipole gebildet werden.
2. Vorrichtung nach Anspruch 1, in der die Verbindungsdioden vom Typ PIN sind und durch örtlich begrenzte Bereiche vom Typ p und vom Typ n des Halbleitersubstrats gebildet werden.
3. Vorrichtung nach Anspruch 1, in der die die Masseebene (12) bildenden leitenden Mittel an der Rückseite des Halbleitersubstrats (11) anliegen.
4. Vorrichtung nach Anspruch 1, in der ein dielektrisches Material (120) zwischen der Rückseite des Halbleitersubstrats (11) und den die Masseebene (12) bildenden leitenden Mitteln angeordnet ist.
5. Vorrichtung nach Anspruch 1, in der mehr Dioden als Dipole vorgesehen sind, wobei die Dioden, die nicht zwischen den Stäben jedes einzelnen Dipols liegen, zwischen einem der leitenden Bänder, aus denen die Stäbe der Dipole gebildet werden, und einem zusätzlichen leitenden Band montiert sind, mit dem es möglich ist, Diodengruppen getrennt vorzuspannen.
6. Vorrichtung nach Anspruch 1, in der jedes leitende Band in einzelne Segmente (77) unterteilt ist, wobei die Segmente benachbarter Paare dieser Bänder in Reihe über Dioden (6) verbunden sind.
7. Vorrichtung nach Anspruch 1, in der jedes leitende Band in einzelne Segmente (77) unterteilt ist und die Segmente benachbarter Paare dieser Bänder durch Gruppen (652) von parallelen Dioden (6) miteinander verbunden sind.
8. Vorrichtung nach Anspruch 1, in der jedes leitende Band in einzelne Segmente (77) unterteilt ist und die Segmente benachbarter Paare dieser Bänder über Widerstandsmittel (781) miteinander verbunden sind, die auf der Vorderseite des Halbleitersubstrats liegen.
9. Antenne mit einer primären Sendequelle (82) und aktiven Reflektormitteln, dadurch gekennzeichnet, daß diese aktiven Reflektormittel eine Vorrichtung nach einem der Ansprüche 1 bis 8 enthalten.
10. Antenne nach Anspruch 9, in der die aktiven Reflektormittel aus einem aktiven Reflektor (81) bestehen, der im Verlauf der Strahlung liegt, die von der Quelle ausgeht, so daß diese Strahlung umdirigiert wird.
11. Antenne nach Anspruch 10, die außerdem eine dielektrische Linse zur Fokussierung dieser Strahlung enthält.
12. Antenne nach Anspruch 9, in der die aktiven Reflektormittel von einem Hauptspiegel (86) und einem phasengesteuerten Hilfsreflektornetz (81) gebildet werden, mit dem die Lage des Brennpunkts des Hauptspiegels variiert werden kann.
13. Antenne nach Anspruch 12, in der die Vorspannungsmittel (7, 9) die Dioden so vorspannen, daß der Brennpunkt gemäß einem kreisförmigen Verlauf verschoben wird.
14. Verfahren zur Herstellung einer Vorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß es die folgenden Verfahrensschritte aufweist:
(a) Vorbereitung eines Substrats aus Halbleitermaterial,
(b) Diffusion der Verbindungsdioden in dieses Substrat,
(c) Metallbeschichtung dieses Substrats,
(d) Abätzen dieser Metallbeschichtung, so daß eine Vielzahl von leitenden Bändern gemäß einer Konfiguration entsteht, die zugleich ein Netz von in Zeilen und Spalten fluchtend angeordneten Dipolen und eine Mehrzahl von Vorspannungsleitern für die in dem Substrat diffundierten Dioden ergibt, wobei diese Dioden sich zwischen Paaren von leitenden Bändern befinden, von denen ausgehend die beiden Stäbe jedes jeweiligen Dipols gebildet werden.
15. Verfahren nach Anspruch 14, das außerdem einen Verfahrensschritt der Bildung einer dielektrischen Schicht (120) aufweist, die zwischen dem Halbleitermaterial und der Masseebene eingefügt wird.
16. Verfahren nach Anspruch 14, das außerdem einen Verfahrensschritt des Aufbringens von Widerständen (781) auf die Vorderseite des Halbleitermaterials aufweist, die benachbarte Segmentpaare (77) der Vorspannungsleiter miteinander verbinden.
EP87400514A 1986-03-14 1987-03-09 Phasengesteuerte Reflektorstrahlergruppe und Antenne mit einer solchen Gruppe Expired - Lifetime EP0237429B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8603648 1986-03-14
FR8603648A FR2595873B1 (fr) 1986-03-14 1986-03-14 Reseau reflecteur a controle de phases et antenne comportant un tel reseau

