EP0205212B1 - Modulare Mikrowellenantenneneinheiten und Antenne mit solchen Einheiten - Google Patents

Modulare Mikrowellenantenneneinheiten und Antenne mit solchen Einheiten Download PDF

Info

Publication number
EP0205212B1
EP0205212B1 EP86200958A EP86200958A EP0205212B1 EP 0205212 B1 EP0205212 B1 EP 0205212B1 EP 86200958 A EP86200958 A EP 86200958A EP 86200958 A EP86200958 A EP 86200958A EP 0205212 B1 EP0205212 B1 EP 0205212B1
Authority
EP
European Patent Office
Prior art keywords
plane
horns
antenna
array
waveguides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86200958A
Other languages
English (en)
French (fr)
Other versions
EP0205212A1 (de
Inventor
Emmanuel Société Civile S.P.I.D. Rammos
Bernard Michel Société Civile S.P.I.D. Byzery
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Laboratoires dElectronique Philips SAS
Koninklijke Philips NV
Original Assignee
Laboratoires dElectronique Philips SAS
Philips Gloeilampenfabrieken NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laboratoires dElectronique Philips SAS, Philips Gloeilampenfabrieken NV, Koninklijke Philips Electronics NV filed Critical Laboratoires dElectronique Philips SAS
Publication of EP0205212A1 publication Critical patent/EP0205212A1/de
Application granted granted Critical
Publication of EP0205212B1 publication Critical patent/EP0205212B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/064Two dimensional planar arrays using horn or slot aerials