Publications (3)

Publication Number Publication Date
EP0237429A2 EP0237429A2 (de) 1987-09-16
EP0237429A3 EP0237429A3 (en) 1987-12-09
EP0237429B1 true EP0237429B1 (de) 1991-10-16

Family

ID=9333116

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87400514A Expired - Lifetime EP0237429B1 (de) 1986-03-14 1987-03-09 Phasengesteuerte Reflektorstrahlergruppe und Antenne mit einer solchen Gruppe

Country Status (4)

Country Link
US (1) US5148182A (de)
EP (1) EP0237429B1 (de)
DE (1) DE3773708D1 (de)
FR (1) FR2595873B1 (de)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2890792A1 (fr) * 1987-07-10 2007-03-16 Thomson Csf Element d'antenne reseau et antenne reseau a balayage electronique par reflexion et procede de realisation de cet element
FR2689320B1 (fr) * 1992-03-24 1994-05-13 Thomson Csf Antenne dalle a balayage electronique et a fonctionnement en bipolarisation.
FR2699742B1 (fr) * 1992-12-21 1995-01-27 Thomson Csf Dispositif hyperfréquence à réflectivité électroniquement commandable et procédé de réalisation.
US5475349A (en) * 1994-09-29 1995-12-12 Westinghouse Electric Corp. Frequency multipliers using diode arrays
US5995056A (en) * 1997-09-18 1999-11-30 United States Of America As Represented By The Secretary Of The Navy Wide band tem fed phased array reflector antenna
US6450442B1 (en) * 1997-09-30 2002-09-17 Raytheon Company Impulse radar guidance apparatus and method for use with guided projectiles
DE19820835A1 (de) * 1998-05-09 1999-11-11 Sel Verteidigungssysteme Gmbh Sende-Empfangs-Anlage für Fahrzeuge, Fahrzeug mit Sende-Empfangs-Anlage, und Schaltung
US6005512A (en) * 1998-06-16 1999-12-21 Boeing North American, Inc. Array antennas with low sum and difference pattern side lobes and method of producing same
US6020853A (en) 1998-10-28 2000-02-01 Raytheon Company Microstrip phase shifting reflect array antenna
US6154174A (en) * 1999-04-20 2000-11-28 General Atomics Large aperture vibration compensated millimeter wave sensor
US6674407B1 (en) * 1999-05-28 2004-01-06 David Lowe Laser beam frequency collection device
US6597327B2 (en) * 2000-09-15 2003-07-22 Sarnoff Corporation Reconfigurable adaptive wideband antenna
US6642889B1 (en) 2002-05-03 2003-11-04 Raytheon Company Asymmetric-element reflect array antenna
US7456803B1 (en) 2003-05-12 2008-11-25 Hrl Laboratories, Llc Large aperture rectenna based on planar lens structures
US7154451B1 (en) * 2004-09-17 2006-12-26 Hrl Laboratories, Llc Large aperture rectenna based on planar lens structures
US7002517B2 (en) * 2003-06-20 2006-02-21 Anritsu Company Fixed-frequency beam-steerable leaky-wave microstrip antenna
US6999041B2 (en) * 2004-02-16 2006-02-14 The Boeing Company Dual frequency antennas and associated down-conversion method
US6950076B2 (en) * 2004-02-16 2005-09-27 The Boeing Company Two-dimensional dual-frequency antenna and associated down-conversion method
US7009575B2 (en) * 2004-02-16 2006-03-07 The Boeing Company High-frequency two-dimensional antenna and associated down-conversion method
TWM267648U (en) * 2004-04-01 2005-06-11 Smart Ant Telecom Co Ltd Intelligent antenna system with wave beam switching
US20100328142A1 (en) * 2008-03-20 2010-12-30 The Curators Of The University Of Missouri Microwave and millimeter wave resonant sensor having perpendicular feed, and imaging system
US7746266B2 (en) * 2008-03-20 2010-06-29 The Curators Of The University Of Missouri Microwave and millimeter wave imaging system
US8130160B2 (en) * 2008-07-03 2012-03-06 The Boeing Company Composite dipole array assembly
US8106810B2 (en) * 2008-07-03 2012-01-31 The Boeing Company Millimeter wave filters
WO2012100885A1 (en) 2011-01-25 2012-08-02 Sony Corporation Optically controlled microwave antenna
CN102354810A (zh) * 2011-08-15 2012-02-15 浙江大学 利用次波长谐振结构单元构成的全向电扫天线罩
EP2618128A1 (de) * 2012-01-19 2013-07-24 Canon Kabushiki Kaisha Erkennungsvorrichtung, Detektor und Bilderzeugungsvorrichtung damit
US9046605B2 (en) 2012-11-05 2015-06-02 The Curators Of The University Of Missouri Three-dimensional holographical imaging
US10720714B1 (en) * 2013-03-04 2020-07-21 Ethertronics, Inc. Beam shaping techniques for wideband antenna
RU2653185C1 (ru) * 2017-05-30 2018-05-07 Акционерное общество "Обнинское научно-производственное предприятие "Технология" им. А.Г. Ромашина" Способ оптимизации радиотехнических характеристик антенного обтекателя со стенкой из многокомпонентного материала
RU182955U1 (ru) * 2018-06-28 2018-09-06 Алексей Геннадьевич Ноздрин Модулятор электромагнитных полей
RU205908U1 (ru) * 2021-04-27 2021-08-12 Алексей Геннадьевич Ноздрин Модулятор электромагнитных полей