Definitions

  • the invention relates to a microwave antenna for reception on emission of a rectilinearly polarized wave, comprising at least one unit module comprising four radiating elements in the form of horns whose openings form a two-dimensional pattern in a plane parallel to a plane of reference P, and comprising a supply network composed of rectangular section waveguides connected on the one hand to the horns and on the other hand between them so that for each horn the total length of the feed path is the same , the section of the waveguides being of dimensions a and b defined by the relations a> b, and the small dimension b being placed parallel to the reference plane P in the planar network so that the latter is able to propagate the mode TEoi, this supply network being of the so-called "planar” type because it is distributed in a single plane parallel to the reference plane P, and of the so-called “arborized” type because that the horns are supplied in phase using power dividers.
  • the invention finds its application, for example in the production of flat antennas for the reception of television broadcasts retransmitted by artificial satellites.
  • An antenna comprising radiating elements in the form of horns supplied by waveguides is also known from patent DE 2641711.
  • This document describes a linear antenna module, consisting of a row of horns machined from a fiber block. glass with metallic surfaces.
  • This row of horns is supplied on the one hand by a main line and on the other hand by individual lines connected to the main line.
  • the main line is of rectangular section, machined in aluminum and can be filled with a dielectric material. It is carried out so as to form in the plane of the electric field E a stepped power divider making it possible to supply at equal power the waveguides which ensure the individual connection of the horns with the main line.
  • Each of these waveguides is formed by a laminated structure comprising a dielectric material interposed between two layers of copper, the edges of this structure being metallized.
  • the length of the individual feed guides, as well as their connection point to the main line, are chosen so that for each horn, the length of the feed path composed of the main line and the individual feed line, is the same.
  • Such a structure is provided to allow phase differences in the feeding of the horns to be corrected by shortening some of the individual feeding lines.
  • the antenna module described in the cited document is of linear form, with series supply, which makes it very difficult to feed the horns exactly in phase and therefore it is essential to carry out a adjustment of the length of the individual supply lines to improve this result.
  • the solution proposed by the cited document to solve this problem leads to a complex antenna shape, as well as an assembly and a adjustment too delicate to be carried out for example during a mass production.
  • ⁇ c is the cut-off wavelength of the guides
  • each internal horn mouthpiece of cross section equal to that of the waveguides is individually connected to a waveguide of the grating by an elbow whose angle is in a plane parallel to a plane Q, this plane Q being defined as perpendicular to the reference plane P and parallel to one of he sides of the square opening of the horn as well as to the large dimension a of the internal mouth of the latter, in that
  • the antenna produced according to the present invention offers numerous advantages. First of all, it has losses as low as possible because it is entirely supplied by waveguides excluding any dielectric other than air.
  • the antenna can be produced using only two plates, metallic or even only metallized, by a very simple manufacturing process.
  • the antenna thus produced has excellent mechanical qualities. It is particularly solid, resistant to weathering and aging.
  • this antenna has great technical qualities. It can operate in the microwave domain, for example 12 GHz and over a very wide frequency band. Its directivity and gain performance can even be adapted to the application of reception of television programs relayed by satellites by appropriately calculating the dimensions of the horns and guides.
  • This antenna fulfills one of the essential conditions required for this application: it does not have any secondary lobes of the network. Being an inexpensive flat antenna, it is well suited for consumer applications, and it is easy to install.
  • the antenna module according to the invention consists of four horns, the openings of which form a pattern repeated by simple translation, along two axes parallel to the sides, with the same pitch, in a plane parallel to the reference plane P, as it is shown in Figure 2a, in perspective, seen from above.
  • This module is therefore square in shape in this plane.
  • the supply network of these four horns is shown in perspective in Figure 2b.
  • This network is said to be “planar” because it is distributed in a single plane parallel to the reference plane P.
  • All the waveguides connecting the guides 3 of individual feed of the horns to each other are of the same type as the guides 3, ie "plan É.
  • planar supply network is therefore called "plan É.
  • this network is of the so-called "tree" type.
  • the horns are fed by two symmetrically with respect to a plane parallel to the plane Q, to form two groups of two identical radiating elements. Then the two groups thus formed are supplied symmetrically, with respect to a plane parallel to a plane Q ', this plane Q' being defined as perpendicular both to the reference plane P and to the plane Q as shown in FIG. 4
  • the plane Q ' is defined by the electric field E and the perpendicular oz to the plane P.
  • the supply symmetry of two horns can be obtained by a planar network such as elbows 5 whose angle is located in the plane of the network connect the individual feed guides 3 of these horns to a power divider 6 in the shape of a T in the same plane.
  • the plane of symmetry of the system formed by the two horns, the two elbows 2, the two individual guides 3, the two elbows 5 and the upper bar of the power divider 6, is a plane parallel to Q, the trace of which is I "in Figure 3.
  • the supply symmetry of the two groups of two horns thus formed is obtained by connecting the waveguides 8 from the power dividers 6 by a T-shaped power divider 7 located in the plane of the network.
  • the upper bar of this power divider 7, of output 9, and the guide sections 8 admit as plane of symmetry a plane parallel to Q 'whose trace is J'J "in FIG. 3.
  • the length of the feeding path is exactly the same and the horns are fed perfectly in phase.
  • the waveguide sections 8, the upper bar of the T forming the power divider 7, and the waveguide section 9 output from this divider, are provided curved, as shown in FIGS. 2b and 3 , so that the electric field vector remains perpendicular to the walls of the guides during the propagation of the TEoi mode.
  • a microwave antenna can be formed from a multiple of four of such unit modules supplied to each other by a planar arborized network of the same type as the network distributed inside each module and in the same plane as the latter. In this way the antenna can include the number of radiating elements necessary to obtain the desired gain for the antenna and all the radiating elements of the antenna are however supplied in phase.
  • the waveguide supply network is designed in a plane parallel to the plane of the cone openings, it is possible to make the entire antenna in the form of a planar antenna using only two plates . These plates can be metallic and machined, or even molded plastic whose surfaces are metallized.
  • the antenna consists of two plates 100 and 110, the main faces 101 and 102 for the plate 100, and the main faces 103 and 104 for the plate 110 are parallel to the reference plane.
  • the plate 100 comprises a multiple number of four of unit modules of four horns placed in an adjacent manner, so that all the horns are deduced from each other by a translation of the same pitch in the two directions parallel to the sides of the square openings .
  • the horns are shaped in the thickness of the plate 100 so that the openings are flush with the face 101 and so that the mouths 4 are flush with the face 102, the thickness of the plate 100 being provided equal to the height h of the cones (see Figures 5a and 5b).
  • the plate 110 comprises the elbows 2 and the planar feed network of the antenna formed by grooves made in the hollow on the face 103 of this plate.
  • the grooves have a width b and a depth a and constitute three of the faces of the network waveguides.
  • the application of the face 103 of the plate 110 on the face 102 of the plate 100 forms the fourth face of the rectangular section waveguides of the supply network and connects the horns to the network thus formed.
  • the plate 110 must have a thickness slightly greater than the magnitude a, which gives for the total thickness of the planar antenna thus formed a value slightly greater than the magnitude of a + h.
  • the antenna consists of two plates 200 and 210, the main faces 201 and 202 for the plate 200, and the main faces 203 and 204 for the plate 210 are parallel to the reference plane P.
  • the plate 200 comprises the unit modules placed adjacent to each other, as in the embodiment described above.
  • the horns are shaped in the thickness of the plate 200 so that the openings are flush with the face 201 and so that the mouths are in the thickness of the material forming the plate 200.
  • the latter is provided with a thickness equal to the height h of the horns increased by the value of the dimension has guides.
  • the antenna feed network is formed on the face 202 of the plate 200 in the form of hollow grooves of width b and depth a, and of elbows 2 making it possible to connect the mouths of the horns to the grooves.
  • the plate 210 is a simple blade with parallel faces. The application of the face 203 of the plate 210 on the face 202 of the plate 200 forms the fourth face of the waveguides of the supply network.
  • the antenna used according to one of the embodiments described above is therefore particularly simple and inexpensive to manufacture. It can be made in large series. It has great mechanical strength and does not require adjustment during assembly.
  • the plates can also be held opposite one another by screws.
  • this antenna does not include a dielectric, the losses are as low as possible, and on the other hand it is extremely resistant to aging.
  • this antenna is of low volume and low weight. It is therefore particularly easy to set up and its support is then inexpensive.
  • Such an antenna is therefore extremely well suited to general public use for the reception of television broadcasts transmitted by satellites. Indeed in such a reception system the antenna is an important element for two reasons: firstly the quality of reception depends directly on the characteristics of the antenna and secondly, the cost of the antenna and its support as well as the cost of installation and pointing to the satellite largely define the final cost of the reception system.
  • the antenna according to the invention can also have technical characteristics appropriate for the reception of television broadcasts relayed by artificial satellite.
  • an antenna intended for the reception of television programs relayed by satellite must be able to receive a circular polarization, right or left according to the transmitting satellite.
  • the wave is circularly polarized if the end of the electric field vector E describes a circle in the plane perpendicular to the direction of propagation.
  • the polarization is right circular when E turns clockwise for an observer looking in the direction of propagation.
  • the polarization is left circular in the other case.
  • a circularly polarized wave can be broken down into two linearly polarized waves, perpendicular to each other and phase shifted by ⁇ 7 r / 2.
  • the antenna intended for the envisaged application can therefore be produced according to the following principle: the two perpendicular components, due to the emission by the satellite of a circularly polarized wave, are picked up and then composed with the appropriate phase shift ( ⁇ ⁇ / 2 depending on whether we are dealing with a circular polarization doirte or left).
  • This principle supposes the use in front of the antenna of a depolarizing radome.
  • This radome is designed in such a way that it delays one of the components of the circularly polarized wave, thus causing the necessary phase shift.
  • the two linear polarization waves are thus in phase and their vector composition gives a linearly polarized wave which can be received by an antenna with a single linear polarization such as the antenna according to the present invention.
  • the depolarizing radome is not described here as not being strictly part of the invention.
  • the supply network of the unitary antenna module allows the propagation of the TEoi mode. So that this mode can propagate it is necessary that the large dimension has waveguides which is perpendicular to the electric field É checks the relation (1): where ⁇ c is the cut-off wavelength of the guide. Indeed if the dimension a is too small then the guided wavelength varies too much as a function of the frequency. And conversely if the dimension a is too large, then the guide propagates several modes at the same time.
  • a cut-off frequency can be adopted corresponding to a cut-off wavelength and so
  • the lattice factor F r is a function of the angle e of radiation, the latter being defined as shown in FIG. 10, by the angle between the normal oz to the plane xoy containing the plane P of the antenna, and the direction OM of the radiation.
  • the network factor F r checks the relation (3)
  • n is the number of radiating elements forming the antenna and where d is the distance between radiating elements and ⁇ the length of the propagated wave.
  • FIGS. 5a and 5b respectively represent a section of a radiating element parallel to the plane Q therefore to the "plane H", and parallel to the plane Q 'therefore to the "plane E".
  • the gain G e of such a radiating element can be calculated using the relationships given in the work published by Nha-BUI-NA in MASSON editions, entitled "Microwave antennas".
  • the coupling between element can be considered negligible.
  • Adaptations may be provided at the elbows or power dividers to improve these results.
  • this antenna perfectly meets CCIR standards.
  • the radiation diagram obtained perfectly meets the conditions of FIG. 9, both for the envelope Ci and for the envelope C 2 of the cross-polarization diagram.
  • the antenna must have a gain of at least 34 dB.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)
  • Waveguides (AREA)