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3045237A (en) * 1958-12-17 1962-07-17 Arthur E Marston Antenna system having beam control members consisting of array of spiral elements
GB1047471A (de) * 1962-05-03 1900-01-01
US3274601A (en) * 1962-12-12 1966-09-20 Blass Antenna Electronics Corp Antenna system with electronic scanning means
US3276023A (en) * 1963-05-21 1966-09-27 Dorne And Margolin Inc Grid array antenna
US3456260A (en) * 1967-09-22 1969-07-15 Hazeltine Research Inc Monopulse antenna system with lens to provide equal illumination of main antenna aperture
US3852755A (en) * 1971-07-22 1974-12-03 Raytheon Co Remotely powered transponder having a dipole antenna array
DE2452703A1 (de) * 1974-11-06 1976-05-13 Harris Corp Antenne
US3959794A (en) * 1975-09-26 1976-05-25 The United States Of America As Represented By The Secretary Of The Army Semiconductor waveguide antenna with diode control for scanning
EP0055324B1 (de) * 1980-11-17 1990-08-29 Ball Corporation Integrierter monolithischer Mikrowellenschaltkreis mit integraler Antennenanordnung
FR2506026A1 (fr) * 1981-05-18 1982-11-19 Radant Etudes Procede et dispositif pour l'analyse d'un faisceau de rayonnement d'ondes electromagnetiques hyperfrequence
DE3150235A1 (de) * 1981-12-18 1983-06-30 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Passives strahlerelement
US4509209A (en) * 1983-03-23 1985-04-02 Board Of Regents, University Of Texas System Quasi-optical polarization duplexed balanced mixer
FR2549300B1 (fr) * 1983-07-13 1988-03-25 Tran Dinh Can Dispositif de balayage electromecanique notamment pour antenne radar
US4816836A (en) * 1986-01-29 1989-03-28 Ball Corporation Conformal antenna and method