Claims (5)

1. Mikrowellenantenne zum Empfangen oder Ausstrahlen einer geradlinig polarisierten Welle, mit mindestens einem einheitlichen Modul mit vier hornförmigen Strahlungselementen (1) deren Öffnungen ein zweidimensionales Muster in einer Ebene parallel zu einer Bezugsebene P bilden, und mit einem Speisenetzwerk (6, 7, 8, 9) von Wellenleitern rechteckigen Querschnitts (8, 9), die einerseits mit Hörnern (1) und andererseits miteinander verbunden sind, und zwar derart, daß für jedes Horn (1) die Gesamtlänge der Speisestrecke dieselbe ist, wobei der Querschnitt der Wellenleiter (8, 9) die Abmessungen a und b hat, die durch die Beziehungen a > b bestimmt werden, und wobei die Kleinere Abmessung b parallel zu der Bezugsebene P in dem planaren Netzwerk liegt, so daß dieses imstande ist, den Modus TEo1 fortzupflanzen, wobei dieses Speisenetzwerk (6, 7, 8, 9) von dem sogenannten planaren Typ ist, und zwar wegen der Tatsache, daß es über eine einzige Ebene parallel zu der Bezugsebene P verteilt ist, sowie vom sogenannten verzweigten Typ, wegen der Tatsache, daß die Hörner (1) mit Hilfe von Leistungsteilern (6, 7) phasengleich gespeist werden, dadurch gekennzeichnet, daß in diesem Modul die Leistungsteiler (6, 7) T-förmig sind, wobei die Schenkel symmetrisch sind, daß die Öffnungen der Hörner (1) quadratisch sind und in einer Ebene parallel zu der Bezugsebene P ein zweidimensionales quadratisches Netzwerk bilden, das erhalten wird wegen der Tatsache, daß die Öffnungen der Hörner durch geradlinige Verschiebung um denselben Schritt gemäß zu ihren Seiten parallelen Achsen voneinander abgeleitet werden, daß die größere Abmessung a der Wellenleiter (8, 9) a = XJ2 beträgt, wobei X" die Länge der Grenzfrequenz der Wellenleiter ist, daß jede innere Mündung (4) des Horns (1) mit einem Querschnitt, der dem der Wellenleiter entspricht, einzeln durch ein Kniestück (2), dessen Krümmung in einer Ebene parallel zu einer Ebene Q liegt, mit einem Wellenleiter des Netzwerkes (3) verbunden ist, wobei diese Ebene Q als senkrecht zu der Bezugsebene P, parallel zu einer der Seiten der rechteckigen Öffnung des Horns, sowie parallel zu der großen Abmessung a der inneren Mündung dieses Horns definiert ist, daß jeder einzelne Speisewellenleiter linear und mittels eines Kniestücks (2) mit einem der linearen symmetrischen Zweige eines ersten T-förmigen Leistungsteilers (6) verbunden ist, wobei die Krümmung des Kniestücks in der Ebene des Netzwerkes liegt, wobei der Hauptzweig des Leistungsteilers einwärts gekrümmt ist, daß jede Gruppe von zwei Hörnern mit einem der gekrümmten symmetrischen Zweige (8) eines zweiten T-förmigen Leistungsteilers (7) verbunden ist, wobei der Hauptzweig (9) ebenfalls einwärts gekrümmt ist und zwar derart, daß die auf diese Weise gebildeten zwei Gruppen zu je zwei Hörnern gegenüber einer Ebene Q' symmetrisch gespeist werden, wobei diese Ebene als senkrecht zu der Bezugsebene P und gleichzeitig zu einer Ebene Q, und zwar derart, daß die Krümmung der Zweige der beiden Leistungsteiler (6, 7) die Fortpflanzung des Modus TEoi erlaubt, wobei diese Antenne aus zwei Platten (100, 110) gebildet ist, deren Oberflächen elektrisch leitend sind, wobei die Hörner (1) in der Dicke der ersten Platte (100) gebildet sind, wobei die Öffnungen der Hörner an der ersten Fläche (101) der Platte münden und die Mündungen (4) an der zweiten Fläche (102), wobei das Wellenleiter- speisenetzwerk (3) durch Rillen in der ersten Fläche (103) der zweiten Platte (110) gebildet ist, wobei diese Rillen drei der vier Leiterflächen bilden und wobei die Anordnung der zweiten Fläche (102) der ersten Platte (100) an der ersten Fläche (103) der zweiten Platte (110) die vierte Fläche der Wellenleiter (3) sowie die Verbindung mit den Hörnern (1) bildet.
2. Mikrowellenantenne zum Empfangen oder Ausstrahlen einer geradlinig polarisierten Welle, mit mindestens einem einheitlichen Modul mit vier hornförmigen Strahlungselementen (1), deren Öffnungen ein zweidimensionales Muster in einer Ebene parallel zu einer Bezugsebene P bilden, und mit einem Speisenetzwerk (6, 7, 8, 9) von Wellenleitern rechteckigen Querschnitts (8, 9), die einerseits mit Hörnern (1) und andererseits miteinander verbunden sind, und zwar derart, daß für jedes Horn (1) die Gesamtlänge der Speisestrecke dieselbe ist, wobei der Querschnitt der Wellenleiter (8, 9) die Abmessungen a und b hat, die durch die Beziehungen a > b bestimmt werden, und wobei die Kleinere Abmessung b parallel zu der Bezugsebene P in dem planaren Netzwerk liegt, so daß dieses imstande ist, den Modus TEoi fortzupflanzen, wobei dieses Speisenetzwerk (6, 7, 8, 9) von dem sogenannten planaren Typ ist, und zwar wegen der Tatsache, daß es über eine einzige Ebene parallel zu der Bezugsebene P verteilt ist, sowie vom sogenannten verzweigten Typ, wegen der Tatsache, daß die Hörner (1) mit Hilfe von Leistungsteilern (6, 7) phasengleich gespeist werden, dadurch gekennzeichnet, daß in diesem Modul die Leistungsteiler (6, 7) T-förmig sind, wobei die Schenkel symmetrisch sind, daß die Öffnungen der Hörner (1) quadratisch sind und in einer Ebene parallel zu der Bezugsebene P ein zweidimensionales quadratisches Netzwerk bilden, das erhalten wird wegen der Tatsache, daß die Öffnungen der Hörner durch geradlinige Verschiebung um denselben Schritt gemäß zu ihren Seiten parallelen Achsen voneinander abgeleitet werden, daß die größere Abmessung a der Wellenleiter (8, 9) a = ÀJ2 beträgt, wobei Àc die Länge der Grenzfrequenz der Wellenleiter ist, daß jede innere Mündung (4) des Horns (1) mit einem Querschnitt, der dem der Wellenleiter entspricht, einzeln durch ein Kniestück (2), dessen Krümmung in einer Ebene parallel zu einer Ebene Q liegt, mit einem Wellenleiter des Netzwerkes (3) verbunden ist, wobei diese Ebene Q als senkrecht zu der Bezugsebene P, parallel zu einer der Seiten der rechteckigen Öffnung des Horns, sowie parallel zu der großen Abmessung a der inneren Mündung dieses Horns definiert ist, daß jeder einzelne Speisewellenleiter linear und mittels eines Kniestücks (2) mit einem der linearen symmetrischen Zweige eines ersten T-förmigen Leistungsteilers (6) verbunden ist, wobei die Krümmung des Kniestücks in der Ebene des Netzwerkes liegt, wobei der Hauptzweig des Leistungsteilers einwärts gekrümmt ist, daß jede Gruppe von zwei Hörnern mit einem der gekrümmten symmetrischen Zweige (8) eines zweiten T-förmigen Leistungsteilers (7) verbunden ist, wobei der Hauptzweig (9) ebenfalls einwärts gekrümmt ist und zwar derart, daß die auf diese Weise gebildeten zwei Gruppen zu je zwei Hörnern gegenüber einer Ebene Q' symmetrisch gespeist werden, wobei diese Ebene als senkrecht zu der Bezugsebene P und gleichzeitig zu einer Ebene Q definiert ist, und zwar derart, daß die Krümmung der Zweige der beiden Leistungsteiler (6, 7) die Fortpflanzung des Modus TEoi erlaubt, wobei diese Antenne aus zwei Platten (200, 210) gebildet ist, deren Oberflächen elektrisch leitend sind, wobei die Hörner in der Dicke der ersten Platte (200) gebildet sind, wobei die Öffnungen der Hörner an der ersten Fläche (201) der Platte münden und die Mündungen an der zweiten Fläche (202), wobei das Wellenleiterspeisenetzwerk (3) durch leere Rillen in dieser zweiten Fläche (202) gebildet ist, wobei diese Rillen drei der vier Leiterflächen bilden, wobei die zweite Platte (210) eine erste ebene Fläche (203) bildet und wobei die Anordnung der zweiten Fläche der ersten Platte (202) an der ersten Fläche (203) der zweiten Platte (210) die vierte Fläche der Wellenleiter (3) sowie die Verbindung mit den Hörnern (1) bildet.
3. Mikrowellenantenne nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß sie eine Vielzahl von vier einheitlichen Modulen aufweist, die untereinander durch ein planares verzweigtes Netzwerk gespeist wird von demselben Typ wie das Netzwerk, das im Innern jedes Moduls (6, 7, 8, 9) verteilt ist und in derselben Ebene liegt wie dieses letztere Netzwerk, so daß alle Hörner (1) der Antenne phasengleich gespeist werden.
4. Antenne nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Platten (100, 110, 200, 210) aus einem elektrisch leitenden Werkstoff bestehen.
5. Antenne nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Platten (100, 110, 200, 210) aus einem dielektrischen Werkstoff bestehen, wobei die Oberflächen mit einem elektrisch leitenden Werkstoff bedeckt sind.
EP86200958A 1985-06-04 1986-06-02 Modulare Mikrowellenantenneneinheiten und Antenne mit solchen Einheiten Expired - Lifetime EP0205212B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8508398 1985-06-04
FR8508398A FR2582864B1 (fr) 1985-06-04 1985-06-04 Modules unitaires d'antenne hyperfrequences et antenne hyperfrequences comprenant de tels modules