Also Published As

Publication number Publication date
FR2595873B1 (fr) 1988-09-16
DE3773708D1 (de) 1991-11-21
FR2595873A1 (fr) 1987-09-18
EP0237429A2 (de) 1987-09-16
US5148182A (en) 1992-09-15
EP0237429A3 (en) 1987-12-09

Similar Documents

Publication Publication Date Title
EP0237429B1 (de) Phasengesteuerte Reflektorstrahlergruppe und Antenne mit einer solchen Gruppe
EP0539297B1 (de) Vorrichtung mit einstellbarer frequenzselektiver Oberfläche
EP0374008B1 (de) Den vollen Raumwinkel abtastende elektronische Antenne mit räumlich zufällig verteilten, verdünnt angeordneten Strahlern
EP0012055B1 (de) In Streifenleitertechnik ausgeführter Monopulsprimärstrahler und Antenne mit einem solchen Strahler
CA2148796C (fr) Antenne fil-plaque monopolaire
WO1981001486A1 (fr) Dispositif de balayage electronique dans le plan de polarisation
FR2725077A1 (fr) Lentille hyperfrequence bipolarisation et son application a une antenne a balayage electronique
FR2672438A1 (fr) Antenne reseau notamment pour application spatiale.
EP1234356B1 (de) Aktiver hf reflektor unter verwendung von elektronischer strahlschwenkung
FR2806214A1 (fr) Antenne reflectrice comportant une pluralite de panneaux
WO2004001899A1 (fr) Cellule dephaseuse pour reseau reflecteur d'antenne
EP1305846B1 (de) Doppelpolarisierter aktiver mikrowellenreflektor, insbesondere für antenne mit elektronischer strahlschwenkung
EP0045254A1 (de) Kompakter Mikrowellenerreger für zwei Frequenzbereiche
WO1991018428A1 (fr) Antenne orientable plane, fonctionnant en micro-ondes
EP0595726A1 (de) Phasenschieber für elektromagnetische Wellen und Verwendung in einer Antenne mit elektronischer Ablenkung
EP1139484B1 (de) Mikrowellenphasenschieber und phasengesteuerte Gruppenantenne mit derartigen Phasenschiebern
EP3900113B1 (de) Elementare mikrostreifenantenne und gruppenantenne
EP0335788A1 (de) Mikrowellenphasenschieber
FR2462791A1 (fr) Detecteur pour ondes submillimetriques comportant plusieurs elements a reponse non lineaire
EP0088681B1 (de) Doppelreflektorantenne mit eingebautem Polarisationswandler
FR2907262A1 (fr) Cellule dephaseuse a dephaseur analogique pour antenne de type"reflectarray".
FR2834131A1 (fr) Panneau dephaseur monolithique a diodes pin en silicium polycristallin et antenne utilisant ce panneau dephaseur
FR2890792A1 (fr) Element d'antenne reseau et antenne reseau a balayage electronique par reflexion et procede de realisation de cet element
FR3135572A1 (fr) Antenne faible profil à balayage electronique bidimensionnel
FR2703516A1 (fr) Antenne à ondes progressives.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE GB IT

17P Request for examination filed

Effective date: 19880328

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THOMSON-CSF

17Q First examination report despatched

Effective date: 19900302

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REF Corresponds to:

Ref document number: 3773708

Country of ref document: DE

Date of ref document: 19911121

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030305

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030320

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041001

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050309