Publications (2)

Publication Number Publication Date
EP0205212A1 EP0205212A1 (de) 1986-12-17
EP0205212B1 true EP0205212B1 (de) 1991-11-27

Family

ID=9319847

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86200958A Expired - Lifetime EP0205212B1 (de) 1985-06-04 1986-06-02 Modulare Mikrowellenantenneneinheiten und Antenne mit solchen Einheiten

Country Status (5)

Country Link
US (1) US4743915A (de)
EP (1) EP0205212B1 (de)
JP (1) JPS6236905A (de)
DE (1) DE3682622D1 (de)
FR (1) FR2582864B1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220200160A1 (en) * 2020-12-18 2022-06-23 Aptiv Technologies Limited Waveguide End Array Antenna to Reduce Grating Lobes and Cross-Polarization

Families Citing this family (161)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62222702A (ja) * 1986-03-25 1987-09-30 Sony Corp 平面アレイアンテナ
GB8619680D0 (en) * 1986-08-13 1986-09-24 Collins J L F C Flat plate array
AU3417289A (en) * 1988-03-30 1989-10-16 British Satellite Broadcasting Limited Flat plate array antenna
GB2238914B (en) * 1989-11-27 1994-05-04 Matsushita Electric Works Ltd Waveguide feeding array antenna
US5109232A (en) * 1990-02-20 1992-04-28 Andrew Corporation Dual frequency antenna feed with apertured channel
AU8078891A (en) * 1990-06-14 1992-01-07 John Louis Frederick Charles Collins Microwave antennas
FI99221C (fi) * 1995-08-25 1997-10-27 Nokia Telecommunications Oy Planaarinen antennirakenne
US6034647A (en) * 1998-01-13 2000-03-07 Raytheon Company Boxhorn array architecture using folded junctions
EP0959515A1 (de) * 1998-05-20 1999-11-24 TRT Lucent Technologies (SA) Verfahren zur Herstellung von Winkelstücken für Mikrowellenhohlleiter sowie nach diesem Verfahren hergestellte Winkelstücke
DE10028937A1 (de) * 2000-06-16 2002-01-17 Comet Vertriebsgmbh Planarantenne mit Hohlleiteranordnung
US20060244671A1 (en) * 2003-05-15 2006-11-02 Nec Corporation Feeder waveguide and sector antenna
EP2015396A3 (de) * 2004-02-11 2009-07-29 Sony Deutschland GmbH Zirkular polarisierte Gruppenantenne
DE112009001422T5 (de) * 2008-06-11 2011-06-01 Tohoku University, Sendai Plasma-Processing-Vorrichtung und Plasma-Vorrichtung-Verfahren
US8558746B2 (en) 2011-11-16 2013-10-15 Andrew Llc Flat panel array antenna
US9160049B2 (en) * 2011-11-16 2015-10-13 Commscope Technologies Llc Antenna adapter
US8988294B2 (en) 2011-12-06 2015-03-24 Viasat, Inc. Antenna with integrated condensation control system
FR2995456B1 (fr) * 2012-09-07 2016-03-04 Thales Sa Bloc source radio frequence pour architecture multi faisceau
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9525524B2 (en) 2013-05-31 2016-12-20 At&T Intellectual Property I, L.P. Remote distributed antenna system
FR3012917B1 (fr) * 2013-11-04 2018-03-02 Thales Repartiteur de puissance compact bipolarisation, reseau de plusieurs repartiteurs, element rayonnant compact et antenne plane comportant un tel repartiteur
FR3012918B1 (fr) * 2013-11-04 2018-03-23 Thales Coupleur en te dans le plan e, repartiteur de puissance, reseau rayonnant et antenne comportant un tel coupleur
US8897697B1 (en) 2013-11-06 2014-11-25 At&T Intellectual Property I, Lp Millimeter-wave surface-wave communications
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US10063280B2 (en) 2014-09-17 2018-08-28 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9615269B2 (en) 2014-10-02 2017-04-04 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9503189B2 (en) 2014-10-10 2016-11-22 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9973299B2 (en) 2014-10-14 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9653770B2 (en) 2014-10-21 2017-05-16 At&T Intellectual Property I, L.P. Guided wave coupler, coupling module and methods for use therewith
US9627768B2 (en) 2014-10-21 2017-04-18 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9312919B1 (en) 2014-10-21 2016-04-12 At&T Intellectual Property I, Lp Transmission device with impairment compensation and methods for use therewith
US9577306B2 (en) 2014-10-21 2017-02-21 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US9544006B2 (en) 2014-11-20 2017-01-10 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US9461706B1 (en) 2015-07-31 2016-10-04 At&T Intellectual Property I, Lp Method and apparatus for exchanging communication signals
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
IL236739B (en) 2015-01-15 2018-02-28 Mti Wireless Edge Ltd Antenna formed from plates and methods useful in conjunction therewith
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US10454186B2 (en) * 2015-02-24 2019-10-22 Gilat Satellite Networks Ltd. Lightweight plastic antenna
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US10224981B2 (en) 2015-04-24 2019-03-05 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US9490869B1 (en) 2015-05-14 2016-11-08 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US9859597B2 (en) 2015-05-27 2018-01-02 Viasat, Inc. Partial dielectric loaded septum polarizer
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US9640847B2 (en) 2015-05-27 2017-05-02 Viasat, Inc. Partial dielectric loaded septum polarizer
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US10812174B2 (en) 2015-06-03 2020-10-20 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9667317B2 (en) 2015-06-15 2017-05-30 At&T Intellectual Property I, L.P. Method and apparatus for providing security using network traffic adjustments
US9640850B2 (en) 2015-06-25 2017-05-02 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US9509415B1 (en) 2015-06-25 2016-11-29 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US9628116B2 (en) 2015-07-14 2017-04-18 At&T Intellectual Property I, L.P. Apparatus and methods for transmitting wireless signals
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US9722318B2 (en) 2015-07-14 2017-08-01 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US9793951B2 (en) 2015-07-15 2017-10-17 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
US11367959B2 (en) 2015-10-28 2022-06-21 Rogers Corporation Broadband multiple layer dielectric resonator antenna and method of making the same
US10476164B2 (en) 2015-10-28 2019-11-12 Rogers Corporation Broadband multiple layer dielectric resonator antenna and method of making the same
US10374315B2 (en) 2015-10-28 2019-08-06 Rogers Corporation Broadband multiple layer dielectric resonator antenna and method of making the same
US10693236B2 (en) * 2016-02-03 2020-06-23 Waymo Llc Iris matched PCB to waveguide transition
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US10340600B2 (en) 2016-10-18 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via plural waveguide systems
US10135147B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via an antenna
US10135146B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via circuits
US9991580B2 (en) 2016-10-21 2018-06-05 At&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US9876605B1 (en) 2016-10-21 2018-01-23 At&T Intellectual Property I, L.P. Launcher and coupling system to support desired guided wave mode
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
US11876295B2 (en) * 2017-05-02 2024-01-16 Rogers Corporation Electromagnetic reflector for use in a dielectric resonator antenna system
US11283189B2 (en) 2017-05-02 2022-03-22 Rogers Corporation Connected dielectric resonator antenna array and method of making the same
GB2575946B (en) 2017-06-07 2022-12-14 Rogers Corp Dielectric resonator antenna system
WO2019203903A2 (en) * 2017-12-20 2019-10-24 Optisys, LLC Integrated tracking antenna array combiner network
US10910722B2 (en) 2018-01-15 2021-02-02 Rogers Corporation Dielectric resonator antenna having first and second dielectric portions
US11616302B2 (en) 2018-01-15 2023-03-28 Rogers Corporation Dielectric resonator antenna having first and second dielectric portions
US10892544B2 (en) 2018-01-15 2021-01-12 Rogers Corporation Dielectric resonator antenna having first and second dielectric portions
KR101985686B1 (ko) * 2018-01-19 2019-06-04 에스케이텔레콤 주식회사 수직 편파 안테나
KR102483469B1 (ko) 2018-07-03 2023-01-02 엘지이노텍 주식회사 안테나
US11031697B2 (en) 2018-11-29 2021-06-08 Rogers Corporation Electromagnetic device
KR20210095632A (ko) 2018-12-04 2021-08-02 로저스코포레이션 유전체 전자기 구조 및 이의 제조방법
US11482790B2 (en) 2020-04-08 2022-10-25 Rogers Corporation Dielectric lens and electromagnetic device with same
US12009596B2 (en) 2021-05-14 2024-06-11 Optisys, Inc. Planar monolithic combiner and multiplexer for antenna arrays

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2461005A (en) * 1940-04-05 1949-02-08 Bell Telephone Labor Inc Ultra high frequency transmission
US2540839A (en) * 1940-07-18 1951-02-06 Bell Telephone Labor Inc Wave guide system
US2398095A (en) * 1940-08-31 1946-04-09 Rca Corp Electromagnetic horn radiator
US2718592A (en) * 1951-04-28 1955-09-20 Bell Telephone Labor Inc Antenna
BE542180A (de) * 1953-01-21
BE543475A (de) * 1954-12-10
US3999151A (en) * 1975-09-08 1976-12-21 Western Electric Company, Inc. Crossguide hybrid coupler and a commutating hybrid using same to form a channel branching network
FR2552273B1 (fr) * 1983-09-21 1986-02-28 Labo Electronique Physique Antenne hyperfrequence omnidirectionnelle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220200160A1 (en) * 2020-12-18 2022-06-23 Aptiv Technologies Limited Waveguide End Array Antenna to Reduce Grating Lobes and Cross-Polarization
US11626668B2 (en) * 2020-12-18 2023-04-11 Aptiv Technologies Limited Waveguide end array antenna to reduce grating lobes and cross-polarization

Also Published As

Publication number Publication date
EP0205212A1 (de) 1986-12-17
DE3682622D1 (de) 1992-01-09
US4743915A (en) 1988-05-10
JPS6236905A (ja) 1987-02-17
FR2582864A1 (fr) 1986-12-05
FR2582864B1 (fr) 1987-07-31

Similar Documents

Publication Publication Date Title
EP0205212B1 (de) Modulare Mikrowellenantenneneinheiten und Antenne mit solchen Einheiten
EP0213646B1 (de) Modulare Mikrowellenantenneneinheiten und Antenne mit solchen Einheiten
EP3547450B1 (de) Strahlungselement mit kreispolarisierung, bei dem eine resonanz in einem fabry-perot-interferometer angewandt wird
EP0108463B1 (de) Strahlelement für orthogonal polarisierte Signale und flache Antennengruppe mit solchen nebeneinandergestellten Elementen
EP0064313B1 (de) Mikrowellenstrahlerelement für Zirkularpolarisation und ebene Mikrowellenantenne mit einer Gruppe solcher Elemente
EP0134611B1 (de) Sende- oder Empfangsstrahlergruppe einer Mikrowellenflachantenne und Sende- oder Empfangseinrichtung von Mikrowellensignalen mit einer solchen Flachantenne
EP0783189A1 (de) Flache Mikrowellen-Gruppenantenne für die Kommunikation mit geostationären Fernsehsatelliten
EP0481417A1 (de) Vorrichtung zur Speisung eines Strahlungselementes für zwei orthogonale Polarisationen
EP0667984B1 (de) Monopolantenne mit platten- und stabstrahlern
EP0205393A1 (de) Zylindrische Rundstrahlantenne
EP0089084A1 (de) Flache Höchstfrequenz Antennenstruktur
EP0315141A1 (de) Anregungsvorrichtung einer zirkularpolarisierten Welle mit einer Flachantenne in einem Hohlleiter
CA2869648A1 (fr) Repartiteur de puissance compact bipolarisation, reseau de plusieurs repartiteurs, element rayonnant compact et antenne plane comportant un tel repartiteur
EP0082751B1 (de) Mikrowellenstrahler und seine Verwendung für eine Antenne mit elektronischer Abtastung
EP1042845B1 (de) Antenne
EP3435480B1 (de) Antenne mit integrierten verzögerungslinsen im innern eines verteilers auf der basis von wellenleiterteilern mit parallelen platten
EP0520908B1 (de) Lineare Gruppenantenne
EP0477102B1 (de) Richtnetzwerk mit benachbarten Strahlerelementen für Funkübertragungssystem und Einheit mit einem derartigen Richtnetzwerk
FR2552273A1 (fr) Antenne hyperfrequence omnidirectionnelle
WO1991018428A1 (fr) Antenne orientable plane, fonctionnant en micro-ondes
FR2629644A1 (fr) Antenne boucle large bande a alimentation dissymetrique, notamment antenne pour emission, et antenne reseau formee d'une pluralite de telles antennes
EP0407258B1 (de) Direkt strahlender Verteiler von Höchstfrequenzenergie
EP0156684A1 (de) Strahlendes Mirkowellenelement und seine Anwendung in einer elektronisch gesteuerten Antenne
EP4391232A1 (de) Weitwinkel-impedanzanpassungsvorrichtung für eine gruppenantenne mit strahlungselementen und verfahren zum entwurf einer solchen vorrichtung
FR2507392A1 (fr) Source rayonnante hyperfrequence a cavites ouvertes excitee par deux dipoles orthogonaux

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB SE

17P Request for examination filed

Effective date: 19870515

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: N.V. PHILIPS' GLOEILAMPENFABRIEKEN

Owner name: LABORATOIRES D'ELECTRONIQUE PHILIPS

17Q First examination report despatched

Effective date: 19900523

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB SE

REF Corresponds to:

Ref document number: 3682622

Country of ref document: DE

Date of ref document: 19920109

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 86200958.6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950628

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950822

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: CJ

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960603

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19960625

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19970602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19970603

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970602

EUG Se: european patent has lapsed

Ref document number: 86200958.6